54
ORGANOGENESIS

ORGANOGENESIS. Organogenesis - general Organs and Organogenesis 1.Uniqueness a. Origin - germ layer(s) b. Position c. Structure d. Function 2. Organ primordia

Embed Size (px)

Citation preview

Page 1: ORGANOGENESIS. Organogenesis - general Organs and Organogenesis 1.Uniqueness a. Origin - germ layer(s) b. Position c. Structure d. Function 2. Organ primordia

ORGANOGENESIS

Page 2: ORGANOGENESIS. Organogenesis - general Organs and Organogenesis 1.Uniqueness a. Origin - germ layer(s) b. Position c. Structure d. Function 2. Organ primordia

Organogenesis - general

Organs and Organogenesis

1. Uniqueness

a. Origin - germ layer(s)

b. Position

c. Structure

d. Function

2. Organ primordia form from a specific germ layer (sometimes layers), usually in the region of the body where the organ will be located.

3. Differentiation ===> Histogenesis ===> Function

Page 3: ORGANOGENESIS. Organogenesis - general Organs and Organogenesis 1.Uniqueness a. Origin - germ layer(s) b. Position c. Structure d. Function 2. Organ primordia

4. Organogenesis involves

a. inductions

b. migration of cells in some instances

c. shape change (at both cellular and tissue levels)

d. changes in cellular gene activity - differentiation/histogenesis

e. growth - organ size, cell number

f. in some cases, cell death

5. All these factors work in concert to “mold” the primordium into a functional organ.

Organogenesis - general

Page 4: ORGANOGENESIS. Organogenesis - general Organs and Organogenesis 1.Uniqueness a. Origin - germ layer(s) b. Position c. Structure d. Function 2. Organ primordia

ORGANOGENESIS - ECTODERM

Page 5: ORGANOGENESIS. Organogenesis - general Organs and Organogenesis 1.Uniqueness a. Origin - germ layer(s) b. Position c. Structure d. Function 2. Organ primordia

Figure on P. 234 of text.

Page 6: ORGANOGENESIS. Organogenesis - general Organs and Organogenesis 1.Uniqueness a. Origin - germ layer(s) b. Position c. Structure d. Function 2. Organ primordia

Neurulation (human embryo)

http://courses.temple.edu/neuroanatomy/lab/embryo/ntube.htm

1

1

1

Page 7: ORGANOGENESIS. Organogenesis - general Organs and Organogenesis 1.Uniqueness a. Origin - germ layer(s) b. Position c. Structure d. Function 2. Organ primordia

Amphibian neurulation movie from digital lab manual.

Page 8: ORGANOGENESIS. Organogenesis - general Organs and Organogenesis 1.Uniqueness a. Origin - germ layer(s) b. Position c. Structure d. Function 2. Organ primordia

Neural Crest Cells1. Multipotent cells that arise from the edges of the forming neural plate

2. Migrate throughout body to form many different tissues/structures.

3. Two paths of migration

a. Dorsolateral (superficial pathway)

b. Ventral (deep pathway, between, around and through the somites)

http://www.erin.utoronto.ca/~w3bio380/lecture16.htm

Page 9: ORGANOGENESIS. Organogenesis - general Organs and Organogenesis 1.Uniqueness a. Origin - germ layer(s) b. Position c. Structure d. Function 2. Organ primordia

4. Neural crest cells from cranial region form:

a. Sensory components of cranial nerves V, IX, X

b. Schwann cells

c. Contribute to branchial cartilages

d. Contribute to membranous bones of skull

e. Dentine of teeth

f. Contribute to head mesenchyme

g. Cranial parasympathetic ganglia

h. Ciliary muscles of eye

i. Meninges of CNS (dura mater, arachnoid, pia mater)

Neural Crest Cells

http://www.nlm.nih.gov/medlineplus/ency/imagepages/19080.htm

Page 10: ORGANOGENESIS. Organogenesis - general Organs and Organogenesis 1.Uniqueness a. Origin - germ layer(s) b. Position c. Structure d. Function 2. Organ primordia

5. Neural crest cells from truck region form:

a. Parasympathetic and sympathetic ganglia

b. Dorsal root ganglia

c. Meninges of CNS (dura mater, arachnoid, pia mater)

d. Schwann cells

e. Adrenyl medulla

6. How can they become so many different things?

7. Multiple inductions along their paths of migration.

Neural Crest Cells

Page 11: ORGANOGENESIS. Organogenesis - general Organs and Organogenesis 1.Uniqueness a. Origin - germ layer(s) b. Position c. Structure d. Function 2. Organ primordia

Neural crest cell migration in the chick hindbrain.

Neural crest cells leave from near the midbrain (m), midbrain/hindbrain boundary (m/h) and rostral rhombomeres (r1 and r2) and spread out to cover a wide region adjacent to the neural tube. Duration: 7 hrs Time interval between images: 3 min

http://dev.biologists.org/cgi/content/full/127/6/1161/DC1

Page 12: ORGANOGENESIS. Organogenesis - general Organs and Organogenesis 1.Uniqueness a. Origin - germ layer(s) b. Position c. Structure d. Function 2. Organ primordia

“On Old Olympus’ Towering Top A Finn And German Vaulted And Hopped”

Olfactory (I), Optic (II), Oculomotor (III), Trochlear(IV), Trigeminal (V), Abducens

(VI), Facial (VII), Acoustic (VIII),

Glossopharyngeal (IX), Vagus (X), Accessory (spinal accessory) (XI),

Hypoglossal (XII)

Cranial NervesMnemonic

Page 13: ORGANOGENESIS. Organogenesis - general Organs and Organogenesis 1.Uniqueness a. Origin - germ layer(s) b. Position c. Structure d. Function 2. Organ primordia

Froiep’s ganglion

petrosal (distal)

vestibulo-acoustic

Page 14: ORGANOGENESIS. Organogenesis - general Organs and Organogenesis 1.Uniqueness a. Origin - germ layer(s) b. Position c. Structure d. Function 2. Organ primordia

Froiep’s ganglion

geniculate

superior (proximal) & petrosal (distal)jugular (proximal) & nodose (distal)

neural crest (superior) & epibranchial placode (petrosal)

Page 15: ORGANOGENESIS. Organogenesis - general Organs and Organogenesis 1.Uniqueness a. Origin - germ layer(s) b. Position c. Structure d. Function 2. Organ primordia

Origin of the Cranial Ganglia

Page 16: ORGANOGENESIS. Organogenesis - general Organs and Organogenesis 1.Uniqueness a. Origin - germ layer(s) b. Position c. Structure d. Function 2. Organ primordia

The Neural Tube (primordium of the CNS)

Shape change of cells as the neural plate forms

Figure on P. 236 of text

Page 17: ORGANOGENESIS. Organogenesis - general Organs and Organogenesis 1.Uniqueness a. Origin - germ layer(s) b. Position c. Structure d. Function 2. Organ primordia

Shape change in cells.

Figure on P. 239 of text

Page 18: ORGANOGENESIS. Organogenesis - general Organs and Organogenesis 1.Uniqueness a. Origin - germ layer(s) b. Position c. Structure d. Function 2. Organ primordia

http://courses.temple.edu/neuroanatomy/lab/embryo/histo.htm

Central nervous system development.

Page 19: ORGANOGENESIS. Organogenesis - general Organs and Organogenesis 1.Uniqueness a. Origin - germ layer(s) b. Position c. Structure d. Function 2. Organ primordia
Page 20: ORGANOGENESIS. Organogenesis - general Organs and Organogenesis 1.Uniqueness a. Origin - germ layer(s) b. Position c. Structure d. Function 2. Organ primordia

Later cell division in the neural tube cellsOutside

Establishes the ependymal, mantle and marginal layers.

Page 21: ORGANOGENESIS. Organogenesis - general Organs and Organogenesis 1.Uniqueness a. Origin - germ layer(s) b. Position c. Structure d. Function 2. Organ primordia

Text

Figure similar to that on P. 439 of text - spinal cord development

Page 22: ORGANOGENESIS. Organogenesis - general Organs and Organogenesis 1.Uniqueness a. Origin - germ layer(s) b. Position c. Structure d. Function 2. Organ primordia

Outside

Establishes the ependymal, mantle and marginal layers.

Page 23: ORGANOGENESIS. Organogenesis - general Organs and Organogenesis 1.Uniqueness a. Origin - germ layer(s) b. Position c. Structure d. Function 2. Organ primordia

PATHFINDING BY AXONS

Page 24: ORGANOGENESIS. Organogenesis - general Organs and Organogenesis 1.Uniqueness a. Origin - germ layer(s) b. Position c. Structure d. Function 2. Organ primordia

A. General neuron structureMyelination In CNS - oligodendrocytes In PNS - Schwann cells

Page 25: ORGANOGENESIS. Organogenesis - general Organs and Organogenesis 1.Uniqueness a. Origin - germ layer(s) b. Position c. Structure d. Function 2. Organ primordia

B. Neurons and synapses

Page 26: ORGANOGENESIS. Organogenesis - general Organs and Organogenesis 1.Uniqueness a. Origin - germ layer(s) b. Position c. Structure d. Function 2. Organ primordia

Hibbard, 1965 - pathfinding by axons in amphibian and fish hindbrain (medulla).

Anterior Anterior

Posterior Posterior

Figures on about Pp. 103 - 104 of lecture packet.

Page 27: ORGANOGENESIS. Organogenesis - general Organs and Organogenesis 1.Uniqueness a. Origin - germ layer(s) b. Position c. Structure d. Function 2. Organ primordia

Hibbard, 1965 - pathfinding by axons in amphibian and fish hindbrain (medulla).

Anterior Anterior

Posterior Posterior

Figures on about Pp. 103 - 104 of lecture packet.

Page 28: ORGANOGENESIS. Organogenesis - general Organs and Organogenesis 1.Uniqueness a. Origin - germ layer(s) b. Position c. Structure d. Function 2. Organ primordia

Hibbard, 1965 - pathfinding by axons in amphibian and fish hindbrain (medulla).

Anterior Anterior

Posterior Posterior

Figures on about Pp. 103 - 104 of lecture packet.

Page 29: ORGANOGENESIS. Organogenesis - general Organs and Organogenesis 1.Uniqueness a. Origin - germ layer(s) b. Position c. Structure d. Function 2. Organ primordia

Mechanisms for axon pathfinding

1. Stereotropism (contact guidance)

a. Singer et al., 1979 - stereotropic pathfinding in neuroepithelial matrix of a newt embryo (amphibian)

b. Silver and Sidman, 1980 - stereotropic pathfinding in mouse retina

2. Differential adhesion (integrins, cadherins)

a. Letoureau, 1975 - diff. Adhesive pathfinding in vitro.

3. Galvanotropism

a. Patel et al., 1984 - pathfinding along charge differential pathways in vitro.

4. Chemotropism (netrin, connectin, nerve growth factor)

a. Gunderson & Barrett, 1979, 1980 - pathfinding in response to chemical signals in vitro.

Page 30: ORGANOGENESIS. Organogenesis - general Organs and Organogenesis 1.Uniqueness a. Origin - germ layer(s) b. Position c. Structure d. Function 2. Organ primordia

“Axons locate their target tissues by using chemical attractants (blue) and repellants (orange)”

Either diffusable substances released by cells or molecules embedded in the plasmalemma

Surfaces of target tissue cells can also display attractant or repellent molecules.

Illustration by Lydia Kibiuk, Copyright © 1995 Lydia Kibiuk.

Axon Pathfinding - chemotropism http://web.sfn.org/content/Publications/BrainBriefings/axon.html#fullsize

Blue - attractant molecules

Orange - repellent molecules

Page 31: ORGANOGENESIS. Organogenesis - general Organs and Organogenesis 1.Uniqueness a. Origin - germ layer(s) b. Position c. Structure d. Function 2. Organ primordia

The Growth Cone

“A false color image of a single cultured growth cone indicates high relative concentrations of fibrillar actin with warm colors.”

http://www.med.upenn.edu/nscience/neuro_raper.html

http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=.03cBD2-FFdfVWnQJpKKPvZlVwKDW-iGpTJ5qSw5u

Page 32: ORGANOGENESIS. Organogenesis - general Organs and Organogenesis 1.Uniqueness a. Origin - germ layer(s) b. Position c. Structure d. Function 2. Organ primordia

The growth cone

http://www.anat.cam.ac.uk/pages/staff/academic/holt/images.html

Page 33: ORGANOGENESIS. Organogenesis - general Organs and Organogenesis 1.Uniqueness a. Origin - germ layer(s) b. Position c. Structure d. Function 2. Organ primordia

http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=0mVzBEg1EX_YMkzpc2FN_TNTHWJTpj89DoajBTA4

As growth cones reach a point in axon growth where a decision must be made, they change shape and speed of growth and become more active. Filopodia appear to be searching for the right signal.

Optic chiasma

Page 34: ORGANOGENESIS. Organogenesis - general Organs and Organogenesis 1.Uniqueness a. Origin - germ layer(s) b. Position c. Structure d. Function 2. Organ primordia

http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=0mVzBEg1EX_YMkzpc2FN_TNTHWJTpj89DoajBTA4

(Optic chiasma) (Optic chiasma)

One possible signal at the optic chiasma is a glycoprotein called CD44. If CD44 is not expressed or if the cells that express it are eliminated, the growing axons from the sensory retina ganglion cells do not cross the chiasma.

Page 35: ORGANOGENESIS. Organogenesis - general Organs and Organogenesis 1.Uniqueness a. Origin - germ layer(s) b. Position c. Structure d. Function 2. Organ primordia

Examples of the effect of molecular signals on growth cone progress - Research by David Sretavan M.D., Ph.D., Doctor of Opthalmology University of California, San Francisco

http://ucsfeye.net/dsretavanresearch.shtml

Growth of retinal axons in mice in response to specific retinal proteins

Eph type proteins - can modulate axon pathfinding. Have attractive or repulsive effects on axon growth.

“The following QuickTime movies show retinal axon growth cones responding to gradients of Eph type proteins.

Videos presented at 420 times normal axon growth rate.” i.e., 1.5 min = about 10 hr

Page 36: ORGANOGENESIS. Organogenesis - general Organs and Organogenesis 1.Uniqueness a. Origin - germ layer(s) b. Position c. Structure d. Function 2. Organ primordia

The human brain

By the sixth prenatal month, nearly all of the billions of neurons (nerve cells) that populate the mature brain have been created, with new neurons generated at an average rate of more than 250,000 per minute.

http://www.futureofchildren.org/information2827/information_show.htm?doc_id=79339

Page 37: ORGANOGENESIS. Organogenesis - general Organs and Organogenesis 1.Uniqueness a. Origin - germ layer(s) b. Position c. Structure d. Function 2. Organ primordia

At birth - 100 billion neurons in brain = 100,000,000,000

1000 billion glial cells = 1,000,000,000,000

However, the wiring of the brain is not yet complete at birth.

As a baby starts to experience life, connections are made between cells - the more connections there are, the more the brain can do. Much of the brain’s growth after birth is due to the development of numerous dendrites that receive synaptic connections.A baby's brain develops so fast that by age two a child who is developing normally has the same number of connections as an adult.  By age three, a child has TWICE as many brain connections as an adult. http://www.preschoolrainbow.org/brain-growth.htm

Adult - an average of 10,000 synapses per cortical neuron

Very rough estimate,

10,000 synapses/neuron X 100,000,000,000 neurons

= 1,000,000,000,000,000

= 1000 trillion synapses in the adult brain

There is nowhere near enough information in your DNA to code for the specific locations of all these synapses.

Much of this “wiring” is completed after birth and results from the child’s interactions with his/her environment.

The human brain

Page 38: ORGANOGENESIS. Organogenesis - general Organs and Organogenesis 1.Uniqueness a. Origin - germ layer(s) b. Position c. Structure d. Function 2. Organ primordia

Use it or lose it! Synaptic connections are winnowed as children grow. Those not used are lost while those that are used are retained. (Neurotrophic factors produced by the cell that grew the axon are necessary to maintain the synapse).

Practice makes perfect. This is true for young children and also, to a certain extent, when you get older.

The more you do something, the better you get (e.g., practice improves your hand-eye coordination).

Does this apply to other aspects of nervous development?

Developing coordination

Page 39: ORGANOGENESIS. Organogenesis - general Organs and Organogenesis 1.Uniqueness a. Origin - germ layer(s) b. Position c. Structure d. Function 2. Organ primordia

Totally incompetent

Virtuoso

Genetically set limits

Environmentally determined outcome

Influence of Inheritance and Environment on ability

Page 40: ORGANOGENESIS. Organogenesis - general Organs and Organogenesis 1.Uniqueness a. Origin - germ layer(s) b. Position c. Structure d. Function 2. Organ primordia

WHY IS THIS IMPORTANT?

BECAUSE YOU WANT YOUR CHILDREN TO BE

ALL THAT THEY CAN BE!!!!!

Page 41: ORGANOGENESIS. Organogenesis - general Organs and Organogenesis 1.Uniqueness a. Origin - germ layer(s) b. Position c. Structure d. Function 2. Organ primordia

Inductions in the peripheral nervous system

Page 42: ORGANOGENESIS. Organogenesis - general Organs and Organogenesis 1.Uniqueness a. Origin - germ layer(s) b. Position c. Structure d. Function 2. Organ primordia

Inductions in the peripheral nervous systemOlfactory epithelium

1. Formation of olfactory placode

a. Induction #1 - presumptive head endoderm

b. Induction #2 - presumptive head mesoderm

c. Induction #3 - telencephalon - seals fate

2. Cells of olfactory epithelium form stem cells, neurons and supportive cells

3. Olfactory neurons extend axons to olfactory lobes in telencephalon

4. Pathfinding by axons

5. Synapse on other neurons in olfactory lobes

6. Neurons in epithelium have a life-span of about 1 month

7. Must be replaced from stem cells

8. Axons are constantly extending from these new neurons into the olfactory lobes where new synapses are formed.

Page 43: ORGANOGENESIS. Organogenesis - general Organs and Organogenesis 1.Uniqueness a. Origin - germ layer(s) b. Position c. Structure d. Function 2. Organ primordia

Inductions in the peripheral nervous system

Otic vesicle/inner ear

1.Induction #1 - Chordamesoderm passes near presumptive otic placode tissue

2. Induction #2 - nearby paraxial (somitomere) mesoderm further conditions cells

3. Induction #3 - Lateral wall of myelencephalon - seals fate and causes placode to form

Page 44: ORGANOGENESIS. Organogenesis - general Organs and Organogenesis 1.Uniqueness a. Origin - germ layer(s) b. Position c. Structure d. Function 2. Organ primordia

DEVELOPMENT OF THE EYE

Page 45: ORGANOGENESIS. Organogenesis - general Organs and Organogenesis 1.Uniqueness a. Origin - germ layer(s) b. Position c. Structure d. Function 2. Organ primordia

Lens placodeLens placode

Page 46: ORGANOGENESIS. Organogenesis - general Organs and Organogenesis 1.Uniqueness a. Origin - germ layer(s) b. Position c. Structure d. Function 2. Organ primordia

Human - 7 - 8 wks

Page 47: ORGANOGENESIS. Organogenesis - general Organs and Organogenesis 1.Uniqueness a. Origin - germ layer(s) b. Position c. Structure d. Function 2. Organ primordia

choroid fissure

Page 48: ORGANOGENESIS. Organogenesis - general Organs and Organogenesis 1.Uniqueness a. Origin - germ layer(s) b. Position c. Structure d. Function 2. Organ primordia

(muscles)

opticoel

Human ~ 10 wks

vitreous body

Page 49: ORGANOGENESIS. Organogenesis - general Organs and Organogenesis 1.Uniqueness a. Origin - germ layer(s) b. Position c. Structure d. Function 2. Organ primordia

(muscles)

neuroblastic

Development of the Human Retina

Page 50: ORGANOGENESIS. Organogenesis - general Organs and Organogenesis 1.Uniqueness a. Origin - germ layer(s) b. Position c. Structure d. Function 2. Organ primordia

neuroblastic

Development of the Human Retina

neuroblastic

Page 51: ORGANOGENESIS. Organogenesis - general Organs and Organogenesis 1.Uniqueness a. Origin - germ layer(s) b. Position c. Structure d. Function 2. Organ primordia

neuron

neuroblastic

Development of the Human Retina

Page 52: ORGANOGENESIS. Organogenesis - general Organs and Organogenesis 1.Uniqueness a. Origin - germ layer(s) b. Position c. Structure d. Function 2. Organ primordia

Outer neuroblastic layer

Inner neuroblastic layer

Innermost neuron layer

Development of the Human Retina

Page 53: ORGANOGENESIS. Organogenesis - general Organs and Organogenesis 1.Uniqueness a. Origin - germ layer(s) b. Position c. Structure d. Function 2. Organ primordia

lens

the

Page 54: ORGANOGENESIS. Organogenesis - general Organs and Organogenesis 1.Uniqueness a. Origin - germ layer(s) b. Position c. Structure d. Function 2. Organ primordia

lens

added