121

OR DIFFUSIONGENERA TED · EFFICIENT ALGORITHMS F OR DIFFUSIONGENERA TED MOTION BY MEAN CUR V A TURE By Stev en J Ruuth BMA TH Univ ersit yof W aterlo o MSc Univ ersit y of British

  • Upload
    others

  • View
    6

  • Download
    0

Embed Size (px)

Citation preview

Page 1: OR DIFFUSIONGENERA TED · EFFICIENT ALGORITHMS F OR DIFFUSIONGENERA TED MOTION BY MEAN CUR V A TURE By Stev en J Ruuth BMA TH Univ ersit yof W aterlo o MSc Univ ersit y of British

EFFICIENT ALGORITHMS FOR DIFFUSION�GENERATED

MOTION BY MEAN CURVATURE

By

Steven J� Ruuth

BMATH� University of Waterloo� ����

MSc� University of British Columbia� ����

a thesis submitted in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

in

the faculty of graduate studies

department of mathematics

and

Institute of Applied Mathematics

We accept this thesis as conforming

to the required standard

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

the university of british columbia

August ����

c� Steven J� Ruuth� ����

Page 2: OR DIFFUSIONGENERA TED · EFFICIENT ALGORITHMS F OR DIFFUSIONGENERA TED MOTION BY MEAN CUR V A TURE By Stev en J Ruuth BMA TH Univ ersit yof W aterlo o MSc Univ ersit y of British

In presenting this thesis in partial fullment of the requirements for an advanced degree at

the University of British Columbia� I agree that the Library shall make it freely available

for reference and study� I further agree that permission for extensive copying of this

thesis for scholarly purposes may be granted by the head of my department or by his

or her representatives� It is understood that copying or publication of this thesis for

nancial gain shall not be allowed without my written permission�

Department of Mathematics

The University of British Columbia

�� Wesbrook Place

Vancouver� Canada

V�T �W

Date�

Page 3: OR DIFFUSIONGENERA TED · EFFICIENT ALGORITHMS F OR DIFFUSIONGENERA TED MOTION BY MEAN CUR V A TURE By Stev en J Ruuth BMA TH Univ ersit yof W aterlo o MSc Univ ersit y of British

Abstract

This thesis considers the problem of simulating the motion of evolving surfaces with a

normal velocity equal to mean curvature plus a constant� Such motions arise in a variety

of applications� A general method for this purpose was proposed by Merriman� Bence

and Osher� and consists of alternately di�using and sharpening the front in a certain

manner� This method �referred to as the MBO�method� naturally handles complicated

topological changes with junctions in several dimensions� However� the usual nite dif�

ference discretization of the method is often exceedingly slow when accurate results are

sought� especially in three spatial dimensions�

We propose a new� spectral discretization of the MBO�method which obtains greatly

improved e�ciency over the usual nite di�erence approach� These e�ciency gains are

obtained� in part� through the use of a quadrature�based renement technique� by in�

tegrating Fourier modes exactly� and by neglecting the contribution of rapidly decaying

solution transients� The resulting method provides a practical tool� not available hitherto�

for accurately treating the motion by mean curvature of complicated surfaces with junc�

tions� Indeed� we present numerical studies which demonstrate that the new algorithm

is often more than ���� times faster than the usual nite di�erence discretization�

New analytic and experimental results are also developed to explain important prop�

erties of the MBO�method such as the order of the approximation error� Extrapolated

algorithms� not possible when using the usual nite di�erence discretization� are proposed

and demonstrated to achieve more accurate results�

We apply our new� spectral method to simulate the motion of a number of three

dimensional surfaces with junctions� and we visualize the results� We also propose and

study a simple extension of our method to a nonlocal curvature model which is impractical

to treat using the previously available nite di�erence discretization�

ii

Page 4: OR DIFFUSIONGENERA TED · EFFICIENT ALGORITHMS F OR DIFFUSIONGENERA TED MOTION BY MEAN CUR V A TURE By Stev en J Ruuth BMA TH Univ ersit yof W aterlo o MSc Univ ersit y of British

Table of Contents

Abstract ii

List of Figures vi

Acknowledgements ix

� Introduction �

��� Curvature�Dependent Motion � � � � � � � � � � � � � � � � � � � � � � � � �

�� Methods for Curvature�Dependent Motion � � � � � � � � � � � � � � � � � �

��� Overview � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� Di�usion�Generated Motion by Mean Curvature Algorithm ��

�� The Two Phase Problem � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

� Multiple Junctions � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

�� Selection of � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

�� Finite Di�erence Discretizations of the MBO�Method � � � � � � � � � � � ��

���� Selection of a Time�Stepping Method � � � � � � � � � � � � � � � � ��

��� Limitations of Finite Di�erence Discretizations � � � � � � � � � � � ��

� A New� Spectral Method �

��� Discretization of the Heat Equation � � � � � � � � � � � � � � � � � � � � � �

�� Calculation of the Fourier Coe�cients � � � � � � � � � � � � � � � � � � � � �

��� Approximation of the Finest Subregions � � � � � � � � � � � � � � � � � � ��

����� Trivial Treatment of the Finest Subregions � � � � � � � � � � � � � ��

iii

Page 5: OR DIFFUSIONGENERA TED · EFFICIENT ALGORITHMS F OR DIFFUSIONGENERA TED MOTION BY MEAN CUR V A TURE By Stev en J Ruuth BMA TH Univ ersit yof W aterlo o MSc Univ ersit y of British

���� Piecewise Linear Approximation for Two�Phase Problems � � � � � ��

����� Piecewise Linear Approximations for Junctions � � � � � � � � � � ��

��� Renement Techniques � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

����� The Original Renement Algorithm � � � � � � � � � � � � � � � � � ��

���� A Method for a Gradual Renement � � � � � � � � � � � � � � � � ��

�� Fast� Transform�Based Algorithms � � � � � � � � � � � � � � � � � � � � � � ��

�� �� Overview � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

�� � The Unequally Spaced Fast Fourier Transform � � � � � � � � � � � �

��� Comparison to the Usual Finite Di�erence Discretization � � � � � � � � � �

Theoretical and Numerical Studies �

��� Smooth Interfaces � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

����� Truncation Error Analysis � � � � � � � � � � � � � � � � � � � � � � ��

���� Extrapolation � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

����� Numerical Experiments � � � � � � � � � � � � � � � � � � � � � � � � ��

�� Nonsmooth Boundaries � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� Singularities in the Solution as Regions Disappear � � � � � � � � � � � � � ��

��� Junctions in Two Dimensions � � � � � � � � � � � � � � � � � � � � � � � � ��

����� Error Analysis � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

���� Numerical Experiments � � � � � � � � � � � � � � � � � � � � � � � � ��

�� Summary � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

� Numerical Experiments and Visualization ��

�� Three Dimensional� Two�Phase Problems � � � � � � � � � � � � � � � � � � �

���� Visualization � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

��� Numerical Experiments � � � � � � � � � � � � � � � � � � � � � � � � ��

� Junctions in Three Dimensions � � � � � � � � � � � � � � � � � � � � � � � ��

iv

Page 6: OR DIFFUSIONGENERA TED · EFFICIENT ALGORITHMS F OR DIFFUSIONGENERA TED MOTION BY MEAN CUR V A TURE By Stev en J Ruuth BMA TH Univ ersit yof W aterlo o MSc Univ ersit y of British

��� Visualization � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

�� Numerical Experiments � � � � � � � � � � � � � � � � � � � � � � � � ��

�� A Nonlocal Model � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

Conclusions �

��� Summary � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

�� Future Research Directions � � � � � � � � � � � � � � � � � � � � � � � � � � ��

Bibliography ���

A An Estimate for the Number of Basis Functions ���

v

Page 7: OR DIFFUSIONGENERA TED · EFFICIENT ALGORITHMS F OR DIFFUSIONGENERA TED MOTION BY MEAN CUR V A TURE By Stev en J Ruuth BMA TH Univ ersit yof W aterlo o MSc Univ ersit y of British

List of Figures

��� A Region Evolving According to Mean Curvature Motion � � � � � � � � �

�� Evolution of Multiple Grains � � � � � � � � � � � � � � � � � � � � � � � � � �

��� A ��state Potts Model � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

�� Initial Motion � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� Characteristic Set � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

�� After a Time� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

�� Sharpened Region � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

� Initial Regions � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

�� Characteristic Sets � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

�� After a Time � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

�� Sharpened Regions � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

�� Final Regions � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� Motion by Mean Curvature Results for Crank�Nicolson at Times� t � � � ��

��� A Smooth Shape with Widely Varying Local Curvatures � � � � � � � � �

�� A Banded� Finite Di�erence Mesh � � � � � � � � � � � � � � � � � � � � � �

��� Sharpening a Shape � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

��� Sharpening a Perturbed Shape � � � � � � � � � � � � � � � � � � � � � � � � �

��� Subdividing the Domain into its Coarsest Subregions � � � � � � � � � � � �

�� Dividing a Subregion � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

��� Subdividing a Square into Triangles � � � � � � � � � � � � � � � � � � � � � ��

��� A Shape Represented by a Triangle � � � � � � � � � � � � � � � � � � � � � ��

vi

Page 8: OR DIFFUSIONGENERA TED · EFFICIENT ALGORITHMS F OR DIFFUSIONGENERA TED MOTION BY MEAN CUR V A TURE By Stev en J Ruuth BMA TH Univ ersit yof W aterlo o MSc Univ ersit y of British

�� A Shape Represented by Triangles � � � � � � � � � � � � � � � � � � � � � � ��

��� Errors Approximating Curved Segments � � � � � � � � � � � � � � � � � � �

��� The Interpolation Step � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� Subdividing a Cube into Tetrahedrons � � � � � � � � � � � � � � � � � � � ��

��� A Shape Approximated by a Tetrahedron � � � � � � � � � � � � � � � � � � ��

���� A Shape Approximated by Tetrahedrons � � � � � � � � � � � � � � � � � � ��

���� A Shape Represented as a Di�erence � � � � � � � � � � � � � � � � � � � � ��

��� Junction for which all Corner Phases Di�er � � � � � � � � � � � � � � � � � �

���� Two Phases Represented at Corners � � � � � � � � � � � � � � � � � � � � � ��

���� Renement of a Smooth Region � � � � � � � � � � � � � � � � � � � � � � � �

��� Original Renement can miss Slivers of the Region � � � � � � � � � � � � �

���� A Neglected Section � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

���� A Problem with Sharp Corners � � � � � � � � � � � � � � � � � � � � � � � ��

���� Renement Methods for Corners � � � � � � � � � � � � � � � � � � � � � � � ��

���� Gradual Renement Captures the Entire Region � � � � � � � � � � � � � � �

��� Rening a Cell � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

��� A Smooth Interface at Time� t � � � � � � � � � � � � � � � � � � � � � � � � �

��� The Initial Interface � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

�� Extrapolated� Semi�Discrete Result � � � � � � � � � � � � � � � � � � � � � ��

��� Initially Nonsmooth Interface at Times� t � � � � � � � � � � � � � � � � � � ��

��� The Initial Junction � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

�� A Smooth Three�Phase Problem � � � � � � � � � � � � � � � � � � � � � � � ��

��� Evolution of a Junction Through a Singularity � � � � � � � � � � � � � � � ��

�� From Q the Entire Curve is Visible � � � � � � � � � � � � � � � � � � � � � ��

� A Matrix Representation of the Surface � � � � � � � � � � � � � � � � � � � ��

vii

Page 9: OR DIFFUSIONGENERA TED · EFFICIENT ALGORITHMS F OR DIFFUSIONGENERA TED MOTION BY MEAN CUR V A TURE By Stev en J Ruuth BMA TH Univ ersit yof W aterlo o MSc Univ ersit y of British

�� Splitting a Shape into Easily Parameterized Portions � � � � � � � � � � � �

�� Piecewise Constant and Gouraud Shading of the Surface � � � � � � � � � �

� Thin�Stemmed Barbell Moving by Mean Curvature Motion � � � � � � � � ��

�� Thick�Stemmed Barbell Moving by Mean Curvature Motion � � � � � � � ��

�� Composition of a Junction � � � � � � � � � � � � � � � � � � � � � � � � � � ��

�� Three Phase Example Moving by Mean Curvature Motion � � � � � � � � �

�� Four Phase Example Moving by Mean Curvature Motion � � � � � � � � � ��

��� A Test Problem for the Nonlocal Curvature Algorithm � � � � � � � � � � �

��� Nonlocal Model Which Preserves Area � � � � � � � � � � � � � � � � � � � ��

A�� Contributing Rectangles � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

viii

Page 10: OR DIFFUSIONGENERA TED · EFFICIENT ALGORITHMS F OR DIFFUSIONGENERA TED MOTION BY MEAN CUR V A TURE By Stev en J Ruuth BMA TH Univ ersit yof W aterlo o MSc Univ ersit y of British

Acknowledgements

First and foremost� many thanks to my supervisors Dr� Uri Ascher and Dr� Brian Wetton

for their many helpful suggestions while working on this thesis�

I would also like to thank Dr� Leslie Greengard for suggesting the use of the un�

equally spaced fast Fourier transform and NSERC for nancially supporting me during

my graduate work�

ix

Page 11: OR DIFFUSIONGENERA TED · EFFICIENT ALGORITHMS F OR DIFFUSIONGENERA TED MOTION BY MEAN CUR V A TURE By Stev en J Ruuth BMA TH Univ ersit yof W aterlo o MSc Univ ersit y of British

Chapter �

Introduction

��� Curvature�Dependent Motion

The topic of curve and surface evolution has recently generated tremendous interest

in the mathematical sciences community and in several areas of application such as in

grain growth and image enhancement� The computation of such motion and its rigorous

justication have proved to be di�cult tasks� This thesis considers the numerical approx�

imation of curvature�dependent motion of surfaces with multiple phases� In particular�

we study and develop fast methods for the case where the normal velocity� vn� of a surface

is given by the sum of its principal curvatures �or mean curvature�� ��

vn��x� t� � ���x� t�� �����

We shall refer to this type of motion as motion by mean curvature� As illustrated for

the two dimensional region of Figure ���� such a motion causes the most highly curved

portions of a curve to smooth most rapidly� Indeed� any simple� closed curve in the

plane shrinks to a small circle and disappears� regardless of the initial shape ���� ���� For

higher dimensional shapes� the most curved portions also move most quickly� however�

topological merging and breaking is also possible ����

Certain idealized models for grain growth t into the framework of mean curvature

motion� For example� when a liquid metal solidies� crystallization begins in many

locations with random orientations� As crystals grow� grains with di�erent orientations

meet� to form interfaces� To a good approximation� the surface energy of such a material

Page 12: OR DIFFUSIONGENERA TED · EFFICIENT ALGORITHMS F OR DIFFUSIONGENERA TED MOTION BY MEAN CUR V A TURE By Stev en J Ruuth BMA TH Univ ersit yof W aterlo o MSc Univ ersit y of British

Chapter �� Introduction

Figure ���� A Region Evolving According to Mean Curvature Motion

Initial Motion Later Region �Solid�

is isotropic or independent of the orientation of the boundary of each grain ���� By

annealing the metal� it becomes warmed so that boundary atoms can change their phase�

This produces an interface motion proportional to mean curvature motion ���� �� ���

In the interesting case where three or more grain orientations are present� junctions

of moving surfaces can occur� This is illustrated in Figure �� for the case of three

grains� Although these important problems have been the subject of some study in two

dimensions �e�g�� ���� ����� little is known about their numerical solution� especially in

three dimensions�

An extension of the mean curvature model that we shall consider arises when the

thermodynamic driving force of the interface motion depends on the volume phase change

�i�e� bulk e�ects� as well as surface e�ects ����� In this case� the normal velocity of the

surface is given by its mean curvature plus a constant�

vn��x� t� � ���x� t� � c�t�� ����

We shall refer to this type of motion as a�ne velocity front motion�

Curve evolution has also been studied extensively for image analysis and the enhance�

ment of planar shape ���� �� �� ��� ��� ��� Important application areas for this subject

include noise suppression� image recognition and image interpretation� Mean curvature

Page 13: OR DIFFUSIONGENERA TED · EFFICIENT ALGORITHMS F OR DIFFUSIONGENERA TED MOTION BY MEAN CUR V A TURE By Stev en J Ruuth BMA TH Univ ersit yof W aterlo o MSc Univ ersit y of British

Chapter �� Introduction �

Figure ��� Evolution of Multiple Grains

������������������������������������������������������������������

���������������������������������������������������������������

������������������������������������������

������������������������������

����������������������������������������������������������������������������������������

������������������������������������

������������������������

��������������������������������������������������������������������������������������������������������������

������������������

����������

�������������������������������������������������������������������������������������������������������������������������

������������

motion and a�ne motion are among the many curve evolution models that have been

proposed for these applications� For example� a�ne velocity motion has been used to

produce topological and other shape changes for characterizing shapes ���� For other

applications of these motions� see ��� ��� and references therein�

Another important model that we will be considering ts into the framework of a�ne

motion ���� and occurs when

c�t� � ��av�t�

where �av�t� is the average mean curvature over the surface at time t� Such motion

preserves phase volumes �or areas in two dimensions� and occurs as a limit of a nonlocal

model for binary alloys � ��� In the context of image enhancement� this nonlocal motion

has also been suggested as a possible smoothing which preserves the area of shapes �����

Theoretical aspects of mean curvature motion have also been studied extensively �see�

e�g�� ���� ����� Some areas of computational interest include the approximation of bifurca�

tion values � �� and the determination of self�similar solutions ��� under curvature �ow�

Computations of minimal surfaces have also been carried out by evolving surfaces accord�

ing to mean curvature motion ��� ���� Such surfaces nd application in numerous areas

��� including soap lm shapes� relativity theory� medical technology and architecture�

Other applications for a�ne motion occur in certain �ame propagation problems �e�g��

Page 14: OR DIFFUSIONGENERA TED · EFFICIENT ALGORITHMS F OR DIFFUSIONGENERA TED MOTION BY MEAN CUR V A TURE By Stev en J Ruuth BMA TH Univ ersit yof W aterlo o MSc Univ ersit y of British

Chapter �� Introduction �

grassre �ow� and automatic grid generation� See � �� ��� ��� for further details�

��� Methods for Curvature�Dependent Motion

To study the phenomena outlined in the previous section� several numerical methods

have been developed� Most of these can be divided into one of two groups� direct� or

front tracking methods� where the motion of the interface is explicitly considered� and

indirect methods� where the interface is given implicitly as the level set of some function�

Several direct or front tracking methods have been proposed� In ����� a direct dis�

cretization of the evolution equation for each interface is used to produce curvature�

dependent motion for junctions in two dimensions� A number of other methods based

on heuristic arguments have also been proposed for two dimensional junctions �see� e�g��

��� ����� These methods are typically quite e�cient for curves that never cross because

they explicitly approximate the motion of the interface rather than a level set of some

higher dimensional function� When line or planar segments interact� however� decisions

must be made as to whether to insert or delete segments� Because very complicated topo�

logical changes can occur in three dimensions� implementation of front tracking methods

is often impractical in more than two dimensions�

Another direct method� Brakke�s method ���� minimizes surface energy to produce a

variety of motions including motion by mean curvature� For three dimensional problems�

however� this method requires user intervention when topological changes occur ���� Also�

there is no proof that the method actually approximates motion by mean curvature �����

although it is known that the Allen�Cahn equation �see below� yields Brakke�s motion

in the limit for two�phase problems �����

Phase eld methods �see ���� ��� and references therein� give the interface as a level

Page 15: OR DIFFUSIONGENERA TED · EFFICIENT ALGORITHMS F OR DIFFUSIONGENERA TED MOTION BY MEAN CUR V A TURE By Stev en J Ruuth BMA TH Univ ersit yof W aterlo o MSc Univ ersit y of British

Chapter �� Introduction

set of a reaction�di�usion equation such as the Allen�Cahn equation�

ut � ��u� �

�f ��u��

Here f � is the derivative of a double well potential �e�g�� f ��u� � u�u� ���u� ���� and �

is a small parameter� For the two�phase problem� it has been proven that certain phase

eld models produce mean curvature motion when � � � � �� �� �� ��� �Indeed� an

important motivation for studying mean curvature motion is that it arises as a limit of

certain phase eld models�� By letting � be proportional to rujruj � these methods provide a

means of handling anisotropy �albeit in an ad hoc fashion� ����� Junctions have also been

treated by considering a vector�valued u ���� ��� Unfortunately� phase eld methods are

often inherently too expensive for practical computation ���� because they represent the

interface as an internal layer and thus require an extremely ne mesh �at least locally�

to resolve this layer�

Monte�Carlo methods for Q�state Potts models have also been used to simulate

curvature�dependent motion with junctions �see� e�g�� ������ The Q�state Potts model

assigns an integer state between � and Q to each point on a lattice to form regions �see

Figure ����� The energy of each lattice site is taken to be a weighted average of the number

of neighboring sites which are at a di�erent state� To evolve regions� a random site and

state are chosen� The selected site is set to the new state with a probability depending

on temperature if the energy increases� and with probability � otherwise� It is unclear�

however� what type of continuous motion this stochastic model approximates ����� This

method also introduces unwanted anisotropy into the motion due to the spatial mesh

����� Furthermore� our numerical experiments indicate that these statistical methods are

typically too slow to nd accurate approximations to mean curvature motion�

The Hamilton�Jacobi level set method of Osher and Sethian � �� is an appropriate

Page 16: OR DIFFUSIONGENERA TED · EFFICIENT ALGORITHMS F OR DIFFUSIONGENERA TED MOTION BY MEAN CUR V A TURE By Stev en J Ruuth BMA TH Univ ersit yof W aterlo o MSc Univ ersit y of British

Chapter �� Introduction �

Figure ���� A ��state Potts Model

1 1 1 1 1 1 3 3 3 3 3 3

1 1 1 1 1 1 3 3 3 3 3 3

1 1 1 1 1 3 3 3 3 3 3 3

1 1 1 1 3 3 3 3 3 3 3 3

1 1 1 1 2 3 3 3 3 3 3 3

1 1 1 2 2 2 3 3 3 3 3 3

1 1 1 2 2 2 3 3 3 3 3 3

1 1 2 2 2 2 2 2 3 3 3 3

1 2 2 2 2 2 2 2 2 2 3 3

2 2 2 2 2 2 2 2 2 2 2 2�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

choice for a wide variety of two�phase problems� This method naturally handles topo�

logical merging and breaking in any number of spatial dimensions� To carry out the

Osher�Sethian method for an initial surface ��� a continuous function

�� � �n � �

is selected such that

�� � fx � �n � ���x� � �g�

By solving

�t � F ���jr�j

��x� �� � ���x�

for an arbitrary function of curvature� F ���� we obtain a surface

��t� � fx � ��x� t� � �g

which moves with a normal velocity F ���� It has been rigorously proven that this method

converges for the case of mean curvature motion ���� Furthermore� by assigning a func�

tion� �i� to each region and evolving according to the method an extension to problems

with junctions is possible ����� This coupled Osher�Sethian approach allows for the

Page 17: OR DIFFUSIONGENERA TED · EFFICIENT ALGORITHMS F OR DIFFUSIONGENERA TED MOTION BY MEAN CUR V A TURE By Stev en J Ruuth BMA TH Univ ersit yof W aterlo o MSc Univ ersit y of British

Chapter �� Introduction �

specication of arbitrary velocities on each front� Unfortunately� this method can be

excessively slow in three dimensions� in part because each �i must be set to the signed

distance to the interface at each step of the method�

A very recent variational level set approach ���� has also been proposed for treating

a�ne velocity motion� This method uses the level set formulation of Osher and Sethian

� �� to arrive at an algorithm for a theoretical variational problem posed in � ��� This

approach is reported to treat problems exhibiting topological changes with junctions in

three dimensions ����� The usefulness of the method is currently limited� however� by a

time�stepping restriction similar to that associated with an explicit treatment of the heat

equation� Such a restriction can produce an ine�cient method for mean curvature �ows

because very small time steps must be used whenever a ne spatial mesh is applied�

A method based on the model of di�usion�dependent motion of level sets has recently

been proposed by Merriman� Bence and Osher ���� ���� We shall refer to this method as

the MBO�method �cf� � �� although the name DGCDM�algorithm has also been used

����� The specics of this method are elaborated upon in subsequent chapters� so will

not be repeated here� This method naturally handles complicated topological changes

with junctions in several dimensions� It also produces accurate approximations to mean

curvature �ow more e�ciently than phase eld models� the recent variational approach

or Monte�Carlo methods� Thus� this method is often the only practical choice for three

dimensional problems involving junctions� Even so� the method is often exceedingly

slow for three dimensional and a�ne velocity motions� Similarly to all other methods

for multiple�phase problems� no convergence results are known for the MBO�method�

However� � � �� do give rigorous convergence proofs for two�phase mean curvature motion

and �� � gives some further asymptotic results�

In this thesis� we describe a fast� new algorithm which improves upon the speed of the

usual discretization of the MBO�method� often by a factor of a thousand or more� We also

Page 18: OR DIFFUSIONGENERA TED · EFFICIENT ALGORITHMS F OR DIFFUSIONGENERA TED MOTION BY MEAN CUR V A TURE By Stev en J Ruuth BMA TH Univ ersit yof W aterlo o MSc Univ ersit y of British

Chapter �� Introduction �

develop analytic and experimental results to explain important properties of the method�

such as the order of the approximation error and its enhancement by extrapolation�

Finally� the improved utility of the new algorithm is demonstrated by approximating

a number of two and three dimensional motions including a nonlocal curvature model�

The resulting method provides a practical tool� not available hitherto� for accurately

approximating the motion by mean curvature of complicated surfaces with junctions�

��� Overview

An outline of the rest of the thesis follows�

In Chapter � algorithms describing the MBO�method for two phase and multiple

phase problems are given� This is followed by a discussion on how to select the step

size� � � of the method� For the case of the nite di�erence discretizations originally

proposed ����� the selection of an appropriate time�stepping scheme is discussed and

several limitations of the method are identied�

In Chapter �� a new� spectral method for the realization of the MBO�method is pro�

posed and described in detail� A spatial discretization is given and an e�cient quadrature

for calculating the corresponding Fourier coe�cients is provided� This quadrature ob�

tains accurate approximations to the front using a piecewise linear approximation to the

surface and a gradual renement technique� Unequally spaced transform methods for

the rapid evaluation of the Fourier coe�cients are also applied� This chapter concludes

with a comparison of the proposed method and the usual nite di�erence approach� In

particular� numerical experiments are presented to illustrate the e�ciency gains which

arise from our method�

In Chapter �� the order of accuracy of the MBO�method is studied for a variety of

two dimensional shapes which move according to mean curvature motion� At rst� local

Page 19: OR DIFFUSIONGENERA TED · EFFICIENT ALGORITHMS F OR DIFFUSIONGENERA TED MOTION BY MEAN CUR V A TURE By Stev en J Ruuth BMA TH Univ ersit yof W aterlo o MSc Univ ersit y of British

Chapter �� Introduction �

error expansions and numerical studies are carried out to demonstrate that the method

produces a rst order error in � for smooth� two�phase problems� Next� numerical stud�

ies for nonsmooth corners and for singularities in the solution are discussed� The error

here appears to be O�� log�� ��� For three�phase problems� an expansion is derived which

suggests that junction angles are stable and remain within O�p� � of the correct cong�

uration� Numerical studies are also given which conrm that an O�p�� error arises for

junctions� Throughout this chapter� extrapolated algorithms are proposed and demon�

strated to achieve more accurate results� While the discussion in Chapter � is independent

of the discretization method used to implement the MBO�method� the spectral method

of Chapter � was found crucial to realize the claimed errors at an a�ordable cost�

In Chapter � the new method for discretizing the MBO�method is applied to a

number of three dimensional surfaces� In particular� two�phase barbell�shaped regions

are evolved according to mean curvature motion and the results are visualized� Mul�

tiple phase motions are also approximated for examples involving three and four�phase

junctions in three dimensions� A simple extension of the MBO�method to a nonlocal

curvature model is also proposed and studied�

Overall� the results are rather encouraging� Conclusions and suggestions of directions

for future research are presented in Chapter ��

Page 20: OR DIFFUSIONGENERA TED · EFFICIENT ALGORITHMS F OR DIFFUSIONGENERA TED MOTION BY MEAN CUR V A TURE By Stev en J Ruuth BMA TH Univ ersit yof W aterlo o MSc Univ ersit y of British

Chapter �

Di�usion�Generated Motion by Mean Curvature Algorithm

An algorithm for following interfaces propagating according to mean curvature mo�

tion ����� was introduced in a paper by Merriman� Bence and Osher ���� ���� This

algorithm is one of the only methods of treating both topological changes and junc�

tions� This chapter describes the method for the two phase and multiple phase problems

and discusses some serious limitations of the usual nite di�erence discretization of the

method� Subsequent chapters discuss a new method which greatly improves upon the

usual nite di�erence approach�

In this and later chapters� we will make use of a simplied version of the Von

Neumann�Mullins parabolic law � ��� Specically� we will use the fact that the area�

A� enclosed by a simple curve which moves by mean curvature motion obeys

dA

dt� ��� ����

��� The Two Phase Problem

Suppose we wish to follow an interface moving by mean curvature motion �see� e�g�� Fig�

ure ���� To carry out this motion over a domain� D� the MBO�method uses a di�usion�

generated motion�

MBO�Method �Two Regions�

BEGIN

��� Set U equal to the characteristic function for the initial region�

��

Page 21: OR DIFFUSIONGENERA TED · EFFICIENT ALGORITHMS F OR DIFFUSIONGENERA TED MOTION BY MEAN CUR V A TURE By Stev en J Ruuth BMA TH Univ ersit yof W aterlo o MSc Univ ersit y of British

Chapter �� Di�usion�Generated Motion by Mean Curvature Algorithm ��

i�e�� set U��x� �� �

�����

� if �x belongs to the initial region

� otherwise�

REPEAT for all steps� j� from � to the nal step�

BEGIN

�� Apply di�usion to U for some time� � �

i�e�� nd U��x� j� � using

�����

Ut � �U�

�U�n

� � on �Dstarting from U��x� �j � ��� ��

��� �Sharpen the di�used region by setting

U��x� j� � �

�����

� if U��x� j� � ��

� otherwise�

END

END

For any time t� the level set f�x � U��x� t� � ��g gives the location of the interface�

In step �� of the method� zero �ux conditions

�U

�n� � on �D ����

are selected� These boundary conditions cause the curve to meet the boundary at right

angles� as is appropriate for the case of grain growth ����� It has also been argued that

these boundary conditions ���� are the most natural for image processing since they do

not impose any value at the boundary ��� Although our experiments will concentrate on

the important zero �ux case� other types of boundary conditions are sometimes consid�

ered� In particular� Dirichlet conditions have been used for computing minimal surfaces

����

Page 22: OR DIFFUSIONGENERA TED · EFFICIENT ALGORITHMS F OR DIFFUSIONGENERA TED MOTION BY MEAN CUR V A TURE By Stev en J Ruuth BMA TH Univ ersit yof W aterlo o MSc Univ ersit y of British

Chapter �� Di�usion�Generated Motion by Mean Curvature Algorithm �

Figure ��� Initial Motion

Figure �� Characteristic Set

To illustrate this algorithm for the problem of Figure ��� a grey�scaled representation

of U after each of the steps ��� to ��� is given below�

After step ��� U � � for the black region of Figure � and U � � elsewhere�

�� U ranges between � and � as represented by the greyscale

image� of Figure ���

��� U � � for the black region of Figure �� and U � � elsewhere�

An extension to the case of a�ne velocity front motion ���� is also possible� To

obtain such a motion� we track the level set

� �

c�t�

r�

instead of the usual level set of ���� ��

�The �ringing� in Figure ��� and others is an artifact which arises from printing� These features arenot present in the original grayscale images�

Page 23: OR DIFFUSIONGENERA TED · EFFICIENT ALGORITHMS F OR DIFFUSIONGENERA TED MOTION BY MEAN CUR V A TURE By Stev en J Ruuth BMA TH Univ ersit yof W aterlo o MSc Univ ersit y of British

Chapter �� Di�usion�Generated Motion by Mean Curvature Algorithm ��

Figure ��� After a Time� �

Figure ��� Sharpened Region

��� Multiple Junctions

An extension of the previous method to multiple phases has also been made ����� To

treat such problems� the characteristic function for each region is di�used for a time � �

as is outlined below for the case of �������� degree junction angles��

MBO�Method �Multiple �r� Regions�

BEGIN

��� For i � �� � � � � r

Set Ui��x� �� equal to the characteristic function for the ith region�

REPEAT for all steps� j� from � to the nal step�

BEGIN

�See �� ��� for an extension to nonsymmetric junction angles�

Page 24: OR DIFFUSIONGENERA TED · EFFICIENT ALGORITHMS F OR DIFFUSIONGENERA TED MOTION BY MEAN CUR V A TURE By Stev en J Ruuth BMA TH Univ ersit yof W aterlo o MSc Univ ersit y of British

Chapter �� Di�usion�Generated Motion by Mean Curvature Algorithm ��

�� For i � �� � � � � r� starting from Ui��x� �j � ��� ��

Apply di�usion to Ui for some time slice� � �

i�e�� nd Ui��x� j� � using

�����

�Ui�t

� �Ui�

�Ui�n

� � on �D���� �Sharpen the di�used regions by setting the largest Ui equal to �

and the others equal to � for each point on the domain�

For i � �� � � � � r

Set Ui��x� j� � �

�����

� if �x � f�y � D � Ui��y� j� � � Uj��y� j� �� j � �� � � � � rg� otherwise

END

END

For any time t� the interfaces are given by

�i�������r

f�x � Ui��x� t� � maxj ��ifUj��x� t�gg� �� �

To illustrate this algorithm for the problem of Figure � � a grey�scaled representation

of Ui after each of the steps ��� to ��� is given below�

After step ��� Ui � � for the black regions of Figure �� and Ui � � elsewhere�

�� Ui ranges between � and � as represented by the greyscale

images of Figure ���

��� Ui � � for the black regions of Figure �� and Ui � � elsewhere�

Reconstruction of the interfaces by �� � then gives the nal regions displayed in Fig�

ure ���

Page 25: OR DIFFUSIONGENERA TED · EFFICIENT ALGORITHMS F OR DIFFUSIONGENERA TED MOTION BY MEAN CUR V A TURE By Stev en J Ruuth BMA TH Univ ersit yof W aterlo o MSc Univ ersit y of British

Chapter �� Di�usion�Generated Motion by Mean Curvature Algorithm �

Figure � � Initial Regions

Figure ��� Characteristic Sets

U� U� U�

Figure ��� After a Time �

U� U� U�

Figure ��� Sharpened Regions

U� U� U�

Page 26: OR DIFFUSIONGENERA TED · EFFICIENT ALGORITHMS F OR DIFFUSIONGENERA TED MOTION BY MEAN CUR V A TURE By Stev en J Ruuth BMA TH Univ ersit yof W aterlo o MSc Univ ersit y of British

Chapter �� Di�usion�Generated Motion by Mean Curvature Algorithm ��

Figure ��� Final Regions

��� Selection of �

To accurately resolve the motion of features of the interface� it is also important to select

� appropriately� In particular� � should be small enough so that di�usive information

does not travel a distance comparable to the local radius of curvature� ��

�see ������

By Equation ����� it is straightforward to show that a shrinking circular interface of

curvature� �� disappears at time t � ����

� This gives a restriction on � �

p� � �

�� ����

Di�usion must also proceed long enough so that the motion of the interface over

each step can be resolved by the spatial discretization� For the case of a nite di�erence

discretization� the level set U � ��must move at least one grid point� otherwise the

interface remains stationary� This produces the restriction that

�speed of motion of the interface�� � grid spacing

Letting � be the curvature and h the grid spacing� we arrive at a second restriction for

the nite di�erence approach�

�� h� ����

As we shall see� the restriction ���� does not appear for the new� spectral method that

we propose in Chapter ��

Page 27: OR DIFFUSIONGENERA TED · EFFICIENT ALGORITHMS F OR DIFFUSIONGENERA TED MOTION BY MEAN CUR V A TURE By Stev en J Ruuth BMA TH Univ ersit yof W aterlo o MSc Univ ersit y of British

Chapter �� Di�usion�Generated Motion by Mean Curvature Algorithm ��

�� Finite Di�erence Discretizations of the MBO�Method

We now discuss several aspects of the usual nite di�erence approach for simulating the

MBO�method� In particular� this section considers how to select a time�stepping scheme

and outlines several limitations of nite di�erence discretizations of the MBO�method�

���� Selection of a Time�Stepping Method

Explicit time�stepping for the di�usive step of the MBO�method is very expensive because

of the usual stability time step restriction arising from the heat equation� This stability

time step restriction can be overcome by using implicit time�stepping schemes�

When applied to the semi�discrete heat equation�

!�U � �h�U

some implicit methods� such as backward Euler�

�Un�� � �Un

�t� �h

�Un��

give a strong decay of high frequency error modes� Other methods� such as Crank�

Nicolson��Un�� � �Un

�t� �h

�� �Un�� � �Un

�A

and ADI methods ���� give a very weak decay of these error modes ��� ���� After the

sharpening step of the MBO�method� the solution is discontinuous� Because high fre�

quency modes make a very important contribution to such a result� it is essential to use

a time�stepping scheme which produces appropriate damping �i�e�� strong damping� of

these components�

To illustrate this idea� we shall consider the motion by mean curvature of a shrinking

circular interface with initial radius �� � By Equation ����� the exact solution of this

Page 28: OR DIFFUSIONGENERA TED · EFFICIENT ALGORITHMS F OR DIFFUSIONGENERA TED MOTION BY MEAN CUR V A TURE By Stev en J Ruuth BMA TH Univ ersit yof W aterlo o MSc Univ ersit y of British

Chapter �� Di�usion�Generated Motion by Mean Curvature Algorithm ��

problem at time t is a circle of radiusq����

� � t� Using a nite di�erence simulation

of the MBO�method� this circular interface was evolved to time t � ���� The spatial

discretization was carried out using the standard �point Laplacian with grid spacing

h � � �� For the time discretization� both backward Euler and Crank�Nicolson were

considered using a time step� �t � ����� � The value of � was chosen to be a multiple

of �t such that

� �

��

��� t

Because the solution to this problem at time t is a circle of radiusq����

� � t� it is

easy to show that this choice satises both restrictions ���� and ����� For general

problems� however� an appropriate value of � is di�cult or impossible to determine using

Equations ���� and �����

In Figure ���� numerical results are given for Crank�Nicolson at various times� t�

These results demonstrate that high frequency error modes can linger on to produce

disastrous results when a weakly damping time�stepping scheme such a Crank�Nicolson

is used� Application of the strongly damping backward Euler� however� gives the cor�

rect phase areas to within �"� This simple time�stepping technique is often adequate

for di�usion�generated motion by mean curvature because other� larger sources of error

dominate �see Chapter ���

���� Limitations of Finite Di�erence Discretizations

We have seen from the previous section that there are restrictions on our choice of � and

h for nite di�erence discretizations of the MBO�method� To produce an accurate result�

� should be small enough �see Equation ����� so that di�usive information does not

travel a distance on the order of the local radius of curvature� Once a su�ciently small

� is selected� the mesh spacing� h� must be chosen small enough �see Equation ����� so

Page 29: OR DIFFUSIONGENERA TED · EFFICIENT ALGORITHMS F OR DIFFUSIONGENERA TED MOTION BY MEAN CUR V A TURE By Stev en J Ruuth BMA TH Univ ersit yof W aterlo o MSc Univ ersit y of British

Chapter �� Di�usion�Generated Motion by Mean Curvature Algorithm ��

Figure ���� Motion by Mean Curvature Results for Crank�Nicolson at Times� t

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

t � ���� t � �����

t � ����� t � ����

Page 30: OR DIFFUSIONGENERA TED · EFFICIENT ALGORITHMS F OR DIFFUSIONGENERA TED MOTION BY MEAN CUR V A TURE By Stev en J Ruuth BMA TH Univ ersit yof W aterlo o MSc Univ ersit y of British

Chapter �� Di�usion�Generated Motion by Mean Curvature Algorithm �

that the level set moves at least one grid point� otherwise the sharpening step leaves the

front stationary�

Since the MBO�method does not explicitly evaluate curvature� we would prefer to

select � and h without using Equations ���� and ����� One simple method for adap�

tively choosing � for a given mesh� is to set � to a multiple of the time taken for the

level set to move one grid point� Such a choice ensures that the front propagates and

produces � �values which are roughly inversely proportional to the maximum speed of

propagation of the front� Unfortunately� numerical tests indicate that an appropriate

choice of the multiple is not always possible because it depends on factors such as the

local curvature of the interface and the local mesh spacing� Thus� this adaptive method

is often inappropriate for nding accurate results�

Satisfying the restriction ���� can be computationally impractical even for smooth�

two dimensional problems� Consider� for example� the motion by mean curvature of the

boundary of the spiral region given in Figure ���� �The curvature�dependent motion of

similar shapes has been considered in biological models ������ Since the local curvature

of the boundary of this problem varies tremendously� it is impractical to satisfy ����

everywhere using a uniform mesh�

To achieve a more e�cient nite di�erence algorithm� one might consider discretizing

the MBO�method using a local mesh renement at the level of the PDE� However� car�

rying out local mesh renement is rather involved for level set methods when curvature

terms arise �see ������ An alternative approach is to place a narrow band of grid points

around the front �cf� ����� Even this optimized� nite di�erence approach can lead to a

prohibitive number of operations per step when an accurate solution is sought�

For example� consider the motion by mean curvature of a smooth curve� For such a

curve� each step of the MBO�method produces an O�� �� error in the position of the front

�see Section ������� To preserve the overall accuracy of the method� grid points must be

Page 31: OR DIFFUSIONGENERA TED · EFFICIENT ALGORITHMS F OR DIFFUSIONGENERA TED MOTION BY MEAN CUR V A TURE By Stev en J Ruuth BMA TH Univ ersit yof W aterlo o MSc Univ ersit y of British

Chapter �� Di�usion�Generated Motion by Mean Curvature Algorithm �

at most a distance O�� �� apart since each step produces an error which is comparable to

the mesh spacing� Noting that the front travels a distance O�� � per step of the method

�see Section ������� it is clear that a minimum of O�

���

�grid points are needed to safely

band a curve �see� e�g�� Figure ���� Thus� a minimum of O�

���

�operations per step

are required to preserve the overall accuracy of the method� which is often prohibitively

expensive when accurate results are sought�

A further limitation of the nite di�erence approach is that the error is not regular�

Specically� very small di�erences in the position of the level set �# before sharpening

can produce jumps in the front location after sharpening� This type of error is unde�

sirable because it makes the construction of higher order accurate� extrapolated results

impractical� Figures ��� and ��� illustrate how a small change in the position of the

level set �# can lead to a jump in the front location after sharpening� �We shall see in

the next two chapters that our proposed method essentially eliminates the spatial error

to allow for higher order accurate extrapolations in � ��

To avoid the limitations outlined in this section� we introduce a new� spectral method

for realizing the MBO�method in the next chapter�

Page 32: OR DIFFUSIONGENERA TED · EFFICIENT ALGORITHMS F OR DIFFUSIONGENERA TED MOTION BY MEAN CUR V A TURE By Stev en J Ruuth BMA TH Univ ersit yof W aterlo o MSc Univ ersit y of British

Chapter �� Di�usion�Generated Motion by Mean Curvature Algorithm

Figure ���� A Smooth Shape with Widely Varying Local Curvatures

Figure ��� A Banded� Finite Di�erence Mesh

������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

Ο(τ )2

(τ)Ο

Ο(τ )2

Page 33: OR DIFFUSIONGENERA TED · EFFICIENT ALGORITHMS F OR DIFFUSIONGENERA TED MOTION BY MEAN CUR V A TURE By Stev en J Ruuth BMA TH Univ ersit yof W aterlo o MSc Univ ersit y of British

Chapter �� Di�usion�Generated Motion by Mean Curvature Algorithm �

Figure ���� Sharpening a Shape

�������������������������������������������������������������������������������������������

+

+

+

+

+

+

+

++

+ + +

+ + +

+++ +

+

+

+

+

+ +

+

+

+

+

+ +

+

+

+

+

+

Sharpening

o

o

o

o

o

o

o

o

o

o

o o

o

o

o

o

o

o

�������������������������������������������������������������������������������

.........

......

...

Figure ���� Sharpening a Perturbed Shape

�������������������������������������������������������������������������������������������

+

+

+

+

+

+

+

++

+ + +

+ + +

+++ +

+

+

+

+

+ +

+

+

+

+

+ +

+

+

+

+

+

Sharpening

o

o

o

o

o

o

o

o

o

o

o o

o

o

o

o

o

o

�������������������������������������������������������������������������������

o

o

................

Page 34: OR DIFFUSIONGENERA TED · EFFICIENT ALGORITHMS F OR DIFFUSIONGENERA TED MOTION BY MEAN CUR V A TURE By Stev en J Ruuth BMA TH Univ ersit yof W aterlo o MSc Univ ersit y of British

Chapter �

A New� Spectral Method

As we shall see later in this chapter� accurate computation of solutions using the usual

nite di�erence discretization of the MBO�method can be expensive� even for simple two

dimensional problems� Since we are mainly interested in three dimensional problems

or problems involving more than two phases� a faster method is desired� This chapter

describes a new� spectral method for realizing the MBO�method which is typically much

faster than the usual nite di�erence approach�

For notational simplicity� the algorithm focuses on the two dimensional case over the

domain� D � ��� �� � ��� ��� Certain extensions to three spatial dimensions and more

phases are also discussed�

��� Discretization of the Heat Equation

As we have seen in Section ��� carrying out di�usion�generated motion bymean curvature

requires us to solve the heat equation

ut � �u� �����

�u

�n� � on �D

repeatedly over time intervals of �possibly variable� length � � starting from the charac�

teristic function of the region to be followed� Over any of these time intervals� u may be

Page 35: OR DIFFUSIONGENERA TED · EFFICIENT ALGORITHMS F OR DIFFUSIONGENERA TED MOTION BY MEAN CUR V A TURE By Stev en J Ruuth BMA TH Univ ersit yof W aterlo o MSc Univ ersit y of British

Chapter �� A New� Spectral Method

approximated by the Fourier cosine tensor product�

U�x� y� t� �n��Xi�j��

dij�t� cos��ix� cos��jy� �����

because zero �ux boundary conditions are considered� Substitution of ����� into ������

then gives

U�x� y� t� �n��Xi�j��

cij exp�����i� � j���t� tstart�� cos��ix� cos��jy� ������

for tstart � t � tstart � � � where cij � dij�tstart� and tstart is the time when the current

interval starts�

One might expect that a Fourier spectral approximation for u would be unwise because

u is initially discontinuous at interfaces� We are only interested in the solution after a

time � � however� After a su�ciently large time � � high frequency modes have dissipated�

Since the problem is linear� di�erent modes do not interact �they are eigenfunctions� and

thus there is never a need to approximate high frequency modes �not even near tstart�

when high frequency modes make an important contribution to the solution�� For this

reason� an accurate approximation to ����� at time � can be obtained using far fewer

basis functions than might otherwise might be expected� Indeed� Appendix � shows that

for smooth problems in two dimensions� selecting the number of Fourier modes in each

direction to satisfy

n �sj ln� �

���L�j���

for a curve of length L produces an error in the position of the front which is at most

��O��� �� In practice� however� our implementations simply select an n satisfying

n �sj ln���j���

������

and verify the corresponding results by repeating the calculation with a di�erent n �cf�

�����

Page 36: OR DIFFUSIONGENERA TED · EFFICIENT ALGORITHMS F OR DIFFUSIONGENERA TED MOTION BY MEAN CUR V A TURE By Stev en J Ruuth BMA TH Univ ersit yof W aterlo o MSc Univ ersit y of British

Chapter �� A New� Spectral Method �

��� Calculation of the Fourier Coe�cients

The values of the Fourier coe�cients� cij � of equation ������ must still be determined

at the beginning of each time step �i�e�� immediately following the sharpening of the

previous step�� In fact� we carry out sharpening �at t � tstart� as part of the calculation

for the Fourier coe�cients� These coe�cients are found using an adaptive quadrature

method rather than a pseudospectral method� Begin by dening

Rt � f�x� y� � U�x� y� t� �

g

to be the approximation of the phase we are following� By multiplying equation ������

at time t � tstart by cos��ix� cos��jy� and integrating over the domain we obtain

Z �

Z �

n��Xk�l��

ckl cos��kx� cos��ix� cos��ly� cos��jy� dx dy

�Z �

Z �

�U�x� y� tstart� cos��ix� cos��jy� dx dy

which simplies via the usual orthogonality conditions to give

c�� �R ��

R �� U�x� y� tstart� dx dy�

ci� � R ��

R �� U�x� y� tstart� cos��ix� dx dy for i �� ��

c�j � R ��

R �� U�x� y� tstart� cos��jy� dx dy for j �� ��

cij � �R ��

R �� U�x� y� tstart� cos��ix� cos��jy� dx dy for i� j �� ��

Immediately after sharpening�

U�x� y� t� �

�����

� if �x� y� � Rt

� otherwise

which implies that

cij � �ij

Z Zcos��ix� cos��jy� dA �����

Rt

Page 37: OR DIFFUSIONGENERA TED · EFFICIENT ALGORITHMS F OR DIFFUSIONGENERA TED MOTION BY MEAN CUR V A TURE By Stev en J Ruuth BMA TH Univ ersit yof W aterlo o MSc Univ ersit y of British

Chapter �� A New� Spectral Method �

where

�ij �

�������������

� if i � j � �

� if i �� � and j �� �

otherwise

������

Thus� simple functions must be integrated over a complicated� non�rectangular region�

Rt� This may be accomplished by recursively subdividing the domain �cf� ��� ����� as

we illustrate for the region� R� given in Figure ���a�

We begin by evaluating U at the corners of a number of equally�sized subregions� so as

to capture the large�scale features of the shape� Typically� n� n subregions are selected

because the corresponding U �values can be evaluated in just O�n� log�n�� operations

using a fast Fourier transform �see� e�g�� ������ If the phase at all four corners of any

subregion corresponds to white� then we assume that the subregion does not intersect with

R and hence no contribution to the Fourier coe�cients is made� This case corresponds to

the subregions of Figure ���b which have at least one dashed edge� If all four corners of a

subregion� $Q� correspond to grey� however� we assume that $Q R and add a contribution

�ij

Z Zcos��ix� cos��jy� dA

$Q

to each of the Fourier coe�cients� cij� for � � i� j � n� �� This case corresponds to the

subregions of Figure ���b which have at least one thin� solid edge� Finally� if two phases

occur� further subdivisions are carried out� We demonstrate this subdivision procedure

for the subregion� Q� of Figure ���b�

Because Q is a mixed region� we divide it into quadrants� as shown in Figure ��b�

Since the phase color at all corner points of quadrant Q�� is white� we assume that

this quadrant does not intersect with R and hence does not contribute to the Fourier

coe�cients� For each of the remaining quadrants� Q��� Q

�� and Q�

�� two phases occur� so

Page 38: OR DIFFUSIONGENERA TED · EFFICIENT ALGORITHMS F OR DIFFUSIONGENERA TED MOTION BY MEAN CUR V A TURE By Stev en J Ruuth BMA TH Univ ersit yof W aterlo o MSc Univ ersit y of British

Chapter �� A New� Spectral Method �

Figure ���� Subdividing the Domain into its Coarsest Subregions

1

0 1���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

������������������������������������������

R

1

0 1���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

������������������������������������������

Q

Fig� ���a� Initial Region� R Fig� ���b� Coarsest Subdivisions

further subdivision is required� See Figure ��c�

Focusing on the renement of the subregion� Q��� we nd that the phase of the upper

right hand corner of Q�� is di�erent than that of the other corners� Thus� Q�

� is also

subdivided� Corner points of the remaining subregions are grey� so we assume Qk� R

for k � � �� � and add contributions

�ij

Z Zcos��ix� cos��jy� dA

Qk�

to each of the Fourier coe�cients� cij� for � � i� j � n� ��

Recursive subdivisions of the domain continue �see� e�g�� Figure ��d� until regions

containing multiple phases can be safely approximated by some simple numerical tech�

nique� The next section discusses methods for approximating the regions at the nest

grid subdivisions�

Page 39: OR DIFFUSIONGENERA TED · EFFICIENT ALGORITHMS F OR DIFFUSIONGENERA TED MOTION BY MEAN CUR V A TURE By Stev en J Ruuth BMA TH Univ ersit yof W aterlo o MSc Univ ersit y of British

Chapter �� A New� Spectral Method �

Figure ��� Dividing a Subregion

������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

�����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

(0.375, 0.75) (0.5, 0.75)

(0.375, 0.875) (0.5, 0.875)

������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

�����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

(0.375, 0.75) (0.5, 0.75)

(0.375, 0.875) (0.5, 0.875)

QQ

Q Q1 1

1 1

12

3 4

������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

�����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

(0.375, 0.75) (0.5, 0.75)

(0.375, 0.875) (0.5, 0.875)

Q 3

2Q4

Q Q

2

22

2 1

������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

�����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

(0.375, 0.75) (0.5, 0.75)

(0.375, 0.875) (0.5, 0.875)

Fig� ��a� Initial Subregion Fig� ��b� One Subdivision

Fig� ��c� Two Subdivisions Fig� ��d� Four Subdivisions

Page 40: OR DIFFUSIONGENERA TED · EFFICIENT ALGORITHMS F OR DIFFUSIONGENERA TED MOTION BY MEAN CUR V A TURE By Stev en J Ruuth BMA TH Univ ersit yof W aterlo o MSc Univ ersit y of British

Chapter �� A New� Spectral Method ��

��� Approximation of the Finest Subregions

In the previous section� a method was introduced for recursively dividing the domain into

rectangles� At some point� however� we must stop subdividing and treat the nest cells�

This section discusses how to approximate the contributions to the Fourier coe�cients

at the nest grid subdivisions�

����� Trivial Treatment of the Finest Subregions

An easy method for treating the nest grid subdivisions is to add one half the contribution

that would occur for the whole subregion to each of the Fourier coe�cients� In other

words� a contribution

�ij

Z Zcos��ix� cos��jy� dA

Qk

is added to cij � � � i� j � n� �� for each of the nest subregions� Qk�

Often� this approach is unsatisfactory when accurate results in three dimensions are

sought� If the nest subregions are of width h� then an O�h� error in the position of

the front occurs� For smooth curves� we seek an O�� �� approximation of the front �see

next chapter�� leading to O�

���d��

�cells at the nest level of subdivision in d dimensions�

Such a mesh is often impractical to treat� especially when three dimensional results are

sought�

To achieve a more accurate approximation of regions and hence much faster results�

we next consider piecewise linear approximations of the interface�

Page 41: OR DIFFUSIONGENERA TED · EFFICIENT ALGORITHMS F OR DIFFUSIONGENERA TED MOTION BY MEAN CUR V A TURE By Stev en J Ruuth BMA TH Univ ersit yof W aterlo o MSc Univ ersit y of British

Chapter �� A New� Spectral Method ��

����� Piecewise Linear Approximation for Two�Phase Problems

In the last subsection� we saw that a trivial treatment of the integrals ����� at the nest

grid subdivision produced an O�h� error in the position of the front� where h is the width

of the nest grid subdivision� To produce an O�h�

�� h�

�approximation of the interface�

a simplicial decomposition of the region� R� with a piecewise linear approximation to the

boundary can be used� We now describe such a method for two�phase problems in two

and three dimensions�

Two Dimensional Problems

There are three main steps for approximating the integrals ����� over the nest grid

subdivisions for two�phase problems in two dimensions� These are detailed below�

Step �� Divide the Square Cell into Two Triangles�

We begin by breaking the square subdomain into two triangles and consider each

separately �see� e�g�� Figure ����� In two dimensions� this subdivision step is optional

because it only slightly simplies the implementation of Step �

Step �� Approximate Regions Using Triangles�

We next approximate the desired phase with a number of triangular subregions�

Details for this approximation method are now given for each of the four possible

cases� �Five cases arise if Step � is omitted��

Case �� If none of the corners of the triangle belong to R� then we assume that R

and the triangular subdomain do not overlap� No contribution to the Fourier

coe�cients is made�

Case �� If one corner is in R� then linear interpolation is used to determine a trian�

gular approximation to the subregion� For example� consider approximating

Page 42: OR DIFFUSIONGENERA TED · EFFICIENT ALGORITHMS F OR DIFFUSIONGENERA TED MOTION BY MEAN CUR V A TURE By Stev en J Ruuth BMA TH Univ ersit yof W aterlo o MSc Univ ersit y of British

Chapter �� A New� Spectral Method �

the gray phase in �ABC of Figure ���� Letting U�A�� U�B� and U�C� be the

function values at points A�B and C� we approximate where the curve crosses

the edges of the triangle by points a and b�

a � B ��� � U�B�

U�C�� U�B��C �B�� ������

b � A���� U�A�

U�C�� U�A��C �A��

This gives a triangular approximation� �baC� to the desired subregion which

can be used to approximate the contributions to the Fourier coe�cients �see

Step � below��

Case �� If two corners are in R� then we linearly interpolate to estimate the loca�

tion of the interface and break the subregion into two triangles� For example�

the shaded region of �PQR in Figure �� is approximated by �PpR and

�Prp� respectively�

Case �� If three corners are in R� then we assume that the entire subdomain be�

longs to R� and we approximate the integrals ����� over the entire subdomain�

We seek an estimate of the error produced by this step for a smooth curve�� One

source of error occurs when smooth curves are approximated by line segments� By

Figure ���� this approximation produces an O�h�� error in the position of the front�

since the curvature is independent of h�

We also produce errors by replacing the actual front position with the interpola�

tion ������� To determine this error� we consider the one dimensional analogue

of curvature motion given by Figure ���� �We expect a similar result to hold in

�For a ne velocity motions nonsmooth corners may arise from singularities in the solution �see e�g������� Each corner can produce an O�h�� error in the phase areas� However because these corners arerapidly smoothed away they typically do not a�ect the overall order of accuracy of the method�

Page 43: OR DIFFUSIONGENERA TED · EFFICIENT ALGORITHMS F OR DIFFUSIONGENERA TED MOTION BY MEAN CUR V A TURE By Stev en J Ruuth BMA TH Univ ersit yof W aterlo o MSc Univ ersit y of British

Chapter �� A New� Spectral Method ��

Figure ���� Subdividing a Square into Triangles

Split

h

h

Figure ���� A Shape Represented by a Triangle

������������������������������������������������

.

.

.

. .A B

C

b

a

����������������������������������������.

. .A B

C

Approximate

Page 44: OR DIFFUSIONGENERA TED · EFFICIENT ALGORITHMS F OR DIFFUSIONGENERA TED MOTION BY MEAN CUR V A TURE By Stev en J Ruuth BMA TH Univ ersit yof W aterlo o MSc Univ ersit y of British

Chapter �� A New� Spectral Method ��

Figure �� � A Shape Represented by Triangles

.

. .Approximate

����������������������������������������������������������������������

P Q

R .

. .����������������������������������������������������������������������

.

.

P Q

R

r

p

two dimensions�� We seek an estimate of how well the interpolated value� $xm�

approximates the front position� xm� i�e�� we seek an estimate of j$xm � xmj�

Treating � as a constant� an elementary Taylor series expansion gives us that

U�xm� � U�x�� � U ��x���xm � x�� ��

U �������xm � x��

where �� � �x�� xm�� Replacing U ��x�� by a one�sided di�erence� we nd

U�xm� � U�x���U�x��� U�x��

�x� � x���xm�x����

U �������x��x���xm�x����

U �������xm�x���

where �� � �x�� x��� Isolating xm and subtracting the interpolated value� $xm� gives

j$xm � xmj �

���U

�������x� � x���xm � x�� ���U

�������xm � x���

U�x��� U�x��

h�� max

�x��x�

U �����U�x��� U�x��

h�� ���� �

where h � x� � x�� Since U�x� � �� �

��erf

�x�xm�p�

�it is easy to show that

U�x��� U�x�� ��

p�exp

� �

�t�x� � xm�

���

hp�

��O

�h�

� ��

���

U ���x� � � �

�p�exp

� �

�t�x� xm�

x� xm

���

Page 45: OR DIFFUSIONGENERA TED · EFFICIENT ALGORITHMS F OR DIFFUSIONGENERA TED MOTION BY MEAN CUR V A TURE By Stev en J Ruuth BMA TH Univ ersit yof W aterlo o MSc Univ ersit y of British

Chapter �� A New� Spectral Method �

Figure ���� Errors Approximating Curved Segments

1/κ=radius of curvature

h

h

2

2

2

8approximately = O(h )

2

d

κd

(1/κ) − (d/2)

Applying these results to Equation ���� � yields

j$xm � xmj � �

�h�

�max

�x��x��� � xm� � h�o�t�

Thus�

j$xm � xmj � O�h�

��

Taking into account both of the contributions to the error� we nd that this tri�

angular approximation of regions produces an O�h�

�� h�

�error in the position of

the front�

Step �� Integrate over each Triangular Subregion�

We are now left with the task of adding a contribution

Iijk � �ij

Z Zcos��ix� cos��jy� dA ������

Tk

to each Fourier coe�cient� cij� for each triangular subregion� Tk�

Expanding the integrand about some point� �$x� $y�� in Tk yields

Iijk � �ijArea�Tk� cos��i$x� cos��j$y�

Page 46: OR DIFFUSIONGENERA TED · EFFICIENT ALGORITHMS F OR DIFFUSIONGENERA TED MOTION BY MEAN CUR V A TURE By Stev en J Ruuth BMA TH Univ ersit yof W aterlo o MSc Univ ersit y of British

Chapter �� A New� Spectral Method ��

Figure ���� The Interpolation Step

.

.

x1 m 2x x

U=1

U=0x1 m 2x x

mx~

U(x1)

U(x )2

1/2

Fig� ���a� Sharpened Intervals Fig� ���b� After a Time� �

� �Z Z

�j cos��i$x� sin��j$y��y � $y� � i sin��i$x� cos��j$y��x� $x�� dA

Tk

� O��i� � j��h��

where Area�Tk� is the area of triangle Tk� Because the integral term cancels when

we expand about the centroid of the triangle�� we choose to approximate each

contribution ������ by

Iijk �ijArea�Tk� cos��i$x� cos��j$y� ������

where �$x� $y� is the centroid of Tk� This approximation is preferred over the direct

evaluation of the integrals ������ because it is much faster �it only requires two

trigonometric evaluations� and it produces errors which are typically small relative

to those arising in Step �

�The centroid of a triangle with corners A�B and C is A�B�C

��

Page 47: OR DIFFUSIONGENERA TED · EFFICIENT ALGORITHMS F OR DIFFUSIONGENERA TED MOTION BY MEAN CUR V A TURE By Stev en J Ruuth BMA TH Univ ersit yof W aterlo o MSc Univ ersit y of British

Chapter �� A New� Spectral Method ��

Three Dimensional Problems

There are also three steps for approximating the contributions to the Fourier coe�cients

over the nest grid subdivisions for two�phase problems in three dimensions� These are

outlined below�

Step �� Divide the Cube into Six Tetrahedrons�

We begin by breaking cube�shaped subdomains into six tetrahedrons and consider

each separately� For example� the cube in Figure ��� would be split into the tetra�

hedrons� TABFD� TAEFD� TDHEF � TCBFD� TCGFD and TDHGF � In three dimensions�

this subdivision step is highly recommended because it signicantly simplies the

implementation of Step �

Step �� Approximate Regions Using Tetrahedrons�

We next approximate the desired phase with a number of tetrahedrons� For smooth

surfaces�� this step produces an O�h�

�� h�

�error in the position of the front where

h is the width of the nest grid subdivision� An outline of this approximation

method is now given for each of the ve possible cases� �Nine cases arise if Step �

is omitted��

Case �� If none of the corners of the tetrahedron belong to R� no contribution to

the Fourier coe�cients is made�

Case �� If one corner is in R� then the region is approximated by a tetrahedron�

For example� the shaded region in tetrahedron TABCD of Figure ��� would be

approximated by TabcD�

�Nonsmooth corners may arise from singularities in the solution �see e�g� ����� Each corner canproduce an O�h�� error in the phase volumes� However because these corners are rapidly smoothedaway they typically do not a�ect the overall order of accuracy of the method�

Page 48: OR DIFFUSIONGENERA TED · EFFICIENT ALGORITHMS F OR DIFFUSIONGENERA TED MOTION BY MEAN CUR V A TURE By Stev en J Ruuth BMA TH Univ ersit yof W aterlo o MSc Univ ersit y of British

Chapter �� A New� Spectral Method ��

Case �� If two corners are in R� then we linearly interpolate to estimate the lo�

cation of the interface and break the subregion into three tetrahedrons� For

example� the shaded region of TABCD in Figure ���� is approximated by the

tetrahedrons TBegf � TBfgh and TBhDg� respectively�

Case �� If three corners are in R� then we represent the shape as the di�erence of

shapes which are treated using Cases � and �� See Figure ���� for an example�

Case � If four corners are inR� then we assume that the entire subdomain belongs

to R� and we approximate the integrals ������ over the entire subdomain�

Step �� Integrate over each Tetrahedron�

For each tetrahedron� T�� a contribution

Iijk� � �ijk

Z Z Zcos��ix� cos��jy� cos��kz� dV ������

T�

where

�ijk �

���������������������

� if i � j � k � �

if exactly two of i� j or k equals �

� if exactly one of i� j or k equals �

� otherwise

must be added to each Fourier coe�cient� cijk�

Similar to the two dimensional case� we expand the integrand about the centroid

of the tetrahedron�� to arrive at

Iijk� �ijkVolume�T�� cos��i$x� cos��j$y� cos��k$z�

where �$x� $y� $z� is the centroid of T� and Volume�T�� is its volume� This approxi�

mation is preferred over the direct evaluation of the integrals ������ because it is

�The centroid of a tetrahedron with corners A�B�C and D is A�B�C�D

��

Page 49: OR DIFFUSIONGENERA TED · EFFICIENT ALGORITHMS F OR DIFFUSIONGENERA TED MOTION BY MEAN CUR V A TURE By Stev en J Ruuth BMA TH Univ ersit yof W aterlo o MSc Univ ersit y of British

Chapter �� A New� Spectral Method ��

Figure ���� Subdividing a Cube into Tetrahedrons

AB

CD

EF

GH

AB

CD

EF

GH

Split

+ 5 othertetrahedrons

much faster �it only requires three trigonometric evaluations� and it produces errors

which are typically small relative to those arising in Step �

����� Piecewise Linear Approximations for Junctions

The previous subsections do not explain how to approximate contributions to the Fourier

coe�cients when junctions occur� Several methods for carrying out such approximations

are possible� This subsection describes three of these methods for two�dimensional prob�

lems� extensions to three dimensions are straightforward�

Method �� Trivial Treatment of the Junction�

If all corners of the triangular subregion correspond to a di�erent phase �e�g��

�ABC of Figure ��� or�ACD or Figure ����� then ��the contribution ����� that

would occur for the entire subregion is added to each of the three sets of Fourier

coe�cients� Other regions are assumed to contain only two phases and hence are

treated according to the discussion of the previous subsection�

Page 50: OR DIFFUSIONGENERA TED · EFFICIENT ALGORITHMS F OR DIFFUSIONGENERA TED MOTION BY MEAN CUR V A TURE By Stev en J Ruuth BMA TH Univ ersit yof W aterlo o MSc Univ ersit y of British

Chapter �� A New� Spectral Method ��

Figure ���� A Shape Approximated by a Tetrahedron

�������������������������

AB

����������

.

..

C

D

. �������������������������

AB

����������

.

..

C

D

. ...

ba

c

Approximate

Figure ����� A Shape Approximated by Tetrahedrons

������������������������������������������������������������

.

..������������

������������������������������������������������������������

..

AB

.

..

C

D

������������

AB

.

..

C

D

.

e

f

g

h

Approximate

Page 51: OR DIFFUSIONGENERA TED · EFFICIENT ALGORITHMS F OR DIFFUSIONGENERA TED MOTION BY MEAN CUR V A TURE By Stev en J Ruuth BMA TH Univ ersit yof W aterlo o MSc Univ ersit y of British

Chapter �� A New� Spectral Method ��

Figure ����� A Shape Represented as a Di�erence

��������

.

..

.

���������������������������������������������������������������

������������

.

..

. ����������������

= −

���������������������������������������������������������������������������������

.

.

.

.

Although the method is somewhat crude� it only produces an O�h�� error in the

phase areas for cells which possess three phases� Thus� the overall order of accu�

racy of the method is not degraded since the number of junctions present in two

dimensions is independent of h�

Method �� Triangular Approximation of Regions�

We may also use several triangles to approximate regions that contain junctions� If

di�erent phases occur at each corner of a triangular region� then that region can be

broken into three triangles which have at most two phases each� These triangular

subregions are treated according to the discussion of the previous subsection�

For example� �ABC or Figure ��� can be broken into �baC� �Aab and �ABa

where a and b are found by linear interpolation�

a �U��B�� U��B�

U��B�� U��C� � U��C�� U��B�C �

U��C�� U��C�

U��B�� U��C� � U��C�� U��B�B�

b �U��A�� U��A�

U��A�� U��C� � U��C�� U��A�C �

U��C�� U��C�

U��A�� U��C� � U��C�� U��A�A�

and Ui�X�� � � i � �� is the value of Ui at the point X�

Page 52: OR DIFFUSIONGENERA TED · EFFICIENT ALGORITHMS F OR DIFFUSIONGENERA TED MOTION BY MEAN CUR V A TURE By Stev en J Ruuth BMA TH Univ ersit yof W aterlo o MSc Univ ersit y of British

Chapter �� A New� Spectral Method �

Figure ���� Junction for which all Corner Phases Di�er

����������������������������������������������������������������������������������������������������������������

A B

CU = U12

U = U13

U = U23

����������������������������������������������������������������������������������������������������������������

A B

CU = U12

U = U13

U = U23

a

b

Approximate

The other possible junction occurs when exactly two di�erent phases are present

at the corners of the subdomain �e�g�� �ABC of Figure ������ In this case� we

break the region into three triangles� as we would for the two�phase case �see� e�g��

Figure ������ The triangles that arise contain two phases� and hence should be

treated according to the discussion of the previous subsection�

Method �� Subdividing Regions Containing Multiple Phases�

The nal approach that we mention is simply to subdivide any region containing

more than two phases� After a few iterations� the smallest subregions that arise

can be treated by Method � to give an accurate approximation of each integral�

Our implementations have used the rst method �i�e�� the trivial treatment�� since

this straightforward approach typically produces errors which are very similar to those

for the other� more involved methods� For example� in the three�phase problem displayed

in Figure ���� cells containing multiple phases contribute less than " of the total error

arising from the spatial discretization�

Page 53: OR DIFFUSIONGENERA TED · EFFICIENT ALGORITHMS F OR DIFFUSIONGENERA TED MOTION BY MEAN CUR V A TURE By Stev en J Ruuth BMA TH Univ ersit yof W aterlo o MSc Univ ersit y of British

Chapter �� A New� Spectral Method ��

Figure ����� Two Phases Represented at Corners

��������������������������������������������������������������������������������������������������������������������������������������������

A B

CU = U12

U = U13

U = U23

D

��������������������������������������������������������������������������������������������������������������������������������������������

A B

CU = U12

U = U13

U = U23

D

b aApproximate

�� Re�nement Techniques

In Section ��� a recursive algorithm for subdividing the domain was introduced� We

now carry out a more detailed study of the method and introduce a gradual renement

which overcomes certain limitations of the original algorithm�

For illustrative purposes� all examples set the width of the coarsest grid to be H � ���

Similar results arise for the usual choice of H � �n�

���� The Original Re�nement Algorithm

The original renement algorithm of Section �� is e�ective for a variety of problems�

Application of this method to the two�phase shape of Figure ����a� for example� produces

a renement which captures the entire interface at the level of the nest grid subdivision�

See Figure ����b�

For certain smooth regions� however� small slivers can be missed when the algorithm

is applied� Consider� for example� a translation by�

�������

��

�of the shape found in

Figure ����a� Applying the subdivision algorithm to the translated shape gives the

Page 54: OR DIFFUSIONGENERA TED · EFFICIENT ALGORITHMS F OR DIFFUSIONGENERA TED MOTION BY MEAN CUR V A TURE By Stev en J Ruuth BMA TH Univ ersit yof W aterlo o MSc Univ ersit y of British

Chapter �� A New� Spectral Method ��

mesh displayed in Figure ��� a� A magnication of the leftmost part of the shape �see

Figure ��� b� indicates that a small� thin region is missed by the algorithm�

We would like at least a crude estimate of the error arising from these slivers� Suppose

that the local curvature of the boundary for such a region is �� By Figure ����� this leads

to an O��H�� error in the corresponding phase area� The number of coarse�grid cells

that neglect these slivers will be problem�dependent� For a convex shape� however� only

the cells at the extreme top� bottom� left and rightmost parts of the curve need to be

considered� As the shape shrinks under mean curvature motion� we expect that the

proportion of time that slivers of width O�H�� arise in any of these four cells will be

O�H�� Assuming H � �nand n � O� �p

�� �see inequality �������� the total neglected area

over O� ��� steps of the method will be O�� �� on average�

The original renement algorithm also produces errors when applied to nonsmooth

shapes� Consider� for example� the region displayed in Figure ����� Such a shape may

arise for an a�ne velocity motion when a topological breaking occurs� �Note that such

topological changes do not occur for mean curvature motion in two dimensions ���� �����

Applying the original subdivision algorithm to the shape gives the mesh displayed in

Figure ����a� Clearly� an O�H�� error in the phase area is produced at the cell containing

the sharp corners� This corresponds to an O�� � error when H � �nand n is chosen

according to �������

For the numerical experiments that we have considered� this �aw in the renement

technique produces errors which are no larger than the O�� � errors which arise from

the MBO�method for smooth� two phase problems and are smaller than the O�p� �

which arise for junctions �see next chapter�� Nonetheless� we introduce a more accurate

renement in the next subsection to give us a greater condence in our results� especially

for complicated� non�convex initial regions� A more accurate renement is also of value

when higher order� extrapolated methods are considered �see next chapter��

Page 55: OR DIFFUSIONGENERA TED · EFFICIENT ALGORITHMS F OR DIFFUSIONGENERA TED MOTION BY MEAN CUR V A TURE By Stev en J Ruuth BMA TH Univ ersit yof W aterlo o MSc Univ ersit y of British

Chapter �� A New� Spectral Method �

Figure ����� Renement of a Smooth Region

0 0.2 0.4 0.6 0.8 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig� ����a� A Smooth Shape Fig� ����b� Original Re�nement

Figure ��� � Original Renement can miss Slivers of the Region

0 0.2 0.4 0.6 0.8 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.05 0.1 0.15 0.2

0.48

0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64

Fig� ��� a� Re�ned Domain Fig� ��� b� Zoom�in Near a Neglected Section

Page 56: OR DIFFUSIONGENERA TED · EFFICIENT ALGORITHMS F OR DIFFUSIONGENERA TED MOTION BY MEAN CUR V A TURE By Stev en J Ruuth BMA TH Univ ersit yof W aterlo o MSc Univ ersit y of British

Chapter �� A New� Spectral Method ��

Figure ����� A Neglected Section

H

H

1/κ

(1/κ) −2 2(H/2)

approximately H /82κ

= radius of curvature

Figure ����� A Problem with Sharp Corners

0 0.2 0.4 0.6 0.8 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Page 57: OR DIFFUSIONGENERA TED · EFFICIENT ALGORITHMS F OR DIFFUSIONGENERA TED MOTION BY MEAN CUR V A TURE By Stev en J Ruuth BMA TH Univ ersit yof W aterlo o MSc Univ ersit y of British

Chapter �� A New� Spectral Method ��

Figure ����� Renement Methods for Corners

0 0.2 0.4 0.6 0.8 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig� ����a� Original Re�nement Fig� ����b� Gradual Re�nement

���� A Method for a Gradual Re�nement

As we have seen in the previous subsection� the original subdivision algorithm can miss

small pieces of both smooth and nonsmooth shapes� We seek a renement which captures

the entire interface at the level of the nest grid subdivision� even for nonsmooth shapes�

To achieve this objective� a gradual renement was implemented� This method pro�

ceeds according to the original subdivision algorithm of Section ��� with the following

additional consideration�

Whenever any cell is rened� check the subdivision level of the neighboring

cells� Subdivide neighbors which are two or more levels of renement coarser�

This method accurately represents the narrow� sliver�shaped regions that were missed

using the original renement� By using a ne subdivision in a small neighborhood of

the interface� this method even captures the rapid variations in the front that arise from

corners� See Figures ���� and ����b for examples�

Certainly� this gradual renement produces more cells than the original approach�

The order of the number of cells is unchanged� however� To see this� note that cells of

Page 58: OR DIFFUSIONGENERA TED · EFFICIENT ALGORITHMS F OR DIFFUSIONGENERA TED MOTION BY MEAN CUR V A TURE By Stev en J Ruuth BMA TH Univ ersit yof W aterlo o MSc Univ ersit y of British

Chapter �� A New� Spectral Method ��

width

h� � ��H� where � � � log�

H

h

form a band at most two cells wide on each side of the interface� The length of each band

can be bounded by a constant� K� independent of h �e�g�� bands for a convex region are

shorter than the perimeter of the domain�� Letting n�h be the number of cells of width

$h� we observe that

Total number of cells � nh � n�h � � � �� nH�� nH�

�K

h�

�K

h� � � ��

�KH�

� n��

�K

h� n��

Thus� O� �h� n�� cells are required� which matches in order the result for the original

renement�

Implementation of this gradual renement is somewhat more involved than the orig�

inal approach because cell neighbors must be found� Many data structures appropriate

for this task have been considered ��� ���� Our implementation denes the grid as a list

of vertices �cf� ����� each of which is described by a data structure�

structure vertex

BEGIN

x� y� " Coordinates of the vertex�

u� " Function value at this vertex�

n� s� e� w� " Pointers to the vertices north �above�� south �below�� east �right�

and west �left� of this vertex�

h� " If there is no cell northeast of this vertex� set to �����

Otherwise� set to the width of the cell northeast of this vertex�

END

Page 59: OR DIFFUSIONGENERA TED · EFFICIENT ALGORITHMS F OR DIFFUSIONGENERA TED MOTION BY MEAN CUR V A TURE By Stev en J Ruuth BMA TH Univ ersit yof W aterlo o MSc Univ ersit y of British

Chapter �� A New� Spectral Method ��

Access of cells and their neighbors is carried out indirectly by traversing their vertices�

For example� the renement of region Q in Figure ���a can be carried out as follows�

�� Determine the cell width� h� from the data structure dening vertex� v�� Starting

at v�� traverse the perimeter of Q by going north� east� south and nally west a

distance h�

� From the traversal in Step �� it is clear that no vertex should be added to edge

�v�� v��� Thus� four vertices� v�� v��� v�� and v��� are added to the grid as shown

in Figure ���b� Updates to the data structures for all boldfaced vertices in Fig�

ure ���b must also be carried out�

�� Finally� we check if neighboring cells need to be rened� Since there are vertices

immediately north of v� and v�� the cell north of Q is at most one level coarser

than the rened regions� Thus� renement north of Q is unnecessary� Similarly� no

renement occurs east or west of Q� There is no vertex immediately south of v �

however� so a renement of the region south of Q is needed� This is carried out by

applying steps � to � to the region northeast of vertex v��

��� Fast� Transform�Based Algorithms

The renements of Sections �� and ��� lead to a large number of function evaluations�

U�x� y� �n��Xj�j���

cjj� exp�����j� � �j����� � cos��jx� cos��j�y�� ������

Because these evaluations occur on an unequally spaced grid� a fast Fourier transform

cannot be used� Direct evaluation of Equation ������ at Nq points� however� is often

prohibitively expensive because O�n�Nq� operations are required� Similarly� evaluation

Page 60: OR DIFFUSIONGENERA TED · EFFICIENT ALGORITHMS F OR DIFFUSIONGENERA TED MOTION BY MEAN CUR V A TURE By Stev en J Ruuth BMA TH Univ ersit yof W aterlo o MSc Univ ersit y of British

Chapter �� A New� Spectral Method �

Figure ����� Gradual Renement Captures the Entire Region

0 0.2 0.4 0.6 0.8 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.05 0.1 0.15 0.2

0.48

0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64

Fig� ����a� Re�ned Domain Fig� ����b� Zoom�in near a Di�cult Section

Figure ���� Rening a Cell

v1

v

v v v

v

v v

2

3 4 5

6

7 8

Q

v1

v

v v v

v

v v

2

3 4 5

6

7 8

v

v v

v

9

10 11

12

Fig� ���a� Initial Domain Fig� ���b� After Subdividing Q

Page 61: OR DIFFUSIONGENERA TED · EFFICIENT ALGORITHMS F OR DIFFUSIONGENERA TED MOTION BY MEAN CUR V A TURE By Stev en J Ruuth BMA TH Univ ersit yof W aterlo o MSc Univ ersit y of British

Chapter �� A New� Spectral Method �

of the Fourier coe�cients using Equations ����� and ������ leads to a Fourier sum of the

form

cjj� �Np��X���

d� cos��jx�� cos��j�y�� �����

where � � j� j� � n � � and �x�� y�� are unequally spaced� Once again� a fast Fourier

transform cannot be used� and direct evaluation leads to O�n�Np� operations�

In this section� we consider recent methods for the fast evaluation of ������ and ������

Specically� we discuss an unequally spaced fast Fourier transform method � � that we

have applied to the new� spectral method� This transform leads to an algorithm that

typically requires only

O�

�log��� �

operations per � �step for the basic MBO�method�

For consistency with � �� our discussion will assume that Equations ������ and �����

have been re�arranged as exponential sums� Specically� we express Equation ������ as

U�x� y� �n��X

j�j���n��

fjj� exp��i�jx� exp��i�j �y� �����

where

fjj� ��

�jj�cjjjjj�j exp�����j� � �j ����� �

and �jj� is given by Equation ������� Equation ����� is re�written as

cjj� ��

Real�Sjj�� � ����j �

Real� $Sjj�� ����

where

Sjj� �Np��X���

d� exp��i�jx�� exp��i�j�y��� �����

$Sjj� �Np��X���

d� exp��i�j��� x��� exp��i�j�y��� �����

and � � j� j� � n� �� �Note that it is easy to show that Equation ���� is symmetrical

with respect to x and y by factoring e�i�j � ����j from Equation �������

Page 62: OR DIFFUSIONGENERA TED · EFFICIENT ALGORITHMS F OR DIFFUSIONGENERA TED MOTION BY MEAN CUR V A TURE By Stev en J Ruuth BMA TH Univ ersit yof W aterlo o MSc Univ ersit y of British

Chapter �� A New� Spectral Method

����� Overview

Several methods for the fast evaluation of Equations ����� and ���� have been de�

veloped� Lagrange interpolation has been used to replace function values at arbitrary

points by several function values on an equally spaced grid � � ���� Taylor expansions

have also been used to correct for deviations from an equally spaced grid ����� Although

these methods produce a signicant speed�up over a direct approximation of the sum�

mations� they are inherently ine�cient because they must oversample or compute on a

much ner than n�nmesh to accurately evaluate all n� Fourier modes� Furthermore� no

studies have been undertaken to determine how the accuracy and speed of these methods

depends on the oversampling factor and the choice of interpolation � ��

Recent methods do not need a signicant amount of oversampling and have been

proven to converge quickly� In � �� for example� a method based on multiresolution

analysis was developed and implemented that evaluates Equation ����� at Nq points in

ONq log

��

� n� log�n�

��� �

operations� and evaluates all n� Fourier coe�cients of ���� in

ONp log

��

� n� log�n�

�����

operations� where � is the precision of the computation� Essentially the same bounds are

obtained in ��� for an interpolation using Gaussian Bells and in ���� for an algorithm

which uses Lagrange interpolation and Green�s theorem�

In practice� numerical experiments ��� ��� � suggest that Beylkin�s algorithm � �

is the fastest of the three recent methods� For this reason� we next consider Beylkin�s

approach for evaluating Equations ����� and �����

Page 63: OR DIFFUSIONGENERA TED · EFFICIENT ALGORITHMS F OR DIFFUSIONGENERA TED MOTION BY MEAN CUR V A TURE By Stev en J Ruuth BMA TH Univ ersit yof W aterlo o MSc Univ ersit y of British

Chapter �� A New� Spectral Method �

����� The Unequally Spaced Fast Fourier Transform

In this subsection� we outline Beylkin�s algorithm � � for evaluating Equations �����

and ����� We have implemented this algorithm in two dimensions� extensions to three

dimensions are possible � ��

The version of the algorithm given in � � requires that grid points must not occur

within a distance O��n

�of the boundary of the domain ��� �� � ��� ��� In the following

implementation� we have scaled and translated points to overcome this limitation� A

more elegant and faster version can be derived using periodic extensions of the Fourier

coe�cients given in Equations ����� and ���� � ��

Fast Evaluation of Fourier Coe�cients

Three steps are required for the evaluation of Fourier coe�cients using Beylkin�s algo�

rithm� These are described below for Equation ������ Equation ����� can be treated

by replacing x� in step � by �� � x���

�� The algorithm begins by projecting an integral representation of the sum onto the

span of a number of translated central B�splines� Specically� we evaluate

fkk� �Np��X���

d�e� �

��in�x��y����m�nx� �

n � k

��m�

ny� �

n� k�

for � � k� k� � n��� Themth�order central B�spline� ��m�� can be stably evaluated

using the recursion

��m��x� ����m� �� � x

m��m���

x�

���m� ��� x

m��m���

x� �

where

�����x� �

�����

� if x � ��� ����

� otherwise�

Page 64: OR DIFFUSIONGENERA TED · EFFICIENT ALGORITHMS F OR DIFFUSIONGENERA TED MOTION BY MEAN CUR V A TURE By Stev en J Ruuth BMA TH Univ ersit yof W aterlo o MSc Univ ersit y of British

Chapter �� A New� Spectral Method �

See ��� for an algorithm that evaluates each of the components of f in only O�m��

operations�

� Using a fast Fourier transform� we next evaluate

Fjj� ��n��Xk��

�n��Xk���

fkk�e���ikj��n�e���ik

�j���n�

for �n � j� j� � n�

�� A nal scaling gives an approximation to the desired coe�cients

Sj�n� �j

��n� e

�i� �j�j��n�q

a�m��j�n��a�m��j ��n��Fjj�

where

a�m���� ���mX���m

���m������e��i��

and �n� � j� j� � n

� � ��

Summing over steps � to �� we see that a total of

O�m�Np � n� log�n��

operations are taken� A proof of the operation count ����� can be derived using the

relationship between m and the precision of the calculation� � � �� Our implementations

set m � �� since this choice has been experimentally shown to give errors which are

similar to those arising from roundo� in double precision calculations �see � ���

Fast Evaluation of Fourier Summations

Beylkin also gives a three step algorithm for the fast evaluation of Fourier sums � �� This

method is described below for the evaluation of Equation ������

Page 65: OR DIFFUSIONGENERA TED · EFFICIENT ALGORITHMS F OR DIFFUSIONGENERA TED MOTION BY MEAN CUR V A TURE By Stev en J Ruuth BMA TH Univ ersit yof W aterlo o MSc Univ ersit y of British

Chapter �� A New� Spectral Method

�� The algorithm begins by modifying the Fourier coe�cients according to

%Fkk� �wkk�

%bk%b�k

where

wkk� �

�����

fkk� for �n� � � k� k� � n � ��

� otherwise

%bk ��m����X

����m������m����e��i�k��n�

and �n � k� k� � n � ��

� Using a fast Fourier transform and the result from step ��

Fjj� ��n��Xk���n

�n��Xk����n

%Fkk�e���ikj��n�e���ik

�j���n�

is evaluated for �n � j� j � � n � ��

�� Having completed the pre�processing steps � and � an arbitrary number of function

evaluations may be carried out using

U�x� y� ��n��X

j�j����nFjj��

�m��nx� j���m��ny � j��� �����

Using the algorithm discussed in ���� each of these evaluations requires only O�m��

operations�

Summing over all three steps� we nd that

O�m�Nq � n� log�n��

operations are taken to produce Nq function evaluations� This corresponds to the work

estimate given in ��� ��

Page 66: OR DIFFUSIONGENERA TED · EFFICIENT ALGORITHMS F OR DIFFUSIONGENERA TED MOTION BY MEAN CUR V A TURE By Stev en J Ruuth BMA TH Univ ersit yof W aterlo o MSc Univ ersit y of British

Chapter �� A New� Spectral Method �

Application to the New� Spectral Method

We seek an estimate of how much work arises from an iteration of the new� spectral

method when these transform methods are applied�

�� We begin by carrying out the rst two steps of Beylkin�s method for the fast

evaluation of Fourier sums� This step produces a total of O�n� log n� operations�

� The domain is rened according to Sections �� and ���� Since each evaluation of

the function� U � can be carried out in O�m�� operations using Equation ������

renement produces a total operation count of ��� ��

�� We next collect the contributions to each Fourier coe�cient into a sum ����� in

O�Np� operations� The number of operations to evaluate this sum according to

Beylkin�s method is given by ������

Summing over all three steps� we nd that

O�Np log

���� �Nq log���� � n� log�n�

operations are taken where � is the precision of the calculation� Using the fact that

O��h

�rened cells arise �see Section ������ it is clear that Nq � O

��h

�and Np � O

��h

��

The remaining O�n�� coarse grid cells may be treated with a fast Fourier transform in

O�n� log�n�� operations� Applying these relationships� along with h � �n� we see that a

total of

O

h

log��h� � n� log�n�

operations arise at each iteration of the spectral discretization of the MBO�method� As

we shall see in the next chapter� the basic MBO�method produces an O�� �� error in the

position of a smooth curve at each step of the method� To avoid degrading this accuracy

Page 67: OR DIFFUSIONGENERA TED · EFFICIENT ALGORITHMS F OR DIFFUSIONGENERA TED MOTION BY MEAN CUR V A TURE By Stev en J Ruuth BMA TH Univ ersit yof W aterlo o MSc Univ ersit y of British

Chapter �� A New� Spectral Method �

�see Section ������ we select h � O�� � to arrive at

O�

�log��� �

operations per step� For the case of junctions� we may apply the same considerations to

determine that

O�

�log�� �

operations are required per step to avoid degrading the overall accuracy of the method�

�� Comparison to the Usual Finite Di�erence Discretization

There are several reasons why the spectral method described in this chapter is preferred

over the usual nite di�erence approach� These reasons are outlined below�

�� As has been discussed in Section ���� only low frequency modes need to be approx�

imated provided � is not taken very small� A large amount of computational work

is saved by only treating these low frequency modes�

� The new� spectral method does not require any time�stepping between tstart and

tstart � � � This eliminates a possible source of error and produces large savings in

computational work�

�� Local renement is much simpler to implement for the new� spectral approach

because it is done in the context of a quadrature� rather than a discretization of a

di�erential equation�

�� By using a spectral method� the error arising from discretizing the heat equation can

be nearly eliminated� This is an attractive feature� because it makes extrapolation

in � practical �see next chapter�� which in turn allows for larger � �steps� When

Page 68: OR DIFFUSIONGENERA TED · EFFICIENT ALGORITHMS F OR DIFFUSIONGENERA TED MOTION BY MEAN CUR V A TURE By Stev en J Ruuth BMA TH Univ ersit yof W aterlo o MSc Univ ersit y of British

Chapter �� A New� Spectral Method �

larger � �steps are taken� even fewer basis functions are required to solve the heat

equation to a given accuracy�

� The original nite di�erence algorithm must satisfy ���� globally� or part of the

front may erroneously remain stationary� By recursively rening near the interface�

the new� spectral approach can essentially eliminate this restriction�

�� The new� spectral method also gives an O�h�

�� h�

�approximation of the location

of the front� which is greatly superior to the rst order approximation arising for

nite di�erences� As we saw in the previous section� this improved accuracy� in

part� explains why

O�

�log��� �

operations are needed per step for the basic method� This compares very favorably

to the idealized nite di�erence result for smooth curves� O� ����� which was derived

in Section ����

These are indeed formidable advantages for the new� spectral method over the usual

nite di�erence approach� Even when the fast transform�based methods of the previous

section are not used� large computational savings are typically observed�

To illustrate the performance improvement� consider the motion by mean curvature

of the kidney�shaped region displayed in Figure ���� Using the new� spectral method

and a nite di�erence approach�� we compare the area lost over a time t � ���� with

the exact answer� ���� � � � ����� ��� �see � ���� From Table �� we see that the new�

spectral method is adequate for nding solutions to within a �" error� As we shall see in

the next chapter� even more accurate results are practical using the transform methods

�A direct evaluation of the Fourier summations was carried out��The di�erence algorithm uses an adaptive � �stepping method �see Section ������ on a uniform mesh�

A multigrid technique ��� was used to solve the implicit equations which arose from a backward Eulertime�stepping scheme�

Page 69: OR DIFFUSIONGENERA TED · EFFICIENT ALGORITHMS F OR DIFFUSIONGENERA TED MOTION BY MEAN CUR V A TURE By Stev en J Ruuth BMA TH Univ ersit yof W aterlo o MSc Univ ersit y of British

Chapter �� A New� Spectral Method �

Figure ���� A Smooth Interface at Time� t

0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.650.2

0.3

0.4

0.5

0.6

0.7

0.8 0

xy

0.025

0.05

0.075

0.1

0.125

described in Section �� � The nite di�erence approach� however� is impractical when

accurate solutions are sought �see Table ��

Numerical tests for the problems described in the next chapter also found that the

new� spectral method often requires less than ���" of the computational time of the

usual nite di�erence approach� For this reason� the numerical studies in the following

two chapters are carried out using the new� spectral method�

� h Error Time�

������ �� �" ��� s

�������� ��� �" � s

�t �x Error Time�

�� ���� ���� �" � s

� ��� � ��

�" ����� s

Table �� New� Spectral Method Table � Finite Di�erence Discretization

�All timings were carried out on an HP������ workstation�

Page 70: OR DIFFUSIONGENERA TED · EFFICIENT ALGORITHMS F OR DIFFUSIONGENERA TED MOTION BY MEAN CUR V A TURE By Stev en J Ruuth BMA TH Univ ersit yof W aterlo o MSc Univ ersit y of British

Chapter

Theoretical and Numerical Studies

In this chapter� the order of accuracy of the MBO�method is studied for a variety of two

dimensional initial shapes which move according to mean curvature motion� In particular�

theoretical and numerical studies are presented to show that the method produces a

rst order error in � for smooth� two�phase problems� For three�phase problems� an

expansion is derived to help explain why junction angles remain within O�p�� of the

correct conguration and numerical experiments are presented to show that the basic

method demonstrates O�p� � errors in actual computations� Numerical studies for initial

corners and for singularities in the solution are also presented� Throughout this chapter�

extrapolation in � is used to produce higher order methods�

Our e�orts fall short of a global convergence analysis� What we present instead is

a combination of heuristics� Local error analysis coupled with numerical experiments

which suggest that the derived local error orders may also hold globally�

�� Smooth Interfaces

In this section� we consider the application of the MBO�method to smooth curves� Specif�

ically� we determine the local order of accuracy of the method and we propose an extrap�

olation to provide a higher order method�

��

Page 71: OR DIFFUSIONGENERA TED · EFFICIENT ALGORITHMS F OR DIFFUSIONGENERA TED MOTION BY MEAN CUR V A TURE By Stev en J Ruuth BMA TH Univ ersit yof W aterlo o MSc Univ ersit y of British

Chapter � Theoretical and Numerical Studies ��

Figure ���� The Initial Interface

x

z

0

g(x)

���� Truncation Error Analysis

We begin this chapter with a demonstration that the MBO�method is locally rst order

accurate in � for smooth curves� Specically� we show that the level set F �x� z� � � � ��

for

�F

�t� �F�

F �x� z� �� �

�����

� if z g�x�

� otherwise

where g�x� is the initial interface� gives an O�� �� approximation to the position of the

front after a time� � �

Begin by considering a smooth �� times di�erentiable� interface which initially passes

through the origin� tangent to the x�axis� as in Figure ���� By �� �� the value of F �x� z� t�

along the z�axis is given by

F ��� z� t� ��

� �p

��t

Z z

�e�

y�

�t dy ��

��t

Z �

��e�

x�

�t

Z g�x�

�e�

�z�y��

�t dy dx�

Expanding two of the exponentials around �� and replacing g�x� by the rst few terms

�For consistency with ��� the x�z plane is considered rather than the usual x�y plane�

Page 72: OR DIFFUSIONGENERA TED · EFFICIENT ALGORITHMS F OR DIFFUSIONGENERA TED MOTION BY MEAN CUR V A TURE By Stev en J Ruuth BMA TH Univ ersit yof W aterlo o MSc Univ ersit y of British

Chapter � Theoretical and Numerical Studies �

of the Taylor series gives�

F ��� z� t� ��

� �p

��t

Z z

��� y�

�t

�dy �

��t

Z �

��e�

x�

�t

Z ��g

������x�� ���g

������x�� ���g

������x�

�� � �z � y��

�t

�dy dx� h�o�t��

��

� �p

��t

�z � z�

�t

��

��t

Z �

��e�

x�

�t

�y �

�z � y��

�t

�y� ��g

������x�� ���g

������x�� ���g

������x�

y��

dx� h�o�t��

��

� �p

��t

�z � z�

�t

��

��t

Z �

��e�

x�

�t

�y �

��z�y � �zy� � y�

�t

�y� ��g

������x�� ���g

������x�� ���g

������x�

y��

dx� h�o�t�

Noting that terms which are odd powers of x cancel in the integral� and writing g�n� for

g�n���� we nd

F ��� z� t� ��

� �p

��t

�z � z�

�t

��

��t

Z �

��e�

x�

�t

����g���x� �

�&g���x� �

���z�g���x� � �z

���g���x�

�� � ���g���x�

���t

��� dx� h�o�t�

Applying integration by parts and the well�known identity�

Z �

��e�at

dt �

r�

a

yields

F ��� z� t� ��

� z

p�t

�z�

�tp�t

� �����

g���

st

��� z�

�t

�� �t

st

���g���

�&�z�g���

����t

����

�g���

��t��

�tp�

� h�o�t�

To nd where the interface intersects the z�axis� set F ��� z� t� � �� to obtain�

z �z�

�t� g���

�t� z�

�� �

���g���

�&�z�g���

����t

��� t� �

�g���

��t� � h�o�t�

Page 73: OR DIFFUSIONGENERA TED · EFFICIENT ALGORITHMS F OR DIFFUSIONGENERA TED MOTION BY MEAN CUR V A TURE By Stev en J Ruuth BMA TH Univ ersit yof W aterlo o MSc Univ ersit y of British

Chapter � Theoretical and Numerical Studies ��

Substitution of the rst order approximation of z into the right hand side gives a higher

order estimate which simplies to

z�t� ��

�g���

��t� � g���t� �

�g���

��t� �

g���t� �

�g���

��t� �

�g���

��t� �O�t���

Thus�

z�� � � g���� ���

g��� �

�g���

���� � �O�� ��� �����

Using a known result �see � ��� for the exact position� z��

z�t �z�xx

� � �z�x��

it is straightforward to show that

z��� � � g���� ���

g��� �

�g���

���� � �O�� ��� ������

Thus� the MBO�method is locally rst order in � for smooth curves�

���� Extrapolation

From Equations ����� and ������ we expect that extrapolation in � can be used to

produce higher order accurate results since the error�

�g���

��� � �O�� ��

varies smoothly with � and depends only on the local properties of the curve�

Assuming that the sharpened Fourier coe�cients at time t are given by fcij�t�g� anextrapolated method for smooth curves may be obtained as follows�

Page 74: OR DIFFUSIONGENERA TED · EFFICIENT ALGORITHMS F OR DIFFUSIONGENERA TED MOTION BY MEAN CUR V A TURE By Stev en J Ruuth BMA TH Univ ersit yof W aterlo o MSc Univ ersit y of British

Chapter � Theoretical and Numerical Studies ��

Extrapolation I

�� Carry out one step of the MBO�method with a step size � to obtain the sharpened

coe�cients� c��ij �t� � ��

� Carry out two steps of the method with a step size � to obtain sharpened coe��

cients� c�ij�t� � ��

�� Set

cij�t� � � � c�ij�t� � � � c��ij �t� � �

to obtain the extrapolated coe�cients� �

We hope to obtain second order accurate results in � using this extrapolation� To un�

derstand why� supposeM�� � produces an O�� � approximation to some unknown quantity

M�� Assuming the error for the approximation of M�� � to M� can be expressed as

M� � M�� � �K� �O�� ��

where K is independent of � � we nd that the extrapolation

M�� � �M�� � �M� �O�� ��

is second order accurate� See ��� ��� ��� for treatments of extrapolation for initial value

problems�

The extrapolation process may be repeated� of course� as in Romberg�s integration to

obtain methods which we expect are even higher order accurate� See� for example� �� ��

���� Numerical Experiments

From the previous two sections� we expect that the basic and extrapolated methods will

give globally rst and second order convergence rates� respectively� To experimentally

Page 75: OR DIFFUSIONGENERA TED · EFFICIENT ALGORITHMS F OR DIFFUSIONGENERA TED MOTION BY MEAN CUR V A TURE By Stev en J Ruuth BMA TH Univ ersit yof W aterlo o MSc Univ ersit y of British

Chapter � Theoretical and Numerical Studies �

verify these convergence estimates� we consider the motion by mean curvature of a shrink�

ing ellipse with principle axes ��� and ���� �Similar results are obtained for the shapes

of Figure ��� �cf� ����� and Figure ����a�� Using the basic method and Extrapolation I�

the area lost over a time t � ��� was compared to the exact answer� for several � � The

results from a number of experiments are given in Table �� below�

Basic Method Extrapolation I

� Error Conv� Rate� Error Conv� Rate

����� �����e��� ��� ���� e�� �

������ �����e��� ��� ����e��� ���

������� ��� e��� ��� ��e��� ����

������ � ����e��� ��� ����e��� ��

Table �� Extrapolated Results for Two Phases

These results support the conclusion that the MBO�method is rst order in � and suggest

that extrapolation can be used in conjunction with the new� spectral method to produce

higher order results�

The extrapolated errors in Table � change sign �and the convergence rate �uctuates�

because the rst step of the method uses the characteristic set of the initial shape in

the di�usive step� whereas later steps use extrapolated results which can take on values

between �� and �see� e�g�� Figure ���� Clearer estimates of the convergence rate are

obtained by computing the errors that arise away from t � �� For example� Table � gives

the error in the area lost from time t � ��� to t � ��� for several values of � �

�The exact result is easily derived using Equation �������If the error for a step of size � is E� then we estimate the convergence rate as log�

� E��

E�

��

Page 76: OR DIFFUSIONGENERA TED · EFFICIENT ALGORITHMS F OR DIFFUSIONGENERA TED MOTION BY MEAN CUR V A TURE By Stev en J Ruuth BMA TH Univ ersit yof W aterlo o MSc Univ ersit y of British

Chapter � Theoretical and Numerical Studies ��

Figure ��� Extrapolated� Semi�Discrete Result

������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

U=1τ

U=0

��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

U =12τ

��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

U=1

�������������������������������������������������������

U=2

U=−1� � �

� Error Conv� Rate

����� ����e��� �

������ ��e��� ���

������� � �e��� ���

������ � ����e��� ���

Table �� Extrapolated Method for Two Phases

These results support the conjecture that the extrapolated method is second order in � �

�� Nonsmooth Boundaries

In the previous section� we demonstrated that the MBO�method produces a rst order er�

ror in � for smooth curves� We now consider the application of the method to nonsmooth

initial shapes� In order to determine the form of the error that arises for nonsmooth cor�

ners� we consider a xed � � To produce an optimized code� however� variable sized steps

in � should be considered�

Consider� for example� the motion by mean curvature of the initially nonsmooth

interface given in Figure ���� Using the basic method and Extrapolation I� the area lost

Page 77: OR DIFFUSIONGENERA TED · EFFICIENT ALGORITHMS F OR DIFFUSIONGENERA TED MOTION BY MEAN CUR V A TURE By Stev en J Ruuth BMA TH Univ ersit yof W aterlo o MSc Univ ersit y of British

Chapter � Theoretical and Numerical Studies ��

Figure ���� Initially Nonsmooth Interface at Times� t

0.2 0.3 0.4 0.5 0.6 0.7 0.80.2

0.3

0.4

0.5

0.6

0.7

0.8

0

x

y

0.025

0.05

0.075

0.1

over a time t � ���� was compared to the exact answer� for several � � The results over

a number of experiments are given in Table � below�

Basic Method Extrapolation I

� Error Conv� Rate Error Conv� Rate

����� � ����e��� ���� �����e��� ����

�������� ��� e��� ���� �����e��� ���

��������� �� e��� ���� ����e��� ����

������� �� ���e��� ���� ����e��� ����

Table � Basic and Extrapolated Results for a Nonsmooth Shape

These results suggest that the extrapolation is rst order in � � To obtain a clearer

understanding of the form of these errors� let ��� � be the error which arises for the basic

method using a step size � � Assuming that the extrapolated result is indeed rst order�

i�e�

��� �� ��� � � c� � o�� �

for some constant c� we write

��� �� ��� �

�� ��� �

�� �c� o����

Page 78: OR DIFFUSIONGENERA TED · EFFICIENT ALGORITHMS F OR DIFFUSIONGENERA TED MOTION BY MEAN CUR V A TURE By Stev en J Ruuth BMA TH Univ ersit yof W aterlo o MSc Univ ersit y of British

Chapter � Theoretical and Numerical Studies ��

d

d����� ��� ��� �

�� �c� o����

d

d�

���� �

�� � c

�� o

Integrating with respect to � � we nd that

��� � � �c� log�� � � o�� log�� ���

� O�� log�� ���

Thus� we suspect that the basic method is order � log�� � for the case of nonsmooth initial

corners��

To derive a higher order method for nonsmooth curves� we assume that the sharpened

Fourier coe�cients at time t are given by fcijg and carry out Extrapolation I twice to

eliminate the leading order error term� This repeated extrapolation produces the follow�

ing method�

Extrapolation II

�� Carry out one step of the MBO�method with a step size �� to obtain the sharpened

coe�cients� c��ij �t� �� ��

� Carry out two steps of the MBO�method with a step size � to obtain the sharpened

coe�cients� c��ij �t� �� ��

�� Carry out four steps of the method with a step size � to obtain sharpened coe��

cients� c�ij�t� �� ��

�� Set

cij�t� �� � � �c�ij�t� �� �� �c��ij �t� �� � � c��ij �t� �� �

�Note that if the order is indeed O�� log�� �� then the quantity measured as convergence rate gives� � log��� � �log� � �

���� � as � � � which is consistent with the results in Table �

Page 79: OR DIFFUSIONGENERA TED · EFFICIENT ALGORITHMS F OR DIFFUSIONGENERA TED MOTION BY MEAN CUR V A TURE By Stev en J Ruuth BMA TH Univ ersit yof W aterlo o MSc Univ ersit y of British

Chapter � Theoretical and Numerical Studies ��

to obtain the extrapolated coe�cients� �

Applying this extrapolated method to the nonsmooth problem yields the results given

in Table ��

� j Error j Conv� Rate

����� � ����e��� �

�������� ���e��� ����

��������� ����e�� ����

������� �� ����e�� ����

Table �� Results for a Nonsmooth Shape Using Repeated Extrapolation

These results show that repeated extrapolation can be very e�ective� even when nons�

mooth initial corners are present� Indeed� Table � suggests that an approximately second

order method arises from the use of Extrapolation II�

Topological mergings and breakings in three dimensional or a�ne �ows can also pro�

duce nonsmooth corners� For this reason� we expect no better than an O�� log�� �� error

to arise in these situations� To obtain a deeper understanding of the form of these errors�

further studies are needed since an additional dependency on nonlocal properties of the

interface occurs�

�� Singularities in the Solution as Regions Disappear

To conclude our study of the MBO�method for two�phase problems� we consider the

method�s treatment of regions as they shrink to points and disappear under mean curva�

ture motion� Similar to the case of nonsmooth corners� this motion causes condition ����

to be violated� For this reason� we suspect that an O�� log�� �� error may arise whenever

the basic method is applied�

Page 80: OR DIFFUSIONGENERA TED · EFFICIENT ALGORITHMS F OR DIFFUSIONGENERA TED MOTION BY MEAN CUR V A TURE By Stev en J Ruuth BMA TH Univ ersit yof W aterlo o MSc Univ ersit y of British

Chapter � Theoretical and Numerical Studies ��

To test if an O�� log�� �� error occurs in practice� we consider the motion by mean

curvature of a shrinking ellipse with principle axes �� and �� � Using the basic method�

the disappearance time T � was compared to the exact answer� T e � ��� � for several � �

An extrapolation in the disappearance time� �T � � �T �� � T �� � was also computed� The

results for a number of experiments are given in Table �� below�

� T � � T e Conv� Rate ��T � � �T �� � T ���� T e

���� ���� e��� � ����e���

���� �����e��� ���� �����e���

����� ����e��� ���� ���� e��

������ ����e��� ���� ����e���

Table �� Basic and Extrapolated Errors for a Shrinking Ellipse

These results show a slow tendency upwards to rst order for the basic method and

indicate that extrapolation can be very e�ective as phase regions disappear� �Unfor�

tunately� we were unable to determine a clear estimate of the convergence rate for the

extrapolation�� Similar to the case of nonsmooth corners� these results are suggestive of

an order � log�� � error for the basic method�

� Junctions in Two Dimensions

In this section� we consider the application of the MBO�method to triple junctions in

two dimensions� Specically� we present numerical experiments to estimate the order of

accuracy of the basic method and propose an extrapolated method for improved accuracy�

We also derive asymptotic results which explain the stability of junction angles and

suggest a source of the O�p� � error which arises in numerical experiments�

Page 81: OR DIFFUSIONGENERA TED · EFFICIENT ALGORITHMS F OR DIFFUSIONGENERA TED MOTION BY MEAN CUR V A TURE By Stev en J Ruuth BMA TH Univ ersit yof W aterlo o MSc Univ ersit y of British

Chapter � Theoretical and Numerical Studies ��

��� Error Analysis

Under mean curvature motion� two dimensional triple junctions form a stable ��� �

��� �

���

angle conguration �see� e�g�� ������ In this subsection� we show that each step of the

MBO�method produces an O�p� � error in the junction angles which is rapidly dissipated

during subsequent steps�

We now derive an expansion for the angles of a two dimensional triple junction after

one step of the MBO�method� We shall assume that each angle approximates ���� initially�

The Initial Junction

We begin by orienting a polar coordinate system so that the junction angle furthest from

��� is centered about � � �� We denote the initial interfaces by ��� �� and �� and the

initial regions by R�� R� and R� as in Figure ����

To represent the small deviations from the �����������

junction conguration we dene

� � � ���� � �

��

c� � � ���� � �

where � �i�j is the angle between �i and �j � Since � ���� � � ���� � � ���� � � it is easy to

see that

j�j � � ���� � �

� � ���� � �

� jcjj�j�j�j �

� ���� � �

� � ���� � �

� j�jj� � cj�

Hence� the constant c satises �� � c � ��

In order to carry out our expansions� we want an expression for each interface�

�i � f�r� ��i�r�� � r � �g

Page 82: OR DIFFUSIONGENERA TED · EFFICIENT ALGORITHMS F OR DIFFUSIONGENERA TED MOTION BY MEAN CUR V A TURE By Stev en J Ruuth BMA TH Univ ersit yof W aterlo o MSc Univ ersit y of British

Chapter � Theoretical and Numerical Studies �

Figure ���� The Initial Junction

2O(+ )κ2_1

_31 π + +θ =

2O(+ )1

R

R

R

1

2 2O(+ )

0

π ε+ +θ =2

κ

κ

2_ε1

2_1

2_1

π +θ = − −31

2_ε1_

2_1(c+ )

r r

r r

r r

(r)

(r)

2

(r)

1

0

1

2

0

0

for some function� ��i�r�� Using the above denitions it is straightforward to show that

���r� � ��

�� � �

��

��r �O�r���

����r� ��

�� �

��

��r �O�r���

����r� � � �c�

��

��r �O�r��

where �i is the curvature of line �i at the origin�

Page 83: OR DIFFUSIONGENERA TED · EFFICIENT ALGORITHMS F OR DIFFUSIONGENERA TED MOTION BY MEAN CUR V A TURE By Stev en J Ruuth BMA TH Univ ersit yof W aterlo o MSc Univ ersit y of British

Chapter � Theoretical and Numerical Studies ��

Approximation of Ui

We now want to estimate �U � �U�� U�� U�� after a time� � � At t � �� we know that

Ui�r� �� �� �

�����

� if �r� �� � Ri

� otherwise�

for � � i � �

The Green�s function representation of U��r� �� � � gives

U��r� �� � � ��

���

Z �

Z ��� �R�

�� �R�exp

�� �R cos���� r cos����� � �R sin���� r sin�����

� �

�R d� dR�

��

���exp

�� r�

��

�Z �

�exp

��R

��

�Z ��� �R�

�� �R�exp

�rR cos��� ��

�R d� dR�

Replacing the exponential in the inner integral by its series and integrating term by term

yields�

U��r� �� � � ��

���exp

�� r�

��

�Z �

�Xn��

�R

n&

rR

nexp

��R

��

� Z ��� �R�

���R�cosn��� �� d�

�dR�

��

���exp

�� r�

��

�Z �

�R exp

��R

��

�������

�����R� � ���R� �

rR

��sin�����R� � ��� sin����R� � ���

��

rR

� �����R� � ���R� �

sin � �����R�� ���� �

sin � ����R�� ���

��dR

�E�r� �� � �

where

E�r� �� � � ��Xn��

En�r� �� � ��

En�r� �� � � ��

���exp

�� r�

��

�Z �

R

n&

rR

nexp

��R

��

�Z ����R�

�� �R�cosn��� �� d� dR�

We seek an estimate of En�r� �� � �� Noting that

Z ����R�

�� �R�cosn��� �� d� ��

Page 84: OR DIFFUSIONGENERA TED · EFFICIENT ALGORITHMS F OR DIFFUSIONGENERA TED MOTION BY MEAN CUR V A TURE By Stev en J Ruuth BMA TH Univ ersit yof W aterlo o MSc Univ ersit y of British

Chapter � Theoretical and Numerical Studies ��

it is clear that

jEn�r� �� � �j � �

�exp

�� r�

��

�Z �

R

n&

rR

nexp

��R

��

�dR�

n&

�rp�

�n

exp

�� r�

��

�Z �

��n�� exp

����

�d��

��

rp�

�n

exp

�� r�

��

��

��

rp�

�n

Assuming rp�� �� we nd

E�r� �� � � � O��� rp

���A �

Similar to the above result� the second and higher order terms of ��i�R� make anO� � �r�

���

rp�

��contribution to U��r� �� � � in Equation ������� Thus�

U��r� �� � � ��

���exp

�� r�

��

� Z �

�R exp

��R

��

�� � ��

��� � ���R

�rR

�sin

�� �

��

��R � �

� sin

��

�� � �

��

��R� �

��

rR

� ��� �

sin

�� � �

� �

sin

�� � �

��dR

�O��� � �r�

��

�rp�

���A �

We now expand the integrand �using Maple ����� and apply integration by parts with

the well�known identity Z �

�exp

��R

a

�dR �

pa�

to obtain

U��r� �� � � ��

��

���

���� � ���

r�

��rp� cos���

�p��

Page 85: OR DIFFUSIONGENERA TED · EFFICIENT ALGORITHMS F OR DIFFUSIONGENERA TED MOTION BY MEAN CUR V A TURE By Stev en J Ruuth BMA TH Univ ersit yof W aterlo o MSc Univ ersit y of British

Chapter � Theoretical and Numerical Studies �

��

����� � ���r cos��� �

p�

����� � ���r sin��� �

�p��

r cos���

p�

����

�cos����� sin����

�r� �O

��� �

�r�

��

�rp�

���A �

Re�writing in Cartesian coordinates yields

U��x� y� � � ��

��

���

���� � ���

r�

��

p�

�p��

x �����

��

����� � ���x�

p�

����� � ���y �

�p��

x�

p�

����

�x� � y�

�O� �

�x� � y�

���x�� � y��

� ��

Expansions for U� and U� may be obtained via rotations of ����� to give

U��x� y� � � ��

��

�c��

���� � ���

r�

��

�y �p�x

�p��

� �

����� � ���x�

p�����

y

� � � �c

��p��

�x�p�

��p��

�y � �

����xy �

p�

���

�y� � x�

�O� �

�x� � y�

���x�� � y��

� ��

U��x� y� � � � � � U��x� y� � �� U��x� y� � ��

Angle Expansions

We now seek expansions for the angle conguration of the junction after a time � �

Begin by letting ���� ��� and ��� be the MBO�approximations to the branches of the

triple junction after a time � � To approximate the angle between ��� and ���� we require

the location of the triple junction at time � � This can be found by solving the system�����

U��x� � y� � � � � U��x� � y� � � ��

U��x� � y� � � � � U��x� � y� � � �

for �x� � y�� to give

x� � �r

���� �p

���� � ���� �O��� � �O

��

��

��

Page 86: OR DIFFUSIONGENERA TED · EFFICIENT ALGORITHMS F OR DIFFUSIONGENERA TED MOTION BY MEAN CUR V A TURE By Stev en J Ruuth BMA TH Univ ersit yof W aterlo o MSc Univ ersit y of British

Chapter � Theoretical and Numerical Studies ��

y� � �

��c� ��

r�

���

���� � �� � ���� �O��� � �O

��

��

��

Our next task is to nd the slope of ��� at the triple junction� Since ��� is given by

f�x� y� � U��x� y� � � � U��x� y� � �g �

the slope of ��� is given implicitly by

Dx �U��x� y� � �� U��x� y� � �� � ��

Solving for the slope at the triple junction� �x� � y��� yields

m� � �p� �

c� � � �c� �

�� ��� � �� � ���

r�

��O�� � �O

�����

Similarly� the slope of ��� at the triple junction is given by

m� �p� �

c� � �c� ��

�� ��� � �� � ���

r�

��O�� � �O

�����

Thus� the value of the desired angle is given by

� ������ � � � arctan

m� �m�

� �m�m�

�� �

� �

��

��� � ���

r�

��O�� � �O

����� ������

Similarly�

� ������ �

�� �

� �

c��

��� � ���

r�

��O�� � �O

�����

� ������ �

�� �

� �

�� � c���

��� � ���

r�

��O�� � �O

�����

Thus� each step of the MBO�method produces an O�p� � error in the junction angles

which is rapidly dissipated during subsequent steps� Summing up such contributions

over many � steps� we expect to obtain a rapidly converging geometric sum which gives

rise to an O�p� � error in total� This is an interesting result because it gives an explana�

tion for the stability of junction angles and suggests a source of the O�p� � error which

arises in numerical experiments �see next section��

�This summation step is non�rigorous because it assumes among other things that � �� and ��are bounded independent of � �

Page 87: OR DIFFUSIONGENERA TED · EFFICIENT ALGORITHMS F OR DIFFUSIONGENERA TED MOTION BY MEAN CUR V A TURE By Stev en J Ruuth BMA TH Univ ersit yof W aterlo o MSc Univ ersit y of British

Chapter � Theoretical and Numerical Studies ��

Figure �� � A Smooth Three�Phase Problem

0

1

1x

y

0

1

1x

y

t � ��� t � ����

��� Numerical Experiments

We have just seen that the MBO�method is expected to produce an O�p�� error in the

angle conguration of junctions� For this reason� we suspect that the basic method may

produce an O�p� � error when junctions are present�

To test if this is indeed the case� we consider the motion by mean curvature of the

three�phase problem given in Figure �� � Using the basic method� the area lost for the

central region� A� � over a time t � ���� was compared to the exact answer�� ������� ��

for several � � Because an O�p� � error seems plausible from our asymptotic results�

an extrapolation in the area� �p���

�pA� �A��

�� was also computed to eliminate the

conjectured leading order error term� The results for a number of experiments are given

in Table �� below�

�Applying the Von Neumann�Mullins parabolic law ��� gives us that the area of the central phaseobeys

dA

dt�

��

���� ���

Page 88: OR DIFFUSIONGENERA TED · EFFICIENT ALGORITHMS F OR DIFFUSIONGENERA TED MOTION BY MEAN CUR V A TURE By Stev en J Ruuth BMA TH Univ ersit yof W aterlo o MSc Univ ersit y of British

Chapter � Theoretical and Numerical Studies ��

� Error in A� Conv� Rate Error in �p���

�pA� �A��

�Conv� Rate

����� ���e��� ���� �����e��� ����

������ ����e��� ���� �����e��� ��

����� � ����e��� �� � ���e��� ����

�������� ����e��� �� �����e��� ����

��������� ���e��� �� � �����e�� ���

Table �� Basic MBO�method for Three Phases

These results support the conjecture that the MBO�method is O�p�� for the case of

junctions and suggest that extrapolation can be used in conjunction with the new� spec�

tral method to produce higher order estimates of quantities of interest such as phase

areas�

Accurate� extrapolated estimates of the disappearance time of the smallest phase for

a more complicated three�phase problem �see Figure ���� have also been determined in

this manner ����� Using the basic method� the disappearance time� T � � was compared to

an estimate of the exact answer� for several � � An extrapolation in the disappearance

time� �p����

pT � � T ���� was also computed� The results for a number of experiments

are reported in Table �� below�

� Error in T � Conv� Rate Error in �p���

�pT � � T ��

�Conv� Rate

���� ������ � ������ �

��� ������ ���� ������ ��

���� ������ ���� ������� ����

���� ����� � ���� ������� ����

Table �� Results for the Disappearance Time of a Phase Region

�This result T � ������ was obtained using Brian Wetton�s front tracking code� see �����

Page 89: OR DIFFUSIONGENERA TED · EFFICIENT ALGORITHMS F OR DIFFUSIONGENERA TED MOTION BY MEAN CUR V A TURE By Stev en J Ruuth BMA TH Univ ersit yof W aterlo o MSc Univ ersit y of British

Chapter � Theoretical and Numerical Studies ��

Figure ���� Evolution of a Junction Through a Singularity

t � ��� t � ���

t � �� t � ���

These results are suggestive of an O�p� � or O�

p� log�� �� error for the basic method�

We also nd that a marked improvement in the error occurs when extrapolation is used�

An extrapolated method for approximating the entire interface is also sought� Assum�

ing that the sharpened Fourier coe�cients at time t are given by fcij�t�g� an extrapolated

method for junctions may be obtained as follows�

Extrapolation III

�� Carry out one step of the MBO�method with a step size � to obtain the sharpened

coe�cients� c��ij �t� � ��

Page 90: OR DIFFUSIONGENERA TED · EFFICIENT ALGORITHMS F OR DIFFUSIONGENERA TED MOTION BY MEAN CUR V A TURE By Stev en J Ruuth BMA TH Univ ersit yof W aterlo o MSc Univ ersit y of British

Chapter � Theoretical and Numerical Studies ��

� Carry out two steps of the method with a step size � to obtain sharpened coe��

cients� c�ij�t� � ��

�� Set

cij�t� � � �

pc�ij�t� � �� c��ij �t� � �p

� �

to obtain the extrapolated coe�cients� �

Using this extrapolated method� approximations to the three�phase problem given in

Figure �� were computed� A comparison of the exact area change for the central region

with the computed values yields the results given in Table ��

� Error Conv� Rate

����� �����e��� ��

������ � ���e��� ����

����� � �� �e��� ����

�������� �����e��� ����

��������� �����e�� ����

Table ��� Extrapolated Method for Three Phases

Based on these results� it is not clear if the extrapolated algorithm possesses a higher

order of accuracy than the basic method� Nonetheless� the extrapolated method may

be of practical use since it typically results in a marked improvement in the error �cf�

Tables � and ����

�� Summary

Based on a number of two dimensional studies� we have determined the dominant local

error term of the MBO�method for certain classes of problems and have suggested ex�

trapolations for improved accuracy� We have observed corresponding behaviour of the

Page 91: OR DIFFUSIONGENERA TED · EFFICIENT ALGORITHMS F OR DIFFUSIONGENERA TED MOTION BY MEAN CUR V A TURE By Stev en J Ruuth BMA TH Univ ersit yof W aterlo o MSc Univ ersit y of British

Chapter � Theoretical and Numerical Studies ��

error in selected actual computations� These results are summarized in Table �� below�

Type of Interface Conjectured Error Order Extrapolation Choice

Two Phases�

Smooth � Extrapolation I

Nonsmooth � log�� � Extrapolation II

Singularities � log�� � Extrapolation II

Junctionsp� Extrapolation III

Table ��� Summary of Theoretical and Numerical Studies in �D

For the remainder of this thesis� we focus on the approximation of three dimensional

and nonlocal models of curvature�dependent motion�

Page 92: OR DIFFUSIONGENERA TED · EFFICIENT ALGORITHMS F OR DIFFUSIONGENERA TED MOTION BY MEAN CUR V A TURE By Stev en J Ruuth BMA TH Univ ersit yof W aterlo o MSc Univ ersit y of British

Chapter �

Numerical Experiments and Visualization

In this chapter� we apply the MBO�method to a number of three dimensional problems�

In particular� we evolve surfaces with junctions according to mean curvature motion

and visualize the results� An extension of the MBO�method to a nonlocal model that

preserves phase areas is also proposed and studied�

To obtain results at an a�ordable cost� all problems are solved using the new� spectral

method rather than with a nite di�erence discretization�

��� Three Dimensional� Two�Phase Problems

We begin this chapter by considering the motion by mean curvature of two�phase prob�

lems� Results developed here will also be used in the next section for the visualization of

three dimensional junctions�

����� Visualization

To obtain a clearer understanding of the motion by mean curvature of surfaces� we

seek a method for visualizing our results� This section describes a simple approach for

generating movies of evolving shapes using Matlab ����� See ��� ��� for discussions on

more advanced visualization techniques�

Our principal task is to construct each frame of the movie� A relatively straightfor�

ward approach for generating surfaces with di�use� ambient and specular lighting e�ects

is to use Matlab�s sur�X�Y�Z� command ����� This command produces a surface by

Page 93: OR DIFFUSIONGENERA TED · EFFICIENT ALGORITHMS F OR DIFFUSIONGENERA TED MOTION BY MEAN CUR V A TURE By Stev en J Ruuth BMA TH Univ ersit yof W aterlo o MSc Univ ersit y of British

Chapter � Numerical Experiments and Visualization ��

interpolating between the points given by the matrices X� Y � and Z� Although it is pos�

sible to display small portions of a surface� we prefer to use larger segments� This avoids

the shading variations that occasionally arise between segments when the full surface is

displayed using a number of smaller fragments�

Certain smooth shapes are easy to represent as an m�m matrix� Suppose� for exam�

ple� there is a point Q in the region which has a direct line of sight to the entire surface

�e�g�� point Q in Figure ��� but not point $Q�� Then� the following algorithm can be used

to represent the shape�

Visualization I

Select a Q satisfying the �line of sight property listed above�

�Currently Q is user selected��

For � � i� j � m� ��

Set Pij � �Xij� Yij � Zij� equal to the intersection of the surface with the line ��

where � passes through Q and has an azimuth or horizontal rotation of ��im��

and a vertical elevation of ��jm�� � ��

This approach has been used to represent a variety of smooth surfaces �e�g�� Figure ���

More complicated shapes have also been considered by dividing the shape into subregions

and treating each separately �e�g�� Figure ����

Having constructed an appropriate m � m matrix� we need only call sur�� and

specify a shading model to display the surface� Matlab provides for piecewise constant

and Gouraud �piecewise bilinear� shading� For the surfaces we have considered� superior

results arose from Gouraud shading �see� e�g�� Figure ����

Page 94: OR DIFFUSIONGENERA TED · EFFICIENT ALGORITHMS F OR DIFFUSIONGENERA TED MOTION BY MEAN CUR V A TURE By Stev en J Ruuth BMA TH Univ ersit yof W aterlo o MSc Univ ersit y of British

Chapter � Numerical Experiments and Visualization ��

Figure ��� From Q the Entire Curve is Visible

.Q

.Q~

Figure �� A Matrix Representation of the Surface

i,j i+1,j i+2,j

i,j+1

i,j+2i+1,j+2 i+2,j+2

i+2,j+1i+1,j+1

P

P

P

P

P

P P

P

P

Page 95: OR DIFFUSIONGENERA TED · EFFICIENT ALGORITHMS F OR DIFFUSIONGENERA TED MOTION BY MEAN CUR V A TURE By Stev en J Ruuth BMA TH Univ ersit yof W aterlo o MSc Univ ersit y of British

Chapter � Numerical Experiments and Visualization �

Figure ��� Splitting a Shape into Easily Parameterized Portions

Figure ��� Piecewise Constant and Gouraud Shading of the Surface

Fig� ��a� Piecewise Constant Shading Fig� ��b� Gouraud Shading

Page 96: OR DIFFUSIONGENERA TED · EFFICIENT ALGORITHMS F OR DIFFUSIONGENERA TED MOTION BY MEAN CUR V A TURE By Stev en J Ruuth BMA TH Univ ersit yof W aterlo o MSc Univ ersit y of British

Chapter � Numerical Experiments and Visualization ��

����� Numerical Experiments

We now report on several experiments for two�phase mean curvature motion� Throughout

this section� a piecewise linear t to the interface is used �see Section ����� with a nest

cell width of h � ����

Collapsing Sphere

From the previous chapter� we saw that the basic MBO�method was rst order in � for

smooth� two dimensional problems� To test if this result also holds in three dimensions�

we consider the motion by mean curvature of a collapsing sphere with initial radius ����

Using the new� spectral discretization of the MBO�method the volume lost over a time

t � ���� was compared to the exact answer� ������ for several � � The results for a number

of experiments are given in Table ��� below�

� Error Conv� Rate

���� ������ �

���� ��� � ��

���� ������ ���

����� ���� � ����

Table ��� The Basic MBO�Method for the Shrinking Sphere

These results suggest that the basic MBO�method is rst order in � for smooth

surfaces without junctions�

Thin�Stemmed Barbell

Examples involving topological changes are also naturally handled by the method� For

example� Figure � displays the motion of a thin�stemmed barbell using a step size�

Page 97: OR DIFFUSIONGENERA TED · EFFICIENT ALGORITHMS F OR DIFFUSIONGENERA TED MOTION BY MEAN CUR V A TURE By Stev en J Ruuth BMA TH Univ ersit yof W aterlo o MSc Univ ersit y of British

Chapter � Numerical Experiments and Visualization ��

� � ������� From these images� it is clear that the center handle pinches o� to form

two pieces� As expected from ����� these convex shapes become nearly spherical as they

disappear�

Thick�Stemmed Barbell

A wider stem can produce a qualitatively di�erent motion� For example� Figure ��

displays the motion of a thick�stemmed barbell using a step size� � � ����� � From these

images� we see that no topological changes arise� and that the shape eventually becomes

ellipsoidal and more spherical as it disappears�

��� Junctions in Three Dimensions

In this section� we consider the motion by mean curvature of surfaces with junctions�

Specically� we report on some numerical experiments and give a visualization method

for certain multiple phase problems�

����� Visualization

The visualization of multiple phases can also be carried out in a straightforward manner

for certain problems� Suppose� for example� that a clear phase surrounds several opaque

regions� Then the following algorithm can be used to display the visible surfaces�

Visualization II

For each opaque phase� � � j � m�

Draw the surface Uj�x� y� z� � Uclear�x� y� z� before sharpening

using Matlab�s sur�� command and Visualization I�

Page 98: OR DIFFUSIONGENERA TED · EFFICIENT ALGORITHMS F OR DIFFUSIONGENERA TED MOTION BY MEAN CUR V A TURE By Stev en J Ruuth BMA TH Univ ersit yof W aterlo o MSc Univ ersit y of British

Chapter � Numerical Experiments and Visualization ��

Figure � � Thin�Stemmed Barbell Moving by Mean Curvature Motion

0.8

0.2

0.13

t � ������ t � ������

t � ����� t � �����

t � ������ t � �����

Page 99: OR DIFFUSIONGENERA TED · EFFICIENT ALGORITHMS F OR DIFFUSIONGENERA TED MOTION BY MEAN CUR V A TURE By Stev en J Ruuth BMA TH Univ ersit yof W aterlo o MSc Univ ersit y of British

Chapter � Numerical Experiments and Visualization ��

Figure ��� Thick�Stemmed Barbell Moving by Mean Curvature Motion

0.8

0.2

0.2

t � ������ t � ����

t � ���� � t � ������

t � ���� � t � �����

Page 100: OR DIFFUSIONGENERA TED · EFFICIENT ALGORITHMS F OR DIFFUSIONGENERA TED MOTION BY MEAN CUR V A TURE By Stev en J Ruuth BMA TH Univ ersit yof W aterlo o MSc Univ ersit y of British

Chapter � Numerical Experiments and Visualization ��

Figure ��� Composition of a Junction

This method draws each of the visible surfaces between the opaque and clear regions� It

also constructs several articial surfaces which are not displayed by sur�� since they are

hidden� See� for example� Figure ��� It is an interesting fact that these articial surfaces

are often nonsmooth since the corresponding values of Uj and Uclear are zero to within

the tolerance of the line search algorithm used in Visualization I�

Visualization II has been applied to a variety of surfaces with junctions� Indeed� each

of the movie frames displayed in the next section was constructed using this approach�

����� Numerical Experiments

We now report on experiments for the motion by mean curvature of surfaces with junc�

tions� Throughout this section� a trivial treatment of the nest subregions was used �see

Section ������ with a nest cell width of h � �����

Three Phase Example

From Section ���� we saw that the MBO�method naturally treats two�phase problems

in three dimensions� Multiple phase problems have also been evolved using the method�

Page 101: OR DIFFUSIONGENERA TED · EFFICIENT ALGORITHMS F OR DIFFUSIONGENERA TED MOTION BY MEAN CUR V A TURE By Stev en J Ruuth BMA TH Univ ersit yof W aterlo o MSc Univ ersit y of British

Chapter � Numerical Experiments and Visualization ��

For example� Figure �� displays the motion by mean curvature of a cylindrical� three

phase shape using a step size � � ����� � From these images� we see that the central

blue phase pinches o� to form two spherical regions� which eventually disappear�

Multiple Phase Example

The previous example considered the motion by mean curvature of three phases meeting

at �������� degree angles� The evolution of four�phase junctions may also be studied

using our new� spectral discretization of the MBO�method� For example� Figure ��

displays the motion of a spherical four�phase shape using a step size� � � ������� From

these images� we see that the four�phase junction is stable under mean curvature motion�

as is expected from experimental studies of recrystallized metal �����

��� A Nonlocal Model

The bulk of this thesis has been concerned with the motion by mean curvature of inter�

faces� We now consider an extension of this motion to a nonlocal model�

Consider a collection of disjoint interfaces� �i� which separate a number of regions� If

we evolve these interfaces using a normal velocity

vn��x� t� � ���x� t�� �a�t� � ����

where ���x� t� and �a�t� are the mean curvature and average mean curvature� respec�

tively� then we obtain a nonlocal volume�preserving �ow � ��� This motion is of interest

�Here the average mean curvature is given by

�a �

�Pij�ij

�Xi

Zi

�i

where j�ij is the perimeter of the interface of �i�

Page 102: OR DIFFUSIONGENERA TED · EFFICIENT ALGORITHMS F OR DIFFUSIONGENERA TED MOTION BY MEAN CUR V A TURE By Stev en J Ruuth BMA TH Univ ersit yof W aterlo o MSc Univ ersit y of British

Chapter � Numerical Experiments and Visualization �

Figure ��� Three Phase Example Moving by Mean Curvature Motion

0.7

0.12 0.7

t � ������ t � ����

t � ������ t � �����

t � ���� t � �����

Page 103: OR DIFFUSIONGENERA TED · EFFICIENT ALGORITHMS F OR DIFFUSIONGENERA TED MOTION BY MEAN CUR V A TURE By Stev en J Ruuth BMA TH Univ ersit yof W aterlo o MSc Univ ersit y of British

Chapter � Numerical Experiments and Visualization ��

Figure ��� Four Phase Example Moving by Mean Curvature Motion

0.7

t � ������ t � ������

t � ����� t � ������

t � ������ t � ������

Page 104: OR DIFFUSIONGENERA TED · EFFICIENT ALGORITHMS F OR DIFFUSIONGENERA TED MOTION BY MEAN CUR V A TURE By Stev en J Ruuth BMA TH Univ ersit yof W aterlo o MSc Univ ersit y of British

Chapter � Numerical Experiments and Visualization ��

because it arises as a nonlocal model for binary alloys � �� and because it gives a possible

smoothing for generating multiscale representations of planar curves �����

We now develop a simple modication of the MBO�method to treat this nonlocal

model in two dimensions� An extension to the three dimensional case is straightforward�

We begin by noting that an approximation to the desired motion � ���� is obtained

at each step if we track the level set

� �

�a�t�

r�

�� �� �

rather than the usual level set of one�half �� �� Thus� phase areas remain approximately

constant provided we follow the contour � �� �� Since U is continuous at any time t

before sharpening� the area enclosed by a level set c�

A�c� t� � Area�f�x � U��x� t� � cg�

is a strictly increasing and hence invertible function of c� Thus� the desired contour � �� �

can be approximated by the level set that preserves phase areas� Applying this result to

the MBO�method gives a simple algorithm for computing solutions to the nonlocal model�

Nonlocal Curvature Algorithm

To obtain an approximation to the nonlocal curvature model � ����� we may carry out

the MBO�method for two phases given in Section �� using the following as a replacement

for step ����

��a� Find the level set that preserves phase areas� i�e�� determine the value c satisfying

A�c� t� � A�

� �� � ����

Solving � ���� for c may be accomplished by a variety of line search algorithms�

For example� ���� gives an e�cient and reliable approach based on a combination

Page 105: OR DIFFUSIONGENERA TED · EFFICIENT ALGORITHMS F OR DIFFUSIONGENERA TED MOTION BY MEAN CUR V A TURE By Stev en J Ruuth BMA TH Univ ersit yof W aterlo o MSc Univ ersit y of British

Chapter � Numerical Experiments and Visualization �

Figure ���� A Test Problem for the Nonlocal Curvature Algorithm

0 0.2 0.4 0.6 0.8 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

of bisection� secant and inverse quadratic interpolation methods� Note that this

step is relatively simple to implement since the area of the phase we are following

is given by the Fourier coe�cient c���t��

��b� Carry out step ��� of the MBO�method using the contour c rather than the usual

choice of one�half�

To test how well this method approximates the nonlocal model� we consider the

motion of two circles with initial radii �� and ��� �see Figure ����� Using the nonlocal

curvature algorithm� the area of the smaller circle after a time t � ��� was compared to

the exact answer� ����� ��� which was found by integration of � ����� The results for a

number of experiments are given in Table �� below�

� Error Conv� Rate

����� ������ �

���� �������� ����

����� ������� ����

����� �������� ����

Table �� Results for the Nonlocal Curvature Algorithm

Page 106: OR DIFFUSIONGENERA TED · EFFICIENT ALGORITHMS F OR DIFFUSIONGENERA TED MOTION BY MEAN CUR V A TURE By Stev en J Ruuth BMA TH Univ ersit yof W aterlo o MSc Univ ersit y of British

Chapter � Numerical Experiments and Visualization ��

Figure ���� Nonlocal Model Which Preserves Area

0 0.2 0.4 0.6 0.8 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t � ������� t � �����

t � ������ t � ���� �

These results indicate that the error decreases with � � Unfortunately� our tests did not

obtain a clear convergence rate�

Examples involving topological changes can be naturally handled by the method� For

example� Figure ��� displays the motion of three regions using a step size of � � �����

and a nest cell width of h � � ��� From these images� it is clear that the large elliptical

regions grow at the expense of the smaller circle� Before long� the two elliptical regions

merge and the circle disappears� As we expect� this nal shape slowly smoothes to

become more circular�

Page 107: OR DIFFUSIONGENERA TED · EFFICIENT ALGORITHMS F OR DIFFUSIONGENERA TED MOTION BY MEAN CUR V A TURE By Stev en J Ruuth BMA TH Univ ersit yof W aterlo o MSc Univ ersit y of British

Chapter

Conclusions

�� Summary

In this thesis� we have considered a recent method ���� ��� for the motion by mean

curvature of curves and surfaces� This method �MBO� naturally handles complicated

topological changes with junctions� Because it produces approximations to these prob�

lems more e�ciently than other methods� it is often the only practical choice for the

accurate treatment of three dimensional surfaces involving junctions�

The usual nite di�erence discretization of the MBO�method has a number of limita�

tions� For example� a very ne mesh must be used �see restriction ����� to prevent the

front from becoming stationary� Satisfying such a restriction globally is often computa�

tionally impractical when accurate results are needed� Furthermore� each step produces

an error in the position of the front which is comparable in size to the mesh spacing�

To preserve the overall accuracy of the method for smooth curves� this leads to a work

estimate of O�

���

�operations per step for an optimized nite di�erence approach� �Here�

� � � represents the time�length of each step of the MBO�method�� The usual nite dif�

ference approach also produces irregular errors� which precludes the use of extrapolation

in � for obtaining a higher order accuracy�

To overcome these� and other� limitations we have proposed a new� spectral discretiza�

tion of the MBO�method which we have found is often more than ���� times faster than

the usual nite di�erence approach� This method uses a Fourier cosine tensor product

��

Page 108: OR DIFFUSIONGENERA TED · EFFICIENT ALGORITHMS F OR DIFFUSIONGENERA TED MOTION BY MEAN CUR V A TURE By Stev en J Ruuth BMA TH Univ ersit yof W aterlo o MSc Univ ersit y of British

Chapter �� Conclusions ��

to discretize the heat equation which arises at each � �step of the MBO�method� The

corresponding Fourier coe�cients are determined using a quadrature with a piecewise

linear approximation to the surface� This approach leads to several advantages over the

usual nite di�erence discretization especially when used in combination with the recent�

unequally spaced fast Fourier transform method given in � ��

Firstly� local renement is much easier to carry out within a quadrature� rather than

within a discretization of a di�erential equation �cf� ������ Indeed� our proposed method

recursively renes near the front to essentially eliminate the restriction ����� which

plagues nite di�erence discretizations of the method� Furthermore� the piecewise linear

approximation of the front which we use is more accurate than the crude approximation

which arises for the nite di�erence approach� Indeed� we show that our new� spectral

method requires only O� ��log��� �� operations per step to preserve the overall accuracy

of the MBO�method for smooth curves� This compares very favourably to the O�

���

�operation count that arises for an idealized nite di�erence approach� In practice� how�

ever� even this bound seems optimistic since no nite di�erence code exists �to the best

of our knowledge� which requires fewer than O�

���

�operations per step�

Our proposed method also has the advantage that it allows for higher order extrapola�

tions in � since it essentially eliminates irregular spatial errors� By essentially eliminating

these spatial errors we also produce an algorithm which is nearly Euclidean invariant and

hence more attractive for certain image enhancement applications �e�g�� �����

Further improvements in e�ciency are obtained for the new method by neglecting high

order Fourier modes which correspond to rapidly decaying solution transients� Gains also

arise by carrying out the time integration exactly� rather than by a time�stepping method�

New analytic and experimental results are also given to explain important properties

of the MBO�method� such as the approximation error� In particular� an asymptotic

expansion for the position of the front is derived to show that the method is rst order

Page 109: OR DIFFUSIONGENERA TED · EFFICIENT ALGORITHMS F OR DIFFUSIONGENERA TED MOTION BY MEAN CUR V A TURE By Stev en J Ruuth BMA TH Univ ersit yof W aterlo o MSc Univ ersit y of British

Chapter �� Conclusions ��

in � for smooth curves� For nonsmooth corners and singularities� numerical experiments

are carried out to demonstrate that an order � log�� � error arises� Higher order results

for two�phase problems are obtained using extrapolation in the Fourier coe�cients

An asymptotic expansion for the angles of a two dimensional triple junction is also

derived� This expansion indicates that each step of the MBO�method produces an O�p� �

error in the junction angles which rapidly dissipates during subsequent steps� This result

is of interest because it explains the stability of junction angles and suggests that an

O�p�� error arises for problems with junctions� Numerical experiments conrm that an

O�p�� error occurs� and indicate that extrapolation can be used in conjunction with the

proposed method to produce a marked improvement in the error�

Finally� the improved utility of the new method is demonstrated by approximating

and visualizing the motion by mean curvature of a number of three dimensional surfaces�

Specically� we give examples of two�phase� barbell�shaped regions which can undergo

topological breaking depending on the width of the initial stem� Multiple phase motions

are also approximated for examples involving three and four�phase junctions� We con�

clude our results with a simple extension of the MBO�method to a nonlocal curvature

model that preserves phase volumes�

�� Future Research Directions

There are many directions for future work in di�usion�generated motion by mean curva�

ture�

A detailed theoretical investigation of the method would be desirable� In particular�

a convergence proof for the case of junctions would be of great interest� Unfortunately�

the mathematical tools which have been applied to produce rigorous convergence proofs

for two�phase problems with topological changes cannot be readily extended to junctions

Page 110: OR DIFFUSIONGENERA TED · EFFICIENT ALGORITHMS F OR DIFFUSIONGENERA TED MOTION BY MEAN CUR V A TURE By Stev en J Ruuth BMA TH Univ ersit yof W aterlo o MSc Univ ersit y of British

Chapter �� Conclusions ���

�see� e�g�� � ��� However� because no method has been proven to converge for junctions we

feel that even a formal convergence proof away from singularities would be an important

achievement�

Application of the MBO�method to di�erent curvature�dependent motions would also

be of interest� Currently� arbitrary junction angles can be treated by the method �� ��

A�ne velocity motions for two�phase problems can also be carried out �� �� Extending

the method to a�ne velocity problems with nonsymmetric junctions �cf� ����� would be

useful for modelling a combination of surface and bulk e�ects in idealized grain growth

applications ����� Extensions to anisotropic mean curvature �ows ����� complicated do�

main geometries ��� and mixed boundary conditions ��� would also be of interest�

Experimental studies of mean curvature motion for surfaces with junctions might

also be carried out using our realization method for the MBO�method� For example�

self�similar solutions �cf� ���� and singularities �cf� ��� arising from mean curvature

�ow might be studied� Further studies of nonsmooth corners might also be undertaken

by comparing the results of the MBO�method with known similarity solutions �� ��

Certainly� e�ective visualizations of two�phase surfaces have been carried out ����

Methods for the improved visualization of junctions should also be considered� We have

found the e�ective display of these surfaces to be rather challenging since features of

interest �e�g�� moving junctions� can become obscured by nearby regions�

Finally� novel applications of junctions could also be investigated� In particular� the

motion by mean curvature of junctions may be of value in certain image enhancement

applications �cf� ���� � ����

Page 111: OR DIFFUSIONGENERA TED · EFFICIENT ALGORITHMS F OR DIFFUSIONGENERA TED MOTION BY MEAN CUR V A TURE By Stev en J Ruuth BMA TH Univ ersit yof W aterlo o MSc Univ ersit y of British

Bibliography

��� D� Adalsteinsson and J�A� Sethian� A fast level set method for propagating inter�faces� Journal of Computational Physics� ��������'��� ��� �

�� L� Alvarez� P� Lions� and J� Morel� Image selective smoothing and edge detectionby nonlinear di�usion� II� SIAM J� Numerical Analysis� ������� '���� ��� �

��� U�M� Ascher� S�J� Ruuth� and B�T�R� Wetton� Implicit�explicit methods for time�dependent PDE�s� SIAM J� Numerical Analysis� ��������'��� ��� �

��� G� Barles and C� Georgelin� A simple proof of convergence for an approximationscheme for computing motions by mean curvature� SIAM Journal of NumericalAnalysis� �������' ��� ��� �

� � G� Beylkin� On the fast Fourier transform of functions with singularities� Appliedand Computational Harmonic Analysis� ����'���� ��� �

��� J� Bloomenthal� Polygonization of implicit surfaces� Computer Aided GeometricDesign� �������'� � November �����

��� C� De Boor� A Practical Guide to Splines� Springer�Verlag� �����

��� J�P� Boyd� Chebyshev Fourier Spectral Methods� Springer�Verlag� �����

��� K�A� Brakke� The surface evolver� Experimental Mathematics� �������'�� � ����

���� A� Brandt� Multilevel computations of integral transforms and particle interactionswith oscillatory kernels� Computer Physics Communications� � ��'��� �����

���� R� Brent� Algorithms for Minimization Without Derivatives� Prentice�Hall� �����

��� L� Bronsard and Kohn� Motion by mean curvature as the singular limit of Ginzburg�Landau dynamics� Journal of Di�erential Equations� �������'��� �����

���� L� Bronsard and F� Reitich� On three�phase boundary motion and the singular limitof a vector�valued Ginzburg�Landau equation� Arch� Rat� Mech�� ���� '���� �����

���� L� Bronsard and B�T�R� Wetton� A numerical method for tracking curve networksmoving with curvature motion� Journal of Computational Physics� ��������'��������

���

Page 112: OR DIFFUSIONGENERA TED · EFFICIENT ALGORITHMS F OR DIFFUSIONGENERA TED MOTION BY MEAN CUR V A TURE By Stev en J Ruuth BMA TH Univ ersit yof W aterlo o MSc Univ ersit y of British

Bibliography ��

�� � R�L� Burden and J�D� Faires� Numerical Analysis� PWS�Kent Pub� Co�� �����

���� G� Caginalp� The dynamics of a conserved phase eld system� Stefan�like� Hele�Shaw� and Cahn�Hilliard models as asymptotic limits� IMA J� applied Math����������'��� �����

���� C� Canuto� M�Y� Hussaini� A� Quarteroni� and T�A� Zang� Spectral Methods in FluidDynamics� Springer�Verlag� �����

���� B�W� Char� K�O� Geddes� G�H� Gonnet� B�L� Leong� M�B� Monagan� and S�M� Watt�Maple V Language Reference Manual� Springer�Verlag� �����

���� Y� Chen� Segmentation and association among lines and junctions for a line image�Pattern Recognition� �������� '�� �� �����

��� D�L� Chopp� Computing minimal surfaces via level set curvature �ow� Journal ofComputational Physics� ���������'��� �����

��� D�L� Chopp� Computation of self�similar solutions for mean curvature �ow� Exper�imental Mathematics� ������'� � �����

�� D�L� Chopp and J�A� Sethian� Flow under mean curvature� singularity formation�minimal surfaces and geodesics� Experimental Mathematics� ����� ' � ����

��� M� Demi� Contour tracking by enhancing corners and junctions� Computer Visionand Image Understanding� ���������'���� �����

��� A� Dutt and V� Rokhlin� Fast Fourier transform for nonequispaced data� SIAMJournal on Scienti�c and Statistical Computing� ����������'����� �����

� � L�C� Evans� Convergence of an algorithm for mean curvature motion� IndianaUniversity Mathematics Journal� �� �' �� �����

��� L�C� Evans� H�M� Soner� and P�E� Souganidis� Phase transitions and generalizedmotion by mean curvature� Communications on Pure and Applied Mathematics�� ��������'���� ����

��� L�C� Evans and J� Spruck� Motion of level sets by mean curvature� I� J� Di�erentialGeometry� ����'��� �����

��� R� E� Ewing� Adaptive mesh renements in large�scale �uid �ow simulation� InInternational Conference on Accuracy Estimates and Adaptive Re�nements in FiniteElement Computations� pages ��'���� Lisbon� Portugal� �����

��� V�E� Fradkov� M�E� Glicksman� M� Palmera� J� Nordberg� and K� Rajan� Topologicalrearrangements during D normal grain growth� Physica D� ��� �'��� �����

Page 113: OR DIFFUSIONGENERA TED · EFFICIENT ALGORITHMS F OR DIFFUSIONGENERA TED MOTION BY MEAN CUR V A TURE By Stev en J Ruuth BMA TH Univ ersit yof W aterlo o MSc Univ ersit y of British

Bibliography ���

���� H� Frost� C� Thompson� C� Howe� and J� Whang� A two�dimensional computer sim�ulation of capillarity�driven grain growth� preliminary results� Scripta Metallurgica��� '��� �����

���� M� Gage and R�S� Hamilton� The heat equation shrinking convex plane curves� J�Di�erential Geometry� ����'��� �����

��� C�W� Gear� Numerical initial�value problems in ordinary di�erential equations�Prentice�Hall� �����

���� J� Glazier� M� Anderson� and G� Grest� Coarsening in the two�dimensional soapfroth and the large�Q Potts model� a detailed comparison� Philosophical MagazineB� ���� '�� � �����

���� W�B� Gragg� On extrapolation algorithms for ordinary initial�value problems� SIAMJournal on Numerical Analysis� ����'���� ��� �

�� � M�A� Grayson� A short note on the evolution of a surfaces by its mean curvature�Duke Mathematical Journal� ����� ' �� �����

���� M�A� Grayson� Shortening embedded curves� Annals of Mathematics� �����'���������

���� E� Hairer� S�P� Norsett� and G� Wanner� Solving Ordinary Di�erential Equations I�Springer�Verlag� �����

���� D� Harker and E�R� Parker� Grain shape and grain growth� In Transactions of theA�S�M� pages � �'���� Cleveland� ��� �

���� G� Huisken� Flow by mean curvature of convex surfaces in spheres� J� Di�erentialGeometry� ����'��� �����

���� T� Ilmanen� Convergence of the Allen�Cahn equation to Brakke�s motion by meancurvature� Journal of Di�erential Geometry� ��������'���� �����

���� M� Kass� A� Witkin� and D� Terzopoulos� Snakes� Active contour models� Interna�tional Journal of Computer Vision� �������'���� �����

��� B�B� Kimia� A�R� Tannenbaum� and S�W� Zucker� Shapes� shocks� and deforma�tions I� The components of two�dimensional shape and the reaction�di�usion space�International Journal of Computer Vision� � �������'�� ��� �

���� J�J� Koenderink and A�J� van Doorn� Dynamic shape� Biological Cybernetics� �����'���� �����

Page 114: OR DIFFUSIONGENERA TED · EFFICIENT ALGORITHMS F OR DIFFUSIONGENERA TED MOTION BY MEAN CUR V A TURE By Stev en J Ruuth BMA TH Univ ersit yof W aterlo o MSc Univ ersit y of British

Bibliography ���

���� W�E� Lorensen and H�E� Cline� Marching cubes� A high resolution �D surfaceconstruction algorithm� In M�C� Stone� editor� Computer Graphics �SIGGRAPH� � Proceedings�� volume ����� pages ���'���� Anaheim� California� July �����

�� � P� Mascarenhas� Di�usion generated by mean curvature� CAM Report ����� Uni�versity of California� Los Angeles� ����

���� The MathWorks� MATLAB� High�Performance Numeric Computation and Visual�ization Software� Springer�Verlag� ����

���� B� Merriman� J� Bence� and S� Osher� Di�usion generated motion by mean curva�ture� In J�E� Taylor� editor� Computational Crystal Growers Workshop� pages ��'���American Mathematical Society� Providence� Rhode Island� ����

���� B� Merriman� J� Bence� and S� Osher� Motion of multiple junctions� a level setapproach� Journal of Computational Physics� ��������'���� �����

���� B� Milne� Adaptive Level Set Methods Interfaces� PhD thesis� University of Califor�nia� Berkeley� ��� �

� �� F� Mokhtarian and A�K� Mackworth� A theory of multiscale� curvature�based shaperepresentation for planar curves� IEEE Transactions on Pattern Analysis and Ma�chine Intelligence� ���������'�� � ����

� �� W�W� Mullins� Two�dimensional motion of idealized grain boundaries� Journal ofApplied Physics� ��������'���� �� ��

� � J�A� Noble� Finding half boundaries and junctions in images� Images and VisionComputing� ��������'�� ����

� �� R�H� Nochetto� M� Paolini� and C� Verdi� A dynamic mesh algorithm for curvaturedependent evolving interfaces� Journal of Computational Physics� �������'���������

� �� S� Osher and J�A� Sethian� Fronts propagating with curvature�dependent speed�algorithms based on Hamilton�Jacobi formulations� Journal of ComputationalPhysics� ����'��� �����

� � W�H� Press and G�B� Rybicki� Fast algorithm for spectral analysis of unevenlysampled data� Astrophysical Journal� �����'��� �����

� �� F� Reitich and H�M� Soner� Three�phase boundary motions under constant veloci�ties� I� The vanishing surface tension limit� Technical Report ���NA��� � Centre forNonlinear Analysis� Carnegie Mellon University� �����

Page 115: OR DIFFUSIONGENERA TED · EFFICIENT ALGORITHMS F OR DIFFUSIONGENERA TED MOTION BY MEAN CUR V A TURE By Stev en J Ruuth BMA TH Univ ersit yof W aterlo o MSc Univ ersit y of British

Bibliography ��

� �� J� Rubinstein and P� Sternberg� Nonlocal reaction�di�usion equations and nucle�ation� IMA J� Appl� Math�� �����'��� ����

� �� J� Rubinstein� P� Sternberg� and J�B� Keller� Fast reaction� slow di�usion and curveshortening� SIAM J� Appl� Math�� ���������'���� �����

� �� J� Rubinstein� P� Sternberg� and J�B� Keller� Reaction�di�usion processes and evo�lution to harmonic maps� SIAM J� Appl� Math�� ��������'����� �����

���� S�J� Ruuth� An algorithm for generating motion by mean curvature� In Proc� ��thInternational Conference on Analysis and Optimization of Systems Images� Waveletsand PDE�s� Paris� France� �����

���� H� Samet� Applications of spatial data structures� computer graphics� image pro�cessing� and GIS� Addison�Wesley� �����

��� H� Samet� The design and analysis of spatial data structures� Addison�Wesley� �����

���� G� Sapiro and A� Tannenbaum� A�ne invariant scale�space� International Journalof Computer Vision� ������ '��� �����

���� G� Sapiro and A� Tannenbaum� Area and length preserving geometric invariantscale�space� IEEE Transactions on Pattern Analysis and Machine Intelligence���������'�� ��� �

�� � D�W� Schwendeman� A front dynamics approach to �ow by mean curvature� Techni�cal report� Department of Mathematical Sciences� Rensselaer Polytechnic Institute�Troy� New York� ������ ��� �����

���� J�A� Sethian� Curvature �ow and entropy conditions applied to grid generation�Journal of Computational Physics� �� ����'� �� �����

���� J�A� Sethian� Theory� algorithms� and applications of level set methods for propa�gating interfaces� Acta Numerica� ����'�� � �����

���� E� Sorets� Fast Fourier transforms of piecewise constant functions� Journal ofComputational Physics� �������'���� ��� �

���� J�C� Strikwerda� Finite Di�erence Schemes and Partial Di�erential Equations�Wadsworth ( Brooks#Cole� �����

���� T�D� Sullivan� A technique for convolving unequally spaced samples using fastFourier transforms� Technical report� Sandia Report� �����

���� J�E� Taylor� J�W� Cahn� and C�A� Handwerker� I�Geometric models of crystalgrowth� Acta Metall� Meter�� ����������'����� ����

Page 116: OR DIFFUSIONGENERA TED · EFFICIENT ALGORITHMS F OR DIFFUSIONGENERA TED MOTION BY MEAN CUR V A TURE By Stev en J Ruuth BMA TH Univ ersit yof W aterlo o MSc Univ ersit y of British

Bibliography ���

��� D� Terzopoulos� A� Witkin� and M� Kass� Constraints on deformable models� Re�covering �D shape and nonrigid motion� Arti�cial Intelligence� ��������'��� �����

���� J�J� Tyson and J�P� Keener� Singular perturbation theory of traveling waves inexcitable media� Physica D� ����'���� �����

���� H� Zhao� T� Chan� B� Merriman� and S� Osher� A variational level set approach tomultiphase motion� CAM Report � ���� University of California� Los Angeles� ��� �

Page 117: OR DIFFUSIONGENERA TED · EFFICIENT ALGORITHMS F OR DIFFUSIONGENERA TED MOTION BY MEAN CUR V A TURE By Stev en J Ruuth BMA TH Univ ersit yof W aterlo o MSc Univ ersit y of British

Appendix A

An Estimate for the Number of Basis Functions

We now estimate how many basis functions are required to accurately represent the

position of a smooth� two dimensional closed curve �e�g�� Figure ��� or Figure ��� after

a time� � � Specically� we compare the position of the level set �� for

Un� �x� y� �

n��Xi�j��

cij exp�����i� � j��� � cos��ix� cos��jy�

and

U�� �x� y� �

�Xi�j��

cij exp�����i� � j��� � cos��ix� cos��jy�

to nd a bound� nc� such that for all n � nc the approximate interface locations for Un�

and U�� di�er by at most ��O��� ��

There are three steps in the derivation�

�� Lemma A�� demonstrates that if

jU�� � Un

� j� ��

p��

then the approximate interface locations for Un� and U�

� di�er by at most

��O��� ��

� Lemma A� derives an estimate of the size of the Fourier coe�cients� cij �

�� Finally� Theorem A�� estimates the sum of the neglected Fourier terms of Un� and

shows that a safe choice of n is given by

n � nc �

sj ln� �

���L�j���

���

Page 118: OR DIFFUSIONGENERA TED · EFFICIENT ALGORITHMS F OR DIFFUSIONGENERA TED MOTION BY MEAN CUR V A TURE By Stev en J Ruuth BMA TH Univ ersit yof W aterlo o MSc Univ ersit y of British

Appendix A� An Estimate for the Number of Basis Functions ���

where L is the length of the curve at the beginning of the current step�

Lemma A�� If the initial interface is smooth �four times continuously di�erentiable�

and

jU�� � Un

� j� ��

p��

then the �� level sets for U�

� and Un� are at most a distance

��O��� �

apart�

Proof� Begin by orienting the shape according to Figure ��� for some arbitrary point

on the initial interface� Following the notation of Section ������ we see from Equa�

tion ����� that after a time � the level set ��� �

��p��� is a distance

$z�� � � g���� � ����

g��� �

��g�����

�� � �O��� � �O�� ��

above the initial interface position�� Comparing to the result for the level set ���

z�� � � g���� ���

g��� �

��g�����

�� � �O�� ���

and noting that all terms not involving a factor of � are identical� we see that

j$z�� �� z�� �j � ��O��� �� �

Lemma A�� If i � n� then the Fourier coe�cients satisfy

jcij j �L

n

where L is the length of the curve at the beginning of the current step�

�We have assumed � � � � This will be true for any reasonable choice of � since we expect to takeO� �

�� steps in total�

Page 119: OR DIFFUSIONGENERA TED · EFFICIENT ALGORITHMS F OR DIFFUSIONGENERA TED MOTION BY MEAN CUR V A TURE By Stev en J Ruuth BMA TH Univ ersit yof W aterlo o MSc Univ ersit y of British

Appendix A� An Estimate for the Number of Basis Functions ���

Proof� From Equation ������ we know that

jcijj � � Z Z

cos��ix� cos��jy� dA

Rt

� � Z Z

cos��ix� dA � �A����

Rt

Over any rectangle� $R Rt� of width�iZ Z

cos��ix� dA � �

$R

sinceR x� �

ix

cos��ix�dx � �� Dividing the domain into rectangles of width �i� we see that

only subregions in contact with the interface contribute to the bound �A����� See� for

example� Figure A��� Indeed� letting the height of each rectangle tend to zero� it is easy to

see that only contributions within a horizontal distance �ifrom the interface contribute�

Using this fact� and integrating only over half of each rectangle so the sign of cos��ix�

does not change�

jcij j �L

i� �L

n

where L is the length of the interface at the beginning of the current step� �

We now give the main result of this section�

Theorem A�� Suppose that Un� approximates U�

� and that the initial interface is smooth�

If

n nc �

sj ln� �

���L�j���

then the interface approximations for Un� and U�

� are within a distance

��O��� �

of one another�

Page 120: OR DIFFUSIONGENERA TED · EFFICIENT ALGORITHMS F OR DIFFUSIONGENERA TED MOTION BY MEAN CUR V A TURE By Stev en J Ruuth BMA TH Univ ersit yof W aterlo o MSc Univ ersit y of British

Appendix A� An Estimate for the Number of Basis Functions ���

Figure A��� Contributing Rectangles

�����������������

����������������������������������������������������

����������������������

�������������������������������������������������������������������������

�������������������������������������������������������������������

������������������������������������������������������������������������������������

�����������������������������������������������������������������

����������������������

�����������������������������

��������������������

������ ��

��������

��

Proof� We begin by estimating

jU�� � Un

� j� � j�X

i� j � �

max�i� j� � n

cij exp�����i� � j��� � cos��ix� cos��jy�j��

��X

i� j � �

max�i� j� � n

jcijj exp�����i� � j��� ��

��Xi�n

�Xj��

�jcijj� jcjij� exp�����i� � j��� ��

Using Lemma A�� this simplies to give us

jU�� � Un

� j� �L

n

�Xi�n

�Xj��

exp�����i� � j��� ��

��L

n

�Xi�n

exp����i�� ��Xj��

exp����j�� ��

�L

n

exp����n�� � �

Z �

nexp����ns� � ds

� �

Z �

�exp����s�� � ds

��L

n

�� �

���p�p�n��

��� �

�p��

�exp����n�� �

Now� assuming that �n�� � � and � � � �this is consistent with the nal result for any

reasonable error tolerance�� it is easy to show that

jU�� � Un

� j� �p�Lp�

exp����n�� ��

Page 121: OR DIFFUSIONGENERA TED · EFFICIENT ALGORITHMS F OR DIFFUSIONGENERA TED MOTION BY MEAN CUR V A TURE By Stev en J Ruuth BMA TH Univ ersit yof W aterlo o MSc Univ ersit y of British

Appendix A� An Estimate for the Number of Basis Functions ���

By Lemma A��� we want

jU�� � Un

� j� � �

p��

so we seek an n such that

�p�Lp�

exp����n�� � � �

p��

Solving for n� we arrive at a bound�

n � nc �

sj ln� �

���L�j���

� �