23
Overview on in-Vivo Verification, including 4D Capabilities 4D Treatment Planning Workshop 2015 Dresden, November 27, 2015 Wolfgang Enghardt OncoRay – National Center for Radiation Research in Oncology Technische Universität Dresden, Germany University Hospital Carl Gustav Carus Dresden, Germany Dept. of Radiation Therapy Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany Institute of Radiooncology

Overview on in-Vivo Verification, including 4D · PDF fileOverview on in-Vivo Verification, including 4D Capabilities ... ≤ 2.3 lp/mm, pixel: 0.22 mm ... (dyspnea) Scan time: 0.7

Embed Size (px)

Citation preview

Overview on in-Vivo Verification,

including 4D Capabilities

4D Treatment Planning Workshop 2015 Dresden, November 27, 2015

Wolfgang Enghardt

OncoRay – National Center for Radiation Research in OncologyTechnische Universität Dresden, Germany

University Hospital Carl Gustav Carus Dresden, GermanyDept. of Radiation Therapy

Helmholtz-Zentrum Dresden-Rossendorf, Dresden, GermanyInstitute of Radiooncology

Outline

1. State of the art

2. In-room imaging: X-rays

3. Magnetic resonance imaging and radiotherapy

4. Particle beams: The in-vivo range problem

5. Summary

Obtain exact knowledge on

- patient position- anatomy

in real time during dose delivery for

- reducing treatment margins

- interactive adaption of treatment on the basis of daily• assessment of changes in tumour volume• general response to therapy (e.g. loss of weight)

D. Verellen et al.: Nature Reviews Cancer 7 (2007) 949 C. Gillham et al. Radiother. Oncol. 88 (2008) 335

PET PET • Tumour volumereduction: 49.2 %

• Potential fortumour dose escalation

Before treatment

1. State of the artRequirements to in-room imaging

After dose delivery of 50 Gy

The sniperThe observer

US Marine Corps, ID 001117-M-OW241-002

is blind is outstanding

1. State of the artRadiation therapy and imaging: The situation before 2000

What you do not see, you cannot hit, and what you do not hit, you cannot cure. Wolfgang Schlegel, DKFZ Heidelberg

1. State of the artCT: Spatial and time resolution

� 64 … 320 detector rows (2 × 192)

� Slice thickness 0.33 … 0.6 mm

� In-plane resolution: ≤ 2.3 lp/mm, pixel: 0.22 mm (0.24 mm)

� Tube rotation time ≥ 0.25 s, time resolution ≥ 66 ms

dual source (180° → 90°), two 120 kW generators

� Volume coverage with one rotation: 4 … 16 cm

� Maximum scan speed: 730 mm/s

www.healthcare.siemens.com/computed-tomography/computed-tomography/, Med. Faculty Mannheim at Heidelberg University

Example: Thoracicimaging w/o breathhold(dyspnea)� Scan time: 0.7 s� Rotation time: 0.25 s� Scan length: 294 mm� Spatial resol.: 0.24 mm� Eff. dose: 1.2 mSv

1. State of the artMR: Soft tissue contrast and function

www.healthcare.philips.com/main/products/mri/..., www.healthcare.siemens.com/computed-tomography/computed-tomography/...

� B ≤ 3 T

� Imaging volume: axial: ≤ 400 mm, transax: ≤ 550 mm

� Slice thickness: ≥ 0.3 mm

� In-plane resolution, pixel: 0.5 mm

� Time resolution: ≥ 10 ms(single planes, MR “fluoroscopy“)

� Time and spatialresolution at MRI:SNR dependent(5 µm in plane)

MRI: mDiXONsequence36 s

CT: 727 mm scan1.44 s

BonemetastasesDWIBS4.5 × 4.7 × 5.0 mm3

The problem of daily patient positioning is multiplied by target movement

Intrafractional Interfractional

M. van Herk et al., Netherlands Cancer Institute, Amsterdam, NLF. Pönisch et al., OncoRay, Dresden, Germany

Reduce the errors means:Imaging, imaging, imaging, but how?

Challenge: precise positioning over ~ 30 daily fractions

2. In-room imaging: X-raysPatient positioning: steep dose gradients, selective RBE

e--linac

MV cone beam CT

In-r

oom

CT

on r

ails

kV X-rayposition control,

flouroscopy

IR m

ovem

ent

trackin

g

Radiotherapy Department,University Hospital Dresden

2. In-room imaging: X-raysElectron linacs – state of the art in IGRT

Radiotherapy J. Distler,Bautzen

kV cone beam CT

Planning CT

CT after 2 w. RT

Chordoma, 12C, GSI Darmstadt

W. Enghardt et al.: Radiother. Oncol 73 (2004) S96

2. In-room imaging: X-raysError sensitivity of particle therapy: The Lomax (Di)Lemma

Photons: Ultrahard (15 MV) bremsstrahlung

Protons: 90–120 MeV

2 4 6 8 10 120

20

40

60

80

100

Rela

tive e

ffektive D

ose / %

Penetration depth in water / cm

*Tony Lomax, Paul Scherrer Institut, Villigen, CH:

The biggest advantage of protons is that they stop.

The biggest disadvantage of protons isthat we do not always know where they stop.

2. In-room imaging: X-raysIGRT at particle facilities

Orthogonal planarX-ray imaging

Present situation(2014)

UPTD HIT

New developments(2014)

UPTDIBA

kV CBCT at the gantry

CT on rails in thetreatment room

2. In-room imaging: X-raysDose considerations (I)

R.A. Hälg et al.: Med. Phys. 39 (2012) 7650-7661, M.J. Murphy et al.: Med. Phys. 34 (2007) 4041-4063

IGRT dose values outside the target relative to scatter- and leakage doseDleakage ≤ 0.2 % Dtarget, NCRP 102 (1989), Dleakage ≤ 4 mSv/fraction :

• Treatment planning (3D CT): 1 %

• Treatment planning (4D CT): 10 %

• CBCT (kV, MV): 5 – 30 %

• EPID (MV): 3 – 25 %

• Tomotherapy MV-CT: < 1 %

• Planar kV-radiography: < 1 %

Image based motion compensation:

• Breathing period: 6 s

• CT sampling frequency: 1/3 Hz

• Irradiation time: 2 min for 2 Gy

• Effective dose per fraction: 48 mSv

• Total effective dose per treatment:1.5 Sv

Example: Thoracicimaging w/o breathhold(dyspnea)� Scan time: 0.7 s� Eff. dose: 1.2 mSv

CT-Linac

2. In-room imaging: X-raysDose considerations (II)

W.A. Kalender. Phys. Med. Biol. 59 (2014) R129–R150

Willi Kalender, Glocker Lecture of the DGMP,Zürich, 8. Sept. 2014:Patient dose in CT – the downward trend continues

Do not forget CT!!Simple, fast, silent

45-240%

3. MRI and RTReal-time MRI

… with an ordinary 1.5 T MRI scanner: time resolution 643 ms

Single plane imaging, not volumetric

Courtesy: N. Abolmaali, OncoRay Dresden

3. MRI and RTThe MRI-Linac: The Utrecht approach

University Medical Center, Utrecht, NLPhilips Research, Hamburg, GERElekta Oncology Systems, Crawley, UKRaySearch Laboratories, Stockholm, S

Apr. 5, 2014: Start of 1st clinical installationAt University Medical Center, Utrecht, NL

B.W.Raaymakers et al.: PMB 56 (2011) N207; B.W.Raaymakers et al.: PMB 54 (2009) N229, Courtesy: J. Lagendijk

6 M

V lin

ac

1.5

T d

iagnostic M

RI

3. MRI and RTMRI combined with an 60Co source: The ViewRay approach

ViewRay, Inc. Gainsville . FL , www.viewray.com, C. Fox et al.: Phys. Med. Biol. 53 (2008) 3175

Prostate: 7 beams, dose distributions• 0,35 T split magnet MRI scanner

• 3 sources of 60Co: - 500 TBq 750 cGy/min.- avoids RF interference

• Adaptive treatment planning

• Motion management

60Co6 MV

4. Particle beams: The in-vivo range problemNuclear methods for range assessment: Overview

1. Positron emitting radionuclides (15O, 14O, 11C, 10C)Particle Therapy Positron Emission Tomography (PT-PET)

2. Prompt γ-raysPrompt γ-ray imaging (PGI)Prompt γ-ray timing (PGT)Prompt γ-ray spectroscopy (PGS)

3. Light charged particlesInteraction vertex imaging (IVI)

Nucleons

and clusters

Projectile

Target

Projectile fragment

Target fragment

Fireball

Prompt γ-rays

Radioactive

nuclides

K. Gunzert-Marx, et al.: New J. Phys. 10 (2008) 075003

Nuclear reactions: an unavoidable byproduct of particle therapy

52

4. Particle beams: The in-vivo range problemThe time scales

Time after collision/s

10-21 10-18 10-15 10-12 10-9 10-6 10-3 100 103

Particles

Prompt γ-rays

β+-decay

Nucleons

and clusters

Projectile

Target

Projectile fragment

Target fragment

Fireball

Prompt γ-rays

Radioactive

nuclides

Consequences:

1. Washout: No No Yes

2. Signal (motion)Time tprod ≈ tmeas tprod ≈ tmeas tprod << tmeas

Localization rprod ≈ rmeas rprod ≈ rmeas rprod ≠ rmeas (4D!)

4. Particle beams: The in-vivo range problemβ+-emitting radionuclides

J. Pawelke et al.: PMB 1996; W. Enghardt et al.: NIM A 2004; K. Parodi et al.: IJROBP 2007; C.H. Min et al.: IJROBP 2013

In-beam: GSI In-room: MGH Off-line: HITFurther:

• Univ. of Florida• HIMAC, Chiba, J• NCC, Kashiwa, J • HIBMC, Hyogo, J• MDACC, Houston• CNAO, Pavia

• Technology: �

• Research: Clinical appl.Moving targets

Nucleons

and clusters

Projectile

Target

Projectile fragment

Target fragment

Fireball

Prompt γ-rays

Radioactive

nuclides

4. Particle beams: The in-vivo range problemPrompt γ-rays

Nucleonsand clusters

Prompt γ-rays

Pro

mpt

γ-ra

yim

agin

g(p

assiv

e c

olli

mation)

Pro

mpt

γ-ra

ytim

ing

Decreasing complexity

T. Kormoll et al.: NIM A 2011; J. Verburg et al.: PMB 2014; J. Smeets et al.: PMB 2012, C. Golnik et al.: PMB 2014

Pro

mpt

γ-ra

yim

agin

g(e

lectr

onic

colli

mation)

4. Particle beams: The in-vivo range problemLight charged particles

Nucleonsand clusters

Prompt γ-rays

E. Haettner: M.Sc. Thesis, KTH Stockholm, 2006; P. Henriquet et al.: PMB 2012; M. Martisikova, 2012 IEEE NSS/MIC, N37-4

12C: E = 400 AMeV

R = 27.5 g/cm2

on water

Interaction vertex imaging:

, θ = 0°

( )

( )cm 40

MeV 260

MeV 260

= AR

Rp

α

Ion beam

PSD

+ High detection efficiency ofcharged particles

- Beam position has to be known

- Light charged particles are forwarddirected ⇒ inferior range resolution

- Not applicable to proton beams

°≈∆

°=

5

0

FWHMθ

θ

4. Particle beams: The in-vivo range problemGeneral workflow of nuclear range assessment methods

W. Enghardt et al.: Radiother. Oncol. 2004; F. Pönisch et al.: PMB 2004; K. Stützer: Thesis, TU Dresden, 2013

Dose

Monte Carlo

β+-activity

β+-activityDose

Evaluation, reaction

Moving targets: 4D-CT (TP, Monte Carlo); motion tracking (irradiation and measurement);PBS: beam recording (time and localization)

5. Summary

„Linear accelerators produce radiation distributions which are only slightly better than60Co. They are complicated and require back up services of well trained technicians orphysicists. Their increased complexity over 60Co will prevent them from beinguniversally accepted.“In H.E. Johns, J.R. Cunningham (1971) Physics of Radiology,3rd ed., Thomas, Springfield, IL

• Real-time IGRT will be the future in RT:integration of irradiation and imaging

• X-ray IGRT delivers additional doseoutside the target volume

• The basis of future real time IGRT will bemagnetic resonance imaging

• Particle therapy requires range control:- in-beam PET- prompt γ-ray imaging- prompt γ-ray spectroscopy- prompt γ-ray timing

Thank you