28
1 Introduction to CMOS VLSI Design Scaling Lecture by Peter Kogge University of Notre Dame Fall 2011, 2015, 2018 Modified from presentation by Jay Brockman in 2008 Based on lecture slides by David Harris, Harvey Mudd College http://www.cmosvlsi.com/coursematerials.html Slide 1 Scaling CMOS VLSI Design Scaling Slide 2 Outline Moore’s Law & ITRS Roadmap Ideal Scaling Real World Scaling 2004 Scaling in the World of Multi-core

Outline - University of Notre Damekogge/courses/cse40462-VLSI...then power dissipated by this gate is αfCV2 Vin. 5 CMOS VLSI Design Slide 9 CMOS Energy 101 C 0 0.2 0.4 0.6 0.8 1 1.2

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Outline - University of Notre Damekogge/courses/cse40462-VLSI...then power dissipated by this gate is αfCV2 Vin. 5 CMOS VLSI Design Slide 9 CMOS Energy 101 C 0 0.2 0.4 0.6 0.8 1 1.2

1

Introduction toCMOS VLSI

Design

Scaling

Lecture by Peter KoggeUniversity of Notre Dame

Fall 2011, 2015, 2018

Modified from presentation by Jay Brockman in 2008

Based on lecture slides by David Harris, Harvey Mudd College

http://www.cmosvlsi.com/coursematerials.html

Slide 1Scaling

CMOS VLSI DesignScaling Slide 2

Outline Moore’s Law & ITRS Roadmap

Ideal Scaling

Real World Scaling

2004

Scaling in the World of Multi-core

Page 2: Outline - University of Notre Damekogge/courses/cse40462-VLSI...then power dissipated by this gate is αfCV2 Vin. 5 CMOS VLSI Design Slide 9 CMOS Energy 101 C 0 0.2 0.4 0.6 0.8 1 1.2

2

CMOS VLSI DesignScaling Slide 3

Moore’s Law In 1965, Gordon Moore predicted the exponential

growth of the number of transistors on an IC

Transistor count doubled

every year since invention

Predicted > 65,000

transistors by 1975!

Growth limited by power

[Moore65]

CMOS VLSI Design

ITRS ITRS: INTERNATIONAL TECHNOLOGY

ROADMAP FOR SEMICONDUCTORS

International group of experts from

– Industry, Research Labs, Academia

Run by Semiconductor Industries of America – SIA

Every 3 years produce huge document describing projections on how future commercial technology will improve

On non-full document years, update tables

Scaling Slide 4

Page 3: Outline - University of Notre Damekogge/courses/cse40462-VLSI...then power dissipated by this gate is αfCV2 Vin. 5 CMOS VLSI Design Slide 9 CMOS Energy 101 C 0 0.2 0.4 0.6 0.8 1 1.2

3

CMOS VLSI Design

ITRS Feature Size Feature Size used to be minimum gate length/width

Now on interconnect pitch by product category: DRAM, Logic, Flash

And based on what is in widespread use

Also distinguish between “Drawn” & “Physical” Gate length

Scaling Slide 5

CMOS VLSI DesignScaling Slide 6

Scaling Feature size used to shrink by 30% every 2-3 years

– Transistors became smaller, faster

– Circuits got smaller and faster

– More transistors fit on chip

– Double gain in performance: speed & density

Define Scale factor S

– Applied to feature size

– ~ every 0.7 shrink factor

• Corresponds to

• Called a Technology node

Year

0.1

1

10

1965 1970 1975 1980 1985 1990 1995 2000 2005

Fe

atu

re S

ize

(m

)

10

6

3

1.51

0.80.6

0.350.25

0.180.13

0.092S

Page 4: Outline - University of Notre Damekogge/courses/cse40462-VLSI...then power dissipated by this gate is αfCV2 Vin. 5 CMOS VLSI Design Slide 9 CMOS Energy 101 C 0 0.2 0.4 0.6 0.8 1 1.2

4

CMOS VLSI Design

Scaling Effects Area: if all dimensions shrink by 1/S, area shrinks by 1/S2

– S = √2 => area shrink by 1/2

Speed or Clock rate of a circuit

– Function of how fast a logic gate can change input voltage of another downstream gate

– Depends on transistor gate capacitance and saturation current

• Smaller W & L reduces capacitance

• W/L and Vdd affects saturation current

Power drawn by a circuit

– Function power lost charging and discharging capacitor

– Depends on transistor gate capacitance, Vdd, & clock

Scaling Slide 7

CMOS VLSI Design Slide 8

CMOS Energy 101

C

Scaling

Focus onthis logic

Idsp

Idsn

Basic Equations:• Power = ∫ Energy lost

• = ∫ V(t)*I(t) = Vdd∫I(t)• C = sum of εLW/tox

• Idsat = β(Vgs-Vt)Vdd2/2

• Vacross_cap = Q/C, Q = ∫ I(t)• When charging C:

• Power dissipated in P-type• Energy stored in C

• When discharging C:• Power dissipated in N-type

Actually there’s morethan just gate capacitance

If we define an activity cycle is Vin going from 0 to V and back to 0,then energy lost from one activity is CV2.If logic has clock f cycles/sec, and α activity cycle per clock period, then power dissipated by this gate is αfCV2

Vin

Page 5: Outline - University of Notre Damekogge/courses/cse40462-VLSI...then power dissipated by this gate is αfCV2 Vin. 5 CMOS VLSI Design Slide 9 CMOS Energy 101 C 0 0.2 0.4 0.6 0.8 1 1.2

5

CMOS VLSI Design Slide 9

CMOS Energy 101

C

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20

Vo

ltag

e

Vin

Vg

Dissipate CV2/2And store CV2/2

Dissipate CV2/2From Capacitance

One clock cycle dissipates C*V2

Smaller C => less power, faster transitionScaling

Focus onthis logic

Vin

Threshold to switch nextlogic gate

CMOS VLSI Design

Constant Fielda.k.a. Dennard

Scaling

Scaling Slide 10

Page 6: Outline - University of Notre Damekogge/courses/cse40462-VLSI...then power dissipated by this gate is αfCV2 Vin. 5 CMOS VLSI Design Slide 9 CMOS Energy 101 C 0 0.2 0.4 0.6 0.8 1 1.2

6

CMOS VLSI Design

The Scaling of the Transistor

What can change? Doping levels in diffusion Physical dimensions: W, L, tox

Electrical parameters Vgs, Vds

W

L

tox

Vgs

Vds

A key parameter:The Electric Fieldacross the Gateproportional to Vgs/tox

Scaling Slide 11

CMOS VLSI DesignScaling Slide 12

Scaling Variations What changes between technology nodes?

Constant Field Scaling (aka Dennard Scaling)

– All dimensions (W, L, tox) scale by same S

– Voltage (VDD) Scales down by S

– Doping levels change

Constant Voltage Scaling (Today)

– All but voltage changes

Lateral Scaling

– Only gate length L shrinks

– Often done as a quick gate shrink (S = 1.05)

Page 7: Outline - University of Notre Damekogge/courses/cse40462-VLSI...then power dissipated by this gate is αfCV2 Vin. 5 CMOS VLSI Design Slide 9 CMOS Energy 101 C 0 0.2 0.4 0.6 0.8 1 1.2

7

CMOS VLSI Design

Why Is It Called “Constant Field”?

If V decreases by factor of 1/S And tox decreases by factor of 1/S Then E field (V/tox) remains constant! So mobility & the like remain constant And then if L gets shorter by 1/S Then capacitance (LW/tox) drops as (1/S)*(1/S)/(1/S) = 1/S Then the transistor is faster by factor of S And energy per cycle (CV2) goes down as (1/S)3

W

L

tox

Vgs

Vds

Scaling Slide 13

S = ratio by which Feature Size (i.e. L)decreases.Eg. S=2 => L is ½ ofprevious value

CMOS VLSI Design

Translating into Core Parameters

Core Clock ≈ S

Core Capacitance ≈ 1/S

Core Voltage ≈ 1/S

Core Power ≈ Capacitance*Clock*Vdd2 ≈ 1/S2

Cores/Constant Area Die ≈ 1/S2

Power Density ≈ Constant

Compute Cycles/Die ≈ S3

Energy/Cycle = Power/Clock ≈ 1/S3

Scaling Slide 14

Page 8: Outline - University of Notre Damekogge/courses/cse40462-VLSI...then power dissipated by this gate is αfCV2 Vin. 5 CMOS VLSI Design Slide 9 CMOS Energy 101 C 0 0.2 0.4 0.6 0.8 1 1.2

8

CMOS VLSI Design

Perfect Dennard Trends

1.0E‐05

1.0E‐04

1.0E‐03

1.0E‐02

1.0E‐01

1.0E+00

1.0E+01

1.0E+02

1.0E+03

1.0E+04

1.0E+05

1.010.0100.0

Relative

 to 100 nm Core

Feature Size (nm)Core Area Core Power Core Clock Core Power Density

Core Energy/Cycle Cores/Die Cycles/Die Die Power Density

Core Energy/Cycle

Core Power

Die Power Density

Core Clock

Cores per Die

Cycles per Die

Core Area

Core Power Density

Scaling Slide 15

Assume no change to core design

CMOS VLSI DesignScaling Slide 16

Device ScalingParameter Sensitivity Dennard

ScalingConstant

Voltage

Lateral Scaling

L: Length 1/S 1/S 1/SW: Width 1/S 1/S 1tox: gate oxide thickness 1/S 1/S 1VDD: supply voltage 1/S 1 1Vt: threshold voltage 1/S 1 1NA: substrate doping S S 1 W/(Ltox) S S SIon: ON current (VDD-Vt)2 1/S S SR: effective resistance VDD/Ion 1 1/S 1/SC: gate capacitance WL/tox 1/S 1/S 1/S: gate delay RC 1/S 1/S2 1/S2

f: clock frequency 1/ S S2 S2

E: switching energy / gate CVDD2 1/S3 1/S 1/S

P: switching power / gate Ef 1/S2 S SA: area per gate WL 1/S2 1/S2 1Switching power density P/A 1 S3 SSwitching current density Ion/A S S S

Green: “Better”; Yellow: “Neutral”; Shades of Red: “Worse”

Page 9: Outline - University of Notre Damekogge/courses/cse40462-VLSI...then power dissipated by this gate is αfCV2 Vin. 5 CMOS VLSI Design Slide 9 CMOS Energy 101 C 0 0.2 0.4 0.6 0.8 1 1.2

9

CMOS VLSI Design

Interconnect (aka Wires)

Scaling Slide 17

Parameter Sensitivity Scale Factorw: width 1/Ss: spacing 1/St: thickness 1/Sh: height 1/SDc: die size Dc

Rw: wire resistance/unit length 1/wt S2

Cwf: fringing capacitance / unit length t/s 1Cwp: parallel plate capacitance / unit length w/h 1Cw: total wire capacitance / unit length Cwf + Cwp 1twu: unrepeated RC delay / unit length RwCw S2

twr: repeated RC delay / unit length sqrt(RCRwCw) sqrt(S)Crosstalk noise w/h 1Ew: energy per bit / unit length CwVDD

2 1/S2

Parameter Sensitivity Local / Semiglobal Globall: length 1/S Dc

Unrepeated wire RC delay l2twu 1 S2Dc2

Repeated wire delay ltwr sqrt(1/S) Dcsqrt(S)Energy per bit lEw 1/S3 Dc/S2

More on this in later lecture

CMOS VLSI DesignScaling Slide 18

Interconnect Observations Capacitance per micron is

remaining constant

– About 0.2 fF/m

– Roughly 1/10 of gate capacitance

Local wires are getting faster

– Not quite tracking transistor improvement

– But not a major problem

Global wires are getting slower

– No longer possible to cross chip in one cycle

Page 10: Outline - University of Notre Damekogge/courses/cse40462-VLSI...then power dissipated by this gate is αfCV2 Vin. 5 CMOS VLSI Design Slide 9 CMOS Energy 101 C 0 0.2 0.4 0.6 0.8 1 1.2

10

CMOS VLSI Design

Scaling in the “Old”Real World

Scaling Slide 19

CMOS VLSI Design

1

10

100

1000

10000

1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 2025

Fea

ture

Siz

e (n

m)

MPU M1 1/2 Pitch DRAM 1/2 PitchFlash 1/2 Pitch Printed GatePhysical Gate

Feature Size Improves

Scaling Slide 20

Page 11: Outline - University of Notre Damekogge/courses/cse40462-VLSI...then power dissipated by this gate is αfCV2 Vin. 5 CMOS VLSI Design Slide 9 CMOS Energy 101 C 0 0.2 0.4 0.6 0.8 1 1.2

11

CMOS VLSI Design

Feature Size In Detail

Scaling Slide 21

1

10

100

2000 2005 2010 2015 2020 2025

Fe

atu

re S

ize

(n

m)

MPU M1 1/2 Pitch DRAM 1/2 PitchFlash 1/2 Pitch Printed GatePhysical Gate

CMOS VLSI Design

Leading Edge Fabs Are Doing Better

Scaling Slide 22

0

20

40

60

80

2005 2010 2015 2020 2025 2030

Feature Size (nm)

2013 ITRS Xeon Data Top10

2006 ITRS Xeon Line Top10  Projection

Page 12: Outline - University of Notre Damekogge/courses/cse40462-VLSI...then power dissipated by this gate is αfCV2 Vin. 5 CMOS VLSI Design Slide 9 CMOS Energy 101 C 0 0.2 0.4 0.6 0.8 1 1.2

12

CMOS VLSI Design

0.01

0.1

1

10

100

1000

10000

100000

1/1

/72

1/1

/76

1/1

/80

1/1

/84

1/1

/88

1/1

/92

1/1

/96

1/1

/00

1/1

/04

1/1

/08

1/1

/12

1/1

/16

1/1

/20

1/1

/24

Tran

sis

tors

/Ch

ip (

M)

Actual 2X every 20 months ITRS Projections

Scaling Slide 23

More Moore Transistor counts have doubled periodically for the

past three decades

1 Billion

CMOS VLSI Design

Transistor Density

Scaling Slide 24

0.0001

0.001

0.01

0.1

1

10

100

1000

10000

100000

1/1/

72

1/1/

76

1/1/

80

1/1/

84

1/1/

88

1/1/

92

1/1/

96

1/1/

00

1/1/

04

1/1/

08

1/1/

12

1/1/

16

1/1/

20

1/1/

24

Tra

ns

isto

r D

en

sit

y (M

T/m

m2

)

Actual 2X every 24 months ITRS Projections

Page 13: Outline - University of Notre Damekogge/courses/cse40462-VLSI...then power dissipated by this gate is αfCV2 Vin. 5 CMOS VLSI Design Slide 9 CMOS Energy 101 C 0 0.2 0.4 0.6 0.8 1 1.2

13

CMOS VLSI Design

Inherent Delay Better Than Dennard

1

10

100

10 100 1000

Inve

rter

Del

ay (

ps

)

Feature Size (nm) (1/2 M1 pitch)ITRS Data Delay = 0.04*Size^1.37

Dennard predicted FITRS says F1.37

Scaling Slide 25

CMOS VLSI Design

2004:The End of the World

as We Knew It

Scaling Slide 26

Page 14: Outline - University of Notre Damekogge/courses/cse40462-VLSI...then power dissipated by this gate is αfCV2 Vin. 5 CMOS VLSI Design Slide 9 CMOS Energy 101 C 0 0.2 0.4 0.6 0.8 1 1.2

14

CMOS VLSI Design

The World Changed in 2004

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

01/01/96

01/01/00

01/01/04

01/01/08

01/01/12

Compound Annual G

rowth Rate: CAGR

Rmax (Gflop/s) Total Cores

Ave Cycles/sec per core (Mhz) Mem/Core (GB)

Ave. Cores/Socket TC: Total Concurrency (Rmax)

2004: The Watershed point

Rmax continues at 2X

While clocks flattenedor fell

Total cores& Cores/socketskyrocketed

As did flops per machinecycle

While memoryper core fell

(Data taken from top 10 supercomputers over last 20 years)

Scaling Slide 27

CMOS VLSI Design

The 2004 Event S = scale factor from one technology node to next

Assume we port same design unchanged

In constant field scaling

– Area goes down by 1/S2

– Vdd goes down by 1/S2

– Capacitance goes down by 1/S

– Clock goes up by S

– So power goes down by (1/S)*S*(1/S2) = 1/S2

– And power per unit area = (1/S2)/ (1/S2) = constant

– But if area increases, chip power increases

In 2004 Vdd stopped decreasing and we maxed out our ability to cool chips

Scaling Slide 28

Page 15: Outline - University of Notre Damekogge/courses/cse40462-VLSI...then power dissipated by this gate is αfCV2 Vin. 5 CMOS VLSI Design Slide 9 CMOS Energy 101 C 0 0.2 0.4 0.6 0.8 1 1.2

15

CMOS VLSI Design

The Origins of 2004 Entering “Constant Voltage” Scaling

With minimal change in tox

If Clock continued to go up by S

– Power/core goes down by (1/S)*S*(1) = constant

– And power per unit area = (1)/(1/S2) = S2!!!!!

Once we max out chip power

– We cannot allow clocks to increase

– We use all remaining tricks to keep power constant

Scaling Slide 29

CMOS VLSI Design

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

1/1/

80

1/1/

84

1/1/

88

1/1/

92

1/1/

96

1/1/

00

1/1/

04

1/1/

08

1/1/

12

1/1/

16

1/1/

20

1/1/

24

1/1/

28

Op

era

tin

g V

olt

ag

e (

Vd

d)

Actual MPU High Performance Logic Low Power Logic DRAM

Vdd Has Flattened

Scaling Slide 30

Now

Page 16: Outline - University of Notre Damekogge/courses/cse40462-VLSI...then power dissipated by this gate is αfCV2 Vin. 5 CMOS VLSI Design Slide 9 CMOS Energy 101 C 0 0.2 0.4 0.6 0.8 1 1.2

16

CMOS VLSI DesignScaling Slide 31

CMOS VLSI DesignCMOS VLSI Design 4th Ed.15: Scaling and Economics 10

Real Scaling tox scaling has slowed since 65 nm

– Limited by gate tunneling current– Gates are only about 4 atomic layers thick!– High-k dielectrics have helped continued scaling

of effective oxide thickness VDD scaling has slowed since 65 nm

– SRAM cell stability at low voltage is challenging Dennard scaling predicts cost, speed, power all

improve– Below 65 nm, some designers find they must

choose just two of the three

CMOS VLSI Design

Real World Chip Power

1

10

100

1,000

1/1/

80

1/1/

84

1/1/

88

1/1/

92

1/1/

96

1/1/

00

1/1/

04

1/1/

08

1/1/

12

Tota

l Die

Po

we

r (

Wat

ts)

Scaling Slide 32

Page 17: Outline - University of Notre Damekogge/courses/cse40462-VLSI...then power dissipated by this gate is αfCV2 Vin. 5 CMOS VLSI Design Slide 9 CMOS Energy 101 C 0 0.2 0.4 0.6 0.8 1 1.2

17

CMOS VLSI Design

Real World Rise in Power Density

1

10

100

1,000

1/1/

80

1/1/

84

1/1/

88

1/1/

92

1/1/

96

1/1/

00

1/1/

04

1/1/

08

1/1/

12

1/1/

16

1/1/

20

1/1/

24

Po

we

r D

ensi

ty (

Wat

ts/c

m2 )

Historical ITRS Projections

100W light bulb

Hot Plate

Nuclear Reactor

Scaling Slide 33

CMOS VLSI Design

Die Size Became Constant

Scaling Slide 34

10

100

1,000

1/1/

80

1/1/

84

1/1/

88

1/1/

92

1/1/

96

1/1/

00

1/1/

04

1/1/

08

1/1/

12

1/1/

16

1/1/

20

1/1/

24

Die

Siz

e (

mm

2 )

Actual MPU ITRS Chip Size at Introduction

Page 18: Outline - University of Notre Damekogge/courses/cse40462-VLSI...then power dissipated by this gate is αfCV2 Vin. 5 CMOS VLSI Design Slide 9 CMOS Energy 101 C 0 0.2 0.4 0.6 0.8 1 1.2

18

CMOS VLSI Design

Microprocessor System Clocks

Scaling Slide 35

1

10

100

1,000

10,000

1/1

/72

1/1

/76

1/1

/80

1/1

/84

1/1

/88

1/1

/92

1/1

/96

1/1

/00

1/1

/04

1/1

/08

1/1

/12

Clo

ck (

MH

z)

CMOS VLSI Design

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1/1/92 1/1/96 1/1/00 1/1/04 1/1/08 1/1/12 1/1/16

MHz

Heavyweight Lightweight

Hybrid Trend: CAGR=1.42

Supercomputer System Clocks

Scaling Slide 36

FLAT!!!!

Page 19: Outline - University of Notre Damekogge/courses/cse40462-VLSI...then power dissipated by this gate is αfCV2 Vin. 5 CMOS VLSI Design Slide 9 CMOS Energy 101 C 0 0.2 0.4 0.6 0.8 1 1.2

19

CMOS VLSI Design

Scaling Time Periods

Scaling Slide 37

0

1

2

3

4

5

110100100010000

Vd

d (

Vo

lts)

MPU Feature Size (1/2 M1 Pitch)

High Performance Low Power

ConstantVoltage

ConstantField

Mostly ConstantVoltage

CMOS VLSI Design Slide 38

How Did CV2 Improve With Time?

10

100

1000

1985 1990 1995 2000 2005 2010 2015 2020 2025

Fea

ture

Siz

e

Assume capacitance of a circuitscales as feature size

0.01

0.10

1.00

10.00

100.00

1000.00

1/1/

88

1/1/

90

1/1/

92

1/1/

94

1/1/

96

1/1/

98

1/1/

00

1/1/

02

1/1/

04

1/1/

06

1/1/

08

1/1/

10

1/1/

12

1/1/

14

1/1/

16

1/1/

18

1/1/

20

1/1/

22

1/1/

24

CV

^2 r

elat

ive

to 9

0nm

Hi P

erf

Lo

gic

High Perf Logic Low Operating Pow er Logic Memory Process

330X

15X

90nm picked as breakpoint because that’s when Vdd and thus clocks flattened

0

1

2

3

4

5

6

1970 1980 1990 2000 2010 2020

Vd

d

Scaling

Today

Page 20: Outline - University of Notre Damekogge/courses/cse40462-VLSI...then power dissipated by this gate is αfCV2 Vin. 5 CMOS VLSI Design Slide 9 CMOS Energy 101 C 0 0.2 0.4 0.6 0.8 1 1.2

20

CMOS VLSI DesignScaling Slide 39

Looking Forward:ITRS Projections (from 2013)

http://www.itrs.net/

2000 2005 2010 2015 2020 2022 2024Feature Size (nm) 82.9 32.0 27.0 16.8 10.7 8.9 7.4

Microprocessor MTransistors/sq. cm 26 97 564 2548 8080 12840 20400DRAM Gbits per chip 0.25 1 2 8 16 32 32

Production MPU Chip Size (sq. mm) 170 111 99 88 111 140 88Production DRAM Chip Size (sq. mm) 129 88 47 29 37 23 15

Max ASIC Signal pins/chip 900 2000 2400 2800 3100 3420 3420Max On-Chip Clock Rate (GHz) 1.0 5.0 5.9 4.4 5.3 5.8 6.2

Max Logic Wiring Levels 7 10 12 13 14 15 15High Perf MPU Supply Voltage (V) 1.8 1.1 1.0 0.8 0.8 0.7 0.7

Max Watts/sq. mm of chip 0.50 0.66 0.96 1.19 1.24 1.73 #N/A

CMOS VLSI Design

ITRS Clock Predictions

1

10

100

1995 2000 2005 2010 2015 2020 2025

On Chip Clock Rate (GHz)

1999 2001 2004

2006 2008 2010

2011 2012 TOP500 top clock

Scaling Slide 40

Page 21: Outline - University of Notre Damekogge/courses/cse40462-VLSI...then power dissipated by this gate is αfCV2 Vin. 5 CMOS VLSI Design Slide 9 CMOS Energy 101 C 0 0.2 0.4 0.6 0.8 1 1.2

21

CMOS VLSI Design

Scaling in the World of

Multi-Core Chips

Scaling Slide 41

CMOS VLSI Design

Multi-Core Chips

Scaling Slide 42

Place many copies of same core on chip, and run parallel programs

Page 22: Outline - University of Notre Damekogge/courses/cse40462-VLSI...then power dissipated by this gate is αfCV2 Vin. 5 CMOS VLSI Design Slide 9 CMOS Energy 101 C 0 0.2 0.4 0.6 0.8 1 1.2

22

CMOS VLSI Design

Pure Dennard Trends

1.0E‐05

1.0E‐04

1.0E‐03

1.0E‐02

1.0E‐01

1.0E+00

1.0E+01

1.0E+02

1.0E+03

1.0E+04

1.0E+05

1.010.0100.0

Relative

 to 100 nm Core

Feature Size (nm)Core Area Core Power Core Clock Core Power Density

Core Energy/Cycle Cores/Die Cycles/Die Die Power Density

Core Energy/Cycle

Core Power

Die Power Density

Core Clock

Cores per Die

Cycles per Die

Core Area

Core Power Density

Scaling Slide 43

CMOS VLSI Design

We See Vdd Flattening Clearer vs F

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

1101001000

Vd

d

Feature Size (nm)

High Perf Low Power DRAM

Dennard Scaling said V varies as F

Scaling Slide 44

Page 23: Outline - University of Notre Damekogge/courses/cse40462-VLSI...then power dissipated by this gate is αfCV2 Vin. 5 CMOS VLSI Design Slide 9 CMOS Energy 101 C 0 0.2 0.4 0.6 0.8 1 1.2

23

CMOS VLSI Design

Relating the Regimes: No Change to Clocks

Voltage Scales As:

1/S 1/S^0.7 1/S^0.2Dennard Pre 2004 Post 2004

Area 1/S^2

Capacitance 1/S

Clock S

Core Power 1/S^2 1/S^1.4 1/S^0.4

Power Density 1 S^0.6 S^1.6

Energy/Cycle 1/S^3 1/S^2.4 1/S^1.4

Scaling Slide 45

CMOS VLSI Design

1.0E‐04

1.0E‐03

1.0E‐02

1.0E‐01

1.0E+00

1.0E+01

1.0E+02

1.0E+03

1.0E+04

1.0E+05

1.0E+001.0E+011.0E+02

Relative to 100 nm Core

Feature Size (nm)Core Area Core Power Core Clock Core Power Density

Core Energy/Cycle Cores/Die Cycles/Die Die Power Density

Comparative Trends: Pre 2004

Core Energy/Cycle

Core Power

Die Power DensityCore Clock

Cores per Die

Cycles per Die

Core Area

Core Power Density

Vdd scales as S0.7, not SClocks still grow at 1/S

Scaling Slide 46

Page 24: Outline - University of Notre Damekogge/courses/cse40462-VLSI...then power dissipated by this gate is αfCV2 Vin. 5 CMOS VLSI Design Slide 9 CMOS Energy 101 C 0 0.2 0.4 0.6 0.8 1 1.2

24

CMOS VLSI Design

1.0E‐05

1.0E‐04

1.0E‐03

1.0E‐02

1.0E‐01

1.0E+00

1.0E+01

1.0E+02

1.0E+03

1.0E+04

1.0E+05

1.0E+001.0E+011.0E+02

Relative to 100 nm Core

Feature Size (nm)Core Area Core Power Core Clock Core Power Density

Core Energy/Cycle Cores/Die Cycles/Die Die Power Density

Comparative Trends: Post 2004

Core Energy/Cycle

Core Power

Die Power Density

Core Clock

Cores per Die

Cycles per Die

Core Area

Core Power Density

Vdd scales as F0.2, not FClocks still grow at 1/F

Scaling Slide 47

CMOS VLSI Design

1.0E‐05

1.0E‐04

1.0E‐03

1.0E‐02

1.0E‐01

1.0E+00

1.0E+01

1.0E+02

1.0E+03

1.0E+04

1.0E+05

1.0E+001.0E+011.0E+02

Relative to 100 nm Core

Feature Size (nm)Core Area Core Power Core Clock Core Power Density

Core Energy/Cycle Cores/Die Cycles/Die Die Power Density

Comparative Trends

Core Energy/CycleCore Power

Die Power Density

Core Clock

Cores per DieCycles per Die

Core Area

Core Power Density

Clocks fixed at 2004 levels

Scaling Slide 48

Page 25: Outline - University of Notre Damekogge/courses/cse40462-VLSI...then power dissipated by this gate is αfCV2 Vin. 5 CMOS VLSI Design Slide 9 CMOS Energy 101 C 0 0.2 0.4 0.6 0.8 1 1.2

25

CMOS VLSI Design

Should We Expect Dennard Scaling of Cores?

Effective Core Area = Die area /# cores

How does # cores affect effective core area?

How many cores may fit on constant area die?

Core itself

– Growth in aggregate cache

– Modifications to microarchitecture

– Short SIMD additions

Multi-core chip

– Routing usually grows faster than linear

– Off chip interfaces may be same

Scaling Slide 49

CMOS VLSI Design

Core Area Not Following “Moore’s Law”

1

10

100

10 100 1000

Area (m

m2 ) per (Core/M

B)

Feature Size (nm)Core Area (mm2) Cache Density (mm2/MB)

1.54*F^.66 0.08*F^1.2

Scaling Slide 50

Page 26: Outline - University of Notre Damekogge/courses/cse40462-VLSI...then power dissipated by this gate is αfCV2 Vin. 5 CMOS VLSI Design Slide 9 CMOS Energy 101 C 0 0.2 0.4 0.6 0.8 1 1.2

26

CMOS VLSI Design

Looking Forward Vdd varies as 1/S0.2 (not as 1/S)

Clock remains constant

Core area varies as 1/S0.66 (not as 1/S2)

Voltage 1/S 1/S0.2

Area 1/S2 1/S0.66

Capacitance 1/S

Clock S 1

Core Power 1/S2 1/S1.4

Power Density 1 1/S0.74

Energy/Cycle 1/S3 1/S0.74

Scaling Slide 51

CMOS VLSI Design

1.0E‐05

1.0E‐04

1.0E‐03

1.0E‐02

1.0E‐01

1.0E+00

1.0E+01

1.0E+02

1.0E+03

1.0E+04

1.0E+05

1.0E+001.0E+011.0E+02

Relative to 100 nm Core

Feature Size (nm)Core Area Core Power Core Clock Core Power Density

Core Energy/Cycle Cores/Die Cycles/Die Die Power Density

Comparative Trends

Core Energy/CycleCore PowerDie Power Density

Core ClockCores per DieCycles per Die

Core AreaCore Power Density

Clocks fixed at baselineCore Area as F^0.66

Scaling Slide 52

Page 27: Outline - University of Notre Damekogge/courses/cse40462-VLSI...then power dissipated by this gate is αfCV2 Vin. 5 CMOS VLSI Design Slide 9 CMOS Energy 101 C 0 0.2 0.4 0.6 0.8 1 1.2

27

CMOS VLSI Design

Core Energy/Cycle

1.0E‐05

1.0E‐04

1.0E‐03

1.0E‐02

1.0E‐01

1.0E+00

1.0E+001.0E+011.0E+02

Relative to 100 nm Core

Feature Size (nm)

Dennard Pre 2004 Post 2004 Constant Clock Area Adj

Dennard

Pre 2004

Constant ClockPost 2004

Area Adjusted

100X

Scaling Slide 53

CMOS VLSI Design

1.0E+00

1.0E+01

1.0E+02

1.0E+03

1.0E+04

1.0E+05

1.0E+001.0E+011.0E+02

Relative to 100 nm Core

Feature Size (nm)

Dennard Pre 2004 Post 2004 Constant Clock Area Adj

Compute Cycles/DieDennard:Both Pre 2004

Constant Clock

And Post 2004

Area Adjusted

1,000X

Scaling Slide 54

Page 28: Outline - University of Notre Damekogge/courses/cse40462-VLSI...then power dissipated by this gate is αfCV2 Vin. 5 CMOS VLSI Design Slide 9 CMOS Energy 101 C 0 0.2 0.4 0.6 0.8 1 1.2

28

CMOS VLSI Design

Conclusions We have seen the end of Dennard Scaling

– No more “faster and faster chips”

Multi-core has taken over processor chips

– Forcing parallel programming for more performance

Power has become #1 design issue

With power of interconnect becoming dominant

Scaling Slide 55