33
Orbital Mechanics Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Orbital Mechanics Energy and velocity in orbit Elliptical orbit parameters Orbital elements Coplanar orbital transfers Noncoplanar transfers • Time and flight path angle as a function of orbital position Relative orbital motion (“proximity operations”) © 2003 David L. Akin - All rights reserved http://spacecraft.ssl.umd.edu

Orbital Mechanics - University Of Maryland · 2003-09-08 · Orbital Mechanics Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Patched Conics •Simple approximation

  • Upload
    others

  • View
    6

  • Download
    1

Embed Size (px)

Citation preview

Page 1: Orbital Mechanics - University Of Maryland · 2003-09-08 · Orbital Mechanics Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Patched Conics •Simple approximation

Orbital MechanicsPrinciples of Space Systems Design

U N I V E R S I T Y O F

MARYLAND

Orbital Mechanics

• Energy and velocity in orbit• Elliptical orbit parameters• Orbital elements• Coplanar orbital transfers• Noncoplanar transfers• Time and flight path angle as a function of

orbital position• Relative orbital motion (“proximity operations”)

© 2003 David L. Akin - All rights reservedhttp://spacecraft.ssl.umd.edu

Page 2: Orbital Mechanics - University Of Maryland · 2003-09-08 · Orbital Mechanics Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Patched Conics •Simple approximation

Orbital MechanicsPrinciples of Space Systems Design

U N I V E R S I T Y O F

MARYLAND

Energy in Orbit

• Kinetic Energy

• Potential Energy

• Total Energy

K.E. =12

mn 2 fiK.E.

m=

v2

2

P.E. = -mmr

fiP.E.m

= -mr

Const. =v2

2-

mr

= -m

2a<--Vis-Viva Equation

Page 3: Orbital Mechanics - University Of Maryland · 2003-09-08 · Orbital Mechanics Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Patched Conics •Simple approximation

Orbital MechanicsPrinciples of Space Systems Design

U N I V E R S I T Y O F

MARYLAND

Implications of Vis-Viva

• Circular orbit (r=a)

• Parabolic escape orbit (a tends to infinity)

• Relationship between circular and parabolicorbits

vcircular =mr

vescape =2mr

vescape = 2vcircular

Page 4: Orbital Mechanics - University Of Maryland · 2003-09-08 · Orbital Mechanics Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Patched Conics •Simple approximation

Orbital MechanicsPrinciples of Space Systems Design

U N I V E R S I T Y O F

MARYLAND

Some Useful Constants

• Gravitation constant m = GM– Earth: 398,604 km3/sec2

– Moon: 4667.9 km3/sec2

– Mars: 42,970 km3/sec2

– Sun: 1.327x1011 km3/sec2

• Planetary radii– rEarth = 6378 km– rMoon = 1738 km– rMars = 3393 km

Page 5: Orbital Mechanics - University Of Maryland · 2003-09-08 · Orbital Mechanics Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Patched Conics •Simple approximation

Orbital MechanicsPrinciples of Space Systems Design

U N I V E R S I T Y O F

MARYLAND

Classical Parameters of Elliptical Orbits

Page 6: Orbital Mechanics - University Of Maryland · 2003-09-08 · Orbital Mechanics Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Patched Conics •Simple approximation

Orbital MechanicsPrinciples of Space Systems Design

U N I V E R S I T Y O F

MARYLAND

Basic Orbital Parameters• Semi-latus rectum (or parameter)

• Radial distance as function of orbital position

• Periapse and apoapse distances

• Angular momentum

p = a(1- e2 )

r =p

1+ ecosq

rp = a(1 - e) ra = a(1+ e)

r h = r r ¥ r v h = mp

Page 7: Orbital Mechanics - University Of Maryland · 2003-09-08 · Orbital Mechanics Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Patched Conics •Simple approximation

Orbital MechanicsPrinciples of Space Systems Design

U N I V E R S I T Y O F

MARYLAND

The Classical Orbital Elements

Ref: J. E. Prussing and B. A. Conway, Orbital Mechanics Oxford University Press, 1993

Page 8: Orbital Mechanics - University Of Maryland · 2003-09-08 · Orbital Mechanics Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Patched Conics •Simple approximation

Orbital MechanicsPrinciples of Space Systems Design

U N I V E R S I T Y O F

MARYLAND

The Hohmann Transfer

vperigee

v1

vapogee

v2

Page 9: Orbital Mechanics - University Of Maryland · 2003-09-08 · Orbital Mechanics Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Patched Conics •Simple approximation

Orbital MechanicsPrinciples of Space Systems Design

U N I V E R S I T Y O F

MARYLAND

First Maneuver Velocities

• Initial vehicle velocity

• Needed final velocity

• Delta-V

v1 =mr1

vperigee =mr1

2r2

r1 + r2

Dv1 =mr1

2r2

r1 + r2-1

Ê

Ë Á

ˆ

¯ ˜

Page 10: Orbital Mechanics - University Of Maryland · 2003-09-08 · Orbital Mechanics Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Patched Conics •Simple approximation

Orbital MechanicsPrinciples of Space Systems Design

U N I V E R S I T Y O F

MARYLAND

Second Maneuver Velocities

• Initial vehicle velocity

• Needed final velocity

• Delta-V

v2 =mr2

vapogee =mr2

2r1

r1 + r2

Dv2 =mr2

1-2r1

r1 + r2

Ê

Ë Á

ˆ

¯ ˜

Page 11: Orbital Mechanics - University Of Maryland · 2003-09-08 · Orbital Mechanics Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Patched Conics •Simple approximation

Orbital MechanicsPrinciples of Space Systems Design

U N I V E R S I T Y O F

MARYLAND

Limitations on Launch Inclinations

Page 12: Orbital Mechanics - University Of Maryland · 2003-09-08 · Orbital Mechanics Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Patched Conics •Simple approximation

Orbital MechanicsPrinciples of Space Systems Design

U N I V E R S I T Y O F

MARYLAND

Differences in Inclination

Page 13: Orbital Mechanics - University Of Maryland · 2003-09-08 · Orbital Mechanics Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Patched Conics •Simple approximation

Orbital MechanicsPrinciples of Space Systems Design

U N I V E R S I T Y O F

MARYLAND

Choosing the Wrong Line of Apsides

Page 14: Orbital Mechanics - University Of Maryland · 2003-09-08 · Orbital Mechanics Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Patched Conics •Simple approximation

Orbital MechanicsPrinciples of Space Systems Design

U N I V E R S I T Y O F

MARYLAND

Simple Plane Change

vperigee

v1 vapogee

v2

Dv2

Page 15: Orbital Mechanics - University Of Maryland · 2003-09-08 · Orbital Mechanics Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Patched Conics •Simple approximation

Orbital MechanicsPrinciples of Space Systems Design

U N I V E R S I T Y O F

MARYLAND

Optimal Plane Change

vperigee v1 vapogee

v2

Dv2Dv1

Page 16: Orbital Mechanics - University Of Maryland · 2003-09-08 · Orbital Mechanics Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Patched Conics •Simple approximation

Orbital MechanicsPrinciples of Space Systems Design

U N I V E R S I T Y O F

MARYLAND

First Maneuver with Plane Change Di1

• Initial vehicle velocity

• Needed final velocity

• Delta-V

v1 =mr1

vp =mr1

2r2

r1 + r2

Dv1 = v12 + vp

2 - 2v1vp cos(Di1)

Page 17: Orbital Mechanics - University Of Maryland · 2003-09-08 · Orbital Mechanics Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Patched Conics •Simple approximation

Orbital MechanicsPrinciples of Space Systems Design

U N I V E R S I T Y O F

MARYLAND

Second Maneuver with Plane Change Di2

• Initial vehicle velocity

• Needed final velocity

• Delta-V

v2 =mr2

va =mr2

2r1r1 + r2

Dv2 = v22 + va

2 - 2v2va cos(Di2 )

Page 18: Orbital Mechanics - University Of Maryland · 2003-09-08 · Orbital Mechanics Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Patched Conics •Simple approximation

Orbital MechanicsPrinciples of Space Systems Design

U N I V E R S I T Y O F

MARYLAND

Sample Plane Change Maneuver

01234567

0 10 20 30Initial Inclination Change (deg)

Delta

V (k

m/s

ec)

DV1DV2DVtot

Optimum initial plane change = 2.20°

Page 19: Orbital Mechanics - University Of Maryland · 2003-09-08 · Orbital Mechanics Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Patched Conics •Simple approximation

Orbital MechanicsPrinciples of Space Systems Design

U N I V E R S I T Y O F

MARYLAND

Bielliptic Transfer

Page 20: Orbital Mechanics - University Of Maryland · 2003-09-08 · Orbital Mechanics Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Patched Conics •Simple approximation

Orbital MechanicsPrinciples of Space Systems Design

U N I V E R S I T Y O F

MARYLAND

Coplanar Transfer Velocity Requirements

Ref: J. E. Prussing and B. A. Conway, Orbital Mechanics Oxford University Press, 1993

Page 21: Orbital Mechanics - University Of Maryland · 2003-09-08 · Orbital Mechanics Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Patched Conics •Simple approximation

Orbital MechanicsPrinciples of Space Systems Design

U N I V E R S I T Y O F

MARYLAND

Noncoplanar Bielliptic Transfers

Page 22: Orbital Mechanics - University Of Maryland · 2003-09-08 · Orbital Mechanics Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Patched Conics •Simple approximation

Orbital MechanicsPrinciples of Space Systems Design

U N I V E R S I T Y O F

MARYLAND

Calculating Time in Orbit

Page 23: Orbital Mechanics - University Of Maryland · 2003-09-08 · Orbital Mechanics Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Patched Conics •Simple approximation

Orbital MechanicsPrinciples of Space Systems Design

U N I V E R S I T Y O F

MARYLAND

Time in Orbit

• Period of an orbit

• Mean motion (average angular velocity)

• Time since pericenter passage

ÂM=mean anomaly

P = 2pa3

m

n =ma3

M = nt = E - esin E

Page 24: Orbital Mechanics - University Of Maryland · 2003-09-08 · Orbital Mechanics Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Patched Conics •Simple approximation

Orbital MechanicsPrinciples of Space Systems Design

U N I V E R S I T Y O F

MARYLAND

Dealing with the Eccentric Anomaly

• Relationship to orbit

• Relationship to true anomaly

• Calculating M from time interval: iterate

until it converges

r = a(1- e cosE)

tanq2

=1+ e1- e

tan E2

Ei+1 = nt + esin Ei

Page 25: Orbital Mechanics - University Of Maryland · 2003-09-08 · Orbital Mechanics Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Patched Conics •Simple approximation

Orbital MechanicsPrinciples of Space Systems Design

U N I V E R S I T Y O F

MARYLAND

Patched Conics

• Simple approximation to multi-body motion (e.g.,traveling from Earth orbit through solar orbit intoMartian orbit)

• Treats multibody problem as “hand-offs” betweengravitating bodies --> reduces analysis tosequential two-body problems

• Caveat Emptor: There are a number of formal methods toperform patched conic analysis. The approach presented here is avery simple, convenient, and not altogether accurate method forperforming this calculation. Results will be accurate to a fewpercent, which is adequate at this level of design analysis.

Page 26: Orbital Mechanics - University Of Maryland · 2003-09-08 · Orbital Mechanics Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Patched Conics •Simple approximation

Orbital MechanicsPrinciples of Space Systems Design

U N I V E R S I T Y O F

MARYLAND

Example: Lunar Orbit Insertion• v2 is velocity of moon

around Earth• Moon overtakes

spacecraft with velocityof (v2-vapogee)

• This is the velocity of thespacecraft relative to themoon while it iseffectively “infinitely”far away (before lunargravity accelerates it) =“hyperbolic excessvelocity”

vapogee

v2

Page 27: Orbital Mechanics - University Of Maryland · 2003-09-08 · Orbital Mechanics Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Patched Conics •Simple approximation

Orbital MechanicsPrinciples of Space Systems Design

U N I V E R S I T Y O F

MARYLAND

Planetary Approach Analysis

• Spacecraft has vh hyperbolic excessvelocity, which fixes total energy ofapproach orbit

• Vis-viva provides velocity of approach

• Choose transfer orbit such that approachis tangent to desired final orbit at periapse

v 2

2-

mr

= -m2a

=vh

2

2

v = 2 vh2

2+

mr

Dv = 2 vh2

2+

mrorbit

-m

rorbit

Page 28: Orbital Mechanics - University Of Maryland · 2003-09-08 · Orbital Mechanics Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Patched Conics •Simple approximation

Space Systems Laboratory – University of Maryland

Pr

oje

ct

Dia

na

DV Requirements for Lunar MissionsTo:

From:

Low EarthOrbit

LunarTransferOrbit

Low LunarOrbit

LunarDescentOrbit

LunarLanding

Low EarthOrbit

3.107km/sec

LunarTransferOrbit

3.107km/sec

0.837km/sec

3.140km/sec

Low LunarOrbit

0.837km/sec

0.022km/sec

LunarDescentOrbit

0.022km/sec

2.684km/sec

LunarLanding

2.890km/sec

2.312km/sec

Page 29: Orbital Mechanics - University Of Maryland · 2003-09-08 · Orbital Mechanics Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Patched Conics •Simple approximation

Orbital MechanicsPrinciples of Space Systems Design

U N I V E R S I T Y O F

MARYLAND

Hill’s Equations (Proximity Operations)

˙ ̇ x = 3n2x + 2n˙ y + adx

˙ ̇ y = -2n˙ x + ady

˙ ̇ z = -n 2z + adz

Ref: J. E. Prussing and B. A. Conway, Orbital MechanicsOxford University Press, 1993

Page 30: Orbital Mechanics - University Of Maryland · 2003-09-08 · Orbital Mechanics Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Patched Conics •Simple approximation

Orbital MechanicsPrinciples of Space Systems Design

U N I V E R S I T Y O F

MARYLAND

Clohessy-Wiltshire (“CW”) Equations

x(t) = 4 - 3cos(nt)[ ]xo +sin(nt)

n˙ x o +

2n

1- cos(nt)[ ] ˙ y o

y(t) = 6 sin(nt) - nt[ ]xo + yo -2n

1-cos(nt)[ ] ˙ x o +4sin(nt) - 3nt

n˙ y o

z(t) = zo cos(nt) +˙ z on

sin(nt)

˙ z (t) = -zonsin(nt) + ˙ z o sin(nt)

Page 31: Orbital Mechanics - University Of Maryland · 2003-09-08 · Orbital Mechanics Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Patched Conics •Simple approximation

Orbital MechanicsPrinciples of Space Systems Design

U N I V E R S I T Y O F

MARYLAND

“V-Bar” Approach

Ref: Collins, Meissinger, and Bell, Small Orbit Transfer Vehicle (OTV) for On-Orbit SatelliteServicing and Resupply, 15th USU Small Satellite Conference, 2001

Page 32: Orbital Mechanics - University Of Maryland · 2003-09-08 · Orbital Mechanics Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Patched Conics •Simple approximation

Orbital MechanicsPrinciples of Space Systems Design

U N I V E R S I T Y O F

MARYLAND

“R-Bar” Approach

• Approach from alongthe radius vector (“R-bar”)

• Gravity gradientsdecelerate spacecraftapproach velocity - lowcontaminationapproach

• Used for Mir, ISSdocking approaches Ref: Collins, Meissinger, and Bell, Small Orbit Transfer

Vehicle (OTV) for On-Orbit Satellite Servicing andResupply, 15th USU Small Satellite Conference, 2001

Page 33: Orbital Mechanics - University Of Maryland · 2003-09-08 · Orbital Mechanics Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Patched Conics •Simple approximation

Orbital MechanicsPrinciples of Space Systems Design

U N I V E R S I T Y O F

MARYLAND

References for Lecture 3

• Wernher von Braun, The Mars ProjectUniversity of Illinois Press, 1962

• William Tyrrell Thomson, Introduction toSpace Dynamics Dover Publications, 1986

• Francis J. Hale, Introduction to SpaceFlight Prentice-Hall, 1994

• William E. Wiesel, Spaceflight DynamicsMacGraw-Hill, 1997

• J. E. Prussing and B. A. Conway, OrbitalMechanics Oxford University Press, 1993