9
Food Sci Nutr. 2017;1–9. | 1 www.foodscience-nutrition.com Received: 24 February 2017 | Accepted: 12 May 2017 DOI: 10.1002/fsn3.493 ORIGINAL RESEARCH Oxidative changes in lipids, proteins, and antioxidants in yogurt during the shelf life Anna Citta 1 | Alessandra Folda 1 | Valeria Scalcon 1 | Guido Scutari 1 | Alberto Bindoli 2 | Marco Bellamio 3 | Emiliano Feller 3 | Maria Pia Rigobello 1 This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. © 2017 The Authors. Food Science & Nutrition published by Wiley Periodicals, Inc. 1 Department of Biomedical Sciences, University of Padova, Padova, Italy 2 Institute of Neuroscience (CNR), Padova, Italy 3 Centrale del Latte di Vicenza s.p.a., Vicenza, Italy Correspondence Maria Pia Rigobello, Department of Biomedical Sciences, University of Padova, Padova, Italy. Email: [email protected] Funding information This work was supported by FSE 2013 (Regione Veneto) 2105/1/8/1686/2012 and FSE 2014 (Regione Veneto) 2105/201/12/1148/2013. Abstract Oxidation processes in milk and yogurt during the shelf life can result in an alteration of protein and lipid constituents. Therefore, the antioxidant properties of yogurt in standard conditions of preservation were evaluated. Total phenols, free radical scav- enger activity, degree of lipid peroxidation, and protein oxidation were determined in plain and skim yogurts with or without fruit puree. After production, plain, skim, plain berries, and skim berries yogurts were compared during the shelf life up to 9 weeks. All types of yogurts revealed a basal antioxidant activity that was higher when a fruit puree was present but gradually decreased during the shelf life. However, after 5–8 weeks, antioxidant activity increased again. Both in plain and berries yogurts lipid peroxidation increased until the seventh week of shelf life and after decreased, whereas protein oxidation of all yogurts was similar either in the absence or presence of berries and increased during shelf life. During the shelf life, a different behavior between lipid and protein oxidation takes place and the presence of berries deter- mines a protection only against lipid peroxidation. KEYWORDS antioxidants, lipid peroxidation, protein oxidation, shelf life, yogurt 1 | INTRODUCTION Free radicals and other reactive oxygen species (ROS) may cause to living and food systems an oxidative damage that, however, can be prevented by several types of antioxidants (Halliwell & Gutteridge, 2015; Gülçin, 2012). For instance, in the human diet, fruits are relevant components and provide nutrients such as car- bohydrates, minerals, and vitamins together with phytochemicals which include polyphenols and carotenoids, all endowed with potent antioxidant properties (Jacob et al., 2012). In addition to the antioxidants of endogenous or exogenous origin, a contribu- tion to the antioxidant defense is also given by proteins, peptides, and amino acids (Power, Jakeman, & Fitzgerald, 2013; Sarmadi & Ismail, 2010). For instance, the tripeptide glutathione is a well- known antioxidant acting both directly and as a substrate of glu- tathione peroxidase which is able to convert hydrogen peroxide to water. The dipeptide carnosine (β-alanyl-L-histidine), particularly abundant in skeletal muscle and brain, may act as a free radical scavenger and metal chelator (Decker, Livisay, & Zhou, 2000; Baye et al., 2016). Milk and dairy products, basic foods for human nutrition, can also contribute to the body defense against oxidants. However, oxi- dation processes in milk can result in sharp off-flavors and a decline of its nutritional properties. Consequently, the oxidative stability of milk and dairy products has great importance especially consid- ering their shelf life. The antioxidant activity is due to the natural

Oxidative changes in lipids, proteins, and antioxidants in ... · tion using the 2-thiobarbituric acid assay as described by Yagi (1984) with modifications (Rigobello et al., 2008)

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Oxidative changes in lipids, proteins, and antioxidants in ... · tion using the 2-thiobarbituric acid assay as described by Yagi (1984) with modifications (Rigobello et al., 2008)

Food Sci Nutr. 2017;1–9.  | 1www.foodscience-nutrition.com

Received:24February2017  |  Accepted:12May2017DOI: 10.1002/fsn3.493

O R I G I N A L R E S E A R C H

Oxidative changes in lipids, proteins, and antioxidants in yogurt during the shelf life

Anna Citta1 | Alessandra Folda1 | Valeria Scalcon1 | Guido Scutari1 |  Alberto Bindoli2 | Marco Bellamio3 | Emiliano Feller3 | Maria Pia Rigobello1

ThisisanopenaccessarticleunderthetermsoftheCreativeCommonsAttributionLicense,whichpermitsuse,distributionandreproductioninanymedium,providedtheoriginalworkisproperlycited.©2017TheAuthors.Food Science & NutritionpublishedbyWileyPeriodicals,Inc.

1DepartmentofBiomedicalSciences, UniversityofPadova,Padova,Italy2InstituteofNeuroscience(CNR),Padova,Italy3CentraledelLattediVicenzas.p.a.,Vicenza,Italy

CorrespondenceMariaPiaRigobello,DepartmentofBiomedicalSciences,UniversityofPadova,Padova,Italy.Email:[email protected]

Funding informationThisworkwassupportedbyFSE2013(RegioneVeneto)2105/1/8/1686/2012andFSE2014(RegioneVeneto)2105/201/12/1148/2013.

AbstractOxidationprocessesinmilkandyogurtduringtheshelflifecanresultinanalterationofproteinand lipidconstituents.Therefore, theantioxidantpropertiesofyogurt instandardconditionsofpreservationwereevaluated.Totalphenols,freeradicalscav-engeractivity,degreeoflipidperoxidation,andproteinoxidationweredeterminedinplainandskimyogurtswithorwithoutfruitpuree.Afterproduction,plain,skim,plainberries,andskimberriesyogurtswerecomparedduringtheshelflifeupto9weeks.Alltypesofyogurtsrevealedabasalantioxidantactivitythatwashigherwhenafruitpuree was present but gradually decreased during the shelf life. However, after5–8weeks,antioxidantactivityincreasedagain.Bothinplainandberriesyogurtslipidperoxidation increased until the seventh week of shelf life and after decreased,whereasproteinoxidationofallyogurtswassimilareitherintheabsenceorpresenceofberriesand increasedduringshelf life.During theshelf life,adifferentbehaviorbetween lipidandproteinoxidation takesplaceand thepresenceofberriesdeter-minesaprotectiononlyagainstlipidperoxidation.

K E Y W O R D S

antioxidants,lipidperoxidation,proteinoxidation,shelflife,yogurt

1  | INTRODUCTION

Freeradicalsandotherreactiveoxygenspecies(ROS)maycauseto living and food systems an oxidative damage that, however,can be prevented by several types of antioxidants (Halliwell &Gutteridge,2015;Gülçin,2012).Forinstance,inthehumandiet,fruitsarerelevantcomponentsandprovidenutrientssuchascar-bohydrates,minerals,andvitaminstogetherwithphytochemicalswhich include polyphenols and carotenoids, all endowed withpotent antioxidantproperties (Jacobetal., 2012). In addition totheantioxidantsofendogenousorexogenousorigin,acontribu-tiontotheantioxidantdefenseisalsogivenbyproteins,peptides,andaminoacids(Power,Jakeman,&Fitzgerald,2013;Sarmadi&

Ismail, 2010). For instance, the tripeptide glutathione is awell-knownantioxidantactingbothdirectlyandasasubstrateofglu-tathioneperoxidasewhichisabletoconverthydrogenperoxidetowater.Thedipeptidecarnosine (β-alanyl-L-histidine),particularlyabundant in skeletalmuscle andbrain,may act as a free radicalscavengerandmetalchelator(Decker,Livisay,&Zhou,2000;Bayeetal.,2016).

Milk and dairy products, basic foods for human nutrition, canalsocontributetothebodydefenseagainstoxidants.However,oxi-dationprocessesinmilkcanresultinsharpoff-flavorsandadeclineof its nutritional properties. Consequently, the oxidative stabilityofmilkanddairyproductshasgreat importanceespeciallyconsid-ering their shelf life.Theantioxidantactivity isdue to thenatural

Page 2: Oxidative changes in lipids, proteins, and antioxidants in ... · tion using the 2-thiobarbituric acid assay as described by Yagi (1984) with modifications (Rigobello et al., 2008)

2  |     CITTA eT Al.

antioxidantspresentinmilk(Lindmark-Månsson&Akesson,2000);and is in part depending from the food supply to herbivores. Forinstance, phenolic compounds, products of the secondarymetab-olism in plants, are effective natural antioxidants and are presentin noticeable amounts in the ruminantmilk,mostly deriving fromthe feeding (O’Connell & Fox, 2001). In addition, both fermentedmilkandyogurtcontainbioactivepeptides,formedbyhydrolysisofmilk proteins during the fermentation process, and also endowedwithantioxidantactivity(Poweretal.,2013;Pihlanto,2006;Aloğlu&Oner,2001).However, there is still a lackofknowledgeon theantioxidantcapacityofdairyproductssuchasprobioticyogurtscon-tainingdifferenttypesoffruits.Inthiscase,theantioxidantpowerlargely depends on the presence of added fruit puree containingvarious bioactive compounds such as tocopherols, carotenoids,ascorbate,andespeciallyphenoliccompoundswhicharegoodcon-tributors to the total antioxidant capacity of yogurt (O’Connell &Fox,2001;Şengül,Erkaya,Şengül,&Yildiz,2012).

Thisstudyaimstodeterminehowtheantioxidantpowerofyo-gurtchangesduringshelflifeinstandardconditionsofpreservation.Therefore,weexaminedtheantioxidantcapacityofaplainorskimyogurtwithorwithoutaddedfruitpureeinrelationtothetotalcon-tent of phenols and free radical scavenging capacity. Furthermore,lipoperoxidation processes and the content of carbonyl groups, anindexofproteinoxidation,werealsoevaluated,showingadivergentbehavior.

2  | EXPERIMENTAL

2.1 | Materials

TroloxC,ABTS(2,2′-azinobis(3-ethylbenzothiazoline6-sulfonate))were purchased from Fluka-Sigma-Aldrich (St. Louis,MO, USA).DPPH (1,1-diphenyl-2-picrylhydrazyl) and Folin-Ciocalteau rea-gent were obtained from Sigma-Aldrich (St. Louis, MO, USA).All types of yogurts analyzed in this study were obtained fromCentraledelLattediVicenza(Vicenza,IT),Lactobacillus delbrueckii subs. bulgaricus and Streptococcus thermophilus from Danisco (Copenhagen,DK), and fruit puree fromZuegg (Verona, IT), andDarbo(Stans,A).

2.2 | Preparation of probiotic yogurt

The different types of yogurtswere collected on the day of theirmanufacturing.Briefly,pasteurizedmilkwassubjectedtoultrafiltra-tiontoachievethedesiredfatandsolidcontent,thentosterilizationat120°Cfor30secandhomogenization(APV,SPXFlowTechnology,Crawley,UnitedKingdom).Milkwasthenincubatedinamaturationtank at 38°C and inoculatedwith the starter culture (Lactobacillus delbrueckii subs. bulgaricus and Streptococcus thermophilus). At theendofthisprocess,whenthedesiredpHwasachieved,theclotwasbrokenandtheyogurtwascooledtostopthefermentationprocess.Fruitpureewasthenaddedandtheyogurtwaspackedandstoredat4°C.

2.3 | Lipid and protein composition of yogurt

Lipid fraction of plain yogurt (40mg/mL) is composed of 69.14%saturated fats (palmitic acid [32%], stearic acid [10.8%], andmyris-ticacid[10.7%]),27.7%monounsaturatedfats (oleicacid[24%]andpalmitoleicacid[1.7%]),and3.2%polyunsaturatedfats (linoleicacid[2.7%]andlinolenicacid[0.4%]).However,skimyogurtshowsaverylowconcentrationoffats (about1mg/mL) incomparisonwithplainyogurt,butmaintainsasimilarpercentageofsaturated,monounsatu-rated,andpolyunsaturatedfattyacids.Ofnote,skimyogurtexhibitsaproteincontentslightlyhigher(42mg/mL)thanplainyogurt(38mg/mL).Thereporteddataareprovidedbythemanufacturer.

2.4 | Preparation of yogurt aqueous extracts

Forthepreparationofthesamples,aliquotsof0.25mLofyogurtwereextracted for18hrwith5mLofdistilledwaterat4°C inanorbitalshaker. The samples were then centrifuged at 20,000g for 20 min at 15°C. The supernatants were collected and filtrated throughWhatmanChr.1.

2.5 | Determination of total phenolic content

Phenolic compoundswere determined using themethod describedbyGülçin, (2012)withsomemodifications.Briefly,1mLofaqueousextractofyogurt,obtainedasdescribedabove,wasaddedto1mLofFolin-Ciocalteaureagentdiluted1:2withwater.After3min,2mLof10%Na2CO3wasaddedandthesampleswereincubatedfor15minat room temperature. At the end of this step, the absorbancewasmeasured at 750nm. A calibration curve was performed with gal-licacidand the resultswereexpressedasmicrogramsofgallicacidequivalentsper100mLofsample(GAE).

2.6 | Antioxidant activity of yogurt aqueous extracts estimated with the DPPH method

DPPH(1,1-diphenyl-2-picrylhydrazyl)isastable-freeradicalwhosere-actionwithantioxidantmoleculescanbefollowedasdecrease inab-sorbance.TheevaluationoftheantioxidantactivitywasperformedwiththemethoddescribedbyŞengületal.(2012)withsomemodifications.Yogurtextracts (0.02mL)werediluted in0.08mLofwaterand thentreatedwith0.1mLof0.16mmol/LDPPHdissolvedinethanol.Thede-creaseinabsorbancewasmeasuredspectrophotometricallyat517nm.Thepercentageofantioxidantactivityinhibitionwascalculatedas:

2.7 | Antioxidant activity of yogurt aqueous extracts estimated with the ABTS method

ABTS (2, 2′-azinobis(3-ethylbenzothiazoline 6-sulfonate)) can beoxidizedtoastableradicalcation(ABTS•+)whichisdecolorizedafter

%DPPH scavenging = (Abs control - Abs sample)/(Abs control)×100

Page 3: Oxidative changes in lipids, proteins, and antioxidants in ... · tion using the 2-thiobarbituric acid assay as described by Yagi (1984) with modifications (Rigobello et al., 2008)

     |  3CITTA eT Al.

reactionwithantioxidants.ABTS•+wasgeneratedbyreacting7mmol/LABTSwith2.46mmol/Lpotassiumpersulfate(finalconcentration)andthemixturewasmaintainedatroomtemperature,inthedark,for16hrbeforeuse(Perna,Intaglietta,Simonetti,&Gambacorta,2013).Thenitwasaddedtoyogurtextractstodeterminetheirantioxidantcapacity.Briefly,0.01mLofwaterextractsofeachtypeofyogurtwasdilutedin0.09mLofwaterandthentreatedwith0.1mLofABTS•+. The de-creaseinabsorbancewasmeasuredat415nmwithaplatereader.AcalibrationcurvewasperformedwithTroloxCandtheresultsareex-pressedasTroloxCequivalentantioxidantcapacity(TEAC).

2.8 | Determination of lipid peroxidation

Lipidperoxidationwasassessedasmalondialdehyde(MDA)forma-tionusingthe2-thiobarbituricacidassayasdescribedbyYagi(1984)

withmodifications(Rigobelloetal.,2008).Aliquotsof0.1mLofyo-gurtweretreatedwith3.9mLof0.3mol/Lsulfuricacidand0.5mLof10%phosphotungsticacid.After10minat25°C, sampleswerecentrifugedat4,000gfor10min.Pelletswereresuspendedin2mLof0.3mol/Lsulfuricacidand0.3mLof10%phosphotungsticacidandcentrifugedagainatthesamespeed.Then,samplesweresus-pendedwith1mLof0.67%thiobarbituricacid(TBA),0.2mLof5%Nonidet,0.04mLof1%BHT,and2.8mLofwaterandincubatedfor1hrat95°C.Afterheattreatment,3mlofn-butanolwasaddedtothesampleswhichwerevigorouslymixedandcentrifugedat6,000g for5min.Thefluorescenceoftheupperphasewasmeasured(Exat530nmandEmat540nm).Acalibrationcurvewith1,1,3,3-tetraeth-oxypropanestandardsolutionwasusedtoquantitativelydeterminethe concentrationof thiobarbituric reactive substances (TBARS) inthesamples.

F IGURE  1 Determinationoftotalphenoliccontent(TPC)indifferenttypesofyogurt.(A)yogurtaqueousextracts(1mL)weretestedandTPCwasdeterminedbytheFolin-Ciocalteaumethod.(a)plainyogurt;(b)skimyogurt;(c)plainberriesyogurt;(d)skimberriesyogurt;(e)plainstrawberriesyogurt;(f)plainblueberriesyogurt;(g)plaincherryyogurt;(h)plainpineappleandorangeyogurt;(i)plainplumyogurt;(j)plainapricotyogurt;(k)skimappleyogurt;(l)skimbananayogurt;m:skimpeachyogurt.(B)Determinationoftotalphenoliccontent(TPC)of(a–d),duringtheshelflife.Theexperimentswereperformedonceaweekfor9weeks.Totalphenoliccontentwasexpressedasmgofgallicacidequivalents(GAE)per100mLofyogurt

Page 4: Oxidative changes in lipids, proteins, and antioxidants in ... · tion using the 2-thiobarbituric acid assay as described by Yagi (1984) with modifications (Rigobello et al., 2008)

4  |     CITTA eT Al.

2.9 | Protein carbonyl content estimation

Protein oxidation was determined with the method describedby Fenaille etal., (2006) with some modifications. Briefly, 2mgproteins of the original yogurt were treated with 10mmol/L2,4-dinitrophenylhydrazine (DNPH) dissolved in 2mol/L HCl, for30min in thedark. Proteinswere thenprecipitatedwith10%TCAandcentrifugedfor5minat10,000g.ToremoveunreactedDNPH,theobtainedpelletswerewashedthreetimeswith1mLofethanol/ethylacetate(50:50),anddissolvedwith8mol/Lguanidine(pH2.3).Absorbancewasestimatedat370nmandproteinconcentrationwasdeterminedbytheBradfordassay,(Bradford,1976)using0.01mLofsamplesdissolvedwithguanidine.

2.10 | Statistical analysis

Eachanalysisof thesampleswasperformedonceaweek fromtheproduction to 2weeks after the shelf life. All the experiments re-portedarethemeanwithrespectiveSDof,atleast,fourexperiments.The statistical analysis of variance (ANOVA) was performed usingTukeytestwithINSTAT3.3(GraphPad)software.

3  | RESULTS AND DISCUSSION

3.1 | Total phenolic content of different types of yogurt

Theconcentrationof totalphenolicgroups (TPC) inyogurt samplestreatedwithdifferentfruitpureeswasanalyzed.Figure1AreportstheTPCcontentatthebeginningofthestorage,estimatedasmicrogramsofgallicacidequivalents(GAE)per100mLofsample.Theadditionoffruitpureedeterminedanincreaseintotalphenolicgroups,particu-larlywhenberries(c,d),cherry(g),andpeach(m)pureeswerepresent.Testswere repeatedduring the shelf lifebychoosing two typesofyogurt,plainandskimwithandwithoutberries,andtheresultsarereportedinFigure1B.Thedurationofstoragedeterminedaslightde-clineofTPCmostlyinskimyogurttreatedwithpureeofberries(d),whereasforplain (a),skim(b),andplainwithberries (c)yogurtsthecontentdidnot change.Therefore, data analysis shows thatduringtheshelflife,theproductsarenotsignificantlyalteredregardingtheirTPC.

3.2 | Antioxidant capacity of different types of yogurts

3.2.1 | DPPH radical scavenging during the shelf life of yogurts

Highlyreactivefreeradicalsandotherreactiveoxygenspeciesgene-rated from a wide variety of sources occur in biological systems.However, these species are efficiently recognized by antioxidants.DPPHisarelativelystableorganic-freeradicalwhichhasbeenwidelyused to test the free radical scavenging ability of various samples

containingantioxidantmolecules.Themethodisbasedonthereduc-tion in alcoholicDPPH solutions in the presenceof an antioxidant,asDPPH solutions show a deep violet colorwith a strong absorp-tionbandat517nmwhichdecreasesinthepresenceofantioxidantmolecules.TheresultingbleachingofDPPHisstoichiometricwiththeantioxidantmoleculesexaminedandtheestimationoftheconsumedDPPHradicalsisameasureoftheradicalscavengingactivity(Kulisic,Radonic, Katalinic,&Milos, 2004). The results reported in Figure2refertoplain(a),skim(b),plainberries(c),andskimberries(d)yogurtextracts.TheDPPHscavengingactivityofyogurtsamplesincreasedinthepresenceofberriespuree,however,berriespureealonedoesnotshowthesamepercentageofscavengingactivity (insetofFigure2,columnp)respecttothecontrolofplainberriesyogurt. Inaddition,theantioxidantpowerdecreasedduringtheshelflifeuntiltheeighthweekandafterincreasedtovaluescomparabletothoseobservedatthebeginning.Asdiscussedinthenextparagraph(3.2.2),thisbiphasicbehaviorisprobablyduetothelateformationofpeptideswithanti-oxidantproperties,derivingfromthefragmentationofmilkproteins(Pernaetal.,2013;Dziuba&Dziuba,2014).

3.2.2 | Measurement of ABTS radical scavenging activity

Asacomplement tothepreviousestimation, theantioxidantcapac-ityofaqueousextractsofyogurt samplesusing theABTS test,wasalsodetermined.Firstofall,acalibrationstandardcurvewithTroloxCwaspreparedand,thedataareexpressedasequivalentsoftrans-formedTroloxC (TEAC).During theshelf lifesignificantdifferenceswereobserved,mainlyforplainandskimyogurt,comparedwiththesameyogurtswithberries.Asreported inTable1, in thefirstweek,theantioxidantcapacity ranges from835μmol/LTroloxequivalentsforplainyogurtto1,853μmol/LTroloxequivalentsforplainberriesyogurtandfrom1,044μmol/LTroloxequivalentsforskimyogurtto1,925μmol/LTroloxequivalents forskimberriesyogurt,onceagainhighlightingthatthepresenceofpolyphenolsisrelevantfortheanti-oxidantpower.Inaddition,duringtheshelflife,inthethirdandfifthweek, we can observe a marked decrease in antioxidant capacity,reaching50%,forplainandskimyogurtsinthefifthweek.However,intheseventhweek,theantioxidantcapacityincreasesinaccordancewiththeantioxidantactivitypatternseenwiththeDPPHmethod(seeabove).Again,likepreviouslyobserved,thisbehaviorseemstodependonthegenerationofbioactivepeptidesderivingfromtheproteolyticcleavageofcaseinsandothermilkproteinsendowedwithantioxidantproperties(Pihlanto,2006;Pernaetal.,2013;Dziuba&Dziuba,2014).Ofnote,theproteolyticactivitycandeterminethereleaseofantioxi-dantsnaturallypresentintheyogurtsamplesandentrappedinglobu-larproteinssuchascaseins(Trigueros,Wojdyło,&Sendra,2014).

3.2.3 | Estimation of lipid peroxidation in basal or stimulated conditions

Toassessthespontaneouslipoperoxidationofyogurtoccurringdur-ingtheshelflife,atestbasedonmalondialdehyde(MDA)production

Page 5: Oxidative changes in lipids, proteins, and antioxidants in ... · tion using the 2-thiobarbituric acid assay as described by Yagi (1984) with modifications (Rigobello et al., 2008)

     |  5CITTA eT Al.

wascarriedout.Yogurtswerecollectedattheendofthepackagingandstoredat4°Covertheperiodoftheshelflife.Theanalyseswerecarried out at the indicatedweeks until the end of the establishedshelflife(50days)and,inaddition,upto20daysaftertheexpirationdate.AsreportedinFigure3,theassayswerecarriedoutfor9weeksfortheplain(panelA),skim(panelB),plainberries(panelC),andskimberries (panelD)yogurts,respectively,using0.1mLofsample.Firstofall,skimandskimberriesyogurtsshowlowerlevelsofMDA,espe-ciallyinstimulatedconditionsbyadditionofcumenehydroperoxide/hemin(Figure4,seebelow),duetoaminorcontentoflipids.Inaddi-tion,weobservedaslightincreaseinlipoperoxidationparticularlyinthefifthorsixthweekespeciallyinplainyogurt.However,thelevelsoflipidperoxidationwererelativelylowreachingamaximumofabout21nmoles/mL(Figure3aandc).Inthepresenceofberries,MDAlevelwaseven lowerboth inplain and skimyogurt samples.Ofnote, atlongertimes(VIItoIXweeks)adecreaseinMDAformation,especiallyinplainandplainwithberriesyogurts,wasobserved.

However,when lipid peroxidationwas stimulated by addition ofcumene hydroperoxide/hemin, a strong increase in MDA formation

wasobserved.Asapparent inFigure4,arapid increase inMDApro-duction, especially forplainyogurt (Figure4a) compared to skimyo-gurt(Figure4b),wasdetected,inagreementwiththelowerfatcontentpresent in the skim yogurt. In addition, during the shelf life, a con-stant increase inMDAformationuntil thesixthweekwasobserved.Thisbehaviorwasfoundboth inthepresenceand intheabsenceofberries.However,inthepresenceofberriesalowerMDAproductionwithrespecttoplainyogurtaloneisapparentbycomparingFigure4a(400nmoles/mLatthesixthweek)withFigure4c(150nmoles/mLatthesixthweek).Similarly,thepresenceofberriesdeterminesadecreasein lipoperoxidation of skimyogurt compared to skimyogurtwithoutberries, butMDAvalues result far lower (Figure4b and d).Notably,MDAformationbothinbasalconditionandinthepresenceofcumenehydroperoxide/hemin was also estimated in a home-made yogurt,however,veryhighvaluesof lipidperoxidationalreadyat48hrafterproductionwerefound(datanotshown),indicatingthatcontrolledcon-ditionsofmanufacturingensureabetterproduct.AccordingtoSerra,Trujillo,Pereda,Guamis,&Ferragut(2008)thelowpH,thetemperatureofmaintenanceoftheproductduringtheshelflifeandthematerialof

F IGURE  2 Determination of the antioxidantactivitywithDPPHinvarioustypesofyogurtduringtheshelflife.Aliquots(20μL)ofyogurtextractsweretreatedwith0.08mmol/LDPPHandthedecrease in absorbance was estimated at517nm.Theanalysiswasrepeatedonceaweekfor9weeks.Theactivitywasexpressedas%ofDPPHradicalscavenging.(a)plainyogurt;(b)skimyogurt;(c)plainberriesyogurt,and(d)skimberriesyogurt.Theinsetreportstheantioxidantactivityofplainyogurt(a),yogurtaddedwithberriespuree(c),andberriespureealone(p)treatedinthesameconditions.***p < 0.001

Type of yogurt

Trolox equivalent antioxidant capacity (μmol/L Trolox/mL of yogurt)

Weeks

I III V VII

A 835.2±24.2 720.9±105.3 409.2±74.5 941.2±84.3

B 1044.3±64.3 947.7±109.6 441.2±63.1 912.1±80.7

C 1853.8±104.1 1372.0±198.3 1457.1±251.3 1756.9±341.9

D 1925.2±208.6 1582.2±240.3 1568.3±170.3 1811.7±298.1

Aliquots(10μL)ofaqueousyogurtextractsweretreatedwith0.04mmol/LABTS,andthedecreaseinabsorbancewasestimatedat415nmwithaplatereader.Thevaluesobtainedwerecomparedwithastandard curve of TroloxC and expressed as TEACor Trolox equivalent antioxidant activity (μmol/LTroloxC/mLofyogurt).(A)plainyogurt;(B)skimyogurt;(C)plainberriesyogurt;(D)skimberriesyogurt.

TABLE  1 ABTSradicalscavengingactivityofwater-solubleyogurtextracts

Page 6: Oxidative changes in lipids, proteins, and antioxidants in ... · tion using the 2-thiobarbituric acid assay as described by Yagi (1984) with modifications (Rigobello et al., 2008)

6  |     CITTA eT Al.

packaginggenerallywith lowpermeabilitytooxygen,make lipidper-oxidationasecondaryproblem.However, thequalityofmilkusedtoobtaintheyogurtandsomefortifications,forexample,withiron,de-termineadramaticincreaseinlipidperoxidation(Hekmat&McMahon,1997).Therefore,theresultsofFigure4clearlyshowthatwhenMDAwasstimulatedinthepresenceofcumenehydroperoxide/hemin,anetincreaseinMDAformationuntilatleast7weekstakesplace,indicatingapotentialsusceptibilityofyogurttoperoxidativeprocesses.

Asapparent inFigures3and4,after6weeksofshelf life,ade-crease inMDA formationwasobserved in all the samples.Thisoc-currence isprobablyassociatedwiththeactivityofbacteriapresentintheyogurtandproducingbioactivepeptides.Apreliminaryanalysisofthesepeptidesindicatesthatsomeofthemareendowedwithan-tioxidantproperties.Wehaveperformedsomepreliminarystudiesontheproteolyticprocess,and,usingtheo-phthalaldehyde(OPA)basedfluorescentassay,wenoticedthattherewasaneffectiveincreaseinpeptidesformationduringtheshelflife,strictlydependentonthetem-peratureofconservationof theproduct (datanotshown).Bioactive

peptides,inadditiontootherfunctions,exertalsoanantioxidantrolebehaving both as free radical scavengers or chelators of transitionmetal ions (Sarmadi& Ismail,2010).Usually, theyare inactivewhenpresentinthesequenceoftheoriginalproteinsbuttheygainactivityonce releasedbyenzymatichydrolysisof theparentprotein (Poweretal.,2013;Pihlanto,2006).Inaddition,theyarealsoabletostimu-latetheexpressionofgenescodingforantioxidantenzymessuchasheme oxygenase, glutathione peroxidase, catalase, and superoxidedismutase(Sarmadi&Ismail,2010).

3.3 | Estimation of protein carbonyl group formation

Duringthefermentationprocessofyogurt,proteinsarepartiallyhy-drolyzed into peptides and free amino acids (Germani etal., 2014).Theyogurtsamples(plain,skim,plainberries,andskimberries)werealsotestedforproteincarbonylformationduringtheshelflife,atthesameweeks inwhich lipidperoxidationwasmeasured.Theamountofproteincarbonylgroups(Figure5)wasverysimilarintheabsence

F IGURE  3 Estimationofmalondialdehydeduringtheshelflifeofyogurtsamples.Lipidperoxidationwasevaluatedduringyogurtstorage(weeks).Aliquotsof0.1mLofyogurtweresubjectedtoMDAdeterminationasdescribedinExperimental.Fluorometricanalysiswasperformedafterextractionofmalondialdehydewithn-butanol(λEx-530nm,λEm-540nm).ForthequantificationofMDA,astandardcurvewith1,1,3,3-tetraethoxypropanewasperformed.(a)plainyogurt;(b)skimyogurt;(c)plainberriesyogurt;(d)skimberriesyogurt.*p < 0.05;**p < 0.01; ***p < 0.001

Page 7: Oxidative changes in lipids, proteins, and antioxidants in ... · tion using the 2-thiobarbituric acid assay as described by Yagi (1984) with modifications (Rigobello et al., 2008)

     |  7CITTA eT Al.

(Figure5A,a,b)orinthepresence(Figure5B,c,d)ofberries,indicat-ingthatberrieswereunabletopreventproteinoxidationandinaddi-tion,skimyogurt,whichhasahigherproteincontent,showedsimilarvaluesofcarbonylcontentincomparisontoplainyogurt.ThisresultisquitedifferentfromthatobtainedforMDAformation(Figures3and4)indicatingthattheantioxidantsofyogurtaremorepronetoprotectagainstlipidperoxidation,butseemscarcelyabletoinfluenceproteinoxidation.Duringtheshelflifeof45days,theproteolyticactivityofbacteria inyogurtproceeds (Germanietal.,2014)anddeterminesafragmentation and an oxidation particularly in plain yogurt. Proteinoxidationishighercomparedwithskimproductattheseventhweek(Figure5A), but this does not occur for the samples (plain or skim)containingpureeofberries(Figure5B).Inaddition,carbonylcontentafter the incubation of yogurts with cumene hydroperoxide/heminwasestimated(Figure5C).Alsointhiscase,thepresenceofberriesdonotreducetheextentofproteinoxidation.

4  | CONCLUSION

Theantioxidantactivityofyogurtsamplesdependsontheendogenousantioxidants,onaddedantioxidantscontained in fruitpureeandontheformationofbioactivepeptides.Theantioxidantpropertiesofbio-activepeptidesdependontheirspecificaminoacidcompositionandTyr,Cys,andHisresiduesareparticularlyrelevant.Inaddition,somepeptidesmayalsobeabletoexertamarkedsynergisticeffectwithphenolic antioxidants (Saito etal., 2003). Theproductionof endog-enousantioxidantpeptides,andtheincidenceofaddedantioxidantspresentinthepureeundoubtedlyconstituteagoodprotectionagainstalipidperoxidation,andthereforereducetheperoxidizabilityofyo-gurt.Onthecontrary,theoxidationoftheproteinsisnotpreventedbytheantioxidantspresentinyogurt.Inaddition,DPPHandABTSas-saysshowthatthetotalantioxidantcapacityslowlydecreasesduring

F IGURE  4 Estimationofmalondialdehydeaftertreatmentofyogurtsampleswithcumenehydroperoxide/hemin.Lipidperoxidationwasevaluatedduringyogurtsamplestorageforaperiodof9weeks.Briefly,aliquotsof0.1mLofyogurtweretreatedfor30minwith25mmol/Lcumenehydroperoxide/0.05mmol/Lhemin,andthensubjectedtoMDAdeterminationasdescribedinExperimental.Afterextractionofmalondialdehydewithbutanol,fluorometricanalysiswasperformed(λEx-530nm;λEm-540nm).(a)plainyogurt;(b)skimyogurt;(c)plainberriesyogurt;(d)skimberriesyogurt.ForquantificationofMDA,acalibrationcurvewith1,1,3,3-tetraethoxypropaneasreferencestandardwasusedtodeterminetheconcentrationsofTBARSinthesamples.*p < 0.05;**p < 0.01; ***p < 0.001

Page 8: Oxidative changes in lipids, proteins, and antioxidants in ... · tion using the 2-thiobarbituric acid assay as described by Yagi (1984) with modifications (Rigobello et al., 2008)

8  |     CITTA eT Al.

theshelf life.However,afterarelativelylongstorageanincreaseinoxidantspeciesscavengingcapabilitywasobservedandattributedtotheproductionofbioactivepeptides.Probably,hydrolyzedproteinsmayalsoactas“sacrificial”antioxidants(Halliwell&Gutteridge,2015)andthismightexplaintheobserveddifferentbehaviorbetweenlipidandproteinoxidationtowardoxidants.Inconclusion,thespecificpre-ventionoflipidperoxidationproductsformationbyendogenousandaddedantioxidantsimprovesthenutritionalqualityofyogurt.

CONFLICT OF INTEREST

Authorsdeclarenoconflictofinterest.

REFERENCES

Aloğlu,H.S.,&Oner,Z. (2001).Determinationofantioxidantactivityofbioactive peptide fractions obtained from yogurt. Journal of Dairy Science,94,5305–5314.

Baye,E.,Ukropcova,B.,Ukropec,J.,Hipkiss,A.,Aldini,G.,&deCourten,B. (2016).Physiological and therapeuticeffectsof carnosineoncar-diometabolicriskanddisease.Amino Acids,48,1131–1149.

Bradford,M.M. (1976).Rapidandsensitivemethodforthequantitationofmicrogramquantitiesofproteinutilizingtheprincipleofprotein-dyebinding.Analytical Biochemistry,72,248–254.

Decker,E.A.,Livisay,S.A.,&Zhou,S.(2000).Are-evaluationofthean-tioxidant activity of purified carnosine. Biochemistry (Moscow), 65,901–906.

Dziuba,B.,&Dziuba,M.(2014).Milkproteins-derivedbioactivepeptidesindairyproducts:Molecular,biologicalandmethodologicalaspects.Acta Scientiarum Polonorum Technologia Alimentaria,13,5–25.

Fenaille, F., Parisod,V.,Visani, P., Populaire, S.,Tabet, J. C.,&Guy, P.A.(2006).Modificationsofmilkconstituentsduringprocessing:Aprelimi-narybenchmarkingstudy.International Dairy Journal,16,728–739.

Germani,A.,Luneia,R.,Nigro,F.,Vitiello,V.,Donini,L.M.,&delBalzo,V.(2014).Theyogurtaminoacidprofile’svariationduringtheshelf-life.Annali di Igiene,26,205–212.

Gülçin, I. (2012).Antioxidant activity of food constituents:Anoverview.Archives of Toxicology,86,345–391.

Halliwell,B.,&Gutteridge,J.M.C.(2015).Free radicals in biology and medi-cine.(5thedn).NewYork:OxfordUniversityPress.

Hekmat, S., &McMahon,D. J. (1997).Manufacture and quality of iron-fortifiedyogurt.Journal of Dairy Science,80,3114–3122.

Jacob, J. K., Tiwari, K., Correa-Betanzo, J.,Misran,A., Chandrasekaran,R.,&Paliyath,G. (2012).Biochemicalbasis for functional ingredientdesign from fruits.Annual Review of Food Science and Technology,3,79–104.

Kulisic,T.,Radonic,A.,Katalinic,V.,&Milos,M. (2004).Useofdifferentmethodsfortestingantioxidativeactivityoforeganoessentialoil.Food Chemistry,85,633–640.

Lindmark-Månsson,H.,&Akesson,B.(2000).Antioxidativefactorsinmilk.British Journal of Nutrition,84,103–110.

O’Connell,J.E.,&Fox,P.F.(2001).Significanceandapplicationsofpheno-liccompoundsintheproductionandqualityofmilkanddairyproducts:Areview.International Dairy Journal,11,103–120.

Perna,A.,Intaglietta,I.,Simonetti,A.,&Gambacorta,E.(2013).Effectsofgenetic type and casein haplotype on antioxidant activity of yogurtduringstorage.Journal of Dairy Science,96,3435–3441.

Pihlanto, A. (2006). Antioxidative peptides derived from milk proteins.International Dairy Journal,16,1306–1314.

Power,O.,Jakeman,P.,&Fitzgerald,R.J. (2013).Antioxidativepeptides:Enzymatic production, in vitro and in vivo antioxidant activity and

F IGURE   5 Proteincarbonylscontentduringtheshelflife.Aliquotsofyogurt(2mg)weretreatedwith20mmol/LDNPHfor30mininthedark,thenprecipitatedwith10%TCAandwashedpelletswereresuspendedwith8Mguanidine(pH2.3).Thecontentofcarbonylwasestimatedspectrophotometricallyat370nm.(A)plain(a)andskim(b)yogurt;(B)plainberries(c),andskimberries(d)yogurt;(C)carbonylscontentintheabsence(a),(b),(c),(d)andinthepresence(a’),(b’),(c’)(d’)of25mmol/Lcumenehydroperoxide/0.05mmol/Lhemin,atthefifthweekofshelflife

Page 9: Oxidative changes in lipids, proteins, and antioxidants in ... · tion using the 2-thiobarbituric acid assay as described by Yagi (1984) with modifications (Rigobello et al., 2008)

     |  9CITTA eT Al.

potential applications of milk-derived antioxidative peptides. Amino Acids,44,797–820.

Rigobello,M.P.,Folda,A.,Dani,B.,Menabò,R.,Scutari,G.,&Bindoli,A.(2008).Gold(I)complexesdetermineapoptosiswithlimitedoxidativestressinJurkatTcells.European Journal of Pharmacology,17,26–34.

Saito,K.,Jin,D.-H.,Ogawa,T.,Muramoto,K.,Hatakeyama,E.,Yasuhara,T.,&Nokihara,K.(2003).Antioxidativepropertiesoftripeptidelibrar-iespreparedbythecombinatorialchemistry.Journal of Agriculture and Food Chemistry,51,3668–3674.

Sarmadi,B.H.,&Ismail,A.(2010).Antioxidativepeptidesfromfoodpro-teins:Areview.Peptides,31,1949–1956.

Şengül,M.,Erkaya,T.,Şengül,M.,&Yildiz,H. (2012).Theeffectofadd-ingsourcherrypulp intoyoghurtonthephysicochemicalproperties,phenoliccontentandantioxidantactivityduringstorage.International Journal of Dairy Technology,65,429–436.

Serra, M., Trujillo, A. J., Pereda, J., Guamis, B., & Ferragut, V. (2008).Quantification of lipolysis and lipid oxidation during cold storage of

yogurtsproducedfrommilktreatedbyultra-highpressurehomogeni-zation.Journal of Food Engineering,89,99–104.

Trigueros, L.,Wojdyło, A., & Sendra, E. (2014). Antioxidant activity andprotein-polyphenol interactions in a pomegranate (Punica granatumL.)yogurt.Journal of Agricultural and Food Chemistry,62,6417–6425.

Yagi,K.(1984).Lipidperoxidationassayforbloodplasmaorserum.Methods in Enzymology,105,328–331.

How to cite this article:CittaA,FoldaA,ScalconV,etal.Oxidativechangesinlipids,proteins,andantioxidantsinyogurtduringtheshelflife.Food Sci Nutr. 2017;00:1–9. https://doi.org/10.1002/fsn3.493