27
Organic and Biochem, Part 1 SOL Objective CH. 6

Organic and Biochem , Part 1

  • Upload
    jacoba

  • View
    31

  • Download
    0

Embed Size (px)

DESCRIPTION

Organic and Biochem , Part 1. SOL Objective CH. 6. SOL CH. 6. Not really a separate objective. CH = chemistry, not chapter. This year, we will have an Organic Chemistry and Biochemistry “flavor” from time to time. - PowerPoint PPT Presentation

Citation preview

Page 1: Organic and  Biochem , Part 1

Organic and Biochem, Part

1SOL Objective CH. 6

Page 2: Organic and  Biochem , Part 1

SOL CH. 6 Not really a separate objective. CH =

chemistry, not chapter. This year, we will have an Organic Chemistry

and Biochemistry “flavor” from time to time. Organic = any compound which contains

carbon. Organic compounds usually also contain H and some combination of O, N, S, P, Cl and other elements.

Biochem = study of organic compounds which appear in living things.

Page 3: Organic and  Biochem , Part 1

Organic Products Many of you probably buy organic

products from grocery stores (I do too sometimes).

This means something different from Organic Chemistry.

Organic products do not use chemical fertilizers or pesticides or irradiation (used to prevent onions and potatoes from sprouting) or chemical additives (to enhance taste or appearance).

Page 4: Organic and  Biochem , Part 1

Organic Products ≠ Organic Chemistry

Many people prefer organic products for lots of reasons. People think they are eating healthier and not putting “chemicals” into their body by using organic products.

However, scientific evidence (so far) proves that there is little difference in organic produce in terms of taste, safety and nutritional value compared to “non-organic produced” food.

Page 5: Organic and  Biochem , Part 1

Organic Chemistry All produce (organic or not) are composed

of organic chemicals. This includes most foods and drinks you consume.

So are all pharmaceuticals (medicines and drugs), plastics, and many products you use and wear everyday.

Some organic chemicals are poisonous (toxic) or carcinogenic (cause cancer potentially), but many are tasty and even vital for life.

Page 6: Organic and  Biochem , Part 1

Organic Compounds All organic compounds contain C. However, not all organic compounds

come from nature or living things. But some do. For example, some medicines come

from natural products. Some medicines were created by scientists in a lab.

Page 7: Organic and  Biochem , Part 1

Natural vs Synthetic Penicillin was originally isolated from a

fungus and found to have antibiotic (kills bacteria) properties. However, the demand for penicillin soon outgrew the ability to get it from fungi and organic chemists figured out how to synthesize penicillin in the lab.

Regardless of whether it is found in nature or synthesized in a lab, all penicillin must have the same properties and be exactly the same in every way.

Page 8: Organic and  Biochem , Part 1

Important Pharmaceuticals

Think medicine. Pharmaceuticals are any chemical substances used for the diagnosis, cure, treatment or prevention of disease.

Common pharmaceuticals you should know Aspirin Vitamins Insulin

All of the above are organic chemicals. All of the above can occur naturally or can be

synthesized in the lab.

Page 9: Organic and  Biochem , Part 1

Aspirin Aspirin occurs naturally in willow tree bark. Hippocrates (father of modern medicine) was

known to make a powder of willow bark and leaves to cure headaches and fevers as early as 400 BC.

Aspirin was first isolated chemically in Germany in 1897 at Bayer, a chemical company.

Aspirin is quite easy to make in the lab. Many pharmaceutical products are very difficult to make.

Page 10: Organic and  Biochem , Part 1

Inorganic Chemistry All chemicals which do not contain carbon are

inorganic. Additionally, some compounds which do contain

carbon are NOT organic. Examples include: Carbides (metals bonded to carbon) Carbonates Carbon dioxide (CO2)

Note that although water is VITAL to human life, water (H2O) is an inorganic compound, because it doesn’t contain any carbon.

Page 11: Organic and  Biochem , Part 1

5 Branches of Chemistry Inorganic Chemistry is the study of compounds which

do not contain C. Organic Chemistry is the study of compounds which

DO contain C. Biochemistry is the study of chemical processes which

exist in living organisms. Analytical Chemistry is the study of the separation of

mixtures of compounds and identifying and quantifying those compounds.

Physical Chemistry is the study of physics as it applies to chemical systems at the atomic and molecular level.

Page 12: Organic and  Biochem , Part 1

-C-C-C-C-C-C-C-C- Carbon has some unique properties

which organic chemistry is based upon. It can form long chains (or rings) by

bonding to other carbons. Each C forms 4 bonds. In addition to

bonding to other carbons, carbon’s unique size as a Period 2 element allows it to form strong bonds with H and O and N and many other elements.

Page 13: Organic and  Biochem , Part 1

-C-C-C-C-C-C-C-C- This ability to form long chains allows

carbon to bond with itself to produce literally millions of unique compounds.

C can also form double and triple bonds with other C atoms. Additionally, C can form double bonds

with O. C can form triple bonds with N.

Page 14: Organic and  Biochem , Part 1

Hydrocarbons The simplest organic compounds are called

hydrocarbons. These compounds ONLY contain C and H. Hydrocarbons are also called “fossil fuels”

(because they come from decomposed living things) and “petrochemicals” (because they are found in petroleum).

Petroleum is a mixture of hydrocarbons found in geologic formations beneath the Earth’s surface.

Page 15: Organic and  Biochem , Part 1

HC = Hydrocarbons Petroleum (also known as crude oil) is

separated through a physical process called distillation.

In distillation, you boil a mixture of hydrocarbons. Since each hydrocarbon has a unique boiling point, they can be separated from each other in this way.

The simplest HC is methane. Methane’s formula is CH4. Learn this!

Page 16: Organic and  Biochem , Part 1

Methane Methane boils at 90K. Since room

temp = 298K, it is obviously a gas at room temp.

It is also called “natural gas.” It comes out of the gas jets when we

do labs which require a Bunsen burner. The temp of a Bunsen burner flame is

about 1,500 - 2,000°C.

Page 17: Organic and  Biochem , Part 1

Other Distillation Products

Gases from Petroleum Ethane, C2H6, used primarily to produce ethene

(also known as ethylene) which is used to produce plastics, such as polyethylene, and is also used force the ripening of fruit.

Propane, C3H8, also known as LP gas (liquified petroleum), can be stored as a liquid at low pressures. Used as fuel for gas grills.

Butane, C4H10, can also be liquified easily at low pressures. Used as fuel in cigarette lighters.

Page 18: Organic and  Biochem , Part 1

Other Distillation Products

Liquids from Petroleum Gasoline (primarily octane, C8H18, but contains

HC with 5-12 carbons). Kerosene (contains HC with 12-16 carbons).

Used for lamps, stoves and portable heaters. Fuel Oil (contains HC with 15-18 carbons).

Used for heating houses. Also used in diesel engines.

Lubricating Oil (contains HC with 16-20 carbons). Use as motor oil in car engines.

Page 19: Organic and  Biochem , Part 1

Other Distillation Products

Solids from Petroleum Residue (solids remaining with > 20 carbons

after distillation); used to make asphalt. Paraffin wax (20-40 carbons). Has a variety of

uses, but used to make candles which burn at a very low temp (40-50°C). It is white and odorless and tasteless. James Chadwick used it in experiments to identify the neutron.

Liquid paraffin is called mineral oil.

Page 20: Organic and  Biochem , Part 1

Wait! What? Wax was used to discover the

neutron? Chadwick in 1932 usedαparticles (emitted from radioactive Po) and bombarded Be.

Beryllium emitted neutrons during this experiment, but they were hard to detect, because they have no charge.

He put some paraffin in the path of these new particles. They hit the paraffin and knocked out some protons (hydrogen ions).

Page 21: Organic and  Biochem , Part 1

Wax. Seriously. Protons have a positive charge and were much

easier to detect. Obviously something had to hit it which had enough mass and force to knock the protons loose.

He figured out that the neutron had a little more mass than the proton.

Since it had no charge, the particles didn’t repel when it got close to the positively charged nucleus, and therefore, nothing slowed it down until it collided with the H which it then knocked out of the wax.

We will talk about this more in Unit 2 also (and it might make more sense then too).

Page 22: Organic and  Biochem , Part 1

Types of HC Alkanes: only contain C-C single bonds.

Known as saturated HC. It is saturated because it has the maximum number of hydrogens bonded to the carbons.

Alkenes: contains at least 1 C=C double bond.

Alkynes: contains at least 1 CΞC triple bond. Alkenes and alkynes are unsaturated HC,

because more H could be bonded to the C atoms.

Page 23: Organic and  Biochem , Part 1

Reactivity of HC The structure of the molecule helps

determine the properties of the compound. All alkanes react the same, but they react differently compared to alkenes or alkynes.

Alkynes are MOST reactive. Alkanes are least reactive. That means alkenes are somewhere in

the middle.

Page 24: Organic and  Biochem , Part 1

Reactivity of HC From this you can extend your

knowledge and predict that triple bonds are more reactive than

double bonds and double bonds are more reactive

than single bonds. We will talk about WHY this is the case

in later units.

Page 25: Organic and  Biochem , Part 1

Polymers Large molecule composed of repeating units

of simple molecules (called monomers). Think about Legos. Each block is a

monomer. When you hook a bunch of blocks together, you get a large chain (the polymer).

There are two types of polymers (more on this in a later unit). Addition Condensation

Page 26: Organic and  Biochem , Part 1

Polymers Natural Polymers

Proteins (monomer = amino acids) Starch and Cellulose (monomer = sugar molecules) DNA and RNA (monomer = purine and pyrimidine bases)

Synthetic Polymers Plastics

polyethylene (PE) also known as polythene polyvinylchloride (PVC) polystyrene also known as Styrofoam Sodium polyacrylate (the absorbent polymer in Huggies diapers)

Fibers (nylon, rayon, polyester) Kevlar Teflon (polytetrafluoroethylene)

Page 27: Organic and  Biochem , Part 1

The EndWhat Did you Learn?