12
Optimization of Quantum Circuits for Interaction Distance in Linear Nearest Neighbor Architectures Alireza Shafaei, Mehdi Saeedi, Massoud Pedram University of Southern California Department of Electrical Engineering Supported by the IARPA Quantum Computer Science http://atrak.usc.edu/

Optimization of Quantum Circuits for Interaction Distance in

  • Upload
    mandy

  • View
    29

  • Download
    0

Embed Size (px)

DESCRIPTION

Optimization of Quantum Circuits for Interaction Distance in Linear Nearest Neighbor Architectures. Alireza Shafaei, Mehdi Saeedi, Massoud Pedram University of Southern California Department of Electrical Engineering. http://atrak.usc.edu/. - PowerPoint PPT Presentation

Citation preview

Page 1: Optimization of Quantum Circuits for Interaction Distance in

Optimization of Quantum Circuits for Interaction Distance in

Linear Nearest Neighbor Architectures

Alireza Shafaei, Mehdi Saeedi, Massoud Pedram

University of Southern California

Department of Electrical Engineering

Supported by the IARPA Quantum Computer Science

http://atrak.usc.edu/

Page 2: Optimization of Quantum Circuits for Interaction Distance in

OUTLINE | 1

Quantum Computing

Geometric Constraints• Linear Nearest Neighbor

Proposed Solution

Results

Outline

Page 3: Optimization of Quantum Circuits for Interaction Distance in

QUANTUM COMPUTING | 2

Motivation: Faster Algorithms Shor’s factoring algorithm (Superpolynomial) Grover’s search algorithm (Polynomial) Quantum walk on binary welded trees (Superpolynomial) Pell's equation (Superpolynomial) Formula evaluation (Polynomial) …

Quantum Computing

QuantumAlgorithm

QuantumCircuit

PhysicalRealization

Page 4: Optimization of Quantum Circuits for Interaction Distance in

QUANTUM COMPUTING | 3

Qubits Data is carried out by quantum bits or qubits Physical Object: ions, photons, etc.

Quantum Gates Single-qubit: H (Hadamard gate), X (NOT gate) Two-qubit: CNOT (Controlled NOT), SWAP

Quantum Circuit

Quantum Circuits

H X

q0

q1

q1

q0

q0

q1

q0

q1 q0

q0

q1

q2

X

q3

Page 5: Optimization of Quantum Circuits for Interaction Distance in

QUANTUM COMPUTING | 4

Quantum Computing Technologies• Ion-Trap• Superconducting• Photonics• Neutral Atoms• Quantum Dots

Physical Realization

q0

q1

q2

X

q3

q4

CNOTX

CNOTCNOT

Page 6: Optimization of Quantum Circuits for Interaction Distance in

GEOMETRIC CONSTRAINTS | 5

Limited Interaction DistanceNearest Neighbor Architectures

Adjacent qubits can be involved in a two-qubit gate

Distant QubitsRoute qubits to make them adjacent Move-based

• Move instruction, routing channel SWAP-based

• Insert SWAP gates

Geometric Constraints

2 31

11 3 422 1 13 4

Objective: Minimize the # of SWAP gates

Page 7: Optimization of Quantum Circuits for Interaction Distance in

GEOMETRIC CONSTRAINTS | 6

How to create a local circuit?

1. Insert SWAP gates

2. Change the qubit ordering (i.e., qubit placement) SWAP-free!

Limited Interaction Distance

Non-local circuit Local circuit

Page 8: Optimization of Quantum Circuits for Interaction Distance in

PROPOSED SOLUTION | 7

Proposed Solution3

5

1

4

2

6

Interaction Graph

Inter-set SWAP gates

SWAP-free Set

Find SWAP-free sets:Select 2-qubit gates one by one until following conditions are met on the corresponding interaction graph :

- , and- there is no cycle in .

Page 9: Optimization of Quantum Circuits for Interaction Distance in

PROPOSED SOLUTION | 8

Proposed SolutionISi: inter-set SWAP gatesGi: set of 2-qubit gates that form a Path (SWAP-free)Pi: qubit ordering

qubi

ts

P1P1 P2 P3 PK-1 Pk PK

G1 IS1 G2 IS2

P2

GKISK-1

Qubit placements dynamically changeLook-ahead search in order to find the placement that minimizes the number of inter-set SWAP gates

Future workForce-directed placement

Page 10: Optimization of Quantum Circuits for Interaction Distance in

RESULTS | 9

Results

[18] M. Saeedi, R. Wille, and R. Drechsler, “Synthesis of quantum circuits for linear nearest neighbor architectures,” QIP, 10 (3): 355-377, 2011.

Circuit n [18] Ours % 3_17_13 3 6 4 33 4_49_17 4 20 12 40 4gt10-v1_81 5 30 20 33 4gt11_84 5 3 1 67 4gt12-v1_89 5 35 35 0 4gt13-v1_93 5 11 6 45 4gt4-v0_80 5 34 34 0 4gt5_75 5 17 12 29 4mod5-v1_23 5 16 9 44 4mod7-v0_95 5 28 21 25 aj-e11_165 4 39 36 8 alu-v4_36 5 23 18 22 decod24-v3_46 4 4 3 25 ham7_104 7 84 68 19 hwb4_52 4 14 10 29 hwb5_55 5 79 63 20 hwb6_58 6 136 118 13 hwb7_62 7 3660 2128 42

Circuit n [18] Ours % hwb8_118 8 24541 14361 41 hwb9_123 9 36837 21166 43 mod5adder_128 6 85 51 40 mod8-10_177 5 77 72 6 rd32-v0_67 4 2 2 0 rd53_135 7 76 66 13 rd73_140 10 62 56 10 sym9_148 10 5480 3415 38 sys6-v0_144 10 62 59 5 urf1_149 9 60235 44072 27 urf2_152 8 25502 17670 31 urf5_158 9 52440 39309 25QFT5 5 12 6 50QFT6 6 22 12 45QFT7 7 39 26 33QFT8 8 60 33 45QFT9 9 87 54 38QFT10 10 123 70 43

Number of SWAP gates

Page 11: Optimization of Quantum Circuits for Interaction Distance in

Results

28% on average improvement

[18] M. Saeedi, R. Wille, and R. Drechsler, “Synthesis of quantum circuits for linear nearest neighbor architectures,” QIP, 10 (3): 355-377, 2011.

RESULTS | 10

3_17_1

3

4_49_1

7

4gt10-v1

_81

4gt11_8

4

4gt12-v1

_89

4gt13-v1

_93

4gt4-v0

_80

4gt5_7

5

4mod5-v1_2

3

4mod7-v0_9

5

aj-e1

1_165

alu-v4

_36

decod24-v3

_46

ham7_1

04

hwb4_52

hwb5_55

hwb6_58

hwb7_62

hwb8_118

hwb9_123

mod5ad

der_128

mod8-10_1

77

rd32-v0

_67

rd53_1

35

rd73_1

40

sym9_1

48

sys6

-v0_1

44

urf1_1

49

urf2_1

52

urf5_1

58 QFT

5QFT

6QFT

7QFT

8QFT

9QFT

10AVG

0

10

20

30

40

50

60

70

80

28

Improvement over [18]

Page 12: Optimization of Quantum Circuits for Interaction Distance in

Thanks!