93
Optimized Schwarz Methods for Time-Harmonic Wave Problems C. Geuzaine 1 , X. Antoine 2 , D. Colignon 1 , M. El Bouajaji 2 , N. Marsic 1,3 , B. Thierry 4 , S. Tournier 1,5 , A. Vion 1 1 - University of Li` ege, Belgium 2 - University of Lorraine, France 3 - Technische Universit¨ at Darmstadt, Germany 4 - CNRS - University of Paris 6, France 5 - Pontificia Universidad Cat´ olica de Chile, Chile http://onelab.info/wiki/GetDDM http://onelab.info/wiki/DDM for Waves eminaire LJLL, 19/12/2016

Optimized Schwarz Methods for Time-Harmonic Wave ProblemsOptimized Schwarz Methods for Time-Harmonic Wave Problems C. Geuzaine 1, X. Antoine 2, D. Colignon , M. El Bouajaji , N. Marsic1,3,

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Optimized Schwarz Methods for Time-Harmonic Wave ProblemsOptimized Schwarz Methods for Time-Harmonic Wave Problems C. Geuzaine 1, X. Antoine 2, D. Colignon , M. El Bouajaji , N. Marsic1,3,

Optimized Schwarz Methods for Time-Harmonic WaveProblems

C. Geuzaine1, X. Antoine2, D. Colignon1, M. El Bouajaji2, N. Marsic1,3,B. Thierry4, S. Tournier1,5, A. Vion1

1 - University of Liege, Belgium2 - University of Lorraine, France

3 - Technische Universitat Darmstadt, Germany4 - CNRS - University of Paris 6, France

5 - Pontificia Universidad Catolica de Chile, Chile

http://onelab.info/wiki/GetDDMhttp://onelab.info/wiki/DDM for Waves

Seminaire LJLL, 19/12/2016

Page 2: Optimized Schwarz Methods for Time-Harmonic Wave ProblemsOptimized Schwarz Methods for Time-Harmonic Wave Problems C. Geuzaine 1, X. Antoine 2, D. Colignon , M. El Bouajaji , N. Marsic1,3,

Introduction The Helmholtz case The Maxwell case ONELAB and GetDDM Conclusion

Outline

1 Introduction to domain decomposition method

2 The Helmholtz case

3 The Maxwell case

4 ONELAB and GetDDM

5 Conclusion

2/69

Page 3: Optimized Schwarz Methods for Time-Harmonic Wave ProblemsOptimized Schwarz Methods for Time-Harmonic Wave Problems C. Geuzaine 1, X. Antoine 2, D. Colignon , M. El Bouajaji , N. Marsic1,3,

Introduction The Helmholtz case The Maxwell case ONELAB and GetDDM Conclusion

1 Introduction to domain decomposition method

2 The Helmholtz case

3 The Maxwell case

4 ONELAB and GetDDM

5 Conclusion

3/69

Page 4: Optimized Schwarz Methods for Time-Harmonic Wave ProblemsOptimized Schwarz Methods for Time-Harmonic Wave Problems C. Geuzaine 1, X. Antoine 2, D. Colignon , M. El Bouajaji , N. Marsic1,3,

Introduction The Helmholtz case The Maxwell case ONELAB and GetDDM Conclusion

Reference problem

Scattering of an acoustic wave on an obstacle

uinc

Ω−

(∆ + k2)u = 0 (R3 \ Ω−)

u = −uinc (Γ)

lim‖x‖→+∞

(∇u · x

‖x‖ − ıku)

= 0

With. . .

k: wavenumber ; uinc = eıkx·α: incident plane waveSommerfeld radiation condition at infinity

Practical applicationsCommunication between submarinesElectromagnetic waves in urban environment

4/69

Page 5: Optimized Schwarz Methods for Time-Harmonic Wave ProblemsOptimized Schwarz Methods for Time-Harmonic Wave Problems C. Geuzaine 1, X. Antoine 2, D. Colignon , M. El Bouajaji , N. Marsic1,3,

Introduction The Helmholtz case The Maxwell case ONELAB and GetDDM Conclusion

Reference problem

FE: truncation of the domain

uinc

Γ∞

Ω

Ω−

(∆ + k2)u = 0 (Ω)

u = −uinc (Γ)lim‖x‖→+∞(∇u · x

‖x‖ − ıku) = 0∂nu − ıku = 0 (Γ∞)

With. . .n: unit outwardly directed vector to ΩSimple Absorbing Boundary Condition (ABC) on Γ∞ (not the topic here)

5/69

Page 6: Optimized Schwarz Methods for Time-Harmonic Wave ProblemsOptimized Schwarz Methods for Time-Harmonic Wave Problems C. Geuzaine 1, X. Antoine 2, D. Colignon , M. El Bouajaji , N. Marsic1,3,

Introduction The Helmholtz case The Maxwell case ONELAB and GetDDM Conclusion

Domain decomposition method

Numerical solution: major problemsSolution is a wave: mesh refinement (typical element size: π/(5k))High frequency (λ := 2π

k L): direct solving impossibleIndefinite operator: iterative solving hard if not impossible

Hybrid method: Domain Decomposition Method (DDM)

1 2 3 4

Mesh decomposition Iterative algorithm Result

Small system to be solved:

on each subdomain

Data transfert at the interfaces

6/69

Page 7: Optimized Schwarz Methods for Time-Harmonic Wave ProblemsOptimized Schwarz Methods for Time-Harmonic Wave Problems C. Geuzaine 1, X. Antoine 2, D. Colignon , M. El Bouajaji , N. Marsic1,3,

Introduction The Helmholtz case The Maxwell case ONELAB and GetDDM Conclusion

Domain decomposition method

Numerical solution: major problemsSolution is a wave: mesh refinement (typical element size: π/(5k))High frequency (λ := 2π

k L): direct solving impossibleIndefinite operator: iterative solving hard if not impossible

Hybrid method: Domain Decomposition Method (DDM)

1 2 3 4

Mesh decomposition Iterative algorithm Result

Small system to be solved:

on each subdomain

Data transfert at the interfaces

6/69

Page 8: Optimized Schwarz Methods for Time-Harmonic Wave ProblemsOptimized Schwarz Methods for Time-Harmonic Wave Problems C. Geuzaine 1, X. Antoine 2, D. Colignon , M. El Bouajaji , N. Marsic1,3,

Introduction The Helmholtz case The Maxwell case ONELAB and GetDDM Conclusion

Domain decomposition method: principle and origin

Ω −∆u = f (Ω)

u = 0 (Γ)

7/69

Page 9: Optimized Schwarz Methods for Time-Harmonic Wave ProblemsOptimized Schwarz Methods for Time-Harmonic Wave Problems C. Geuzaine 1, X. Antoine 2, D. Colignon , M. El Bouajaji , N. Marsic1,3,

Introduction The Helmholtz case The Maxwell case ONELAB and GetDDM Conclusion

Domain decomposition method: principle and origin

Ω2Ω1

Σ1,2Σ2,1

−∆u = f (Ω)

u = 0 (Γ)

Schwarz alternating method (H. Schwarz (1870)

−∆un+11 = f (Ω1)

un+11 = 0 (Γ1)

un+11 = un

2 (Σ1,2)

−∆un+12 = f (Ω2)

un+12 = 0 (Γ2)

un+12 = un+1

1 (Σ2,1)

And glue the solutions in the overlap.

7/69

Page 10: Optimized Schwarz Methods for Time-Harmonic Wave ProblemsOptimized Schwarz Methods for Time-Harmonic Wave Problems C. Geuzaine 1, X. Antoine 2, D. Colignon , M. El Bouajaji , N. Marsic1,3,

Introduction The Helmholtz case The Maxwell case ONELAB and GetDDM Conclusion

Domain decomposition method: principle and origin

Ω2Ω1

Σ1,2Σ2,1

−∆u = f (Ω)

u = 0 (Γ)

Additive Schwarz method −∆un+11 = f (Ω1)

un+11 = 0 (Γ1)

un+11 = un

2 (Σ1,2)

−∆un+12 = f (Ω2)

un+12 = 0 (Γ2)

un+12 = un

1 (Σ2,1)

And glue the solutions in the overlap.

7/69

Page 11: Optimized Schwarz Methods for Time-Harmonic Wave ProblemsOptimized Schwarz Methods for Time-Harmonic Wave Problems C. Geuzaine 1, X. Antoine 2, D. Colignon , M. El Bouajaji , N. Marsic1,3,

Introduction The Helmholtz case The Maxwell case ONELAB and GetDDM Conclusion

Schwarz method and Helmholtz equation

Limitations(Very) slow convergenceOverlap is mandatoryEven with overlap, the algorithm does not converge for Helmholtzequation

Simple case(∂xx + ∂yy)un+1

1 + k2un+11 = 0 x ∈ (−∞,L), y ∈ R,

un+11 (L, y) = un

2 (L, y),(∂xx + ∂yy)un+1

2 + k2un+12 = 0 x ∈ (0,+∞), y ∈ R,

un+12 (0, y) = un

1 (0, y).

8/69

Page 12: Optimized Schwarz Methods for Time-Harmonic Wave ProblemsOptimized Schwarz Methods for Time-Harmonic Wave Problems C. Geuzaine 1, X. Antoine 2, D. Colignon , M. El Bouajaji , N. Marsic1,3,

Introduction The Helmholtz case The Maxwell case ONELAB and GetDDM Conclusion

Schwarz method and Helmholtz equation

Limitations(Very) slow convergenceOverlap is mandatoryEven with overlap, the algorithm does not converge for Helmholtzequation

Simple case(∂xx + ∂yy)un+1

1 + k2un+11 = 0 x ∈ (−∞,L), y ∈ R,

un+11 (L, y) = un

2 (L, y),(∂xx + ∂yy)un+1

2 + k2un+12 = 0 x ∈ (0,+∞), y ∈ R,

un+12 (0, y) = un

1 (0, y).

8/69

Page 13: Optimized Schwarz Methods for Time-Harmonic Wave ProblemsOptimized Schwarz Methods for Time-Harmonic Wave Problems C. Geuzaine 1, X. Antoine 2, D. Colignon , M. El Bouajaji , N. Marsic1,3,

Introduction The Helmholtz case The Maxwell case ONELAB and GetDDM Conclusion

Schwarz method and Helmholtz equation

Fourier transform in the y direction (ξ = Fourier variable)∂xx un+1

1 + (k2 − ξ2)un+11 = 0 x ∈ (−∞,L), ξ ∈ R,

un+11 (L, ξ) = un

2 (L, ξ),∂xx un+1

2 + (k2 − ξ2)un+12 = 0 x ∈ (0,+∞), ξ ∈ R,

un+12 (0, ξ) = un

1 (0, ξ),

Solution of the ODEun+1

1 (0, x) = e−2√ξ2−k2Lun−1

1 (0, x),un+1

2 (L, x) = e−2√ξ2−k2Lun−1

2 (L, x),

Convergence factor

ρ := e−2√ξ2−k2L =

e−2i√

k2−ξ2L if ξ2 ≤ k2,

e−2√ξ2−k2L otherwise.

9/69

Page 14: Optimized Schwarz Methods for Time-Harmonic Wave ProblemsOptimized Schwarz Methods for Time-Harmonic Wave Problems C. Geuzaine 1, X. Antoine 2, D. Colignon , M. El Bouajaji , N. Marsic1,3,

Introduction The Helmholtz case The Maxwell case ONELAB and GetDDM Conclusion

Schwarz method and Helmholtz equation

Absolute value of the convergence factor

|ρ| :=

1 if ξ2 ≤ k2 (Propagative modes)e−2√ξ2−k2L otherwise. (Evanescent modes)

0 5 10 15 20 25 30 35 400

0.2

0.4

0.6

0.8

1

||

SolutionP-L. Lions algorithm: Fourrier-Robin type transmission condition

10/69

Page 15: Optimized Schwarz Methods for Time-Harmonic Wave ProblemsOptimized Schwarz Methods for Time-Harmonic Wave Problems C. Geuzaine 1, X. Antoine 2, D. Colignon , M. El Bouajaji , N. Marsic1,3,

Introduction The Helmholtz case The Maxwell case ONELAB and GetDDM Conclusion

Schwarz method and Helmholtz equation

Absolute value of the convergence factor

|ρ| :=

1 if ξ2 ≤ k2 (Propagative modes)e−2√ξ2−k2L otherwise. (Evanescent modes)

0 5 10 15 20 25 30 35 400

0.2

0.4

0.6

0.8

1

||

SolutionP-L. Lions algorithm: Fourrier-Robin type transmission condition

10/69

Page 16: Optimized Schwarz Methods for Time-Harmonic Wave ProblemsOptimized Schwarz Methods for Time-Harmonic Wave Problems C. Geuzaine 1, X. Antoine 2, D. Colignon , M. El Bouajaji , N. Marsic1,3,

Introduction The Helmholtz case The Maxwell case ONELAB and GetDDM Conclusion

Non-overlapping domain decomposition method

Decompose the domain (here N = 2)

Γ

Γ∞Ω

Γ2

Γ∞1

Ω1

Γ1

Γ∞2

Ω2

Σ1,2

Recast the system into 2 coupled systems(∆ + k2)u1 = 0 (Ω1)

u1 = −uinc (Γ1)(∂n1 − ik)u1 = 0 (Γ∞1 )(∂n1 + S1)u1 = (∂n1 + S1)u2 (Σ1,2)

(∆ + k2)u2 = 0 (Ω2)u2 = −uinc (Γ2)

(∂n2 − ik)u2 = 0 (Γ∞2 )(∂n2 + S2)u2 = (∂n2 + S2)u1 (Σ2,1)

Sj : Transmission operators11/69

Page 17: Optimized Schwarz Methods for Time-Harmonic Wave ProblemsOptimized Schwarz Methods for Time-Harmonic Wave Problems C. Geuzaine 1, X. Antoine 2, D. Colignon , M. El Bouajaji , N. Marsic1,3,

Introduction The Helmholtz case The Maxwell case ONELAB and GetDDM Conclusion

Non-overlapping domain decomposition method

Parallel Schwarz algorithmIntroducing surface unknown gij := (∂ni + Si)uj , the algorithm reads (iterationn to n + 1):

1 Solve the N independant problems(∆ + k2)un+1

1 = 0 (Ω1)un+1

1 = −uinc (Γ1)(∂n1 − ik)un+1

1 = 0 (Γ∞1 )(∂n1 + S1)un+1

1 = gn12 (Σ1,2)

(∆ + k2)un+12 = 0 (Ω2)

un+12 = −uinc (Γ2)

(∂n1 − ik)un+12 = 0 (Γ∞2 )

(∂n2 + S2)un+12 = gn

21 (Σ2,1)2 Update the surface unknown

gn+112 = −gn

21 + (S1 + S2)un+12 (Σ1,2)

gn+121 = −gn

12 + (S1 + S2)un+11 (Σ2,1)

12/69

Page 18: Optimized Schwarz Methods for Time-Harmonic Wave ProblemsOptimized Schwarz Methods for Time-Harmonic Wave Problems C. Geuzaine 1, X. Antoine 2, D. Colignon , M. El Bouajaji , N. Marsic1,3,

Introduction The Helmholtz case The Maxwell case ONELAB and GetDDM Conclusion

Non-overlapping domain decomposition method

Gather the surface unknown in one vector

g = (gi,j)i,j

One iteration of the algorithm reads as:

gn+1 = Agn + b

A: iteration operator. Applying A is amount to solving N volume PDEs+ N surface PDEs (with uinc = 0)b: right-hand side, containing physical information (uinc).

At convergence, g is solution to:

(I − A)g = b (1)

Krylov accelerationSystem (1) can be solved using a Krylov subspace solver.

13/69

Page 19: Optimized Schwarz Methods for Time-Harmonic Wave ProblemsOptimized Schwarz Methods for Time-Harmonic Wave Problems C. Geuzaine 1, X. Antoine 2, D. Colignon , M. El Bouajaji , N. Marsic1,3,

Introduction The Helmholtz case The Maxwell case ONELAB and GetDDM Conclusion

Non-overlapping domain decomposition method

2 sudomains and DtN

Let Λj : H 1/2(Σ)→ H−1/2(Σ) be the DtN (Dirichlet-to-Neumann) mapassociated to Ωj :

Λjf = ∂nj wj , on Σ.

with wj solution of (∆ + k2)wj = 0 in Ωj ,

wj = 0 on Γj ,∂nwj − ikwj = 0 on Γ∞j ,

wj = f on Σ.

Then, if Sj = −Λj , the algorithm converges in 2 iterations.

RemarkEntended to N subdomains: convergencence in N iterations.

14/69

Page 20: Optimized Schwarz Methods for Time-Harmonic Wave ProblemsOptimized Schwarz Methods for Time-Harmonic Wave Problems C. Geuzaine 1, X. Antoine 2, D. Colignon , M. El Bouajaji , N. Marsic1,3,

Introduction The Helmholtz case The Maxwell case ONELAB and GetDDM Conclusion

Non-overlapping domain decomposition method

One-dimensional case u′′ + k2u = 0, in [0, 1],u(0) = eıkx = 1,

u′(1)− ıku(1) = 0.

Solution

u(x) = eıkx

Exact DtN

Λ = ık

15/69

Page 21: Optimized Schwarz Methods for Time-Harmonic Wave ProblemsOptimized Schwarz Methods for Time-Harmonic Wave Problems C. Geuzaine 1, X. Antoine 2, D. Colignon , M. El Bouajaji , N. Marsic1,3,

Introduction The Helmholtz case The Maxwell case ONELAB and GetDDM Conclusion

Non-overlapping domain decomposition method

Residual

Solution

Error

0 2 4 6 8 10 12 14 16 1816141210

86420

1

0

1

0.0 0.2 0.4 0.6 0.8 1.01

0

1

16/69

Page 22: Optimized Schwarz Methods for Time-Harmonic Wave ProblemsOptimized Schwarz Methods for Time-Harmonic Wave Problems C. Geuzaine 1, X. Antoine 2, D. Colignon , M. El Bouajaji , N. Marsic1,3,

Introduction The Helmholtz case The Maxwell case ONELAB and GetDDM Conclusion

Non-overlapping domain decomposition method

Residual

Solution

Error

0 2 4 6 8 10 12 14 16 1816141210

86420

1

0

1

0.0 0.2 0.4 0.6 0.8 1.01

0

1

16/69

Page 23: Optimized Schwarz Methods for Time-Harmonic Wave ProblemsOptimized Schwarz Methods for Time-Harmonic Wave Problems C. Geuzaine 1, X. Antoine 2, D. Colignon , M. El Bouajaji , N. Marsic1,3,

Introduction The Helmholtz case The Maxwell case ONELAB and GetDDM Conclusion

Non-overlapping domain decomposition method

Residual

Solution

Error

0 2 4 6 8 10 12 14 16 1816141210

86420

1

0

1

0.0 0.2 0.4 0.6 0.8 1.01

0

1

16/69

Page 24: Optimized Schwarz Methods for Time-Harmonic Wave ProblemsOptimized Schwarz Methods for Time-Harmonic Wave Problems C. Geuzaine 1, X. Antoine 2, D. Colignon , M. El Bouajaji , N. Marsic1,3,

Introduction The Helmholtz case The Maxwell case ONELAB and GetDDM Conclusion

Non-overlapping domain decomposition method

Residual

Solution

Error

0 2 4 6 8 10 12 14 16 1816141210

86420

1

0

1

0.0 0.2 0.4 0.6 0.8 1.01

0

1

16/69

Page 25: Optimized Schwarz Methods for Time-Harmonic Wave ProblemsOptimized Schwarz Methods for Time-Harmonic Wave Problems C. Geuzaine 1, X. Antoine 2, D. Colignon , M. El Bouajaji , N. Marsic1,3,

Introduction The Helmholtz case The Maxwell case ONELAB and GetDDM Conclusion

Non-overlapping domain decomposition method

Residual

Solution

Error

0 2 4 6 8 10 12 14 16 1816141210

86420

1

0

1

0.0 0.2 0.4 0.6 0.8 1.01

0

1

16/69

Page 26: Optimized Schwarz Methods for Time-Harmonic Wave ProblemsOptimized Schwarz Methods for Time-Harmonic Wave Problems C. Geuzaine 1, X. Antoine 2, D. Colignon , M. El Bouajaji , N. Marsic1,3,

Introduction The Helmholtz case The Maxwell case ONELAB and GetDDM Conclusion

Non-overlapping domain decomposition method

Residual

Solution

Error

0 2 4 6 8 10 12 14 16 1816141210

86420

1

0

1

0.0 0.2 0.4 0.6 0.8 1.01

0

1

16/69

Page 27: Optimized Schwarz Methods for Time-Harmonic Wave ProblemsOptimized Schwarz Methods for Time-Harmonic Wave Problems C. Geuzaine 1, X. Antoine 2, D. Colignon , M. El Bouajaji , N. Marsic1,3,

Introduction The Helmholtz case The Maxwell case ONELAB and GetDDM Conclusion

Non-overlapping domain decomposition method

Residual

Solution

Error

0 2 4 6 8 10 12 14 16 1816141210

86420

1

0

1

0.0 0.2 0.4 0.6 0.8 1.01

0

1

16/69

Page 28: Optimized Schwarz Methods for Time-Harmonic Wave ProblemsOptimized Schwarz Methods for Time-Harmonic Wave Problems C. Geuzaine 1, X. Antoine 2, D. Colignon , M. El Bouajaji , N. Marsic1,3,

Introduction The Helmholtz case The Maxwell case ONELAB and GetDDM Conclusion

Non-overlapping domain decomposition method

Residual

Solution

Error

0 2 4 6 8 10 12 14 16 1816141210

86420

1

0

1

0.0 0.2 0.4 0.6 0.8 1.01

0

1

16/69

Page 29: Optimized Schwarz Methods for Time-Harmonic Wave ProblemsOptimized Schwarz Methods for Time-Harmonic Wave Problems C. Geuzaine 1, X. Antoine 2, D. Colignon , M. El Bouajaji , N. Marsic1,3,

Introduction The Helmholtz case The Maxwell case ONELAB and GetDDM Conclusion

Non-overlapping domain decomposition method

Residual

Solution

Error

0 2 4 6 8 10 12 14 16 1816141210

86420

1

0

1

0.0 0.2 0.4 0.6 0.8 1.00.0008

0.0000

0.0008

16/69

Page 30: Optimized Schwarz Methods for Time-Harmonic Wave ProblemsOptimized Schwarz Methods for Time-Harmonic Wave Problems C. Geuzaine 1, X. Antoine 2, D. Colignon , M. El Bouajaji , N. Marsic1,3,

Introduction The Helmholtz case The Maxwell case ONELAB and GetDDM Conclusion

Non-overlapping domain decomposition method

Residual

Solution

Error

0 2 4 6 8 10 12 14 16 1816141210

86420

1

0

1

0.0 0.2 0.4 0.6 0.8 1.00.0005

0.0000

0.0005

16/69

Page 31: Optimized Schwarz Methods for Time-Harmonic Wave ProblemsOptimized Schwarz Methods for Time-Harmonic Wave Problems C. Geuzaine 1, X. Antoine 2, D. Colignon , M. El Bouajaji , N. Marsic1,3,

Introduction The Helmholtz case The Maxwell case ONELAB and GetDDM Conclusion

Non-overlapping domain decomposition method

Residual

Solution

Error

0 2 4 6 8 10 12 14 16 1816141210

86420

1

0

1

0.0 0.2 0.4 0.6 0.8 1.00.0005

0.0000

0.0005

16/69

Page 32: Optimized Schwarz Methods for Time-Harmonic Wave ProblemsOptimized Schwarz Methods for Time-Harmonic Wave Problems C. Geuzaine 1, X. Antoine 2, D. Colignon , M. El Bouajaji , N. Marsic1,3,

Introduction The Helmholtz case The Maxwell case ONELAB and GetDDM Conclusion

Non-overlapping domain decomposition method

Residual

Solution

Error

0 2 4 6 8 10 12 14 16 1816141210

86420

1

0

1

0.0 0.2 0.4 0.6 0.8 1.00.0005

0.0000

0.0005

16/69

Page 33: Optimized Schwarz Methods for Time-Harmonic Wave ProblemsOptimized Schwarz Methods for Time-Harmonic Wave Problems C. Geuzaine 1, X. Antoine 2, D. Colignon , M. El Bouajaji , N. Marsic1,3,

Introduction The Helmholtz case The Maxwell case ONELAB and GetDDM Conclusion

Non-overlapping domain decomposition method

Residual

Solution

Error

0 2 4 6 8 10 12 14 16 1816141210

86420

1

0

1

0.0 0.2 0.4 0.6 0.8 1.00.0005

0.0000

0.0005

16/69

Page 34: Optimized Schwarz Methods for Time-Harmonic Wave ProblemsOptimized Schwarz Methods for Time-Harmonic Wave Problems C. Geuzaine 1, X. Antoine 2, D. Colignon , M. El Bouajaji , N. Marsic1,3,

Introduction The Helmholtz case The Maxwell case ONELAB and GetDDM Conclusion

Non-overlapping domain decomposition method

Residual

Solution

Error

0 2 4 6 8 10 12 14 16 1816141210

86420

1

0

1

0.0 0.2 0.4 0.6 0.8 1.00.0005

0.0000

0.0005

16/69

Page 35: Optimized Schwarz Methods for Time-Harmonic Wave ProblemsOptimized Schwarz Methods for Time-Harmonic Wave Problems C. Geuzaine 1, X. Antoine 2, D. Colignon , M. El Bouajaji , N. Marsic1,3,

Introduction The Helmholtz case The Maxwell case ONELAB and GetDDM Conclusion

Non-overlapping domain decomposition method

Residual

Solution

Error

0 2 4 6 8 10 12 14 16 1816141210

86420

1

0

1

0.0 0.2 0.4 0.6 0.8 1.00.0005

0.0000

0.0005

16/69

Page 36: Optimized Schwarz Methods for Time-Harmonic Wave ProblemsOptimized Schwarz Methods for Time-Harmonic Wave Problems C. Geuzaine 1, X. Antoine 2, D. Colignon , M. El Bouajaji , N. Marsic1,3,

Introduction The Helmholtz case The Maxwell case ONELAB and GetDDM Conclusion

Non-overlapping domain decomposition method

Residual

Solution

Error

0 2 4 6 8 10 12 14 16 1816141210

86420

1

0

1

0.0 0.2 0.4 0.6 0.8 1.00.0005

0.0000

0.0005

16/69

Page 37: Optimized Schwarz Methods for Time-Harmonic Wave ProblemsOptimized Schwarz Methods for Time-Harmonic Wave Problems C. Geuzaine 1, X. Antoine 2, D. Colignon , M. El Bouajaji , N. Marsic1,3,

Introduction The Helmholtz case The Maxwell case ONELAB and GetDDM Conclusion

Non-overlapping domain decomposition method

Residual

Solution

Error

0 2 4 6 8 10 12 14 16 1816141210

86420

1

0

1

0.0 0.2 0.4 0.6 0.8 1.00.0005

0.0000

0.0005

16/69

Page 38: Optimized Schwarz Methods for Time-Harmonic Wave ProblemsOptimized Schwarz Methods for Time-Harmonic Wave Problems C. Geuzaine 1, X. Antoine 2, D. Colignon , M. El Bouajaji , N. Marsic1,3,

Introduction The Helmholtz case The Maxwell case ONELAB and GetDDM Conclusion

Non-overlapping domain decomposition method

Residual

Solution

Error

0 2 4 6 8 10 12 14 16 1816141210

86420

1

0

1

0.0 0.2 0.4 0.6 0.8 1.00.06

0.00

0.06

16/69

Page 39: Optimized Schwarz Methods for Time-Harmonic Wave ProblemsOptimized Schwarz Methods for Time-Harmonic Wave Problems C. Geuzaine 1, X. Antoine 2, D. Colignon , M. El Bouajaji , N. Marsic1,3,

Introduction The Helmholtz case The Maxwell case ONELAB and GetDDM Conclusion

Non-overlapping domain decomposition method

Two major investigation fields1 Transmission condition: find a suitable approximation of −Λj

2 Coarse space: decrease the linear convergence rate (in terms of N )

17/69

Page 40: Optimized Schwarz Methods for Time-Harmonic Wave ProblemsOptimized Schwarz Methods for Time-Harmonic Wave Problems C. Geuzaine 1, X. Antoine 2, D. Colignon , M. El Bouajaji , N. Marsic1,3,

Introduction The Helmholtz case The Maxwell case ONELAB and GetDDM Conclusion

Non-overlapping domain decomposition method

Two major investigation fields1 Transmission condition: find a suitable approximation of −Λj

2 Coarse space: decrease the linear convergence rate (in terms of N )

ProblemThe DtN map is non-local and therefore is not suitable for FE framework.

17/69

Page 41: Optimized Schwarz Methods for Time-Harmonic Wave ProblemsOptimized Schwarz Methods for Time-Harmonic Wave Problems C. Geuzaine 1, X. Antoine 2, D. Colignon , M. El Bouajaji , N. Marsic1,3,

Introduction The Helmholtz case The Maxwell case ONELAB and GetDDM Conclusion

Non-overlapping domain decomposition method

Two major investigation fields1 Transmission condition: find a suitable approximation of −Λj

2 Coarse space: decrease the linear convergence rate (in terms of N )

ProblemThe DtN map is non-local and therefore is not suitable for FE framework.

Available methodsLocal approaches: Taylor, Pade, . . .Integral Equation (Joly et. al)PML (Vion and Geuzaine)

17/69

Page 42: Optimized Schwarz Methods for Time-Harmonic Wave ProblemsOptimized Schwarz Methods for Time-Harmonic Wave Problems C. Geuzaine 1, X. Antoine 2, D. Colignon , M. El Bouajaji , N. Marsic1,3,

Introduction The Helmholtz case The Maxwell case ONELAB and GetDDM Conclusion

1 Introduction to domain decomposition method

2 The Helmholtz case

3 The Maxwell case

4 ONELAB and GetDDM

5 Conclusion

18/69

Page 43: Optimized Schwarz Methods for Time-Harmonic Wave ProblemsOptimized Schwarz Methods for Time-Harmonic Wave Problems C. Geuzaine 1, X. Antoine 2, D. Colignon , M. El Bouajaji , N. Marsic1,3,

Introduction The Helmholtz case The Maxwell case ONELAB and GetDDM Conclusion

Transmission Operators for Helmholtz equation

Half-space case with straight interface Σ ∆u + k2u = 0 in R3+ = x ∈ R3; x1 > 0,

u = g on Σ,u is outgoing,

Fourier transform (variable ξ along Σ)

∂nu(0, ξ) = F−1ξ (σ(ξ)u(0, ξ))|Σ.

Symbol of the DtN

σsq(ξ) = ık

√1− |ξ|

2

k2 .

DtN map

Λsq := Op (σsq) = ık

√1 + ∆Σ

k2 .

19/69

Page 44: Optimized Schwarz Methods for Time-Harmonic Wave ProblemsOptimized Schwarz Methods for Time-Harmonic Wave Problems C. Geuzaine 1, X. Antoine 2, D. Colignon , M. El Bouajaji , N. Marsic1,3,

Introduction The Helmholtz case The Maxwell case ONELAB and GetDDM Conclusion

Model problem for convergence analysis

n1

Ω0

R0

ΣΩ1

n0

Model problem with two subdomains and a circular interface.

(∆ + k2)u0 = 0 (Ω0)∂n0u0 + Su0 = g0 (Σ)

lim|x|→+∞

|x|1/2(∂|x|u0 − iku0) = 0

(∆ + k2)u1 = 0 (Ω1)∂n1u1 + Su1 = g1 (Σ)

20/69

Page 45: Optimized Schwarz Methods for Time-Harmonic Wave ProblemsOptimized Schwarz Methods for Time-Harmonic Wave Problems C. Geuzaine 1, X. Antoine 2, D. Colignon , M. El Bouajaji , N. Marsic1,3,

Introduction The Helmholtz case The Maxwell case ONELAB and GetDDM Conclusion

Model problem for convergence analysis

Rewrite A

A =(

0 T0T1 0

), Tjgn

j = −gnj + 2Sun+1

j .

Modal decomposition

u0 =∑

m

αmH (1)m (kr)eimθ, u1 =

∑m

βmJm(kr)eimθ,

S =∑

m

Smeimθ, Tj =∑

m

Tj,meimθ, gj =∑

m

gj,m(r)eimθ.

Recurrence relation

gn+1j,m = T0,mT1,mgn−1

j,m .

Convergence factor

∀m, ρm := T0,mT1,m =[−kZ0,m + Sm

kZ0,m + Sm

].

[−kZ1,m + Sm

kZ1,m + Sm

],

Z0,m = −H(1)′m (kR0)

H(1)m (kR0)

and Z1,m = Jm(kR0)Jm(kR0) . Remark: (Sm = 0)⇒ (ρm = 1)

21/69

Page 46: Optimized Schwarz Methods for Time-Harmonic Wave ProblemsOptimized Schwarz Methods for Time-Harmonic Wave Problems C. Geuzaine 1, X. Antoine 2, D. Colignon , M. El Bouajaji , N. Marsic1,3,

Introduction The Helmholtz case The Maxwell case ONELAB and GetDDM Conclusion

Model problem for convergence analysis

Square root operator

Ssq = −Λsq = −ik

√1− ∆Σ

k2 .

Modal decomposition

Ssqm = −ik

√1− m2

k2R20.

0 20 40 60 80 100 120 140 160 180 200

m

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

|m

|

Sq(0)

Remark : if m2 = k2R20 then ρsq

m = 1.22/69

Page 47: Optimized Schwarz Methods for Time-Harmonic Wave ProblemsOptimized Schwarz Methods for Time-Harmonic Wave Problems C. Geuzaine 1, X. Antoine 2, D. Colignon , M. El Bouajaji , N. Marsic1,3,

Introduction The Helmholtz case The Maxwell case ONELAB and GetDDM Conclusion

Transmission Operators for Helmholtz equation

Impedance Boundary Condition (IBC) [Despres, 1991]Low frequency approximation (ξ → 0):

σsq(ξ) = ık

√1− |ξ|

2

k2 ≈ ik. S IBCu = −ıku.

0 20 40 60 80 100 120 140 160 180 200

m

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

|m

|

23/69

Page 48: Optimized Schwarz Methods for Time-Harmonic Wave ProblemsOptimized Schwarz Methods for Time-Harmonic Wave Problems C. Geuzaine 1, X. Antoine 2, D. Colignon , M. El Bouajaji , N. Marsic1,3,

Introduction The Helmholtz case The Maxwell case ONELAB and GetDDM Conclusion

Transmission Operators for Helmholtz equation

Optimized Order 2 [Gander, Magoules and Nataf, 2002]

σsq(ξ) = ık

√1− |ξ|

2

k2 ≈ a(δξ)− b(δξ)ξ2,

where a and b are solution of the min-max problem

minα,β∈C

(max

ξmin∈(0,k−δξ)∪(k+δξ,ξmax)|ρ(ξ;α, β)|

),

where ρ is the convergence factor in the case (−∞, 0]× R and [0,+∞)× R :

ρ(ξ) =∣∣∣∣σsq(ξ)− σoo2(ξ; a, b)σsq(ξ) + σoo2(ξ; a, b)

∣∣∣∣2 .

24/69

Page 49: Optimized Schwarz Methods for Time-Harmonic Wave ProblemsOptimized Schwarz Methods for Time-Harmonic Wave Problems C. Geuzaine 1, X. Antoine 2, D. Colignon , M. El Bouajaji , N. Marsic1,3,

Introduction The Helmholtz case The Maxwell case ONELAB and GetDDM Conclusion

Transmission Operators for Helmholtz equation

Optimized Order 2 [Gander, Magoules and Nataf, 2002]

σsq(ξ) = ık

√1− |ξ|

2

k2 ≈ a(δξ)− b(δξ)ξ2.

SOO2u = a(δξ)u + b(δξ)∆Σu,

0 20 40 60 80 100 120 140 160 180 200

m

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

|m

|

25/69

Page 50: Optimized Schwarz Methods for Time-Harmonic Wave ProblemsOptimized Schwarz Methods for Time-Harmonic Wave Problems C. Geuzaine 1, X. Antoine 2, D. Colignon , M. El Bouajaji , N. Marsic1,3,

Introduction The Helmholtz case The Maxwell case ONELAB and GetDDM Conclusion

Transmission Operators for Helmholtz equation

Modified DtN [Boubendir, Antoine and Geuzaine, 2012]

Ssq,εu = −ık√

1 + ∆Σ

k2ε

u,

where kε = k + ıε and ε > 0.

Optimal εSearching for εopt such that:

minε>0

maxm|ρsq,ε

m | .

Assume that maxm |ρsq,εm | is reached on m = kR0, then we can prove that

εopt ≈ 0.39k1/3R−2/30 .

Formally extended to other curves by (H: local mean curvature):

εopt ≈ 0.39k1/3H2/3.

26/69

Page 51: Optimized Schwarz Methods for Time-Harmonic Wave ProblemsOptimized Schwarz Methods for Time-Harmonic Wave Problems C. Geuzaine 1, X. Antoine 2, D. Colignon , M. El Bouajaji , N. Marsic1,3,

Introduction The Helmholtz case The Maxwell case ONELAB and GetDDM Conclusion

Transmission Operators for Helmholtz equation

Modified DtN [Boubendir, Antoine and Geuzaine, 2012]

Ssq,εu = −ık√

1 + ∆Σ

k2ε

u,

where kε = k + ıε and ε = 0.39k1/3H2/3 (H: local mean curvature).

Modal decomposition

Ssq,εm = −ık

√1− m2

k2εR2

0and |ρsq,ε

m | < 1, ∀m.

0 20 40 60 80 100 120 140 160 180 200

m

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

|m

|

Sq(0)Sq(eps)

27/69

Page 52: Optimized Schwarz Methods for Time-Harmonic Wave ProblemsOptimized Schwarz Methods for Time-Harmonic Wave Problems C. Geuzaine 1, X. Antoine 2, D. Colignon , M. El Bouajaji , N. Marsic1,3,

Introduction The Helmholtz case The Maxwell case ONELAB and GetDDM Conclusion

Transmission Operators for Helmholtz equation

Classical Pade approximants on square root

√1 + X ≈ RNp (X) = c0 +

Np∑`=1

a`X1 + b`X

,

Np is the number of Pade approximants.

Localization of the nonlocal operator Ssq,εu = −ık√

1 + ∆Σk2

εu

SGIBC(Np, ε)u = −ikc0u − ikNp∑`=1

a`divΣ

( 1k2ε

∇Σ

)(I + b`divΣ

( 1k2ε

∇Σ

))−1u.

28/69

Page 53: Optimized Schwarz Methods for Time-Harmonic Wave ProblemsOptimized Schwarz Methods for Time-Harmonic Wave Problems C. Geuzaine 1, X. Antoine 2, D. Colignon , M. El Bouajaji , N. Marsic1,3,

Introduction The Helmholtz case The Maxwell case ONELAB and GetDDM Conclusion

Transmission Operators for Helmholtz equation

Modal decomposition for different number of Np

0 20 40 60 80 100 120 140 160 180 200

m

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

|m

|

Sq(eps)Pade(2)Pade(4)Pade(8)

29/69

Page 54: Optimized Schwarz Methods for Time-Harmonic Wave ProblemsOptimized Schwarz Methods for Time-Harmonic Wave Problems C. Geuzaine 1, X. Antoine 2, D. Colignon , M. El Bouajaji , N. Marsic1,3,

Introduction The Helmholtz case The Maxwell case ONELAB and GetDDM Conclusion

Transmission Operators for Helmholtz equation

Vanishing modes are not well approximated

Ssq,εm = −ik

√1−

(m2

k2εR2

0

).

Complex Pade approximants on square root (α: rotation of the branchcut)

√1 + X = eiα/2

√(1 + X)e−iα ≈ Rα

Np (X) = C0(α) +Np∑`=1

A`(α)X1 + B`(α)X .

Localization of the nonlocal operator Ssq,εu = −ık√

1 + ∆Σk2

εu

SGIBC(Np, α, ε)u = −ikC0(α)u−ikNp∑`=1

A`(α)divΣ

( 1k2ε

∇Σ

)(I + B`(α)divΣ

( 1k2ε

∇Σ

))−1u.

30/69

Page 55: Optimized Schwarz Methods for Time-Harmonic Wave ProblemsOptimized Schwarz Methods for Time-Harmonic Wave Problems C. Geuzaine 1, X. Antoine 2, D. Colignon , M. El Bouajaji , N. Marsic1,3,

Introduction The Helmholtz case The Maxwell case ONELAB and GetDDM Conclusion

Transmission Operators for Helmholtz equation

Modal decomposition for different number of Np and α = π/4

0 20 40 60 80 100 120 140 160 180 200

m

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

|m

|

Sq(eps)Pade(2, pi/4)Pade(4, pi/4)Pade(8, pi/4)

31/69

Page 56: Optimized Schwarz Methods for Time-Harmonic Wave ProblemsOptimized Schwarz Methods for Time-Harmonic Wave Problems C. Geuzaine 1, X. Antoine 2, D. Colignon , M. El Bouajaji , N. Marsic1,3,

Introduction The Helmholtz case The Maxwell case ONELAB and GetDDM Conclusion

Transmission Operators for Helmholtz equation

-0.5 0 0.5

Real part

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Imagin

ary

part

Pade(4, /4)

S(sq, eps)

-0.5 0 0.5

Real part

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Imagin

ary

part

Pade(8, /4)

S(sq, eps)

Eigenvalue distribution in the complex plane for the exact and Pade-localizedsquare-root transmission operator of order 4 (left) and 8 (right).

32/69

Page 57: Optimized Schwarz Methods for Time-Harmonic Wave ProblemsOptimized Schwarz Methods for Time-Harmonic Wave Problems C. Geuzaine 1, X. Antoine 2, D. Colignon , M. El Bouajaji , N. Marsic1,3,

Introduction The Helmholtz case The Maxwell case ONELAB and GetDDM Conclusion

Transmission Operators for Helmholtz equation

Eigenvalues distribution with respect to the number of Pade approximants

-1 -0.5 0 0.5 1

Real part

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Imagin

ary

part

Pade(2, /4)

Pade(4, /4)

Pade(8, /4)

S(sq, eps)

33/69

Page 58: Optimized Schwarz Methods for Time-Harmonic Wave ProblemsOptimized Schwarz Methods for Time-Harmonic Wave Problems C. Geuzaine 1, X. Antoine 2, D. Colignon , M. El Bouajaji , N. Marsic1,3,

Introduction The Helmholtz case The Maxwell case ONELAB and GetDDM Conclusion

Comparison of the transmission operators

Convergence factor

0 20 40 60 80 100 120 140 160 180 200

m

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

|m

|

ikOO2Pade(2, /4)Pade(4, /4)Pade(8, /4)

34/69

Page 59: Optimized Schwarz Methods for Time-Harmonic Wave ProblemsOptimized Schwarz Methods for Time-Harmonic Wave Problems C. Geuzaine 1, X. Antoine 2, D. Colignon , M. El Bouajaji , N. Marsic1,3,

Introduction The Helmholtz case The Maxwell case ONELAB and GetDDM Conclusion

Comparison of the transmission operators

Eigenvalue distribution in the complex plane for (I −A)

0 0.5 1 1.5 2

Real part

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Imagin

ary

part

ik

EMDA

OO2

Pade(2, /4)

Pade(8, /4)

35/69

Page 60: Optimized Schwarz Methods for Time-Harmonic Wave ProblemsOptimized Schwarz Methods for Time-Harmonic Wave Problems C. Geuzaine 1, X. Antoine 2, D. Colignon , M. El Bouajaji , N. Marsic1,3,

Introduction The Helmholtz case The Maxwell case ONELAB and GetDDM Conclusion

Numerical Example

“concentric-” and “pie-” decomposition

36/69

Page 61: Optimized Schwarz Methods for Time-Harmonic Wave ProblemsOptimized Schwarz Methods for Time-Harmonic Wave Problems C. Geuzaine 1, X. Antoine 2, D. Colignon , M. El Bouajaji , N. Marsic1,3,

Introduction The Helmholtz case The Maxwell case ONELAB and GetDDM Conclusion

Numerical Example

k

GMRESiterations

circle-concentric, Ndom = 5

OO2(π) nλ = 10OO2(π) nλ = 20IBC(k/2) nλ = 10IBC(k/2) nλ = 20GIBC(2,π/4,ǫopt) nλ = 10GIBC(2,π/4,ǫopt) nλ = 20GIBC(8,π/4,ǫopt) nλ = 10GIBC(8,π/4,ǫopt) nλ = 20

0 5 10 15 20 2510

20

30

40

50

60

70

80

90

100

Convergence for the “circle-concentric” decomposition. Number of iterations vs.wavenumber

37/69

Page 62: Optimized Schwarz Methods for Time-Harmonic Wave ProblemsOptimized Schwarz Methods for Time-Harmonic Wave Problems C. Geuzaine 1, X. Antoine 2, D. Colignon , M. El Bouajaji , N. Marsic1,3,

Introduction The Helmholtz case The Maxwell case ONELAB and GetDDM Conclusion

Numerical Example

k

GMRESiterations

circle-pie, Ndom = 5

OO2(π) nλ = 10OO2(π) nλ = 20IBC(k/2) nλ = 10IBC(k/2) nλ = 20GIBC(2,π/4,k/4) nλ = 10GIBC(2,π/4,k/4) nλ = 20GIBC(8,π/4,k/4) nλ = 10GIBC(8,π/4,k/4) nλ = 20

0 5 10 15 20 2510

15

20

25

30

35

40

45

50

Convergence for the “circle-pie” decomposition. Number of iterations vs.wavenumber.

38/69

Page 63: Optimized Schwarz Methods for Time-Harmonic Wave ProblemsOptimized Schwarz Methods for Time-Harmonic Wave Problems C. Geuzaine 1, X. Antoine 2, D. Colignon , M. El Bouajaji , N. Marsic1,3,

Introduction The Helmholtz case The Maxwell case ONELAB and GetDDM Conclusion

Numerical Example

GMRESiterations

circle-concentric, Ndom = 5

OO2(π) k = 2πOO2(π) k = 6πIBC(k/2) k = 2πIBC(k/2) k = 6πGIBC(2,π/4,ǫopt) k = 2πGIBC(2,π/4,ǫopt) k = 6πGIBC(8,π/4,ǫopt) k = 2πGIBC(8,π/4,ǫopt) k = 6π

5 10 15 20 25 30 35 4020

30

40

50

60

70

80

90

100

Convergence for the “circle-concentric” decomposition. Number of iterations vs. meshdensity

39/69

Page 64: Optimized Schwarz Methods for Time-Harmonic Wave ProblemsOptimized Schwarz Methods for Time-Harmonic Wave Problems C. Geuzaine 1, X. Antoine 2, D. Colignon , M. El Bouajaji , N. Marsic1,3,

Introduction The Helmholtz case The Maxwell case ONELAB and GetDDM Conclusion

1 Introduction to domain decomposition method

2 The Helmholtz case

3 The Maxwell case

4 ONELAB and GetDDM

5 Conclusion

40/69

Page 65: Optimized Schwarz Methods for Time-Harmonic Wave ProblemsOptimized Schwarz Methods for Time-Harmonic Wave Problems C. Geuzaine 1, X. Antoine 2, D. Colignon , M. El Bouajaji , N. Marsic1,3,

Introduction The Helmholtz case The Maxwell case ONELAB and GetDDM Conclusion

Non-Overlapping DDM for Maxwell

P-L. Lions algorithmFrom iteration n to n + 1:

1 Solve, for i = 1, . . . ,N :curl curl E(n+1)

i − k2 E(n+1)i = 0 in Ωi ,

γTi (E(n+1)

i ) = −γTi (Einc) in ΓD

i ,− ık γ

ti (curl E(n+1)

i ) + S(γTi (E(n+1)

i )) = g(n)ij in Σij .

2 Update surface quantities:

g(n+1)ji = ı

k γti (curl E(n+1)

i ) + S(γTi (E(n+1)

i ))

= −g(n)ij + 2S(γT

i (E(n+1)j )), on Σij .

where we have introduce the trace operators:

γti : vi 7→ ni × vi|∂Ωi and γT

i : vi 7→ ni × (vi|∂Ωi × ni).

41/69

Page 66: Optimized Schwarz Methods for Time-Harmonic Wave ProblemsOptimized Schwarz Methods for Time-Harmonic Wave Problems C. Geuzaine 1, X. Antoine 2, D. Colignon , M. El Bouajaji , N. Marsic1,3,

Introduction The Helmholtz case The Maxwell case ONELAB and GetDDM Conclusion

Non-Overlapping DDM for Maxwell

Krylov accelerationAs for the Helmholtz case, the whole algorithm can be recast into a linearsystem:

(I − A)g = b.

Transmission operatorsAgain, the transmission operator S has a direct impact on the iterationoperator A.

42/69

Page 67: Optimized Schwarz Methods for Time-Harmonic Wave ProblemsOptimized Schwarz Methods for Time-Harmonic Wave Problems C. Geuzaine 1, X. Antoine 2, D. Colignon , M. El Bouajaji , N. Marsic1,3,

Introduction The Helmholtz case The Maxwell case ONELAB and GetDDM Conclusion

Transmission Operators for Maxwell

Half-space problem (Ω := (−∞, 0)× R2))curl H + ıkE = 0 (Ω)curl E− ıkH = 0 (Ω)

γT (E) = −γT (Einc) (Σ)

lim‖x‖→∞

‖x‖(

E + x‖x‖ ×H

)= 0

Surface electric and magnetic currents

J = n×E, M = n×H

MtE

M + Λsq(n× J) = 0,

withΛsq = (Λsq

1 )−1Λsq2 ,

Λsq1 =

(I +∇Σ

1k2 divΣ − curlΣ

1k2 curlΣ

)1/2, Λsq

2 =(

I− 1k2 curlΣcurlΣ

).

43/69

Page 68: Optimized Schwarz Methods for Time-Harmonic Wave ProblemsOptimized Schwarz Methods for Time-Harmonic Wave Problems C. Geuzaine 1, X. Antoine 2, D. Colignon , M. El Bouajaji , N. Marsic1,3,

Introduction The Helmholtz case The Maxwell case ONELAB and GetDDM Conclusion

Transmission Operators for Maxwell

Λsq = (Λsq1 )−1Λsq

2 ,

Λsq1 =

(I +∇Σ

1k2 divΣ − curlΣ

1k2 curlΣ

)1/2, Λsq

2 =(

I− 1k2 curlΣcurlΣ

).

0th-order transmission condition IBC(0) [Despres, 1992]

SIBC(0)(γT (E)) = γT (E).

Optimized impedance boundary condition GIBC(α) [Alonso-Rodriguez andGerardo-Giorda, 2006]

SGIBC(α)(γT (E)) = α(

I− 1k2 curlΣcurlΣ

)γT (E),

where α is chosen thanks to an optimization process.

44/69

Page 69: Optimized Schwarz Methods for Time-Harmonic Wave ProblemsOptimized Schwarz Methods for Time-Harmonic Wave Problems C. Geuzaine 1, X. Antoine 2, D. Colignon , M. El Bouajaji , N. Marsic1,3,

Introduction The Helmholtz case The Maxwell case ONELAB and GetDDM Conclusion

Transmission Operators for Maxwell

Λsq = (Λsq1 )−1Λsq

2 ,

Λsq1 =

(I +∇Σ

1k2 divΣ − curlΣ

1k2 curlΣ

)1/2, Λsq

2 =(

I− 1k2 curlΣcurlΣ

).

Optimized second-order GIBC(α,β) [Rawat and Lee, 2010]

SGIBC(a, b)(γT (E)) =(

I + ak2∇ΣdivΣ

)−1 (I− b

k2 curlΣcurlΣ)γT (E),

where a and b are chosen so that an optimal convergence rate is obtained forthe (TE) and (TM) modes.This condition has been generalized in [Dolean, Gander, Lanteri, Lee and Peng,2015].

45/69

Page 70: Optimized Schwarz Methods for Time-Harmonic Wave ProblemsOptimized Schwarz Methods for Time-Harmonic Wave Problems C. Geuzaine 1, X. Antoine 2, D. Colignon , M. El Bouajaji , N. Marsic1,3,

Introduction The Helmholtz case The Maxwell case ONELAB and GetDDM Conclusion

Transmission Operators for Maxwell

Modified square root operator

Λsq,ε = (Λsq,ε1 )−1Λsq,ε

2 ,

Λsq,ε1 =

(I +∇Σ

1k2ε

divΣ − curlΣ1k2ε

curlΣ)1/2

, Λsq,ε2 =

(I− 1

k2ε

curlΣcurlΣ).

Pade-localized square-root transmission condition GIBC(Np, α, ε) [ElBouajaji, Antoine, Geuzaine, Thierry, 2014]

SGIBC(Np, α, ε)(γT (E)) =

(C0 +

Np∑`=1

A`X (I + B`X)−1

)−1

(I − curlΣ

1k2ε

curlΣ)γT (E),

with X := ∇Σ1

k2ε

divΣ − curlΣ 1k2

εcurlΣ, and where kε, C0, A` and B` are

defined as in the Helmholtz case.

46/69

Page 71: Optimized Schwarz Methods for Time-Harmonic Wave ProblemsOptimized Schwarz Methods for Time-Harmonic Wave Problems C. Geuzaine 1, X. Antoine 2, D. Colignon , M. El Bouajaji , N. Marsic1,3,

Introduction The Helmholtz case The Maxwell case ONELAB and GetDDM Conclusion

Transmission Operators for Maxwell

Convergence Analysis for a Model Problem

n1

Ω0

R0

ΣΩ1

n0

Model problem with two subdomains and a spherical interface:

Ω0 = x ∈ R3, ||x|| > R0, Ω1 = x ∈ R3, ||x|| < R0.

47/69

Page 72: Optimized Schwarz Methods for Time-Harmonic Wave ProblemsOptimized Schwarz Methods for Time-Harmonic Wave Problems C. Geuzaine 1, X. Antoine 2, D. Colignon , M. El Bouajaji , N. Marsic1,3,

Introduction The Helmholtz case The Maxwell case ONELAB and GetDDM Conclusion

Convergence Analysis for a Model Problem

LetAm,1 = ıµ

− 12

m,εξ(1)′m (kR0) − ξ

(1)m (kR0), Bm,1 = ıµ

− 12

m,εψ′m(kR0) − ψm(kR0),

Am,2 = ıξ(1)′m (kR0) − µ

12m,εξ

(1)m (kR0), Bm,2 = ıψ

′m(kR0) − µ

12m,εψm(kR0),

Am,3 = ıµ− 1

2m,εψ

′m(kR0) + ψm(kR0), Bm,3 = ıµ

− 12

m,εξ(1)′m (kR0) + ξ

(1)m (kR0),

Am,4 = ıψ′m(kR0) + µ

12m,εψm(kR0), Bm,4 = ıξ

(1)′m (kR0) + µ

12m,εξ

(1)m (kR0),

whereµm,ε = 1− m(m+1)

k2ε R2

ψm and ζm are respectively the first- and second-kind Ricatti-Besselfunctions of order mξ

(1)m = ψm + ıζm is the first-kind spherical Hankel’s function of order m

48/69

Page 73: Optimized Schwarz Methods for Time-Harmonic Wave ProblemsOptimized Schwarz Methods for Time-Harmonic Wave Problems C. Geuzaine 1, X. Antoine 2, D. Colignon , M. El Bouajaji , N. Marsic1,3,

Introduction The Helmholtz case The Maxwell case ONELAB and GetDDM Conclusion

Convergence Analysis for a Model Problem

We can show that:

g(n+1),m =

(g(n+1),m12 )1

(g(n+1),m12 )2

(g(n+1),m21 )1

(g(n+1),m21 )2

= Amg(n),m :=

0 0 Bm,1

Am,30

0 0 0 Bm,2Am,4

Bm,3Am,1

0 0 0

0 Bm,4Am,2

0 0

g(n),m

with Am the iteration matrix for a mode m ≥ 1, with eigenvalues

λm,1 =√

Bm,1 Bm,3

Am,1 Am,3= −λm,2, λm,3 =

√Bm,2 Bm,4

Am,2 Am,4= −λm,4.

One can prove that A = diag((Am)m≥1). Therefore, studying the globalconvergence of the DDM for A requires the spectral study of the modaliteration matrices Am , for m ≥ 1.

49/69

Page 74: Optimized Schwarz Methods for Time-Harmonic Wave ProblemsOptimized Schwarz Methods for Time-Harmonic Wave Problems C. Geuzaine 1, X. Antoine 2, D. Colignon , M. El Bouajaji , N. Marsic1,3,

Introduction The Helmholtz case The Maxwell case ONELAB and GetDDM Conclusion

Convergence Analysis for a Model Problem

Quasi-optimality of GIBC(sq, ε)One can prove that ρ(Am) < 1, ∀m ≥ 1, and that

limm→∞

λm,(1,3) = − limm→∞

λm,(2,4) = ıε

2k + ıε,

i.e., we have two opposite accumulation points in the complex plane for theevanescent modes.

Optimal parameters for GIBC(α) and GIBC(α, β)In what follows, the optimal parameters α and β were computed numerically bysolving the min-max problem

min(α,β)∈C2

maxm≥1

ρ(Am)

with the Matlab function fminsearch.

50/69

Page 75: Optimized Schwarz Methods for Time-Harmonic Wave ProblemsOptimized Schwarz Methods for Time-Harmonic Wave Problems C. Geuzaine 1, X. Antoine 2, D. Colignon , M. El Bouajaji , N. Marsic1,3,

Introduction The Helmholtz case The Maxwell case ONELAB and GetDDM Conclusion

Convergence Analysis for a Model Problem

Influence of the Pade approximation on the eigenvalue distribution.

0.6 0.8 1 1.2 1.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

Real part

Imaginary

part

GIBC(sq,ε)

GIBC(1,π/2,ε)

GIBC(1,π/2,ε)

0.7 0.8 0.9 1 1.1 1.2 1.3

−0.2

−0.1

0

0.1

0.2

0.3

Real part

Imaginary

part

GIBC(sq,ε)

GIBC(2,π/2,ε)

GIBC(2,π/2,ε)

0.9 0.95 1 1.05 1.1−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

Real part

Imaginary

part

GIBC(sq,ε)

GIBC(4,π/2,ε)

GIBC(4,π/2,ε)

0.95 1 1.05−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

Real part

Imaginary

part

GIBC(sq,ε)

GIBC(8,π/2,ε)

GIBC(8,π/2,ε)

51/69

Page 76: Optimized Schwarz Methods for Time-Harmonic Wave ProblemsOptimized Schwarz Methods for Time-Harmonic Wave Problems C. Geuzaine 1, X. Antoine 2, D. Colignon , M. El Bouajaji , N. Marsic1,3,

Introduction The Helmholtz case The Maxwell case ONELAB and GetDDM Conclusion

Convergence Analysis for a Model Problem

Eigenvalue distribution in the complex plane for (I −A) and differenttransmission operators.

0 0.5 1 1.5 2

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Real part

Imaginary

part

IBC(0)

GIBC(α)

GIBC(α, β)

GIBC(sq,ε)

52/69

Page 77: Optimized Schwarz Methods for Time-Harmonic Wave ProblemsOptimized Schwarz Methods for Time-Harmonic Wave Problems C. Geuzaine 1, X. Antoine 2, D. Colignon , M. El Bouajaji , N. Marsic1,3,

Introduction The Helmholtz case The Maxwell case ONELAB and GetDDM Conclusion

Convergence Analysis for a Model Problem

Spectral radius of Am for different transmission operators.

0 50 100 150 2000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

m

ρ(A

m)

IBC(0)

GIBC(α)

GIBC(α, β)

GIBC(sq,0)

GIBC(sq,ε)

53/69

Page 78: Optimized Schwarz Methods for Time-Harmonic Wave ProblemsOptimized Schwarz Methods for Time-Harmonic Wave Problems C. Geuzaine 1, X. Antoine 2, D. Colignon , M. El Bouajaji , N. Marsic1,3,

Introduction The Helmholtz case The Maxwell case ONELAB and GetDDM Conclusion

Numerical example

Concentric cylinder decomposition: Number of GMRES iterations vs.wavenumber (Ndom = 5, nλ = 20).

54/69

Page 79: Optimized Schwarz Methods for Time-Harmonic Wave ProblemsOptimized Schwarz Methods for Time-Harmonic Wave Problems C. Geuzaine 1, X. Antoine 2, D. Colignon , M. El Bouajaji , N. Marsic1,3,

Introduction The Helmholtz case The Maxwell case ONELAB and GetDDM Conclusion

Numerical example

Concentric cylinder decomposition (TE case): Number of GMRESiterations vs. wavenumber (Ndom = 5, nλ = 20).

0 10 20 30 40 50 6020

25

30

35

40

45

50

55

60

65

GMRESitera

tions

k

IBC(0)GIBC(α , β )GIBC(1, π/2, ε)GIBC(2, π/2, ε)GIBC(4, π/2, ε)GIBC(8, π/2, ε)

55/69

Page 80: Optimized Schwarz Methods for Time-Harmonic Wave ProblemsOptimized Schwarz Methods for Time-Harmonic Wave Problems C. Geuzaine 1, X. Antoine 2, D. Colignon , M. El Bouajaji , N. Marsic1,3,

Introduction The Helmholtz case The Maxwell case ONELAB and GetDDM Conclusion

Numerical example

Concentric cylinder decomposition (TM case): Number of GMRESiterations vs. wavenumber (Ndom = 5, nλ = 20).

0 10 20 30 40 50 6020

30

40

50

60

70

80

90

100

110

GMRESitera

tions

k

IBC(0)GIBC(α , β )GIBC(1, π/2, ε)GIBC(2, π/2, ε)GIBC(4, π/2, ε)GIBC(8, π/2, ε)

56/69

Page 81: Optimized Schwarz Methods for Time-Harmonic Wave ProblemsOptimized Schwarz Methods for Time-Harmonic Wave Problems C. Geuzaine 1, X. Antoine 2, D. Colignon , M. El Bouajaji , N. Marsic1,3,

Introduction The Helmholtz case The Maxwell case ONELAB and GetDDM Conclusion

Numerical example

GMRES convergence history for different Pade orders.

0 5 10 15 20 2510

−10

10−8

10−6

10−4

10−2

100

#iter

Residualhistory

GIBC(sq,ε)

GIBC(1,π/2,ε)

GIBC(2,π/2,ε)

GIBC(4,π/2,ε)

GIBC(8,π/2,ε)

57/69

Page 82: Optimized Schwarz Methods for Time-Harmonic Wave ProblemsOptimized Schwarz Methods for Time-Harmonic Wave Problems C. Geuzaine 1, X. Antoine 2, D. Colignon , M. El Bouajaji , N. Marsic1,3,

Introduction The Helmholtz case The Maxwell case ONELAB and GetDDM Conclusion

Numerical example

Falcon jet (Ndom = 4, λ = 10,nλ = 10)

58/69

Page 83: Optimized Schwarz Methods for Time-Harmonic Wave ProblemsOptimized Schwarz Methods for Time-Harmonic Wave Problems C. Geuzaine 1, X. Antoine 2, D. Colignon , M. El Bouajaji , N. Marsic1,3,

Introduction The Helmholtz case The Maxwell case ONELAB and GetDDM Conclusion

Numerical example

Falcon jet (Ndom = 4, λ = 10,nλ = 10)

59/69

Page 84: Optimized Schwarz Methods for Time-Harmonic Wave ProblemsOptimized Schwarz Methods for Time-Harmonic Wave Problems C. Geuzaine 1, X. Antoine 2, D. Colignon , M. El Bouajaji , N. Marsic1,3,

Introduction The Helmholtz case The Maxwell case ONELAB and GetDDM Conclusion

Numerical example: scalability issue

Concentric cylinder decomposition (TM case): of iterations vs. number ofsubdomains (k = 30, nλ = 20).

0 20 40 60 80 1000

100

200

300

400

500

600

GMRESitera

tions

Ndom

IBC(0)GIBC(α , β )GIBC(4, π/2, ε)

60/69

Page 85: Optimized Schwarz Methods for Time-Harmonic Wave ProblemsOptimized Schwarz Methods for Time-Harmonic Wave Problems C. Geuzaine 1, X. Antoine 2, D. Colignon , M. El Bouajaji , N. Marsic1,3,

Introduction The Helmholtz case The Maxwell case ONELAB and GetDDM Conclusion

1 Introduction to domain decomposition method

2 The Helmholtz case

3 The Maxwell case

4 ONELAB and GetDDM

5 Conclusion

61/69

Page 86: Optimized Schwarz Methods for Time-Harmonic Wave ProblemsOptimized Schwarz Methods for Time-Harmonic Wave Problems C. Geuzaine 1, X. Antoine 2, D. Colignon , M. El Bouajaji , N. Marsic1,3,

Introduction The Helmholtz case The Maxwell case ONELAB and GetDDM Conclusion

ONELAB

Open Numerical Engineering LABoratoryProvides ready-to-use finite element codes fordifferent community.

MagnetostaticAcoustic time reversal2D Acoustic scatteringGetDDM. . .

2D acoustic scattering

Time reversal

Magnetodynamic

http://onelab.info. Available on Android and iOS markets62/69

Page 87: Optimized Schwarz Methods for Time-Harmonic Wave ProblemsOptimized Schwarz Methods for Time-Harmonic Wave Problems C. Geuzaine 1, X. Antoine 2, D. Colignon , M. El Bouajaji , N. Marsic1,3,

Introduction The Helmholtz case The Maxwell case ONELAB and GetDDM Conclusion

GetDDM

A simple, flexible and ready-to-use environmentDirect link between discrete and continuous weak-formulations∫

Ω∇u · ∇v dΩ ∀v ←→

1 Galerkin [ Grad Dofu, Grad u ];2 In Omega ; Jacobian JVol; Integration I1;

Parallelism made simpleClick & run: GUI, full examples and scripts, numerous geometries, . . .

63/69

Page 89: Optimized Schwarz Methods for Time-Harmonic Wave ProblemsOptimized Schwarz Methods for Time-Harmonic Wave Problems C. Geuzaine 1, X. Antoine 2, D. Colignon , M. El Bouajaji , N. Marsic1,3,

Introduction The Helmholtz case The Maxwell case ONELAB and GetDDM Conclusion

GetDDM

112 Double sweep preconditioner for Schwarz methods

The Marmousi model

1500 3500 5500

Velocity c(x, y)

Figure 3.17: Velocity profile of the Marmousi model. Dimensions (in meters) are[0,9192]£ [0,°2904].

The Marmousi model is a synthetic 2d acoustic model that reproduces the com-plex velocity profile of a slice of earth. It features a wide range of speeds, from 1500m/s to 5500 m/s, with many layers an normal faults as depicted on Figure 3.17.It has become a classic test case for benchmarking seismic inversion codes. Wewill simulate the propagation of the time-harmonic acoustic waves produced bya point source located at coordinates (6200,°2300) as was done in [169], so bothmethods can be compared.

We solve the Helmholtz equation with Sommerfeld boundary conditions on allsides except the top side where we impose a homogeneous Neumann boundarycondition; we will also consider the case of Sommerfeld conditions on all sides,since we assume that this situation was used in [169]. We will also test the meth-ods in a similar domain with an homogeneous medium; Figure 3.18 shows typicalsolutions in all these configurations.

In the following, we report the results of our experiments in tables for each ofthe configurations, with decompositions into 16, 64 and 256 domains. We havetested two different transmission conditions: the GIBC(2) and the IBC(0), whichis the most simple one; each case has been run twice, with decompositions intovertical and horizontal layers. The tables present the number of iterations for eachrun to converge with a relative residual decrease of 10°3, with a maximum num-ber of iterations of 1000. Values in parentheses are an estimation of the normalizedtime required to reach convergence when using as many CPUs as there are subdo-mains. The time unit is the time to solve a single subproblem. Hence, these valuescannot be directly compared for different decompositions or frequencies.

3.4. Numerical results 113

S S

S

N

(a)

S S

S

S

(b)

S S

S

N

(c)

S S

S

S

(d)

Figure 3.18: Solutions at ! = 100º: (a) marmousi model with Neumann condition ontop; (b) marmousi model with absorbing condition on top; (c) homogeneous model(c(x, y) = 3500) with Neumann condition on top; (d) homogeneous model with Sommer-feld condition on top. The reflections produced by the Neumann condition are clearlyvisible.

Velocity profile and pressure field. Dimensions: 9192m × 2904m. 700Hz (∼ 4000λ inthe domain) with N = 358 subdomains on 4296 CPUs: > 2.3 billions unknowns.

65/69

Page 90: Optimized Schwarz Methods for Time-Harmonic Wave ProblemsOptimized Schwarz Methods for Time-Harmonic Wave Problems C. Geuzaine 1, X. Antoine 2, D. Colignon , M. El Bouajaji , N. Marsic1,3,

Introduction The Helmholtz case The Maxwell case ONELAB and GetDDM Conclusion

Remark: also works on non academic cases

66/69

Page 91: Optimized Schwarz Methods for Time-Harmonic Wave ProblemsOptimized Schwarz Methods for Time-Harmonic Wave Problems C. Geuzaine 1, X. Antoine 2, D. Colignon , M. El Bouajaji , N. Marsic1,3,

Introduction The Helmholtz case The Maxwell case ONELAB and GetDDM Conclusion

1 Introduction to domain decomposition method

2 The Helmholtz case

3 The Maxwell case

4 ONELAB and GetDDM

5 Conclusion

67/69

Page 92: Optimized Schwarz Methods for Time-Harmonic Wave ProblemsOptimized Schwarz Methods for Time-Harmonic Wave Problems C. Geuzaine 1, X. Antoine 2, D. Colignon , M. El Bouajaji , N. Marsic1,3,

Introduction The Helmholtz case The Maxwell case ONELAB and GetDDM Conclusion

Conclusion

Efficient transmission condition for Helmholtz and MaxwellQuasi-optimal in wavenumber and mesh refinementSuitable for FE framework

Open source implementation readily available for testing:Preprint, code and examples on http://onelab.info/wiki/GetDDM

Work from laptops to massively parallel computer clusters:

marmousi.pro test-case (Helmholtz) at 700Hz (approx. 4000 wavelengthsin the domain) with N = 358 subdomains on 4296 CPUs: > 2.3 billionsunknowns.waveguide3d.pro test-case (Maxwell) with N = 3, 500 subdomains on3,500 CPUs (cores): > 300 million unknowns.

68/69

Page 93: Optimized Schwarz Methods for Time-Harmonic Wave ProblemsOptimized Schwarz Methods for Time-Harmonic Wave Problems C. Geuzaine 1, X. Antoine 2, D. Colignon , M. El Bouajaji , N. Marsic1,3,

Introduction The Helmholtz case The Maxwell case ONELAB and GetDDM Conclusion

Perspectives

Mathematics side“Pade” operator:

Fine analysis on the number of Pade approximantsStability at high frequency regime

Optimization method on complexified square root operator

GetDDMLink with HPDDM library (P. Jolivet, P-H. Tournier, F. Nataf)Automatic partitioning (Scotch, Metis, . . . )“Production mode”: real physical cases

69/69