42
P-07-27 Svensk Kärnbränslehantering AB Swedish Nuclear Fuel and Waste Management Co Box 5864 SE-102 40 Stockholm Sweden Tel 08-459 84 00 +46 8 459 84 00 Fax 08-661 57 19 +46 8 661 57 19 Oskarshamn site investigation 40 Ar/ 39 Ar dating of fracture minerals Henrik Drake, Earth Sciences Centre, Göteborg University Laurence Page, Department of Geology, Lund University Eva-Lena Tullborg, Terralogica AB January 2007

Oskarshamn site investigation – 40Ar/39Ar dating of fracture minerals

  • Upload
    trandan

  • View
    225

  • Download
    3

Embed Size (px)

Citation preview

P-07-27

Svensk Kärnbränslehantering ABSwedish Nuclear Fueland Waste Management CoBox 5864SE-102 40 Stockholm Sweden Tel 08-459 84 00 +46 8 459 84 00Fax 08-661 57 19 +46 8 661 57 19

CM

Gru

ppen

AB

, Bro

mm

a, 2

007

Oskarshamn site investigation

40Ar/39Ar dating of fracture minerals

Henrik Drake, Earth Sciences Centre, Göteborg University

Laurence Page, Department of Geology, Lund University

Eva-Lena Tullborg, Terralogica AB

January 2007

Tänd ett lager:

P, R eller TR.

ISSN 1651-4416

SKB P-07-27

Oskarshamn site investigation

40Ar/39Ar dating of fracture minerals

Henrik Drake, Earth Sciences Centre, Göteborg University

Laurence Page, Department of Geology, Lund University

Eva-Lena Tullborg, Terralogica AB

January 2007

Keywords: Simpevarp, Laxemar, Äspö, fracture minerals, Geochronology, Adularia, Illite, Muscovite, Apophyllite, Hornblende.

This report concerns a study which was conducted for SKB. The conclusions and viewpoints presented in the report are those of the authors and do not necessarily coincide with those of the client.

A pdf version of this document can be downloaded from www.skb.se

Abstract

This report presents the results obtained from geochronological studies of fracture minerals from the Laxemar and Simpevarp subareas and Äspö. Thirteen drill core samples of K-bearing minerals (adularia, muscovite, apophyllite, illite and hornblende) from both open and sealed fractures have been dated with the 40Ar/�9Ar method. The samples are from drill cores from the cored boreholes KA1755A (Äspö), KSH01A and KSH0�A+B (Simpevarp) and KLX02, KLX0�, KLX06 and KLX08 (Laxemar).

Fracture minerals have been selected to provide absolute geochronological constraints of the relative sequence of fracture mineralizations obtained by e.g. cross-cutting relations and stable isotope analyses /Drake and Tullborg 2004, 2005, 2006ab, 2007/. The sequence consists of seven generations of which generation 1 and 6 have been dated in the present study. Furthermore, greisen-like fillings (thought to be coeval with generation � and 4) and muscovite in altered wall rock (related to generation � and 4) have also been dated in the present study.

The analyses yielded plateau ages for ten samples. Seven samples yielded reasonable ages (adu-laria and muscovite) in accordance with interpretations from cross-cutting relations, chemistry and isotope studies /Drake and Tullborg 2004, 2005, 2006ab, 2007/, while two samples yielded younger ages than expected (adularia and muscovite). Four samples did not yield plateau ages or gave insignificant ages (illite, apophyllite and hornblende).

Reliable ages were obtained for generation � and 4 (wall rock muscovite; 1,417 ± � Ma) and for the greisen related fracture fillings in KLX06 (1,42� ± � Ma, 1,424 ± 2 Ma and 1,424 ± 2 Ma) which shows that these fracture fillings as well as the major part of the red-staining of the wall rock in the area are related to the intrusion of the Götemar granite (and probably also Uthammar granite).

The Palaeozoic generation (6) of fracture fillings was also successfully dated by obtained ages of 401, 426 and 44�–448 Ma, which is in accordance with earlier datings of this generation in the Götemar granite /Sundblad et al. 2004/. This generation is related in time with the Caledonian orogeny and the development of its foreland basin.

Ductile shear zones in the area are thought to predate the intrusions at Götemar and Uthammar (~ 1,440–1,450 Ma). The age obtained for muscovite in a mylonite of generation 1 (1,406 Ma) is, thus, younger that the presumed mylonite formation. The obtained age is thought to represent either re-activation of the mylonites (and formation of muscovite) during the intrusions of the Götemar and Uthammar granites or resetting of the Ar-system in the muscovite due to thermal affect during the emplacement of these intrusions. A K-feldspar of generation � gave a Sveconorwegian age (989 Ma) which is younger than expected. It can either be a generation � K-feldspar that has been reset during the Sveconorwegian orogeny or that the K-feldspar actually was formed during Svegonorwegian reactivation.

4

Sammanfattning

I denna rapport presenteras resultat från geokronologiska studier av sprickmineral från borrkärnor från Oskarshamns platsundersökning. Tretton borrkärneprover med kaliummineral (adular, muskovit, illit, apofyllit och hornblände), från både öppna och läkta sprickor, har daterats med hjälp av 40Ar/�9Ar-metoden. Proverna är från borrkärnorna KA1755A (Äspö), KSH01A och KSH0�A+B (Simpevarp) samt KLX02, KLX0�, KLX06 och KLX08 (Laxemar).

Sprickmineral har valts ut för att ge absolut geokronologisk data till den relativa sekvensen av sprickmineraliseringar som är baserad på bl.a. klippande relationer och stabila isotoper /Drake and Tullborg 2004, 2005, 2006ab, 2007/. Sekvensen består av sju olika sprickmineralgeneratio-ner varav generation 1 och 6 har daterats i denna studie. Greisen-liknande fyllningar (troligen likåldriga med generation � and 4) och muskovit från sidoberget relaterad till generation � and 4 har också daterats i denna studie.

Analyserna gav platå-åldrar för tio prover. Sju prover gav förväntade åldrar (adular och muskovit) medan två prover gav lägre åldrar än förväntat (adular och muskovit). Fyra prover gav inga platå-åldrar eller irrelevanta åldrar. De förväntade åldrarna överrensstämmer med tidigare tolkningar baserade på klippande relationer, kemi och isotopstudier etc. /Drake and Tullborg 2004, 2005, 2006ab, 2007/.

Tillförlitliga åldrar gavs för generation � och 4 (muskovit i omvandlat sidoberg; 1 417 ± � Ma) och för de greisenliknande sprickorna i KLX06 (1 42� ± � Ma, 1 424 ± 2 Ma och 1 424 ± 2 Ma), vilket visar att dessa sprickor och även huvuddelen av den utbredda rödfärgningen runt sprickor i området är relaterade till Götemargranitens (och troligen även Uthammargranitens) intrusion.

Den Palaeoziska generationen (6) gav också tillförlitliga åldrar på 401, 426 och 44�–448 Ma, vilket stämmer överrens med tidigare dateringar av denna generation i Götemargraniten /Sundblad et al. 2004/. Tidsmässigt är denna generation relaterad till den Kaledoniska orogenesen och troligen också utvecklingen av en förlandsbassäng.

Myloniterna i området tros vara äldre än inrusionerna av Götemar- och Uthammargraniterna (~ 1 440–1 450 Ma). Åldern av muskovit från en mylonit tillhörande generation 1 (1 406 Ma) antas därför inte representera mylonitbildningen. Istället tros denna ålder representera en reaktivering av myloniterna (och bildning av muskovit) i samband med intrusionerna av Götemar- och Uthammargraniterna eller att Ar-systemet i den daterade muskoviten nollställts i samband med dessa intrusioner. En kalifältspat som tros tillhöra generation � gav en svekonorvegisk ålder (989 Ma). Denna ålder är yngre än förväntat och kan antingen bero på att kalifältspaten tillhör generation � och har nollställts i samband med den svekonorvegiska orogenesen eller att kalifältspaten är svekonorvegisk.

5

Contents

1 Introduction 7

2 Objectiveandscope 9

3 Equipment 11�.1 Description of equipment/interpretation tools 11

4 Execution 1�4.1 Selection of samples 1�4.2 Preparations 1�4.� Execution of field work 1�4.4 Analyses and interpretations 1�4.5 Nonconformities 14

5 Results 155.1 Sample KA1755A: 211.70–211.75 m (muscovite) 155.2 Sample KSH01A: 256.90–257.10 m (adularia) 155.� Sample KSH0�B: 14.97–15.�2(I) m (adularia) 175.4 Sample KSH0�A: 181.9�–181.98 m (adularia) 185.5 Sample KSH0�A: 186.52–186.62 m (illite) 205.6 Sample KSH0�A: 86�.66–86�.84 m (adularia) 215.7 Sample KLX02: 676.82–677.00 m (apophyllite) 2�5.8 Sample KLX0�: 722.72–722.96 m (muscovite) 255.9 Sample KLX0�: 970.04–970.07 m (apophyllite) 275.10 Sample KLX06: 5�5.10–5�5.26 m (muscovite) 295.11 Sample KLX06: 565.22–565.�8 m (muscovite) �05.12 Sample KLX06: 595.08–595.18 m (muscovite) �15.1� Sample KLX08: 9��.15–9��.�0 m (hornblende) �2

6 Summaryanddiscussions �5

7 Acknowledgements �7

8 References �9

Appendix1 40Ar/�9Ar-data 41

7

1 Introduction

This document reports 40Ar/�9Ar dating results from fracture minerals. Samples are from the Laxemar and Simpevarp subareas and Äspö. The work was carried out in accordance with activity plan AP PS 400-06-158. In Table 1-1 controlling documents for performing this activity are listed. Both activity plan and method descriptions are SKB’s internal controlling documents.

A relative, geochronological sequence of fracture minerals based on e.g. cross-cutting relations in about 200 drill core samples from more than 10 different cored boreholes has been established. This sequence comprises seven generations and is common for the Simpevarp and Laxemar sub-areas and Äspö. Detailed descriptions of the fracture mineralogy and the sequences and paragenesis have earlier been reported; Simpevarp subarea /Drake and Tullborg 2004, 2006a/, Laxemar subarea /Drake and Tullborg 2005, 2007/ and Äspö /Drake and Tullborg 2005/. Stable isotope analyses on calcite, pyrite, barite and gypsum and geochemical analyses have further contributed to the subdivision into different fracture mineral generations. The fracture mineral generations grade from relatively high temperature (greenschist facies) to low temperature (zeolite facies down to ambient temperatures). They are summarized in Table 1-2 (modified from/Drake and Tullborg 2007/).40Ar/�9Ar dating has been performed on samples from generation 1, �, 5 and 6 and on muscovite in the red-stained wall rock adjacent to a fracture filled with minerals of generation � and 4. Three samples of coarse-grained muscovite in greisen-like fractures (thought to be coeval with genera-tion �) from KLX06 have also been dated. Each sample is found in Table 1-�.

Table1‑1.Controllingdocumentsfortheperformanceoftheactivity.

Activityplan Number VersionGeokronologisk undersökning av sprickmineral AP PS 400-06-158 1.0

Methoddescriptions Number VersionSprickmineralogi SKB MD 144.000 1.0

Åldersdateringar av mineral och bergarter SKB MD 132.002

Table1‑2.Schematicfracturefilling‑sequencefromSimpevarp/Laxemar/Äspö.Themostabundantmineralsineachgenerationareinboldletters.Mineralsinbracketsareonlyfoundoccasionally.

1. Quartz‑andepidote‑richmylonite, including muscovite, titanite, Fe-Mg-chlorite, albite, (apatite, calcite and K-feldspar)

2. Cataclasitea. Early green coloured; epidote-rich, with quartz,Fe‑Mg‑chlorite, (titanite, K-feldspar, and albite)b. Late red-brown colour; K‑feldspar,chlorite,quartz,hematite, albite, (and illite)3. Euhedral quartz,epidote,Fe‑Mgchlorite,calcite, pyrite, fluorite, muscovite, (K-feldspar and

hornblende)4. Prehnite, (fluorite) 5.a. Calcite, (fluorite and hematite)b. Darkred/brownfilling‑Adularia,Mg‑chlorite,hematite; sometimes cataclastic.c. Calcite,adularia,laumontite,Mg‑chlorite,quartz,illite,hematite, (ML-clay – chlorite/illite,

albite and apatite)6. Calcite,adularia,Fe‑chlorite,hematite,fluorite,quartz,pyrite,barite,gypsum,corrensite

(and other types of mixed-layer clay), harmotome, REE-carbonate, galena, apophyllite, illite, chalcopyrite, sphalerite, U-silicate, Cu(Zn,Ni,Sn,Fe)-rich minerals, apatite, laumontite (Ti-oxide, Mg-chlorite and albite)

7. Calcite, pyrite, Fe-oxyhydroxide (near surface)

8

The original results are stored in the primary data base (SICADA) and are traceable by the activity plan number 400-06-158.

Table1‑3.

Sample Datedmineral Generation Report

KA1755A: 211.70–211.75 m Muscovite 1 /Drake and Tullborg 2005/KSH01A: 256.90–257.10 m Adularia 6 /Drake and Tullborg 2004/

KSH03B: 14.97–15.32(I) m Adularia 6 /Drake and Tullborg 2006a/KSH03A: 181.93–181.98 m Adularia 6 /Drake and Tullborg 2006a/KSH03A: 186.52–186.62 m Illite 5 or 6 /Drake and Tullborg 2006a/KSH03A: 863.66–863.84 m Adularia 3 or later /Drake and Tullborg 2006a/KLX02: 676.82–677.00 m Apophyllite 6 /Drake and Tullborg 2005/KLX03: 722.72–722.96 m Muscovite 3 or 4 (wall rock) /Drake and Tullborg 2007/KLX03: 970.04–970.07 m Apophyllite 6 /Drake and Tullborg 2007/KLX06: 535.10–535.26 m Muscovite Greisen fractures /Drake and Tullborg 2007/KLX06: 565.22–565.38 m Muscovite Greisen fractures /Drake and Tullborg 2007/KLX06: 595.08–595.18 m Muscovite Greisen fractures /Drake and Tullborg 2007/KLX08: 933.15–933.30 m Hornblende 3 /Drake and Tullborg 2007/

Figure 1‑1. General overview of the Simpevarp site investigation area, with cored and percussion drill holes shown. Drill hole KA1755A is not shown (it is from the tunnel at Äspö).

9

2 Objectiveandscope

The objective is to provide absolute geochronological constraints for the relative sequence of fracture generations that has been established in the Simpevarp area /Drake and Tullborg 2004, 2005, 2006a, 2007/ and thereby contribute to the interpretation of the geological evolution of the area.

This report presents the data obtained from 40Ar/�9Ar dating but no detailed interpretation of the geological evolution is reported.

11

3 Equipment

3.1 Descriptionofequipment/interpretationtools• Rock saw

• Swing mill

• Tweezers

• Digital camera

• Petrographic Microscope (Leica DMRXP)

• Binocular microscope (Leica MZ12)

• Digital microscope camera (Leica DFC 280)

• Scanning electron microscope (HITACHI S-�400N)

• EDS-detector (INCADryCool)

All the equipment described above is property of the Earth Sciences Centre, Göteborg University, Sweden. For the geochronological analyses the following equipment was used:

• Micromass 5400 mass spectrometer (Lund University, Sweden)

• New Wave Research 50W CO2 laser facility (Lund University, Sweden)

1�

4 Execution

4.1 SelectionofsamplesThe selection of samples for dating is a delicate issue. Pure minerals that can be found in paragenesis are difficult to sample. Instead several minerals, sometimes from several generations found in the same fracture are the common case. Before the selection of samples for geochronological analyses, thin sections and fracture surface samples were examined using binocular microscope, petrographic microscope and scanning electron microscope (SEM-EDS) in order to identify suitable fracture minerals. The samples finally selected belonged to drill cores from KA17755A, KSH01A, KSH0�A+B, KLX02, KLX0�, KLX06 and KLX08.

4.2 PreparationsFrom sealed fractures, the fracture filling was separated from the wall rock using a rock saw and then crushed manually with a hammer or the fracture filling was removed from the sample with a knife. The fragments were put in a swing mill for a few seconds to obtain small grains made up of individual mineral phases. The mineral was then handpicked with tweezers under a binocular microscope.

Apophyllite crystals were handpicked from the fracture surface under a binocular microscope.

4.3 ExecutionoffieldworkSamples have been selected from drill cores from the cored boreholes KLX02, KA17755A, KSH01A, KSH0�A+B, KLX0�, KLX06 and KLX08 during the sampling for the detailed fracture mineralogy studies (activities AP PS 400-0�-045, AP PS 400-05-05� and AP PS 400-05-074).

4.4 AnalysesandinterpretationsThe samples selected for 40Ar/�9Ar geochronology were irradiated together with the 28.�4 TCR sanidine standard (28.�4 Ma recalculated following /Renne et al. 1998/, for �5 hours at the NRG-Petten HFR RODEO facility in the Netherlands. J-Values were calculated with a precision of 0.25%.

The 40Ar/�9Ar geochronology laboratory at Lund University contains a Micromass 5400 mass spectrometer with a Faraday and an electron multiplier. A metal extraction line, which contains two SAES C50-ST101 Zr-Al getters and a cold finger cooled to ca –155°C by a Polycold P100 cryogenic refrigeration unit, is also present. One or two grains of adularia were loaded into a copper planchette that consists of several � mm holes. Samples were step-heated using a defocused 50W CO2 laser. Sample clean-up time that made use of the two hot Zr-Al SAES getters and a cold finger with a Polycold refrigeration unit was five minutes. The laser was rastered over the samples to provide even-heating of all grains. The entire analytical process is automated and runs on a Macintosh-steered OS 10.2 with software modified specifically for the laboratory at Lund University. The software was originally developed at the Berkeley geochronology Centre (Al Deino). 18 Time zero regressions were fitted to data collected from 10 scans over the mass range of 40 to �6. Peak heights and backgrounds were corrected for mass discrimination, isotopic decay and interfering nucleogenic Ca-, K-, and Cl-derived

14

isotopes. Isotopic production values for the cadmium-lined position in the Petten reactor are �6Ar/�7Ar(Ca) = 0.000270, �9Ar/�7Ar(Ca) = 0.000699, and 40Ar/�9Ar(K) = 0.0018�. 40Ar blanks were calculated before every new sample and after every three sample steps. 40Ar blanks were between 6.0–�×10–16. Blank values for masses �9–�6 were all less than 7×10–18. Blank values were subtracted for all incremental steps from the sample signal. The laboratory was able to produce very good incremental gas splits, using a combination of increasing time at the same laser output, followed by increasing laser output. Age plateaus were determined using the criteria of /Dalrymple and Lanphere 1971/, which specify the presence of at least three contiguous incremental heating steps with statistically indistinguishable ages and constituting greater than 50% of the total �9Ar released during the experiment.

4.5 NonconformitiesThree of the samples did not yield plateau ages and one sample gave a very unrealistic age (too young).

15

5 Results

5.1 SampleKA1755A:211.70–211.75m(muscovite)The sample consists of mylonite (generation 1) from the Äspö Shear Zone (ZSMNE005A). Minerals present are muscovite, quartz, epidote, K-feldspar, albite and some titanite. The mylonite is cut by a fracture filled with calcite, fluorite and hematite.

The plateau age of muscovite defined on the 40Ar/�9Ar step-heating spectrum is 1 406 ± � Ma (Figure 5-2). This age is however younger than expected. The mylonites in the area are commonly thought to be older than the granite intrusions at Götemar (1,452 +11/–9 Ma, /Åhäll 2001/) and Uthammar (1,441 +5/–� Ma, /Åhäll 2001/) nearby /Nisca 1987, Talbot and Riad 1988/. The age obtained for the muscovite from drill core KA1755A may thus represent re-activation of the mylonite and formation of muscovite at the time of the intrusion of these granites. However, it is more likely that the muscovite existed before the intrusions of the granites and that the obtained age represents heating of the muscovite above its Ar-blocking temperature (~ �50°C) in connection with the intrusions of the Götemar and Uthammar granites.

5.2 SampleKSH01A:256.90–257.10m(adularia)The adularia is found in sealed fractures (generation 6) together with calcite, Mg-rich chlorite, Fe-rich chlorite, pyrite etc. These fractures cut through brown-coloured cataclasite, which is composed of adularia, Mg-rich chlorite and hematite.

The plateau age defined on the 40Ar/�9Ar step-heating spectrum is 425.8±1.7 Ma (Figure 5-5). The age is interpreted as the crystallization age of the adularia.

Figure 5‑1. KA1755A: 211.70–211.75 m. Mylonite (generation 1), cut by a fracture filled with calcite (white), fluorite and hematite.

16

Figure 5‑2. 40Ar/39Ar muscovite step-heating spectrum for sample KA1755A: 211.70–211.75 m.

Figure 5‑3. Sample KSH01A: 256.90–257.10 m. Sealed fractures (generation 6), filled with calcite, adularia, Mg-chlorite, Fe-chlorite and pyrite etc. are cutting through brown-coloured cataclasite.

Figure 5‑4. Sample KSH01A: 256.90–257.10 m. Back-scattered SEM-image of adularia and Fe-rich chlorite (Fe-chl).

17

5.3 SampleKSH03B:14.97–15.32(I)m(adularia)Sealed fracture mainly filled with adularia and subordinate calcite and hematite.

The plateau ages defined on the 40Ar/�9Ar step-heating spectrums are 44�.� ± 1.2 Ma (Split 1, Figure 5-8) and 448.0 ± 1.2 Ma (Split 2, Figure 5-9). The age span of 44�–448 Ma is interpreted as the crystallization age of the adularia. This age span is consistent with the “warm brine” origin of co-precipitated calcite, revealed by stable isotope analysis (C and O). These fluids were interpreted to have formed during the Palaeozoic /Drake and Tullborg 2006a/.

Figure 5‑5. 40Ar/39Ar adularia step-heating spectrum for sample KSH01A: 256.90–257.10 m.

Figure 5‑6. Sealed fracture filled with adularia, calcite and hematite.

18

5.4 SampleKSH03A:181.93–181.98m(adularia)The sample consists of sealed fractures of several generations. The first generation is cataclasite (generation 2) which is cut by calcite-filled fractures (generation �). The latest formed fractures are filled with adularia (generation 6) and laumontite. It is difficult to discern in thin-section if adularia and laumontite are coeval. There exist fragments of calcite within the adularia filling. This calcite has stable isotope ratios which are similar to generation �–4 calcite.

Figure 5‑7. Back-scattered SEM-image of adularia in the sealed fracture.

Figure 5‑8. 40Ar/39Ar adularia step-heating spectrum for sample KSH03B: 14.97–15.32(I) m. Split 1.

19

Figure 5‑9. 40Ar/39Ar adularia step-heating spectrum for sample KSH03B: 14.97–15.32(I) m. Split 2.

Figure 5‑10. Cataclasite (generation 2, red-brown coloured, left) is cut by calcite-filled fractures (generation 3, white colour). The latest formed fractures are filled with adularia (generation 6) and laumontite,(orange colour).

The plateau age defined on the 40Ar/�9Ar step-heating spectrum is 400.9 ± 1.1 Ma (Figure 5-12). The plateau age is interpreted as the crystallization age of the adularia and is a maximum age of the laumontite in the same fracture since the laumontite is found in the centre of the adularia-coated fracture.

20

5.5 SampleKSH03A:186.52–186.62m(illite)A dark green illite-rich fracture filling is cut by sealed fractures filled with calcite (“warm brine” origin) and small amounts of adularia.

The illite sample did not yield a plateau age. However, the integrated age (488.5±1.1 Ma, Figure 5-14) defined on the 40Ar/�9Ar step-heating spectrum might give a speculative indication of the age of the mineral /cf. p. �6–�7 in McDougall and Harrison 1999/. The integrated age for the illite would be reasonable since it is cut by Palaeozoic calcite of generation 6, a generation that is dated to 400–448 Ma (this report and /Sundblad et al. 2004/).

Figure 5‑11. Photomicrograph of adularia and laumontite (at the right arrow in Figure 5-10 above).

Figure 5‑12. 40Ar/39Ar adularia step-heating spectrum for sample KSH03A: 181.93–181.98 m.

21

5.6 SampleKSH03A:863.66–863.84m(adularia)The sample consists of a more than 20 centimetre wide light green mylonite/cataclasite (genera-tion 1 or 2) including wall rock fragments. Two sets of thin (< 1 millimetre) fractures cut the mylonite/cataclasite. The mylonite/cataclasite matrix consists of about 80–90% of fine-grained epidote and the rest is K-feldspar and quartz.

The fractures cutting the mylonite/cataclasite are filled with K-feldspar (probably adularia), quartz and occasionally chlorite. When chlorite, K-feldspar and quartz appear in the same fracture, the chlorite is present in the centre of the fracture whereas the K-feldspar and quartz coat the fracture walls. The chlorite is of Fe-Mg-type (as common in generation � and earlier).

Figure 5‑13. Dark green illite-rich fracture filling cut by sealed fractures filled with calcite and small amounts of adularia.

Figure 5‑14. 40Ar/39Ar illite step-heating spectrum for sample KSH03A: 186.52–186.62 m.

22

The plateau age defined on the 40Ar/�9Ar step-heating spectrum is 989 ± 2 Ma (Figure 5-17). The left hand side of the spectrum most likely indicates slow cooling of multi diffusion domain K-feldspars. The plateau age can be interpreted as either crystallization of the K-feldspar or complete resetting of an older K-feldspar during a Sveconorwegian event. This means that it can either be a generation � K-feldspar that has been reset or that the K-feldspar was formed in connection with the Sveconorwegian orogeny (this K-feldspar is classified as a generation � mineral, based on the chemistry of the related chlorite).

Figure 5‑15. K-feldspar (red), quartz and chlorite (black) in fractures that cut through mylonite/cataclasite. Photograph from a sawed piece of the sample.

Figure 5‑16. Microphotograph of adularia and quartz in fractures that cut through mylonite/cataclasite.

2�

5.7 SampleKLX02:676.82–677.00m(apophyllite)Open fracture coated by euhedral apophyllite and barite of generation 6.

The sample yielded plateau ages (two splits, Figures 5-19 and 5-20) but these ages are much lower than expected and this is probably due to the observed decomposition of the apophyllite during the analyses. These ages are thus considered to be insignificant.

Figure 5‑17. 40Ar/39Ar adularia step-heating spectrum for sample KSH03A: 863.66–863.84 m.

Figure 5‑18. Sample KLX02: 676.82–677.00 m.

24

Figure 5‑20. 40Ar/39Ar apophyllite step-heating spectrum for sample KLX02: 676.82–677.00 m. Split 2.

Figure 5‑19. 40Ar/39Ar apophyllite step-heating spectrum for sample KLX02: 676.82–677.00 m. Split 1.

25

5.8 SampleKLX03:722.72–722.96m(muscovite)The fracture filling is 10–15 mm thick and consists of dominantly Fe-Mg chlorite, quartz and calcite (generation �). The fracture has later been re-activated and a 5 millimetre wide fracture filled with prehnite (generation 4) cuts through the chlorite-quartz-calcite filling.

The wall rock is bleached close to the filled fracture, and more reddish 1–2 centimetres away from the fracture. The colour in these sections depends on the features of the plagioclase altera-tion; 1) in the red coloured part the pseudomorphs after plagioclase consist of albite, K-feldspar, muscovite (sericite) and prehnite. The red colour originates from minute hematite crystals in micro-pores in the secondary minerals in the pseudomorphs after plagioclase. 2) In the bleached parts, the plagioclase pseudomorphs consist of albite, prehnite and euhedral muscovite.

Most biotite is replaced by chlorite. The dated sample consists of muscovite from pseudomorphs after plagioclase in the bleached part of the rock. The bleaching and red-staining of the wall rock are thought to be related to the same event because many fractures filled with minerals of one generation only (often prehnite) show bleached rock close to the fracture and red-stained rock further away from the fracture. The different colours (bleached or red-stained) may depend on distance from the fracture, temperature, or fluid chemistry etc.

The plateau age defined on the 40Ar/�9Ar step-heating spectrum is 1,417 ± � Ma (Figure 5-2�). It is interpreted as the crystallization age of the muscovite. This is also thought to be the age of the fracture minerals of generations � and 4 (epidote, chlorite, quartz, calcite, prehnite). The assumption that generations � and 4 are of essentially the same age is based on that both genera-tions fill fractures bordered by red-stained wall rock and, furthermore, the two generations show identical stable and Sr isotope results for calcites /Drake and Tullborg 2006a, 2007/. The obtained age of these fillings indicate that they are related to the intrusions (or post-magmatic fluid circulation) of the Götemar and Uthammar granites as shown by e.g. ages of muscovite in greisen-like fractures closer to the Götemar granite (see Section 5.9, 5.10, 5.11). The age of the muscovite also indicate that the major part of the extensive red-staining of the rocks in the area, studied by /Eliasson 199�, Drake and Tullborg 2006cd/, is related to these intrusions and/or related post-magmatic circulation.

Figure 5‑21. Photograph of the drill core showing a fracture sealed with calcite, quartz and chlorite and subsequently prehnite. The red-stained wall rock is bleached close to the fracture, due to a high amount of muscovite in the altered plagioclase.

26

Figure 5‑22. Photomicrograph of an altered plagioclase crystal with muscovite crystals in it.

Figure 5‑23. 40Ar/39Ar muscovite step-heating spectrum for sample KLX03: 722.72–722.96 m.

27

5.9 SampleKLX03:970.04–970.07m(apophyllite)The sample consists of an open fracture coated by euhedral apophyllite of generation 6. Small amounts of calcite and barite are also present. The sample did not yield a plateau age.

Figure 5‑24. Photograph of the fracture surface covered with apophyllite.

Figure 5‑25. Back-scattered SEM-image of apophyllite on the fracture surface. Scale marker is ~ 200 µm.

28

Figure 5‑26. 40Ar/39Ar apophyllite step-heating spectrum for sample KLX03: 970.04–970.07 m. Split 1.

Figure 5‑27. 40Ar/39Ar apophyllite step-heating spectrum for sample KLX03: 970.04–970.07 m. Split 2.

29

5.10 SampleKLX06:535.10–535.26m(muscovite)Sealed fracture (2–� cm wide) coated by coarse-grained muscovite and filled with coarse-grained pyrite and small amounts of calcite. Diffuse contact to the wall rock, which is strongly sericitized.

The plateau age defined on the 40Ar/�9Ar step-heating spectrum is 1,424 ± 2 Ma (Figure 5-29). It is interpreted as the crystallization age of the muscovite. This age shows that these fillings are related to the intrusion (and/or post-magmatic circulation) of the Götemar granite. The somewhat lower age (minimum ~ 20 Ma) for the muscovite than for the intrusion of the Götemar granite (1,452 +11/–9 Ma, /Åhäll 2001/) might be due to formation of muscovite related to post-magmatic circulation and that the closure temperature for Ar is quite low in muscovite (~ �50°C).

Figure 5‑28. Photograph of the drill core showing a fracture sealed with muscovite, pyrite, quartz and calcite (not visible in the photograph).

Figure 5‑29. 40Ar/39Ar muscovite step-heating spectrum for sample KLX06: 535.10–535.26 m.

�0

5.11 SampleKLX06:565.22–565.38m(muscovite)Sealed fracture (about 10 cm wide), filled with coarse-grained quartz, muscovite and fluorite. Diffuse contact to the wall rock, which is strongly sericitized.

The plateau age defined on the 40Ar/�9Ar step-heating spectrum is 1,42� ± � Ma (Figure 5-�1). It is interpreted as the crystallization age of the muscovite. This age shows that these fillings are related to the intrusion (and/or post-magmatic circulation) of the Götemar granite. The somewhat lower age (minimum ~ 20 Ma) for the muscovite than for the intrusion of the Götemar granite (1,452 +11/–9 Ma, /Åhäll 2001/) might be due to formation of muscovite related to post-magmatic circulation and that the closure temperature for Ar is quite low in muscovite (~ �50°C).

Figure 5‑30. Photograph of the drill core showing a fracture sealed with muscovite, quartz and fluorite.

Figure 5‑31. 40Ar/39Ar muscovite step-heating spectrum for sample KLX06: 565.22–565.38 m.

�1

5.12 SampleKLX06:595.08–595.18m(muscovite)Sealed fracture (about 2–� cm wide), bordering to a presently open fracture. The wall rock is strongly sericitized.

Quartz, muscovite and fluorite are coarse-grained and the dominating minerals in this sample. Muscovite is coating the fracture and quartz is found in the centre of the fracture. Other minerals (e.g. topaz, Ti-oxide, chalcopyrite, barite, Fe-oxide, Fe-Mg chlorite, sphalerite, sylvite, halite, native gold, and albite) are found in small amounts.

The plateau age defined on the 40Ar/�9Ar step-heating spectrum is 1,424 ± 2 Ma (Figure 5-��). It is interpreted as the crystallization age of the muscovite. This age shows that these fillings are related to the intrusion (and/or post-magmatic circulation) of the Götemar granite. The somewhat lower age (minimum ~ 20 Ma) for the muscovite than for the intrusion of the Götemar granite (1,452 +11/–9 Ma, /Åhäll 2001/) might be due to formation of muscovite related to post-magmatic circulation and that the closure temperature for Ar is quite low in muscovite (~ �50°C).

Figure 5‑32. Photograph of the drill core showing a fracture sealed with mainly muscovite, quartz and fluorite.

Figure 5‑33. 40Ar/39Ar muscovite step-heating spectrum for sample KLX06: 595.08–595.18 m.

�2

5.13 SampleKLX08:933.15–933.30m(hornblende)The sample shows sealed fractures boarded by red-stained wall rock. Minerals in the fractures are hornblende (most abundant), calcite, titanite (occasionally euhedral), K-feldspar, Fe-Mg chlorite, (magnetite, pyrite, albite and epidote). These minerals are thought to be of generation �. The sample did not yield a plateau age.

Figure 5‑34. Photograph of the drill core showing fractures sealed with mainly hornblende, calcite, K-feldspar and chlorite.

Figure 5‑35. Back-scattered SEM-image of hornblende (“Hbl”) and calcite (darker than hornblende) in a sealed fracture.

��

Figure 5‑36. 40Ar/39Ar hornblende step-heating spectrum for sample KLX08: 933.15–933.30 m.

�5

6 Summaryanddiscussions

The analyses yielded plateau ages for ten samples (Table 6-1). Seven samples yielded ages (adularia and muscovite) in accordance with interpretations from cross-cutting relations, chemistry and isotope studies /Drake and Tullborg 2004, 2005, 2006a,b, 2007/ while two samples yielded younger ages than expected (adularia and muscovite). Four samples did not yield plateau ages or gave insignificant ages (illite, apophyllite and hornblende). Ages were obtained for generation �, 4 and 6 (Table 6-2). The ages for generation � and 4 are also valid for some fillings from generation 5 based on similar wall rock alteration features and stable isotopes. This also provides age constraints for the extensive red-staining of the wall rock in the area.

The mylonites in the area are thought to predate the intrusions of the Götemar and Uthammar granites (~ 1,440–1,450 Ma). The age obtained for muscovite (1,406 Ma) in a mylonite of generation 1 is, thus, not thought to represent the age of the mylonite formation. Instead, the obtained age is thought to represent either re-activation of the mylonites (and formation of muscovite) during the intrusions of the Götemar and Uthammar granites or resetting of the Ar-system in the dated muscovite due to thermal heating of the country rocks during these intrusions. A generation � K-feldspar gave a Sveconorwegian age (989 Ma) which is younger than expected. It can either be a generation � K-feldspar that has been reset in connection with the Sveconorwegian orogeny or that the K-feldspar was formed during Sveconorwegian reactivation.

Reliable ages were obtained for generation � and 4 and for the greisen related fractures in KLX06, which shows that these fracture fillings are related to the intrusion of the Götemar granite (and probably also Uthammar granite). It is also indicated that mylonites were re-activated at this event.

The Palaeozoic generation (6) was also adequately dated (401, 426 and 44�–448 Ma for adularia), which is in accordance with earlier datings of this generation in the Götemar granite /Sundblad et al. 2004/. This generation is related in time to the Caledonian orogeny and probably also to its migrating foreland basin.

The results from this study indicate that the bedrock in the area has not been heated to tempera-tures higher than the blocking temperature for muscovite (~ �50°C) since about 1,400 Ma.

Table6‑1.

Sample Mineral Result(Ma)Split1

Result(Ma)Split2

Generation/DrakeandTullborg2007/

KA1755A: 211.70–211.75 m Muscovite 1,406 ± 3 1KSH01A: 256.90–257.10 m Adularia 425.8 ± 1.7 6

KSH03B: 14.97–15.32(I) m Adularia 443.3 ± 1.2 448.0 ± 1.2 6KSH03A: 181.93–181.98 m Adularia 400.9 ± 1.1 6KSH03A: 186.52–186.62 m Illite No plateau 5 or 6KSH03A: 863.66–863.84 m Adularia 989 ± 2 3 or laterKLX02: 676.82–677.00 m Apophyllite No significant age No significant age 6KLX03: 722.72–722.96 m Muscovite 1,417 ± 3 3 or 4 (wall rock)KLX03: 970.04–970.07 m Apophyllite No plateau No plateau 6KLX06: 535.10–535.26 m Muscovite 1,424 ± 2 Greisen fracturesKLX06: 565.22–565.38 m Muscovite 1,423 ± 3 Greisen fracturesKLX06: 595.08–595.18 m Muscovite 1,424 ± 2 Greisen fracturesKLX08: 933.15–933.30 m Hornblende No plateau 3

�6

Table6‑2.Schematicfracturefilling‑sequencefromSimpevarp/Laxemar/Äspöwithagesfromthisreport.Themostabundantmineralsineachgenerationareinboldletters.Mineralsinbracketsareonlyfoundoccasionally.

1. Quartz‑andepidote‑richmylonite, including muscovite, titanite, Fe-Mg-chlorite, albite, (apatite, calcite and K-feldspar) } > 1.45 Ga. Re-activated during

intrusion of the Götemar granite

2. Cataclasite } Probably older than 1.45 Gaa. Early green coloured; epidote-rich, with quartz,

Fe‑Mg‑chlorite, (titanite, K-feldspar, and albite)b. Late red-brown colour; K‑feldspar,chlorite, quartz,

hematite, albite, (and illite)3. Euhedral quartz,epidote,Fe‑Mgchlorite,

calcite, pyrite, fluorite, muscovite, (K-feldspar and hornblende) } Probably ~ 1.424–1.417 Ga,

related to the intrusion of the Götemar granite

4. Prehnite,(fluorite) 5. }a. Calcite, (fluorite and hematite) ~ 1.424–0.44 Ga, some fillings

(e.g. earliest formed laumontite) is related to the intrusion of the Götemar granite. Some may be Sveconorwegian and some later (possibly Paleozoic)

b. Darkred/brownfilling–Adularia,Mg‑chlorite,hematite; sometimes cataclastic.

c. Calcite,adularia,laumontite,Mg‑chlorite,quartz,illite,hematite, (ML-clay – chlorite/illite, albite and apatite)

6. Calcite,adularia,Fe‑chlorite,hematite,fluorite,quartz,pyrite,barite,gypsum,corrensite (and other types of mixed-layer clay), harmotome, REE-carbonate, galena, apophyllite, illite, chalcopyrite, sphalerite, U-silicate, Cu(Zn,Ni,Sn,Fe)-rich minerals, apatite, laumontite (Ti-oxide, Mg-chlorite and albite)

} ~ 0.44–0.40 Ga (Paleozoic)

7. Calcite, pyrite, Fe-oxyhydroxide (near surface) } ~ 0.40 Ga and later, possibly recent

�7

7 Acknowledgements

SKB is thanked for funding. Sven Åke Larson and Carl-Henric Wahlgren are thanked for providing useful comments. Björn Sandström and Tobias Hermansson are thanked for construc-tive discussions.

�9

8 References

DalrympleGB,LanphereMA, 1971. 40Ar/49Ar technique of K-Ar dating: a comparison with the conventional technique., Earth and Planetary Science Letters, 12, p �00-�08.

DrakeH,TullborgE-L,2004.Oskarshamn site investigation. Fracture mineralogy and wall rock alteration, results from drill core KSH01A+B. SKB-P-04-250. 120 pp. Svensk Kärnbränslehantering AB.

DrakeH,TullborgE-L,2005. Oskarshamn site investigation.Fracture mineralogy and wall rock alteration, results from drill cores KAS04, KA1755A and KLX02. SKB-P-05-174. 69 pp. Svensk Kärnbränslehantering AB.

DrakeH,TullborgE-L,2006a. Oskarshamn site investigation. Fracture mineralogy, Results from drill core KSH0�A+B. SKB P-06-0�. 65 pp. Svensk Kärnbränslehantering AB.

DrakeH,TullborgE-L,2006b. Oskarshamn site investigation. Fracture mineralogy of the Götemar granite, Results from drill cores KKR01, KKR02 and KKR0�. SKB P-06-04. 61 pp. Svensk Kärnbränslehantering AB.

DrakeH,TullborgE-L,2006c. Oskarshamn site investigation. Mineralogical, chemical and redox features of red-staining adjacent to fractures, Results from drill cores KSH01A+B and KSH0�A+B. SKB P-06-01. 115 pp. Svensk Kärnbränslehantering AB.

DrakeH,TullborgE-L,2006d. Oskarshamn site investigation. Mineralogical, chemical and redox features of red-staining adjacent to fractures, Results from drill core KLX04. SKB P-06-02. 105 pp. Svensk Kärnbränslehantering AB.

DrakeH,TullborgE-L,2007. Oskarshamn site investigation. Fracture mineralogy, Results from drill cores KLX0�, KLX04, KLX06, KLX07A, KLX08 and KLX10A. Oskarshamn site investigations. SKB P-06-XX. pp. Svensk Kärnbränslehantering AB (in press).

EliassonT,1993. Mineralogy, geochemistry and petrophysics of red coloured granite adjacent to fractures. SKB TR-9�-06. 68 pp. Svensk Kärnbränslehantering AB.

McDougallI,HarrisonMT,1999. Geochronology and Thermochronology by the 40Ar/�9Ar Method, Second edition. Oxford University Press. Oxford, 269 pp.

NiscaDH,1987. Aerogeophysical interpretation: bedrock and tectonic analysis. SKB PR-25-87-04. pp. Svensk Kärnbränslehantering AB.

RennePR,SwisherCC,DeinoAL,KarnerDB,OwenaTL,DePaoloDJ, 1998. Intercalibration of standards, absolute ages and uncertainties in 40Ar/49Ar dating., Chemical Geology, 145, p. 117–152.

SundbladK,AlmE,HuhmaH,VaasjokiM,SollienDB, 2004. Early Devonian tectonic and hydrothermal activity in the Fennoscandian Shield; evidence from calcite-fluorite-galena mineralization, In: Mertanen S (ed), Extended abstracts, 5th Nordic Paleomagnetic workshop. -Supercontinents, remagnetizations and geomagnetic modelling., Geological Survey of Finland, p 67–71.

TalbotC,RiadL,1988. Natural fractures in the Simpevarp area. PR-25-87-0�. 28 pp. Svensk Kärnbränslehantering AB.

ÅhällK-I,2001. Åldersbestämning av svårdaterade bergarter i sydöstra Sverige. SKB R-01-60. 28 pp. Svensk Kärnbränslehantering AB.

41

App

endi

x1

40A

r/39A

r‑da

taK

LX06

:595

,Run

ID#

1618

‑01

(J=

0.0

1066

±0

.000

012)

:M

USC

OVI

TER

unID

Pwr/T

°CC

a/K

36A

r/39A

r%

36A

r(C

a)40

*Ar/39

Ar

Mol

39A

r%

Ste

pC

um.%

%40

Ar*

Age

(Ma)

±A

ge

1618

-01A

1.8

0.08

949

0.05

7776

062

.002

944.

4806

E+1

10.

10.

178

.491

5.37

176

5.23

325

1618

-01B

20.

0176

10.

0345

450

79.1

3738

6.64

6E+1

10.

10.

288

.61,

103.

5947

93.

6289

916

18-0

1C2.

3–0

.013

230.

0408

890

95.8

668

2.48

03E

+12

0.4

0.5

88.8

1,27

0.17

412.

3047

316

18-0

1D2.

50.

0145

20.

0053

70

103.

1038

32.

9198

E+1

20.

41

98.5

1,33

7.72

755

1.83

288

1618

-01E

2.7

0.00

115

0.00

1846

010

6.90

144

4.15

36E

+12

0.6

1.6

99.5

1,37

2.18

937

2.13

795

1618

-01F

30.

0044

60.

0015

630

110.

7158

72.

7917

E+1

34.

15.

799

.61,

406.

1535

41.

3421

516

18-0

1G3.

20.

0043

90.

0005

870.

111

1.88

647

2.01

76E

+13

38.

799

.81,

416.

4498

1.55

597

1618

-01H

3.4

0.00

341

0.00

0688

0.1

112.

1211

53.

594E

+13

5.3

1499

.81,

418.

5069

21.

4747

316

18-0

1I3.

60.

0001

90.

0000

60

112.

5287

42.

5329

E+1

33.

717

.710

01,

422.

0741

41.

1417

716

18-0

1J3.

80.

0002

10.

0000

560.

111

2.30

462

2.48

8E+1

33.

721

.410

01,

420.

1135

41.

4341

216

18-0

1K•4

.00.

0019

50.

0001

720.

211

2.57

627

2.20

8E+1

33.

324

.610

01,

422.

4896

20.

8861

416

18-0

1L•4

.20.

0030

10.

0001

20.

311

2.76

781

2.63

74E

+13

3.9

28.5

100

1,42

4.16

320.

9538

316

18-0

1M•4

.40.

0049

20.

0002

340.

311

2.85

846

4.10

53E

+13

6.1

34.6

99.9

1,42

4.95

468

1.20

233

1618

-01N

•4.6

0.00

546

0.00

0285

0.3

112.

7003

92.

6336

E+1

33.

938

.599

.91,

423.

5743

1.43

2216

18-0

1O•4

.80.

0052

40.

0002

620.

311

2.70

073.

4996

E+1

35.

243

.699

.91,

423.

5769

74.

2185

716

18-0

1P•5

.00.

0037

30.

0001

480.

311

2.68

171

4.18

21E

+13

6.2

49.8

100

1,42

3.41

113

1.37

258

1618

-01Q

•5.2

0.00

352

0.00

0093

0.5

112.

6576

84.

2263

E+1

36.

256

100

1,42

3.20

111.

3056

1618

-01R

•5.4

0.00

30.

0001

070.

411

2.61

616

5.13

13E

+13

7.6

63.6

100

1,42

2.83

835

1.25

368

1618

-01S

•5.6

0.00

128

0.00

0106

0.2

112.

9645

5.80

79E

+13

8.6

72.2

100

1,42

5.88

015

1.92

912

1618

-01T

•5.8

0.00

198

0.00

0112

0.2

112.

6853

15.

1307

E+1

37.

679

.810

01,

423.

4426

1.22

168

1618

-01U

•6.0

0.00

127

0.00

0097

0.2

112.

7861

45.

4354

E+1

38

87.8

100

1,42

4.32

329

1.04

171

1618

-01V

•6.2

0.00

272

0.00

0137

0.3

112.

6786

73.

0969

E+1

34.

692

.310

01,

423.

3845

31.

1117

816

18-0

1W•6

.40.

0010

40.

0001

950.

111

2.59

691

2.04

73E

+13

395

.499

.91,

422.

6700

51.

7729

216

18-0

1X•6

.70.

0010

40.

0002

150.

111

2.73

954

1.11

42E

+13

1.6

9799

.91,

423.

9162

52.

0897

1618

-01Y

•7.0

0.00

437

0.00

0196

0.3

112.

8355

6.31

91E

+12

0.9

97.9

99.9

1,42

4.75

428

1.53

226

1618

-01Z

•7.4

0.00

087

0.00

0165

0.1

112.

8135

95.

5453

E+1

20.

898

.810

01,

424.

5629

71.

7367

1618

-01Z

A•7

.80.

0000

20.

0000

570

112.

7217

72.

965E

+12

0.4

99.2

100

1,42

3.76

111

2.73

075

1618

-01Z

B•8

.50.

0022

20.

0010

940

112.

5058

82.

1847

E+1

20.

399

.599

.71,

421.

8742

62.

7373

616

18-0

1ZC

•10.

00.

0015

10.

0006

060

112.

9262

63.

223E

+12

0.5

100

99.8

1,42

5.54

645

2.19

305

Inte

g. A

ge =

1,42

12

(•) P

late

au A

ge =

78.6

1,42

42

42

KLX

06:5

35,R

unID

#16

19‑0

1(J

=0

.010

66±

0.0

0001

2):

Mus

covi

teR

unID

Pwr/T

°CC

a/K

36A

r/39A

r%

36A

r(C

a)40

* Ar/39

Ar

Mol

39A

r%

Ste

pC

um.%

%40

Ar*

Age

(Ma)

±A

ge

1619

-01A

2.7

0.00

096

0.02

6689

010

9.07

185

5.07

89E

+12

0.8

0.8

93.3

1,39

1.59

329

2.00

6516

19-0

1B3.

10.

0067

0.00

8321

011

1.89

586

9.59

01E

+12

1.5

2.3

97.9

1,41

6.53

218

1.42

033

1619

-01C

3.3

0.00

508

0.00

1573

011

2.39

652

1.43

94E

+13

2.3

4.6

99.6

1,42

0.91

772

1.19

957

1619

-01D

•3.5

0.00

504

0.00

116

0.1

112.

6167

72.

9589

E+1

34.

69.

299

.71,

422.

8436

1.34

588

1619

-01E

•3.7

0.00

863

0.00

0852

0.1

112.

5744

83.

1866

E+1

35

14.2

99.8

1,42

2.47

41.

7496

416

19-0

1F•3

.90.

0043

0.00

0711

0.1

112.

7765

56.

2455

E+1

39.

824

99.8

1,42

4.23

952

1.81

055

1619

-01G

•4.1

0.00

888

0.00

0557

0.2

112.

5168

24.

3134

E+1

36.

830

.799

.91,

421.

9699

2.39

795

1619

-01H

•4.3

0.00

823

0.00

0205

0.6

112.

8738

58.

4815

E+1

313

.344

99.9

1,42

5.08

902

1.44

044

1619

-01I

•4.5

0.00

365

0.00

0184

0.3

112.

6149

67.

2373

E+1

311

.355

.410

01,

422.

8278

11.

3700

416

19-0

1J•4

.70.

0084

30.

0003

360.

311

2.60

234.

5301

E+1

37.

162

.599

.91,

422.

7171

81.

5894

1619

-01K

•4.9

0.00

686

0.00

0204

0.5

112.

6581

54.

4404

E+1

37

69.4

99.9

1,42

3.20

528

3.34

401

1619

-01L

•5.1

0.00

648

0.00

0175

0.5

112.

7364

23.

3763

E+1

35.

374

.710

01,

423.

8890

61.

4424

1619

-01M

•5.3

0.00

876

0.00

0211

0.6

112.

5960

93.

0149

E+1

34.

779

.499

.91,

422.

6629

21.

0057

816

19-0

1N•5

.50.

0056

20.

0000

461.

711

2.71

437

1.97

1E+1

33.

182

.510

01,

423.

6964

41.

1427

316

19-0

1O•5

.70.

0043

10.

0001

170.

511

2.83

362

2.18

8E+1

33.

485

.910

01,

424.

7378

11.

3006

916

19-0

1P•5

.90.

0086

0.00

0146

0.8

112.

6640

81.

713E

+13

2.7

88.6

100

1,42

3.25

706

1.15

486

1619

-01Q

•6.1

0.01

110.

0002

040.

711

2.82

787

1.83

33E

+13

2.9

91.5

99.9

1,42

4.68

761.

4317

616

19-0

1R•6

.30.

0065

90.

0000

681.

311

2.73

752

8.65

27E

+12

1.4

92.9

100

1,42

3.89

862

1.82

163

1619

-01S

•6.5

0.02

267

0.00

0054

5.8

112.

7090

98.

5277

E+1

21.

394

.210

01,

423.

6502

92.

1124

316

19-0

1T•6

.70.

0348

90.

0004

031.

211

2.74

239

7.59

53E

+12

1.2

95.4

99.9

1,42

3.94

114

1.58

501

1619

-01U

•7.0

0.04

551

0.00

0031

2011

2.76

893

7.42

3E+1

21.

296

.510

01,

424.

1729

81.

5044

216

19-0

1V•7

.50.

040.

0002

432.

311

2.85

379

6.44

48E

+12

197

.699

.91,

424.

9138

81.

5800

716

19-0

1W•1

0.0

0.02

710.

0002

11.

811

2.68

361

1.55

83E

+13

2.4

100

99.9

1,42

3.42

773

1.07

836

Inte

g. A

ge =

1,42

33

(•) P

late

au A

ge =

95.4

1,42

42

4�

KLX

03:9

70,R

unID

#16

20‑0

1(J

=0

.010

66±

0.0

0001

2):

Apo

phyl

lite

Run

IDPw

r/T°C

Ca/

K36

Ar/39

Ar

%36

Ar(

Ca)

40* A

r/39A

rM

ol39

Ar

%S

tep

Cum

.%%

40A

r*A

ge(M

a)±

Age

1620

-01A

2.4

3.90

791

0.00

0688

78.2

1.67

648

2.61

29E

+13

24.7

24.7

97.4

31.9

5642

0.37

226

1620

-01B

2.7

3.98

817

0.00

0578

95.1

2.35

636

5.11

56E

+13

48.3

7399

.644

.756

540.

1992

116

20-0

1C2.

94.

1006

80.

0460

241.

21.

6968

63.

8321

E+1

23.

676

.611

.232

.341

392.

8938

216

20-0

1D5

4.01

749

0.00

0708

78.1

2.39

662.

4717

E+1

323

.410

098

.145

.511

210.

1471

9In

teg.

Age

=41

.30.

4

KLX

03:9

70,R

unID

#16

20‑0

2(J

=0

.010

66±

0.0

0001

2):

Apo

phyl

lite

Run

IDPw

r/T°C

Ca/

K36

Ar/39

Ar

%36

Ar(

Ca)

40* A

r/39A

rM

ol39

Ar

%S

tep

Cum

.%%

40A

r*A

ge(M

a)±

Age

1620

-02A

23.

9630

70.

0024

6422

.22.

8231

35.

3583

E+1

22.

92.

983

.353

.491

970.

9414

916

20-0

2B2.

23.

9940

50.

0009

2759

.32.

4918

34.

7396

E+1

325

.628

.595

.747

.296

140.

1289

516

20-0

2C2.

34.

1587

20.

0008

0171

.51.

8585

87.

1494

E+1

338

.667

.196

.535

.393

810.

1003

716

20-0

2D2.

44.

5850

60.

0009

4666

.71.

5853

15.

8579

E+1

331

.698

.794

.430

.233

020.

1192

516

20-0

2E2.

535

.384

210.

0051

1695

.32.

6897

22.

3733

E+1

21.

310

097

.450

.999

622.

2323

8In

teg.

Age

=37

.54

0.18

44

KSH

03:8

63,R

unID

#16

21‑0

1(J

=0

.010

66±

0.0

0001

2):

Ksp

arR

unID

Pwr/T

°CC

a/K

36A

r/39A

r%

36A

r(C

a)40

* Ar/39

Ar

Mol

39A

r%

Ste

pC

um.%

%40

Ar*

Age

(Ma)

±A

ge

1621

-01A

2.2

0.02

242

0.01

342

011

7.67

322

1.77

96E

+13

3.2

3.2

96.7

1,46

6.50

245

2.67

8116

21-0

1B2.

40.

0003

70.

0000

090.

652

.919

21.

369E

+13

2.5

5.7

100

807.

0044

0.80

202

1621

-01C

2.6

0.00

065

0.00

0004

2.4

55.9

369

9.96

67E

+12

1.8

7.5

100

843.

7317

80.

9019

916

21-0

1D2.

80.

0044

70.

0001

080.

657

.637

241.

4277

E+1

32.

610

.199

.986

4.10

139

1.24

216

1621

-01E

30.

0111

30.

0000

1510

.459

.057

71.

4661

E+1

32.

712

.710

088

0.94

351

1.34

219

1621

-01F

3.2

0.01

859

0.00

012.

560

.711

579.

5634

E+1

21.

714

.510

090

0.35

721

1.21

363

1621

-01G

3.4

0.03

366

0.00

0081

5.7

62.0

5837

1.09

18E

+13

216

.410

091

6.01

334

0.97

906

1621

-01H

3.6

0.07

394

0.00

0572

1.8

63.8

2881

1.20

47E

+13

2.2

18.6

99.7

936.

3897

51.

1409

216

21-0

1I3.

80.

1200

20.

0006

142.

765

.542

131.

2668

E+1

32.

320

.999

.795

5.89

205

1.16

718

1621

-01J

40.

1225

40.

0005

942.

865

.716

771.

1496

E+1

32.

123

99.7

957.

8680

71.

2549

1621

-01K

4.2

0.09

850.

0000

434

.265

.629

711.

1386

E+1

32.

125

100

956.

8833

10.

9466

816

21-0

1M4.

60.

0381

0.00

0067

7.8

66.0

1412

1.13

11E

+13

227

.110

096

1.22

768

0.99

099

1621

-01N

4.8

0.04

062

0.00

0674

0.8

66.6

6445

9.65

18E

+12

1.7

28.8

99.7

968.

5537

81.

2668

316

21-0

1O5

0.05

516

0.00

0522

1.5

66.4

3607

1.10

49E

+13

230

.899

.896

5.98

442

1.34

987

1621

-01Q

5.4

0.05

260.

0000

868.

466

.570

831.

1641

E+1

32.

132

.910

096

7.50

093

1.47

6916

21-0

1R5.

60.

0556

40.

0002

862.

766

.501

751.

3637

E+1

32.

535

.499

.996

6.72

369

1.13

397

1621

-01S

5.8

0.03

294

0.00

0268

1.7

66.8

4993

1.08

64E

+13

237

.399

.997

0.63

776

0.92

927

1621

-01T

60.

0529

90.

0005

351.

467

.096

831.

6994

E+1

33.

140

.499

.897

3.40

814

0.85

233

1621

-01U

•6.3

0.04

034

0.00

0663

0.8

68.4

9453

2.59

4E+1

34.

745

.199

.798

9.01

147

0.86

616

21-0

1V•6

.80.

0200

80.

0009

40.

368

.376

291.

1547

E+1

420

.966

99.6

987.

6967

92.

2922

1621

-01W

•7.5

0.01

103

0.00

1158

0.1

68.7

2901

1.41

52E

+14

25.6

91.6

99.5

991.

6159

71.

6317

216

21-0

1X•9

.00.

0022

0.00

1288

068

.445

464.

6688

E+1

38.

410

099

.498

8.46

604

0.98

3In

teg.

Age

=98

52

(•) P

late

au A

ge =

59.6

989

2

45

KSH

03:1

86,R

unID

#16

22‑0

1(J

=0

.010

66±

0.0

0001

2):

Illite

Run

IDPw

r/T°C

Ca/

K36

Ar/39

Ar

%36

Ar(

Ca)

40* A

r/39A

rM

ol39

Ar

%S

tep

Cum

.%%

40A

r*A

ge(M

a)±

Age

1622

-01A

1.8

0.08

003

0.00

8322

0.1

9.02

948

1.06

E+1

32.

22.

278

.616

5.79

320.

4254

216

22-0

1B2

0.06

449

0.00

4165

0.2

16.8

2088

9.80

44E

+12

2.1

4.3

93.2

297.

5464

50.

5299

316

22-0

1C2.

20.

0697

80.

0029

560.

324

.567

062.

0287

E+1

34.

38.

696

.641

9.64

012

0.49

019

1622

-01E

2.6

0.05

924

0.00

1363

0.6

30.4

5401

5.70

49E

+13

1220

.698

.750

7.19

925

0.49

524

1622

-01F

2.8

0.05

065

0.00

1001

0.7

31.2

0208

6.77

23E

+13

14.3

34.9

99.1

518.

0273

80.

5125

416

22-0

1G3.

40.

0506

10.

0004

181.

732

.697

328.

4314

E+1

317

.852

.899

.653

9.47

770.

4877

116

22-0

1H3.

60.

0462

50.

0002

562.

531

.609

84.

7879

E+1

310

.162

.999

.852

3.90

177

0.49

4516

22-0

1I3.

90.

0524

50.

0004

491.

629

.056

91.

9815

E+1

34.

267

99.6

486.

8008

0.52

882

1622

-01J

4.4

0.04

911

0.00

0512

1.3

29.5

8089

1.75

55E

+13

3.7

70.8

99.5

494.

4783

60.

6222

416

22-0

1K4.

80.

0672

40.

0004

652

28.8

8911

1.57

03E

+13

3.3

74.1

99.5

484.

3352

90.

6261

616

22-0

1L5.

20.

1617

70.

0004

35.

228

.621

951.

5466

E+1

33.

377

.399

.648

0.40

290.

5932

1622

-01M

5.6

0.21

360.

0005

815.

128

.585

561.

4758

E+1

33.

180

.599

.447

9.86

654

0.63

476

1622

-01N

6.5

0.26

485

0.00

0453

8.1

28.1

326

2.18

3E+1

34.

685

.199

.647

3.17

761

0.52

659

1622

-01O

90.

1647

0.00

0401

5.7

27.4

8569

2.76

22E

+13

5.8

90.9

99.6

463.

5813

90.

4936

616

22-0

1P12

0.30

820.

0003

5312

26.5

8513

4.31

E+1

39.

110

099

.845

0.13

682

0.42

814

Inte

g. A

ge =

488.

51.

1

KSH

01:2

57,R

unID

#16

40‑0

1(J

=0

.010

66±

0.0

0001

2):

Ksp

arR

unID

Pwr/T

°CC

a/K

36A

r/39A

r%

36A

r(C

a)40

* Ar/39

Ar

Mol

39A

r%

Ste

pC

um.%

%40

Ar*

Age

(Ma)

±A

ge

1640

-01A

2.2

0.06

037

0.00

1292

0.6

22.2

0261

1.03

98E

+14

15.8

15.8

98.3

383.

2405

10.

7191

316

40-0

1B2.

60.

0330

30.

0004

061.

123

.555

026.

9765

E+1

310

.626

.499

.540

4.15

010.

4212

1640

-01D

•3.4

0.01

737

0.00

0125

1.9

25.0

1283

1.98

6E+1

430

.256

.599

.942

6.42

101

1.00

814

1640

-01E

•3.8

0.02

504

0.00

0136

2.5

25.0

2787

1.40

77E

+14

21.4

77.9

99.8

426.

6493

51.

2539

716

40-0

1F•4

.20.

0227

90.

0001

791.

824

.786

631.

1383

E+1

417

.395

.299

.842

2.98

338

1.63

328

1640

-01G

70.

0077

60.

0002

090.

525

.781

43.

1496

E+1

34.

810

099

.843

8.05

266

1.01

212

Inte

g. A

ge =

417.

31.

3(•

) Pla

teau

Age

=68

.842

5.8

1.7

46

KLX

03:7

22,R

unID

#16

41‑0

1(J

=0

.010

66±

0.0

0001

2):

Mus

c/Se

ricite

Run

IDPw

r/T°C

Ca/

K36

Ar/39

Ar

%36

Ar(

Ca)

40* A

r/39A

rM

ol39

Ar

%S

tep

Cum

.%%

40A

r*A

ge(M

a)±

Age

1641

-01A

1.5

0.77

580.

0235

820.

586

.456

813.

7343

E+1

10.

40.

492

.61,

178.

3755

410

.250

7416

41-0

1B1.

71.

6225

30.

0077

952.

910

0.91

216

1.41

1E+1

21.

41.

897

.81,

317.

5353

3.65

649

1641

-01C

1.9

0.16

264

0.00

1238

1.8

110.

3042

19.

1525

E+1

29.

211

99.7

1,40

2.51

874

1.45

897

1641

-01D

•2.1

0.05

327

0.00

0819

0.9

111.

8937

32.

1621

E+1

321

.832

.899

.81,

416.

5134

61.

167

1641

-01E

•2.3

0.04

095

0.00

0354

1.6

112.

0094

14.

1838

E+1

342

.275

99.9

1,41

7.52

769

0.90

363

1641

-01F

2.5

0.04

188

0.00

0021

27.9

110.

3354

91.

0421

E+1

310

.585

.510

01,

402.

7952

1.42

537

1641

-01G

2.7

0.16

215

0.00

0803

2.8

110.

4524

46.

0325

E+1

26.

191

.699

.81,

403.

8283

72.

3446

916

41-0

1H2.

90.

1465

70.

0006

872.

910

6.66

049

2.33

94E

+12

2.4

93.9

99.8

1,37

0.02

229

8.74

8916

41-0

1I3.

20.

3346

30.

0011

154.

110

5.71

808

6.02

71E

+12

6.1

100

99.7

1,36

1.52

129

1.54

079

Inte

g. A

ge =

1,40

73

(•) P

late

au A

ge =

641,

417

3

KLX

06:5

65,R

unID

#16

43‑0

1(J

=0

.010

66±

0.0

0001

2):

Mus

covi

teR

unID

Pwr/T

°CC

a/K

36A

r/39A

r%

36A

r(C

a)40

* Ar/39

Ar

Mol

39A

r%

Ste

pC

um.%

%40

Ar*

Age

(Ma)

±A

ge

1643

-01A

•2.3

0.00

744

0.00

6624

011

2.60

289

4.94

18E

+13

40.1

40.1

98.3

1,42

2.72

231.

4361

816

43-0

1B•2

.60.

0095

50.

0005

950.

211

2.70

706

4.18

42E

+13

33.9

7499

.81,

423.

6325

71.

5243

416

43-0

1C•0

.00.

0104

30.

0006

620.

211

2.53

413

2.38

7E+1

319

.493

.499

.81,

422.

1212

81.

3063

716

43-0

1E•3

.30.

2885

60.

0063

680.

611

3.18

417

9.50

24E

+11

0.8

94.2

98.4

1,42

7.79

573

8.91

884

1643

-01F

•6.0

0.07

208

0.00

1424

0.7

112.

3833

77.

1995

E+1

25.

810

099

.61,

420.

8026

91.

9867

4In

teg.

Age

=1,

423

3(•

) Pla

teau

Age

=10

01,

423

3

47

KLX

08:9

33,R

unID

#16

42‑0

1(J

=0

.010

66±

0.0

0001

2):

Hor

nble

nde

Run

IDPw

r/T°C

Ca/

K36

Ar/39

Ar

%36

Ar(

Ca)

40* A

r/39A

rM

ol39

Ar

%S

tep

Cum

.%%

40A

r*A

ge(M

a)±

Age

1642

-01A

1.5

1.89

616

1.20

3062

02,

440.

0608

6.85

89E

+11

0.1

0.1

87.3

5,94

6.68

225

7.73

308

1642

-01B

1.7

1.65

990.

1406

060.

240

4.77

883

2.47

31E

+12

0.3

0.4

90.7

3,01

3.75

095

3.26

136

1642

-01C

1.9

5.82

072

0.01

4417

5.6

100.

0417

41.

3258

E+1

31.

82.

296

.11,

309.

4528

41.

3554

416

42-0

1D2.

19.

7428

50.

0125

4710

.779

.886

131.

5467

E+1

32

4.2

961,

111.

3884

81.

1067

816

42-0

1E2.

311

.176

290.

0084

4318

.279

.873

932.

3357

E+1

33.

17.

397

.51,

111.

2617

50.

9303

1642

-01F

2.5

10.8

9891

0.00

3737

40.2

79.1

7673

3.42

38E

+13

4.5

11.9

99.2

1,10

4.00

531.

0662

1642

-01G

2.7

5.05

490.

0098

397.

190

.889

494.

6374

E+1

36.

118

97.1

1,22

2.20

069

1.60

575

1642

-01H

2.8

8.62

112

0.00

8564

13.9

106.

7002

54.

2802

E+1

35.

723

.798

1,37

0.38

008

2.04

169

1642

-01I

2.9

9.97

858

0.00

5794

23.7

102.

7622

33.

4624

E+1

34.

628

.398

.71,

334.

5952

31.

1313

916

42-0

1J3

11.6

6064

0.00

6013

26.7

102.

3581

34.

9262

E+1

36.

534

.898

.71,

330.

8826

91.

9654

1642

-01K

3.1

7.47

928

0.00

2886

35.7

93.0

8866

3.65

8E+1

34.

839

.699

.41,

243.

5546

43.

0088

616

42-0

1L3.

26.

0415

90.

0026

9230

.989

.132

513.

2539

E+1

34.

343

.999

.41,

204.

9568

61.

9190

116

42-0

1M3.

34.

7194

10.

0014

5744

.687

.021

572.

7319

E+1

33.

647

.699

.71,

184.

0187

61.

0466

116

42-0

1N3.

44.

1768

40.

0014

2840

.387

.522

722.

6755

E+1

33.

551

.199

.71,

189.

0116

41.

8026

716

42-0

1O3.

53.

6540

90.

0013

238

.188

.218

362.

533E

+13

3.4

54.5

99.7

1,19

5.91

935

1.33

3316

42-0

1P3.

63.

7615

20.

0013

5138

.488

.212

393.

5744

E+1

34.

759

.299

.71,

195.

8601

71.

4842

216

42-0

1Q3.

72.

6098

90.

0009

7536

.988

.147

182.

7907

E+1

33.

762

.999

.81,

195.

2137

31.

5417

916

42-0

1R3.

82.

7367

60.

0011

4532

.989

.170

222.

2824

E+1

33

65.9

99.7

1,20

5.32

868

1.37

047

1642

-01S

3.9

2.47

939

0.00

0863

39.6

91.3

5424

2.31

95E

+13

3.1

6999

.81,

226.

7345

61.

3479

816

42-0

1T4.

12.

8567

90.

0011

9832

.992

.266

782.

5494

E+1

33.

472

.499

.71,

235.

6037

92.

4325

216

42-0

1U4.

33.

1297

40.

0012

1135

.691

.276

92.

2369

E+1

33

75.3

99.7

1,22

5.98

083

1.24

129

1642

-01V

4.5

2.97

639

0.00

1109

3793

.056

741.

8861

E+1

32.

577

.899

.81,

243.

2465

1.23

394

1642

-01W

4.7

3.12

928

0.00

1227

35.1

93.5

7912

2.14

05E

+13

2.8

80.7

99.7

1,24

8.28

277

0.84

397

1642

-01X

4.9

2.98

962

0.00

1108

37.2

93.1

8654

1.53

74E

+13

282

.799

.81,

244.

4992

30.

9497

916

42-0

1Y5.

12.

5497

40.

0008

541

.393

.330

451.

8535

E+1

32.

585

.299

.81,

245.

8871

30.

9634

916

42-0

1Z5.

35.

6398

20.

0019

340

.396

.612

181.

4748

E+1

32

87.1

99.6

1,27

7.24

975

1.08

6716

42-0

1AA

5.5

3.80

904

0.00

113

46.4

96.8

6355

1.38

15E

+13

1.8

88.9

99.8

1,27

9.62

969

0.99

708

1642

-01A

B5.

73.

4384

60.

0009

947

.996

.224

018.

7607

E+1

21.

290

.199

.81,

273.

5684

91.

3067

916

42-0

1AC

62.

3506

60.

0008

4338

.495

.570

241.

044E

+13

1.4

91.5

99.8

1,26

7.35

115

2.98

555

1642

-01A

D7

2.90

097

0.00

1012

39.5

98.0

5727

1.18

22E

+13

1.6

9399

.81,

290.

8891

21.

1355

416

42-0

1AE

104.

750.

0013

8447

.310

1.12

85.

2486

E+1

37

100

99.8

1,31

9.53

395

1.24

532

Inte

g. A

ge =

1,27

32

48

KLX

02:6

76,R

unID

#16

44‑0

1(J

=0

.010

66±

0.0

0001

2):

Apo

phyl

lite

Run

IDPw

r/T°C

Ca/

K36

Ar/39

Ar

%36

Ar(

Ca)

40*A

r/39A

rM

ol3

9Ar

%S

tep

Cum

.%%

40A

r*A

ge(M

a)±

Age

1644

-01A

1.7

4.53

645

0.00

1316

47.5

2.14

167

4.06

54E

+13

5.5

5.5

91.3

40.7

2427

0.18

916

44-0

1B•1

.94.

2436

80.

0009

3362

.70.

6157

23.

3421

E+1

445

.450

.985

.611

.802

480.

0436

216

44-0

1C•2

.10.

5306

30.

0007

969.

20.

5317

91.

0058

E+1

413

.764

.671

.310

.198

150.

1600

616

44-0

1D•2

.34.

2002

80.

0007

9972

.40.

6357

51.

507E

+14

20.5

85.1

90.7

12.1

8521

0.06

585

1644

-01E

•2.5

4.17

913

0.00

0799

720.

5416

31.

0989

E+1

414

.910

089

.110

.386

460.

0763

8In

teg.

Age

=13

.06

0.09

(•) P

late

au A

ge =

94.5

11.6

0.8

KLX

02:6

76,R

unID

#16

44‑0

2(J

=0

.010

66±

0.0

0001

2):

Apo

phyl

lite

Run

IDPw

r/T°C

Ca/

K36

Ar/39

Ar

%36

Ar(

Ca)

40* A

r/39A

rM

ol39

Ar

%S

tep

Cum

.%%

40A

r*A

ge(M

a)±

Age

1644

-02A

1.7

4.16

591

0.00

1728

33.2

2.41

163

2.78

28E

+13

2.3

2.3

87.6

45.7

931

0.22

786

1644

-02B

•1.9

4.17

821

0.00

0853

67.5

0.95

383

1.61

57E

+14

13.4

15.7

92.1

18.2

5099

0.05

466

1644

-02C

•2.1

4.14

771

0.00

0856

66.7

0.96

908

3.96

92E

+14

32.9

48.6

9218

.541

20.

0426

616

44-0

2D•2

.34.

2192

70.

0009

8559

1.14

318

1.05

4E+1

48.

757

.390

.521

.852

190.

0846

116

44-0

2E•2

.54.

1586

80.

0008

0371

.40.

9632

64.

4412

E+1

436

.894

.193

.418

.430

360.

0439

816

44-0

2F•2

.74.

1927

40.

0005

1411

2.3

1.08

466

1.44

26E

+13

1.2

95.3

101.

720

.739

890.

5079

316

44-0

2G•2

.94.

1470

80.

0006

9881

.81.

1412

35.

729E

+13

4.7

100

96.8

21.8

1507

0.12

4In

teg.

Age

=19

.56

0.08

(•) P

late

au A

ge =

97.7

18.9

1