38
Orbital Mechanics Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Orbital Mechanics Energy and velocity in orbit Elliptical orbit parameters Orbital elements Coplanar orbital transfers Noncoplanar transfers Time and flight path angle as a function of orbital position Relative orbital motion (“proximity operations”) © 2003 David L. Akin - All rights reserved http://spacecraft.ssl.umd.edu

Orbital Mechanics - University Of Marylandspacecraft.ssl.umd.edu/academics/483F04/483L03.orb_… ·  · 2004-09-07Orbital Mechanics Principles of Space Systems Design U N I V E R

Embed Size (px)

Citation preview

Page 1: Orbital Mechanics - University Of Marylandspacecraft.ssl.umd.edu/academics/483F04/483L03.orb_… ·  · 2004-09-07Orbital Mechanics Principles of Space Systems Design U N I V E R

Orbital MechanicsPrinciples of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Orbital Mechanics

• Energy and velocity in orbit• Elliptical orbit parameters• Orbital elements• Coplanar orbital transfers• Noncoplanar transfers• Time and flight path angle as a function of

orbital position• Relative orbital motion (“proximity operations”)

© 2003 David L. Akin - All rights reservedhttp://spacecraft.ssl.umd.edu

Page 2: Orbital Mechanics - University Of Marylandspacecraft.ssl.umd.edu/academics/483F04/483L03.orb_… ·  · 2004-09-07Orbital Mechanics Principles of Space Systems Design U N I V E R

Orbital MechanicsPrinciples of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Energy in Orbit

• Kinetic Energy

• Potential Energy

• Total Energy

K.E. =1

2m!

2"

K.E.

m=v2

2

P.E. = !mµ

r"

P.E.

m= !

µ

r

Const. =v2

2!µ

r= !

µ

2a<--Vis-Viva Equation

Page 3: Orbital Mechanics - University Of Marylandspacecraft.ssl.umd.edu/academics/483F04/483L03.orb_… ·  · 2004-09-07Orbital Mechanics Principles of Space Systems Design U N I V E R

Orbital MechanicsPrinciples of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Implications of Vis-Viva

• Circular orbit (r=a)

• Parabolic escape orbit (a tends to infinity)

• Relationship between circular andparabolic orbits

vcircular

r

vescape =2µ

r

vescape = 2vcircular

Page 4: Orbital Mechanics - University Of Marylandspacecraft.ssl.umd.edu/academics/483F04/483L03.orb_… ·  · 2004-09-07Orbital Mechanics Principles of Space Systems Design U N I V E R

Orbital MechanicsPrinciples of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Some Useful Constants

• Gravitation constant µ = GM– Earth: 398,604 km3/sec2

– Moon: 4667.9 km3/sec2

– Mars: 42,970 km3/sec2

– Sun: 1.327x1011 km3/sec2

• Planetary radii– rEarth = 6378 km– rMoon = 1738 km– rMars = 3393 km

Page 5: Orbital Mechanics - University Of Marylandspacecraft.ssl.umd.edu/academics/483F04/483L03.orb_… ·  · 2004-09-07Orbital Mechanics Principles of Space Systems Design U N I V E R

Orbital MechanicsPrinciples of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Classical Parameters of Elliptical Orbits

Page 6: Orbital Mechanics - University Of Marylandspacecraft.ssl.umd.edu/academics/483F04/483L03.orb_… ·  · 2004-09-07Orbital Mechanics Principles of Space Systems Design U N I V E R

Orbital MechanicsPrinciples of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Basic Orbital Parameters• Semi-latus rectum (or parameter)

• Radial distance as function of orbital position

• Periapse and apoapse distances

• Angular momentum

p = a(1! e2)

r =p

1+ ecos!

rp = a(1! e) ra= a(1+ e)

r h =

r r !

r v h = µp

Page 7: Orbital Mechanics - University Of Marylandspacecraft.ssl.umd.edu/academics/483F04/483L03.orb_… ·  · 2004-09-07Orbital Mechanics Principles of Space Systems Design U N I V E R

Orbital MechanicsPrinciples of Space Systems Design

U N I V E R S I T Y O FMARYLAND

The Classical Orbital Elements

Ref: J. E. Prussing and B. A. Conway, Orbital Mechanics Oxford University Press, 1993

Page 8: Orbital Mechanics - University Of Marylandspacecraft.ssl.umd.edu/academics/483F04/483L03.orb_… ·  · 2004-09-07Orbital Mechanics Principles of Space Systems Design U N I V E R

Orbital MechanicsPrinciples of Space Systems Design

U N I V E R S I T Y O FMARYLAND

The Hohmann Transfer

vperigee

v1

vapogee

v2

Page 9: Orbital Mechanics - University Of Marylandspacecraft.ssl.umd.edu/academics/483F04/483L03.orb_… ·  · 2004-09-07Orbital Mechanics Principles of Space Systems Design U N I V E R

Orbital MechanicsPrinciples of Space Systems Design

U N I V E R S I T Y O FMARYLAND

First Maneuver Velocities

• Initial vehicle velocity

• Needed final velocity

• Delta-V

v1=

µ

r1

vperigee =µ

r1

2r2

r1+ r

2

!v1

r1

2r2

r1

+ r2

"1#

$ %

&

' (

Page 10: Orbital Mechanics - University Of Marylandspacecraft.ssl.umd.edu/academics/483F04/483L03.orb_… ·  · 2004-09-07Orbital Mechanics Principles of Space Systems Design U N I V E R

Orbital MechanicsPrinciples of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Second Maneuver Velocities

• Initial vehicle velocity

• Needed final velocity

• Delta-V

v2=

µ

r2

vapogee =µ

r2

2r1

r1+ r

2

!v2

r2

1"2r1

r1

+ r2

#

$ %

&

' (

Page 11: Orbital Mechanics - University Of Marylandspacecraft.ssl.umd.edu/academics/483F04/483L03.orb_… ·  · 2004-09-07Orbital Mechanics Principles of Space Systems Design U N I V E R

Orbital MechanicsPrinciples of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Limitations on Launch Inclinations

Page 12: Orbital Mechanics - University Of Marylandspacecraft.ssl.umd.edu/academics/483F04/483L03.orb_… ·  · 2004-09-07Orbital Mechanics Principles of Space Systems Design U N I V E R

Orbital MechanicsPrinciples of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Differences in Inclination

Page 13: Orbital Mechanics - University Of Marylandspacecraft.ssl.umd.edu/academics/483F04/483L03.orb_… ·  · 2004-09-07Orbital Mechanics Principles of Space Systems Design U N I V E R

Orbital MechanicsPrinciples of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Choosing the Wrong Line of Apsides

Page 14: Orbital Mechanics - University Of Marylandspacecraft.ssl.umd.edu/academics/483F04/483L03.orb_… ·  · 2004-09-07Orbital Mechanics Principles of Space Systems Design U N I V E R

Orbital MechanicsPrinciples of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Simple Plane Change

vperigee

v1 vapogee

v2

Δv2

Page 15: Orbital Mechanics - University Of Marylandspacecraft.ssl.umd.edu/academics/483F04/483L03.orb_… ·  · 2004-09-07Orbital Mechanics Principles of Space Systems Design U N I V E R

Orbital MechanicsPrinciples of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Optimal Plane Change

vperigee v1 vapogee

v2

Dv2Dv1

Page 16: Orbital Mechanics - University Of Marylandspacecraft.ssl.umd.edu/academics/483F04/483L03.orb_… ·  · 2004-09-07Orbital Mechanics Principles of Space Systems Design U N I V E R

Orbital MechanicsPrinciples of Space Systems Design

U N I V E R S I T Y O FMARYLAND

First Maneuver with Plane Change Δi1

• Initial vehicle velocity

• Needed final velocity

• Delta-V

v1=

µ

r1

vp =µ

r1

2r2

r1+ r

2

!v1= v

1

2+ vp

2" 2v

1vp cos(!i1)

Page 17: Orbital Mechanics - University Of Marylandspacecraft.ssl.umd.edu/academics/483F04/483L03.orb_… ·  · 2004-09-07Orbital Mechanics Principles of Space Systems Design U N I V E R

Orbital MechanicsPrinciples of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Second Maneuver with Plane Change Δi2

• Initial vehicle velocity

• Needed final velocity

• Delta-V

v2=

µ

r2

va=

µ

r2

2r1

r1+ r

2

!v2= v

2

2+ v

a

2" 2v

2vacos(!i

2)

Page 18: Orbital Mechanics - University Of Marylandspacecraft.ssl.umd.edu/academics/483F04/483L03.orb_… ·  · 2004-09-07Orbital Mechanics Principles of Space Systems Design U N I V E R

Orbital MechanicsPrinciples of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Sample Plane Change Maneuver

0

1

2

3

4

5

6

7

0 10 20 30

Initial Inclination Change (deg)

De

lta

V (

km

/se

c)

DV1

DV2

DVtot

Optimum initial plane change = 2.20°

Page 19: Orbital Mechanics - University Of Marylandspacecraft.ssl.umd.edu/academics/483F04/483L03.orb_… ·  · 2004-09-07Orbital Mechanics Principles of Space Systems Design U N I V E R

Orbital MechanicsPrinciples of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Bielliptic Transfer

Page 20: Orbital Mechanics - University Of Marylandspacecraft.ssl.umd.edu/academics/483F04/483L03.orb_… ·  · 2004-09-07Orbital Mechanics Principles of Space Systems Design U N I V E R

Orbital MechanicsPrinciples of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Coplanar Transfer Velocity Requirements

Ref: J. E. Prussing and B. A. Conway, Orbital Mechanics Oxford University Press, 1993

Page 21: Orbital Mechanics - University Of Marylandspacecraft.ssl.umd.edu/academics/483F04/483L03.orb_… ·  · 2004-09-07Orbital Mechanics Principles of Space Systems Design U N I V E R

Orbital MechanicsPrinciples of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Noncoplanar Bielliptic Transfers

Page 22: Orbital Mechanics - University Of Marylandspacecraft.ssl.umd.edu/academics/483F04/483L03.orb_… ·  · 2004-09-07Orbital Mechanics Principles of Space Systems Design U N I V E R

Orbital MechanicsPrinciples of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Calculating Time in Orbit

Page 23: Orbital Mechanics - University Of Marylandspacecraft.ssl.umd.edu/academics/483F04/483L03.orb_… ·  · 2004-09-07Orbital Mechanics Principles of Space Systems Design U N I V E R

Orbital MechanicsPrinciples of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Time in Orbit

• Period of an orbit

• Mean motion (average angular velocity)

• Time since pericenter passage

å M=mean anomaly

P = 2!a3

µ

n =µ

a3

M = nt = E ! esin E

Page 24: Orbital Mechanics - University Of Marylandspacecraft.ssl.umd.edu/academics/483F04/483L03.orb_… ·  · 2004-09-07Orbital Mechanics Principles of Space Systems Design U N I V E R

Orbital MechanicsPrinciples of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Dealing with the Eccentric Anomaly

• Relationship to orbit

• Relationship to true anomaly

• Calculating M from time interval: iterate

until it converges

r = a(1! e cosE)

tan!

2=1+ e

1" etan

E

2

Ei+1 = nt + esin Ei

Page 25: Orbital Mechanics - University Of Marylandspacecraft.ssl.umd.edu/academics/483F04/483L03.orb_… ·  · 2004-09-07Orbital Mechanics Principles of Space Systems Design U N I V E R

Orbital MechanicsPrinciples of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Example: Time in Orbit

• Hohmann transfer from LEO to GEO– h1=300 km --> r1=6378+300=6678 km– r2=42240 km

• Time of transit (1/2 orbital period)

Page 26: Orbital Mechanics - University Of Marylandspacecraft.ssl.umd.edu/academics/483F04/483L03.orb_… ·  · 2004-09-07Orbital Mechanics Principles of Space Systems Design U N I V E R

Orbital MechanicsPrinciples of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Example: Time-based Position

Find the spacecraft position 3 hours after perigee

E=0; 1.783; 2.494; 2.222; 2.361; 2.294; 2.328;2.311; 2.320; 2.316; 2.318; 2.317; 2.317; 2.317

Page 27: Orbital Mechanics - University Of Marylandspacecraft.ssl.umd.edu/academics/483F04/483L03.orb_… ·  · 2004-09-07Orbital Mechanics Principles of Space Systems Design U N I V E R

Orbital MechanicsPrinciples of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Example: Time-based Position (continued)

Have to be sure to get the position in the properquadrant - since the time is less than 1/2 theperiod, the spacecraft has yet to reach apogee--> 0°<q<180°

Page 28: Orbital Mechanics - University Of Marylandspacecraft.ssl.umd.edu/academics/483F04/483L03.orb_… ·  · 2004-09-07Orbital Mechanics Principles of Space Systems Design U N I V E R

Orbital MechanicsPrinciples of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Velocity Components in Orbit

Page 29: Orbital Mechanics - University Of Marylandspacecraft.ssl.umd.edu/academics/483F04/483L03.orb_… ·  · 2004-09-07Orbital Mechanics Principles of Space Systems Design U N I V E R

Orbital MechanicsPrinciples of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Velocity Components in Orbit (continued)

Page 30: Orbital Mechanics - University Of Marylandspacecraft.ssl.umd.edu/academics/483F04/483L03.orb_… ·  · 2004-09-07Orbital Mechanics Principles of Space Systems Design U N I V E R

Orbital MechanicsPrinciples of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Patched Conics

• Simple approximation to multi-body motion (e.g.,traveling from Earth orbit through solar orbitinto Martian orbit)

• Treats multibody problem as “hand-offs” betweengravitating bodies --> reduces analysis tosequential two-body problems

• Caveat Emptor: There are a number of formal methods toperform patched conic analysis. The approach presented here is avery simple, convenient, and not altogether accurate method forperforming this calculation. Results will be accurate to a fewpercent, which is adequate at this level of design analysis.

Page 31: Orbital Mechanics - University Of Marylandspacecraft.ssl.umd.edu/academics/483F04/483L03.orb_… ·  · 2004-09-07Orbital Mechanics Principles of Space Systems Design U N I V E R

Orbital MechanicsPrinciples of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Example: Lunar Orbit Insertion• v2 is velocity of moon

around Earth• Moon overtakes

spacecraft with velocityof (v2-vapogee)

• This is the velocity ofthe spacecraft relativeto the moon while it iseffectively “infinitely”far away (before lunargravity accelerates it) =“hyperbolic excessvelocity”

vapogee

v2

Page 32: Orbital Mechanics - University Of Marylandspacecraft.ssl.umd.edu/academics/483F04/483L03.orb_… ·  · 2004-09-07Orbital Mechanics Principles of Space Systems Design U N I V E R

Orbital MechanicsPrinciples of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Planetary Approach Analysis

• Spacecraft has vh hyperbolic excessvelocity, which fixes total energy ofapproach orbit

• Vis-viva provides velocity of approach

• Choose transfer orbit such that approachis tangent to desired final orbit at periapse

!

v2

2"

µ

r= "

µ

2a=vh

2

2

!

v = 2vh

2

2+

µ

r

!

"v = 2vh

2

2+

µ

rorbit

rorbit

Page 33: Orbital Mechanics - University Of Marylandspacecraft.ssl.umd.edu/academics/483F04/483L03.orb_… ·  · 2004-09-07Orbital Mechanics Principles of Space Systems Design U N I V E R

Space Systems Laboratory – University of Maryland

UM

d E

xp

lo

ra

tio

n In

itia

tiv

eΔV Requirements for Lunar Missions

To:

From:

Low Earth

Orbit

Lunar

Transfer

Orbit

Low Lunar

Orbit

Lunar

Descent

Orbit

Lunar

Landing

Low Earth

Orbit

3.107

km/sec

Lunar

Transfer

Orbit

3.107

km/sec

0.837

km/sec

3.140

km/sec

Low Lunar

Orbit

0.837

km/sec

0.022

km/sec

Lunar

Descent

Orbit

0.022

km/sec

2.684

km/sec

Lunar

Landing

2.890

km/sec

2.312

km/sec

Page 34: Orbital Mechanics - University Of Marylandspacecraft.ssl.umd.edu/academics/483F04/483L03.orb_… ·  · 2004-09-07Orbital Mechanics Principles of Space Systems Design U N I V E R

Orbital MechanicsPrinciples of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Hill’s Equations (Proximity Operations)

!

˙ ̇ x = 3n2

x + 2n˙ y + adx

!

˙ ̇ y = "2n˙ x + ady

!

˙ ̇ z = "n2

z + adz

Ref: J. E. Prussing and B. A. Conway, Orbital MechanicsOxford University Press, 1993

Page 35: Orbital Mechanics - University Of Marylandspacecraft.ssl.umd.edu/academics/483F04/483L03.orb_… ·  · 2004-09-07Orbital Mechanics Principles of Space Systems Design U N I V E R

Orbital MechanicsPrinciples of Space Systems Design

U N I V E R S I T Y O FMARYLAND

Clohessy-Wiltshire (“CW”) Equations

!

x(t) = 4 " 3cos(nt)[ ]xo +sin(nt)

n˙ x o +

2

n1" cos(nt)[ ] ˙ y o

!

y(t) = 6 sin(nt)" nt[ ]xo + yo "2

n1"cos(nt)[ ] ˙ x o +

4sin(nt)" 3nt

n˙ y o

!

z( t) = zocos(nt) +

˙ z o

nsin(nt)

!

˙ z ( t) = "zonsin(nt) + ˙ z

osin(nt)

Page 36: Orbital Mechanics - University Of Marylandspacecraft.ssl.umd.edu/academics/483F04/483L03.orb_… ·  · 2004-09-07Orbital Mechanics Principles of Space Systems Design U N I V E R

Orbital MechanicsPrinciples of Space Systems Design

U N I V E R S I T Y O FMARYLAND

“V-Bar” Approach

Ref: Collins, Meissinger, and Bell, Small Orbit Transfer Vehicle (OTV) for On-Orbit SatelliteServicing and Resupply, 15th USU Small Satellite Conference, 2001

Page 37: Orbital Mechanics - University Of Marylandspacecraft.ssl.umd.edu/academics/483F04/483L03.orb_… ·  · 2004-09-07Orbital Mechanics Principles of Space Systems Design U N I V E R

Orbital MechanicsPrinciples of Space Systems Design

U N I V E R S I T Y O FMARYLAND

“R-Bar” Approach

• Approach from alongthe radius vector (“R-bar”)

• Gravity gradientsdecelerate spacecraftapproach velocity -low contaminationapproach

• Used for Mir, ISSdocking approaches Ref: Collins, Meissinger, and Bell, Small Orbit Transfer

Vehicle (OTV) for On-Orbit Satellite Servicing andResupply, 15th USU Small Satellite Conference, 2001

Page 38: Orbital Mechanics - University Of Marylandspacecraft.ssl.umd.edu/academics/483F04/483L03.orb_… ·  · 2004-09-07Orbital Mechanics Principles of Space Systems Design U N I V E R

Orbital MechanicsPrinciples of Space Systems Design

U N I V E R S I T Y O FMARYLAND

References for Lecture 3

• Wernher von Braun, The Mars ProjectUniversity of Illinois Press, 1962

• William Tyrrell Thomson, Introduction toSpace Dynamics Dover Publications, 1986

• Francis J. Hale, Introduction to SpaceFlight Prentice-Hall, 1994

• William E. Wiesel, Spaceflight DynamicsMacGraw-Hill, 1997

• J. E. Prussing and B. A. Conway, OrbitalMechanics Oxford University Press, 1993