24
Orthopaedic special tests for the shoulder Kate Harman 3 rd year Physiotherapy BSc undergraduate University of Essex February 2014

Orthopaedic special tests for the shoulder

Embed Size (px)

DESCRIPTION

Orthopaedic special tests for the shoulder. Kate Harman 3 rd year Physiotherapy BSc undergraduate University of Essex February 2014. Basic Shoulder Anatomy. The Rotator Cuff. Supraspinatus - Abducts Origin - Supraspinatus fossa of the scap Insertion Greater tubercle of the humerus - PowerPoint PPT Presentation

Citation preview

Page 1: Orthopaedic special tests for the shoulder

Orthopaedic special tests for

the shoulder

Kate Harman3rd year Physiotherapy

BSc undergraduateUniversity of Essex February 2014

Page 2: Orthopaedic special tests for the shoulder

Basic Shoulder Anatomy

Page 3: Orthopaedic special tests for the shoulder

The Rotator

CuffSupraspinatus - AbductsOrigin - Supraspinatus fossa of the scapInsertion Greater tubercle of the humerusInfraspinatus - Lat rotatesOrigin - Infraspinatus fossa of the scapInsertion - Greater tubercle of the humerusTeres Minor - Lat rotates Origin - Upper 2/3 of lat border of scapInsertion - Greater tubercle of the humerus Subscapularis - Med rotatesOrigin - Sub scap fossaInsertion - Lesser tubercle of the humerus

Page 4: Orthopaedic special tests for the shoulder

Sensitivity and Specificity in Special Tests

Sensitivity is how well the test can identify a patient as having a specific pathology (true +ve)

Specificity is how well the test can identify a patient as NOT having a pathology (true -ve)

These are scored out of 1 (which can converted into a %) The higher the score the more reliable the test)

Page 5: Orthopaedic special tests for the shoulder

5 Categories of tests

1. Rotator cuff integrity

2. Impingement of the rotator cuff

3. Labral tears and biceps pathology

4. Instability of the GH joint

5. ACJ

Page 6: Orthopaedic special tests for the shoulder

Rotator Cuff integrity Tests

Supraspinatus - External Rotation Lag Sign (ERLS) and or Empty Can

Infraspinatus - ERLS, Infraspinatus muscle strength test

Teres minor - Hornblowers (deterioration of the tendon)

Subscapularis - Belly Press (more reliable that lift off test)

Page 7: Orthopaedic special tests for the shoulder

External Rotation Lag Sign

Patient positioned in sitting or standing. The shoulder is positioned into full lat rot, assisted by the PT, elbows at 90 degrees flexion. Pt is asked to hold this position, the PT then releases the arms. A +ve test is an inability for the pt to maintain this position meaning the arms drop back to neutral.Complete lag = complete tear, slight lag or loss of position = partial tear.

Page 8: Orthopaedic special tests for the shoulder

Empty CanThe patient elevates the arms to 90 degrees and horizontally adducts 30 degrees to the scapular plane with thumbs down to the empty can position.

The physiotherapist provides downward pressure to test the patient’s strength in this position.

A +ve test for rotator cuff tear is weakness, pain or both.

Page 9: Orthopaedic special tests for the shoulder

Infraspinatus Muscle Strength

TestThe patient stands with the arms at the side with the elbow at 90 degrees and the humerus medially rotated to 45 degrees. The physiotherapist applies a medial rotation force that the patient resists. Pain or the inability to resist medial rotation indicates a +ve test for an infraspinatus strain.

Page 10: Orthopaedic special tests for the shoulder

Hornblower’sThe physiotherapist elevates the patient’s arm to 90 degrees in the scapular plane. The physiotherapist then flexes the elbow to 90 degrees, and the patient is asked to laterally rotate the shoulder. A +ve test occurs with weakness and/or pain.

Page 11: Orthopaedic special tests for the shoulder

Belly PressThe physiotherapist places a hand on the abdomen so that the he or she can feel how much pressure the patient is applying to the abdomen. The patient places his or her hand of the shoulder being tested on the physiotherapist’s hand and pushes as hard as he or she can into the stomach.

The patient also attempts to bring the elbow forward in the scapular plane causing greater medial shoulder rotation. It is a +ve test if the patient is unable to maintain the pressure on the physiotherapist’s hand while moving the elbow forward or if the patient extends the shoulder.

Page 12: Orthopaedic special tests for the shoulder

Impingement of the Rotator Cuff

Primary (outlet) Intrinsic and extrinsic

Secondary (outlet)

Internal (non - outlet)

Primary (outlet) - intrinsic e.g degeneration of the cuffExtrinsic e.g shape of acromion negatively impacts on the ability of the greater tuberous it and cuff tendons to navigate under the coraco-acromial arch without impingement

Secondary (outlet) - caused by weak or imbalanced muscles leading to instability of the scapulohumeral complex thus leading to abnormal movement patterns

Internal (non-outlet) - resulting from injury to the rotator cuff or the glenoid labrum caused by impingement of Supra and Infra between the posterosuperior aspect of the glenoid rim and the humeral head. The impingement occurs posteriorly.

Page 13: Orthopaedic special tests for the shoulder

Neer’s Sign

Hawkins-Kennedy Test

Rotator Cuff TestsNeer’s Impingement test: Patient in standing, shoulder flexed to 20 degrees and fully med rotated. The physiotherapist (standing in front of patient) then takes arm passively through flexion. +ve test = pain anterolateral between 80-140 degrees

Hawkins - Kennedy: The patient stands while the examiner forward flexes the arm to 90 degrees and then forcibly medially rotates the shoulder. The test may be performed in different degrees of forward flexion or horizontal adduction. +ve test = pain

Both are testing for: Subacromial impingement of rotator cuff, subacromial bursa and long head of biceps

Page 14: Orthopaedic special tests for the shoulder

Labral Tears and Biceps Pathology

O’Briens Test (Active Compression test)

Speeds test - long head biceps or SLAP

Yergasons - long head of biceps

Page 15: Orthopaedic special tests for the shoulder

O’Briens Test This test is conducted with the physiotherapist standing behind the patient. The patient is asked to forward flex the affected arm 90° with the elbow in full extension.

The patient then adducts the arm 10° to 15°. The arm is internally rotated so that the thumb pointed downward.

The physiotherapist then applies a downward force to the arm. With the arm in the same position, the palm is then fully supinated and the movement repeated.

The test is considered +ve if pain is felt with the first manoeuvre and was reduced or eliminated with the second manoeuvre. Pain localised to the acromio-clavicular joint or on top of the shoulder can be diagnostic as acromio-clavicular joint abnormality.

Pain or painful clicking within the glen-ohumeral joint itself is indicative of labral abnormality.

Page 16: Orthopaedic special tests for the shoulder

Speed’s TestBiceps tendonOriginLong head supra-glenoid tubercle of the scapulaShort head - Coracoid processInsertion - tuberosity of the radial and aponeurosis of the biceps brachii

The patient’s arm is fully extended and into slight extension, wrist is in supination. The patient is asked to resist an eccentric movement into extension.A +ve test elicits increased tenderness in the bicipital groove.

Page 17: Orthopaedic special tests for the shoulder

Yergason’s Test Resisted supination

Looking at the biceps instability in the bicipital groove

Patient sits while physiotherapist stands in front. The patient’s elbow is flexed to 90 degrees and the forearm is in a pronated position while maintaining the upper arm at the side. Pt is instructed to supinate arm while examiner concurrently resists forearm supination at the wrist.Localised pain at the bicipital groove indicates a +ve test

Yergasons and Speed’s tests were found to have high specificity (0.83–0.86) and low sensitivity (0.23–0.36), indicating that these manoeuvres would be better at ruling out biceps disease than detecting it.

Page 18: Orthopaedic special tests for the shoulder

Instability of the GH Joint

Apprehension Relocation Test (also known as Fowler’s test)

Posterior Subluxation Test (also known as the Jerk test)

Apprehension Relocation Test - Anterior instability of the GHJ

Posterior Sub lux Test - Post instability of the GHJ

Most instability is anterior. Anterior tests have the most validity

Page 19: Orthopaedic special tests for the shoulder

Apprehension Relocation Test

Apprehension Relocation Test These tests are performed with the patient supine and the arm in abduction and external rotation.

During the Apprehension Test, the physiotherapist pushes anteriorly on the posterior aspect of the humeral head. This movement will produce apprehension sometimes coupled with pain in patient’s with recurrent dislocations.

Patient’s with anterior subluxation will experience pain but not apprehension with this test, and patient’s with normal shoulders will be asymptomatic. The Relocation Test is then performed by administering a posteriorly directed force on the humeral head. Patient’s with primary impingement will have no change in their pain, whereas patient’s with instability (subluxation) and secondary impingement will have pain relief and will tolerate maximal external rotation with the humeral head maintained in a reduced position.

Page 20: Orthopaedic special tests for the shoulder

Posterior Subluxation Test

Jerk Test - Patient is positioned in supine, shoulder at 90 degrees with slight adduction and medial rot. The physiotherapist places one hand on the distal humerus and one hand on the post aspect of the joint line. The physiotherapist then applies a downward force to the humerus.

A +ve test is indicated by sharp pain in the shoulder with or without a clicking sound.

Page 21: Orthopaedic special tests for the shoulder

ACJ Pathologies

Horizontal adduction test (scarf test)

Palpation

O’Briens can also be used

No single test has been found to accurately diagnose ACJ pathology but they should be used in combination. Pain for the ACJ can spread to the C4 dermatome (epaulette area, clavicle area).

Adduction Test (good to rule out): With the patient in a sitting position the physiotherapist stands with one hand on the posterior aspect of the shoulder to stabilise the trunk and the other hand holding the subjects elbow of the arm being tested.

With the trunk stabilised the physiotherapist passively moves the shoulder into maximum horizontal adduction. +ve test is when pain is felt over the ACJ.

Page 22: Orthopaedic special tests for the shoulder

TestSensitivit

ySpecificit

yERLS 0.98 0.98

Empty Can 0.86 0.50

Infraspinatus muscle strength test

0.42 0.90

Hornblowers 1 0.93

Belly Press 0.40 1

Neer’s sign 0.68 0.69

Hawkins-Kennedy 0.92 0.25

O’Briens Test 0.47 0.55

Speeds 0.90 0.14

Yergasons 0.37 0.86

Apprehension Relocation Test 0.81 0.92

Posterior Subluxation Test 0.73 0.98

Horizontal Adduction Test 0.23 0.82

Stats…

Hattam & Smeatham (2010)

Page 23: Orthopaedic special tests for the shoulder

Summary

Page 24: Orthopaedic special tests for the shoulder

References• Biederwolf NE (2013) A Proposed Eveidence-Based Shoulder Special Testing Examination Algorithm: Clinical

utility based on a systemic review of the literature International Journal of Sports Physical Therapy 8 (4): 427-440 Online at: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3812837/#!po=48.0769 [Accessed 2 February 2014]

• Day R, Fox J and Paul-Taylor G (2009) Neuro-Muscularskeletal Clinical Tests Edinburgh: Churchill Livingstone Elsevier

• Hattam P and Smeatham A (2010) Special Tests in Musculoskeletal Examination: An Evidence-Based Guide for Clinicians Edinburgh: Churchill Livingstone Elsevier

• Tennent DT, Beach WR and Meyers JF (2003) A Review of the Special Tests Associated with Shoulder Examination Part I: The Rotator Cuff Tests American Journal of Sports Medicine 31 (1): 154-160 Online at: http://ajs.sagepub.com/content/31/1/154.full.pdf+html [Accessed on 2 February 2014]

• Tennent DT, Beach WR and Meyers JF (2003) ‘A Review of the Special Tests Associated with Shoulder Examination Part II: Laxity, Instability, and Superior Labral Anterior and Posterior (SLAP) Lesions’ The American Journal of Sports Medicine 31 (2): 301-307 Online at: http://ajs.sagepub.com/content/31/2/301.full.pdf+html [Accessed 3 February 2014]

• Therapy Haven (2014) Special Tests Online at: http://www.pthaven.com/page/show/102937-special-tests [Accessed 2 February 2014]