293
Optimisation of Highfrequency Jet Ventilation for the Management of Respiratory Distress Syndrome in Preterm Babies using a Preterm Lamb Model Gabrielle Christine Musk BSc BVMS Cert VA Dipl ECVAA This thesis is presented for the degree of Doctor of Philosophy of The University of Western Australia School of Women’s and Infants’ Health Faculty of Medicine and Dentistry 2011

Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

 

 

 

 

Optimisation of High‐frequency Jet Ventilation for the 

Management of Respiratory Distress Syndrome in 

Preterm Babies using a Preterm Lamb Model 

 

 

 

 

Gabrielle Christine Musk 

BSc BVMS Cert VA Dipl ECVAA 

 

 

 

This thesis is presented for the degree of Doctor of Philosophy of 

The University of Western Australia 

 

School of Women’s and Infants’ Health 

Faculty of Medicine and Dentistry 

 

2011  

 

Page 2: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

Thesis Abstract  

High‐frequency  jet ventilation (HFJV)  is a  lung protective ventilation strategy used for 

the  prevention  and  treatment  of  ventilator  induced  lung  injury  in  preterm  infants. 

Despite  its  widespread  use  in  neonatal  intensive  care  units  there  is  little  data  to 

support the patient management algorithms that are currently utilised. The strategies 

for alveolar  recruitment during HFJV  rely upon  incrementing positive end‐expiratory 

pressure  (PEEP)  and  delivering  occasional  conventional mechanical  ventilator  (CMV) 

breaths, but  the  impact of  these  recruitment manoeuvres on pulmonary blood  flow, 

oxygenation, ventilation and lung injury is largely unknown. This thesis investigates the 

parameters that must be selected during HFJV and their impact upon pulmonary blood 

flow,  physiological  changes  during  ventilation  and  post  mortem  lung  injury  in  a 

preterm lamb model. The first study examined the effect of incrementing PEEP during 

HFJV and found that alveolar recruitment was achieved by incrementing PEEP up to 12 

cmH2O  without  detrimental  effects  on  physiological  parameters.  The  following  3 

studies examined the delivery of CMV breaths during HFJV to compare the effect of 2 

different CMV breath inspiratory times, peak inspiratory pressures and frequencies. A 

shorter  inspiratory  time  CMV  breath,  a CMV  breath  delivered  to  a  peak  inspiratory 

pressure  (PIP)  above  the  HFJV  breaths  and  CMV  breaths  delivered  less  frequently 

provided  the  most  physiological  benefit  with  the  least  evidence  of  harm  while 

adequately ventilating and oxygenating the preterm  lambs. The final study compared 

what  we  determined  to  be  optimal  HFJV  strategy  (based  upon  the  results  of  the 

preceding  studies) with  optimal  high‐frequency  oscillatory  ventilation  and  an  open 

Page 3: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

lung gentle CMV strategy.  In our preterm lamb model of respiratory distress syndrome 

we demonstrated little difference in physiological benefit and adverse effects between 

these 3 lung protective ventilation strategies. 

The  results  of  these  studies  contribute  to  the  sparse  data  on  HFJV  and  have  provided 

fundamental information that will enable a more evidence based approach to clinical decision 

making in the neonatal intensive care unit. Future work in this area should focus on the target 

population and  incorporate randomised controlled trials comparing HFJV to other ventilatory 

strategies.  

 

Page 4: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

Statement of Candidate Contribution 

Chapters 4, 5, 6, 7 and 8 are presented  in a manuscript format as they are at various 

stages of the publication process. My contribution, and that of my supervisors and co‐

authors, is detailed below: 

 

Chapter  4:  High  Positive  End‐Expiratory  Pressure  during  High  Frequency  Jet 

Ventilation Improves Oxygenation and Ventilation in Preterm Lambs. 

Gabrielle C Musk, Graeme R Polglase, J Bert Bunnell, Carryn J McLean, Ilias Nitsos, Yong 

Song and J Jane Pillow. 

I was  involved  in the anaesthesia of the pregnant ewe, delivery of the preterm  lamb 

fetus, and subsequent ventilation. I was also responsible for data collection during the 

ventilation  period  and  sample  analysis. Graeme  Polglase  and  Ilias Nitsos  performed 

surgical  instrumentation  of  the  fetus  prior  to  delivery,  Bert  Bunnell  assisted  in  the 

ventilator management of the lamb following delivery, Carryn McLean assisted in post 

mortem  of  the  lambs  and  Yong  Song  performed  the  q  PCR  for  pro‐inflammatory 

cytokines.  Graeme  Polglase  also  assisted  with  pulmonary  blood  flow  waveform 

analyses. I was responsible for manuscript preparation. Jane Pillow was  involved with 

all aspects of the study in a supervisory capacity. 

 

Page 5: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

Chapter  5:  The  Impact  of  Conventional  Breath  Inspiratory  Time  during  High‐

frequency Jet Ventilation in Preterm Lambs. 

Gabrielle C Musk, Graeme R Polglase, Yong Song, and J Jane Pillow. 

I was  involved  in the anaesthesia of the pregnant ewe, delivery of the preterm  lamb 

fetus, and subsequent ventilation. I was also responsible for data collection during the 

ventilation period and sample analysis. Graeme Polglase assisted with delivery of the 

preterm  lamb  fetus and subsequent ventilation. Yong Song performed  the q PCR  for 

pro‐inflammatory cytokines. I was responsible for manuscript preparation. Jane Pillow 

was involved with all aspects of the study in a supervisory capacity. 

 

 

Chapter 6: The Effect of Conventional Breath Peak Inspiratory Pressure during High‐

frequency Jet Ventilation in Preterm Lambs.  

Gabrielle C Musk, Graeme R Polglase and J Jane Pillow. 

I was  involved  in the anaesthesia of the pregnant ewe, delivery of the preterm  lamb 

fetus, and subsequent ventilation. I was also responsible for data collection during the 

ventilation period and sample analysis. Graeme Polglase assisted with delivery of the 

preterm  lamb  fetus and subsequent ventilation. Yong Song performed  the q PCR  for 

pro‐inflammatory cytokines. I was responsible for manuscript preparation. Jane Pillow 

was involved with all aspects of the study in a supervisory capacity. 

 

Page 6: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

Chapter  7:  Alveolar  Recruitment  with  Five  or  Twenty  Conventional  Mechanical 

Ventilator  Breaths  per  minute  during  High‐frequency  Jet  Ventilation  in  Preterm 

Lambs.   

Gabrielle C Musk, Graeme R Polglase and J Jane Pillow. 

I was  involved  in the anaesthesia of the pregnant ewe, delivery of the preterm  lamb 

fetus, and subsequent ventilation. I was also responsible for data collection during the 

ventilation period and sample analysis. Graeme Polglase assisted with delivery of the 

preterm  lamb  fetus and subsequent ventilation. Yong Song performed  the q PCR  for 

pro‐inflammatory cytokines. I was responsible for manuscript preparation. Jane Pillow 

was involved with all aspects of the study in a supervisory capacity. 

 

 

Chapter  8:  A  Comparison  of  High‐frequency  Jet  Ventilation  and  High‐frequency 

Oscillatory Ventilation with Conventional Mechanical Ventilation in Preterm Lambs. 

Gabrielle C Musk, Graeme R Polglase, J Bert Bunnell,  Ilias Nitsos, David Tingay, J Jane 

Pillow. 

I was  involved  in the anaesthesia of the pregnant ewe, delivery of the preterm  lamb 

fetus, and subsequent ventilation. I was also responsible for data collection during the 

ventilation  period  and  sample  analysis. Graeme  Polglase  and  Ilias Nitsos  performed 

surgical  instrumentation of the  fetus prior to delivery, Bert Bunnell and David Tingay 

assisted  in  the  ventilator  management  of  the  lamb  following  delivery  and  data 

collection, Yong  Song performed  the q PCR  for pro‐inflammatory  cytokines. Graeme 

Polglase assisted with pulmonary blood flow waveform analysis. I was responsible for 

Page 7: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

manuscript  preparation.  Jane  Pillow was  involved with  all  aspects  of  the  study  in  a 

supervisory capacity. 

Jane Pillow's  supervisory  role  extended  to  all  aspects of  the project  including  study 

design,  conduct  and  critical  review  of  data  analysis  and  written  interpretation.  

Graeme Polglase and Karen Simmer contributed to critical review of each manuscript. 

It  is not possible  to have each co‐author sign  this declaration,  in which case, my co‐

ordinating supervisor J Jane Pillow has signed to confirm that these statements are an 

accurate reflection of the contributions of each author. 

 

Gabrielle Christine Musk 

 

J Jane Pillow  

Page 8: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

 

Publications arising from this Thesis 

Musk GC, Polglase GR, Bunnell JB, McLean CJ, Nitsos I, Song Y and Pillow JJ 2011 High 

Positive  End‐Expiratory  Pressure  during  High‐Frequency  Jet  Ventilation  Improves 

Oxygenation  and  Ventilation  in  Preterm  Lambs.  Pediatric  Research  69(4):319‐324 

(Chapter 4). 

Musk  GC,  Polglase  GR,  Song  Y  and  Pillow  JJ  The  Impact  of  Conventional  Breath 

Inspiratory Time during High‐frequency Jet Ventilation in Preterm Lambs. Submitted to 

Neonatology April 2011 (Chapter 5). 

Musk GC, Polglase GR, and Pillow JJ The Effect of Conventional Breath Peak Inspiratory 

Pressure  and  Frequency  during  High‐frequency  Jet  Ventilation  in  Preterm  Lambs. 

Manuscript in preparation (Chapters 6 and 7). 

 

Musk GC, Polglase GR, Bunnel JB, Nitsos I, Tingay D and Pillow JJ A Comparison of High‐

frequency Jet Ventilation and High‐frequency Oscillatory ventilation with Conventional 

Mechanical Ventilation in Preterm Lambs. Manuscript in preparation (Chapter 8). 

 

Page 9: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

Acknowledgements 

  

This work would not have been possible without the contribution and support of many 

people.    I have been  fortunate  to  receive  scientific  guidance,  intellectual  inspiration 

and moral  support  from my  supervisors,  colleagues,  family and  friends.    Jane Pillow 

had  the  idea  for  these  studies  and  a  vision  for  their  clinical  application  in  neonatal 

intensive  care  units.    She  has  been  an  incredible  supervisor who  leads  by  example 

when  it  comes  to  being  thorough,  concise,  articulate,  scientifically  watertight  and 

generous with  her  time.    She’s  taught me  a  lot  and  I will  never  forget  that  I  am  a 

passive splitter who sometimes  likes  to use as many words as possible  to simply say 

something. Graeme Polglase deserves mention for his unrelenting mission to train me 

out of putting 2 spaces after a full stop.  If I had a dollar for every time he commented 

on that I’d be mortgage free. Karen Simmer made me realise it wasn’t unreasonable to 

arrive  in  another  timezone more  than  6  hours  before  a  conference  is  due  to  start. 

Thank you to you all for supervising me – in your own unique ways.  

Bert Bunnell developed the ventilator at the centre of this work and is an inspiration to 

me.    He  leads  a  formidable  team  of  dedicated,  enthusiastic  and  kind  people who 

mirror his ethos in life.  It has been a pleasure and a privilege to be a small part of the 

evolution of High‐frequency Jet Ventilation.   

Being a vet, working with sheep and based  in a maternity hospital took some getting 

used to but I very quickly felt settled in at the School of Women’s and Infants’ Health 

on  the  second  floor  of A  block  at  King  Edward Memorial Hospital.   Maz  Schneider, 

Bevelynn Ibrahim and Catherine Arresse in particular have made me feel right at home 

Page 10: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

  

and  I miss that feeling of family  immensely.   John Newnham can certainly tell a good 

story and I have listened in awe to many of his.  Thank you John. 

The  daily  grind  of my  PhD was  filled with  humour  and  friendship  thanks  to  Carryn 

McLean, David Cruise, Richard GB Dalton and Joe Derwort.   Carryn has great taste  in 

music (especially Mossimo Park) and necklaces, and was my most constant and reliable 

moral support through the frustrating times.  Cruisey looks great in undersized overalls 

and bakes a mean brownie. I was just sorry that he was only really around for a year.  

Richard came from Tasmania to Forrest St and after a road trip to Darkan on day 1 we 

became firm friends.  Joe couldn’t quite get me out of my cappuccino habit, despite his 

efforts in promoting the long macchiato. 

Office  life was always a giggle with Chris  (AKA Toots) and his Style Guide, and  Irving. 

Irving made sure  I didn’t burn down  the  lab on weekends and Toots made sure  that 

PRONG’s purse strings were tight. 

Ilias has taught me about removing endogenous peroxidase activity, the importance of 

blind  intubations  and  has  been  a  stalwart  colleague  and  friend.  He’s  gone  back  to 

Melbourne now but there’ll never be another Nossie in my life. 

My family have all helped make student life less impoverished than it could have been.  

My house has become a lovely home thanks to Mum and the pruning jobs are shorter 

each year  thanks  to Dad.   My nieces  fill  it with  fun and Harry guards  it as his castle.  

Harry warrants his own mention – a finer canine companion does not exist. 

Lastly, it’s a big thank you to my wonderful friends (that’s you Fraser and Karen) who 

have been so supportive.  Thank you! 

Page 11: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

List of Abbreviations

ANOVA analysis of variance

BPD bronchopulmonary dysplasia

CMV conventional mechanical

ventilation

cmH2O centimeters of water

CO2 carbon dioxide

ΔP delta P (PIP-PEEP)

ETT endotracheal tube

FiO2 fractional inspired oxygen

concentration

HFV high-frequency ventilation

HFJV high-frequency jet

ventilation/ventilator

HFOV high-frequency oscillatory

ventilation/ventilator

h hour

Hz Hertz

IgG immunoglobulin G

IL interleukin

iNOS inducible nitric oxide

synthetase

i.v. intravenous

kg kilogram

min minute

mL milliliters

mmHg millimeters of mercury

MPO myeloperoxidase

nm nanometer

O2 oxygen

OI Oxygenation Index

Paw mean airway pressure

PaCO2 partial pressure of carbon

dioxide in arterial blood

PaO2 partial pressure of oxygen in

arterial blood

PAP pulmonary arterial blood

pressure

PBF pulmonary blood flow

PEEP positive end-expiratory

pressure

PIP peak inspiratory pressure

PmvO2 partial pressure of oxygen in

mixed venous blood

psi pounds per square inch (1psi =

70 cmH2O)

PVR pulmonary vascular resistance

RDS respiratory distress syndrome

s seconds

SABP systemic arterial blood

pressure

SD standard deviation

Page 12: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

SEM standard error of the mean

SpO2 oxyhemoglobin saturation

measured by a pulse oximeter

tI inspiratory time

tE expiratory time

UVC unventilated control

VT tidal volume

µg microgram

Page 13: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

1

TABLE OF CONTENTS

1 LITERATURE REVIEW .......................................................................... 5

1.1 Introduction ........................................................................................................ 5

1.2 Stages of Lung Development .............................................................................. 6

1.2.1 Strategies for Inducing Preterm Lung Maturation .................................... 10

1.3 Respiratory Consequences of Premature Birth ................................................ 12

1.3.1 Respiratory Distress Syndrome ................................................................. 12

1.3.2 Bronchopulmonary Dysplasia ................................................................... 13

1.3.3 Respiratory Outcomes of Bronchopulmonary Dysplasia .......................... 15

1.4 Respiratory Management of Preterm Babies .................................................. 16

1.4.1 Non-invasive Therapies ............................................................................. 17

1.4.2 Indications for Mechanical Ventilation ..................................................... 17

1.4.3 Adjunctive Treatments .............................................................................. 26

1.4.4 Surfactant .................................................................................................. 28

1.4.5 Postnatal Corticosteroids .......................................................................... 30

1.5 Side Effects of Positive Pressure Ventilation .................................................... 32

1.5.1 Ventilator Induced Lung Injury ................................................................. 32

1.5.2 Haemodynamic Consequences of Positive Pressure Ventilation ............. 36

1.5.3 Central Nervous System Consequences of Positive Pressure Ventilation 41

1.6 Assessment of Lung Injury ................................................................................ 44

Page 14: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

2

1.6.1 Bronchoalveolar Lavage Fluid ................................................................... 46

1.6.2 Lung Tissue ................................................................................................ 48

1.7 Lung Protective Ventilation Strategies ............................................................. 50

2 HIGH-FREQUENCY VENTILATION ....................................................... 54

2.1 High-frequency Ventilation .............................................................................. 54

2.1.1 Gas Mixing during High-frequency Ventilation ......................................... 54

2.1.2 Mechanical Properties of the Lung and High-frequency ventilation ........ 56

2.1.3 Airway Pressure Waveforms during High-frequency Ventilation ............. 58

2.1.4 Modes of High-frequency Ventilation ...................................................... 60

2.2 Using a High-frequency Jet Ventilator ............................................................. 61

2.2.1 The Role of the Conventional Ventilator .................................................. 64

2.2.2 The Role of the High-frequency Jet Ventilator ......................................... 71

2.2.3 Monitoring during High-frequency Jet Ventilation ................................... 73

2.3 High-Frequency Jet Ventilation in the Clinical Environment ........................... 74

2.3.1 High-frequency Jet Ventilation as a Rescue Therapy ............................... 75

2.3.2 HFJV used Early in the Management of Respiratory Distress Syndrome . 76

2.3.3 Clinical Strategies ...................................................................................... 78

2.4 Summary........................................................................................................... 80

3 GENERAL METHODOLOGY ................................................................ 83

3.1 Animal Breeding and Welfare .......................................................................... 83

Page 15: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

3

3.1.1 Nutrition .................................................................................................... 84

3.1.2 General Anaesthesia and Instrumentation ............................................... 84

3.1.3 Caesarean Delivery .................................................................................... 87

3.2 Ventilator Set-up .............................................................................................. 88

3.3 Data Collection ................................................................................................. 89

3.3.1 Pulmonary Arterial Blood Pressure and Blood Flow Measurements ....... 90

3.4 Euthanasia and Post Mortem ........................................................................... 92

3.4.1 Cell Population of Bronchoalveolar Lavage Fluid ..................................... 93

3.4.2 Bronchoalveolar Lavage Protein Assay ..................................................... 94

3.4.3 Immunohistochemistry ............................................................................. 94

3.4.4 Qualitative Polymerase Chain Reaction .................................................... 95

3.4.5 Myeloperoxidase Activity in Lung Tissue .................................................. 96

3.5 Statistical Analyses ........................................................................................... 96

3.6 References ........................................................................................................ 98

4 HIGH POSITIVE END-EXPIRATORY PRESSURE DURING HIGH-

FREQUENCY JET VENTILATION IMPROVES OXYGENATION AND

VENTILATION IN PRETERM LAMBS ................................................. 121

Page 16: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

4

5 THE IMPACT OF CONVENTIONAL BREATH INSPIRATORY TIME

DURING HIGH-FREQUENCY JET VENTILATION IN PRETERM LAMBS 153

6 THE IMPACT OF CONVENTIONAL BREATH PEAK INSPIRATORY

PRESSURE DURING HIGH-FREQUENCY JET VENTILATION IN PRETERM

LAMBS ........................................................................................... 181

7 ALVEOLAR RECRUITMENT WITH FIVE OR TWENTY CONVENTIONAL

MECHANICAL VENTILATOR BREATHS PER MINUTE DURING HIGH-

FREQUENCY JET VENTILATION IN PRETERM LAMBS ....................... 207

8 A COMPARISON OF HIGH-FREQUENCY JET VENTILATION WITH HIGH-

FREQUENCY OSCILLATORY VENTILATION AND CONVENTIONAL

MECHANICAL VENTILATION IN PRETERM LAMBS ........................... 233

9 DISCUSSION .................................................................................... 271

10 APPENDIX ....................................................................................... 279

Page 17: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

5

1 Literature Review

1.1 Introduction

High-frequency jet ventilation (HFJV) is a novel mode of high-frequency ventilation

offering the potential for lung protective ventilation (1, 2). In the United States of

America, HFJV is a common ventilation modality employed in the clinical setting,

especially for the management of premature babies with respiratory distress

syndrome (RDS). In Australia, only one maternity hospital has access to HJFV.

Babies can be oxygenated and ventilated with HFJV but the incidence of

haemodynamic, respiratory and neurological morbidity is largely unknown. Published

data presents conflicting information with regards to the incidence of adverse

outcomes in a clinical environment and to date there are no controlled studies

exploring the optimal settings for HFJV. Despite 25 years of clinical application, HFJV is

more often employed as a ‘rescue’ ventilation strategy rather than a first line

treatment option. It is possible that if HFJV is used earlier in the clinical course, the

outcome statistics may improve. To use this therapeutic tool to its full potential, a

thorough understanding of the pathophysiology of respiratory diseases, the clinical

indications for HFJV, the unique features of this mode of ventilation, and the

equipment required to safely and effectively apply HFJV is required. This review will

examine information in the scientific literature with relevance to each of these points.

Page 18: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

6

1.2 Stages of Lung Development

Human lung development can be subdivided into three chronological periods: early

embryonic, fetal and postnatal (3). The fetal period is further subdivided into three

phases which describe the morphology of the airways and airspaces (pseudoglandular,

canalicular and saccular) as described in Table 1-A. The final phase of lung

development is alveolarisation which commences before birth, and continues

thereafter.

The formation of sufficient gas exchange surface area and pulmonary vasculature

capable of transporting CO2 and O2 through the lungs is vital for survival. Gas exchange

will only occur if inspired alveolar air and pulmonary arterial blood flow are contiguous

to each other and is more efficient if the surface area is greater and the membrane

between air and blood is thinner. Complete development of these components of the

respiratory unit is fundamental to normal postnatal respiratory function. Given the

developmental steps involved in maturation of the lungs, it is no surprise that there is

an inverse relationship between gestational age and the incidence of respiratory

morbidity and mortality. Infants born prior to the alveolar phase of development will

have fewer functional gas exchange units, reduced surfactant, a less compliant chest

wall and an immature pulmonary capillary network. These infants are therefore more

likely to struggle with the transition to air breathing.

Page 19: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

7

Table 1-A Stages of prenatal and postnatal structural lung development

Phase Postconceptional Age

Length: terminal bronchiole to pleura

Structure

Embryonic 0-7 weeks <0.1 mm Budding from the foregut

Pseudoglandular 8-16 weeks 0.1 mm Airway division commences and terminal bronchioles formed

Canalicular 17-27 weeks 0.2 mm 3 generations of respiratory bronchioles; primitive saccular formation with type I and type II epithelial cells; capillarisation

Saccular 28-35 weeks 0.6 mm Transitional saccules formed; true alveoli appear

Alveolar >36 weeks 11 mm Terminal saccules formed; true alveoli appear

Postnatal 2 months 175 mm 5 generations of alveolar ducts; alveoli form with septation

Early childhood 6-7 years 400 mm Airways remodelled; alveolar sac budding occurs

Adapted from Bhutani (4).

Aside from maturation of the lung parenchyma, upper airway development is also

essential for normal gas exchange at birth. The patency of the upper airways is under

complex control and allows for conduction, humidification, warming and filtering of air

during inspiration and expiration (4). Airway development is essentially complete by

Page 20: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

8

the end of the canalicular period of lung development, so viable preterm babies should

have sufficiently developed conducting airways.

Furthermore, clearance of fetal lung fluid must occur before normal gas exchange can

occur. Fetal lung fluid is produced during the canalicular stage of lung development

and creates a hydrostatic pressure within the respiratory system. The 3 to 5 cmH2O

exerted by the fetal lung fluid contributes to structural development of the lungs and

ensures that lung volume remains approximately equivalent to the functional residual

capacity of the fetal lung (4). Clearance of fetal lung fluid normally occurs during the

transition to air breathing at birth but if a baby is born prematurely, lung fluid may not

clear without intervention.

Recent Australian data reports the mean gestational age for all babies as 38.8 weeks

and the proportion of babies born at term (37-41 w) as 90.9 % (5). The mean

gestational age for all preterm births was 33.2 w (0.9 % of births were at 20-27 w

gestation, 0.8 % were at 28-31 w and 6.5 % were at 32-36 w) (5). In Western Australia

between 2002 and 2004, 8.4 % of births were preterm (< 37 w) (6). The highest

mortality rate occurred in the most immature babies and decreased as gestational age

increased (Table 1-B).

Page 21: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

9

Table 1-B Birth and death statistics by gestational age, Western Australia 2002-2004

Gestational

Age (weeks)

Total births

Neonatal

deaths

Post-natal

deaths

Total

deaths

Death rate

(%)

20-27 613 80 8 88 14.4

28-32 933 21 5 26 2.8

33-36 4744 17 15 32 0.7

37-43 68705 48 66 114 0.2

<37 6290 118 28 146 2.3

Adapted from Newnham et al. (6)

Data from a Californian hospital in the 1990s described a similar pattern where mean

hospital stay was longer for infants born at an earlier gestational age (7). Survival

without BPD or retinopathy of prematurity is also strongly associated with maturation:

whereas only 35 % of infants born at 24 w survive without either of these morbidities,

this figure increases to almost 78 % at 26 w (8).

While the statistics describing the incidence of preterm birth reveal that a relatively

small proportion of babies are born at a stage prior to alveolarisation, it is these babies

that require the highest level of care. In 2005, 2.44 % of live births in Australia and

New Zealand were admitted to a neonatal intensive care unit and 91.1 % required

assisted ventilation (9). The major indication for assisted ventilation in babies born

less than 32 w was RDS (72.4 %) and the duration of ventilation increased with

Page 22: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

10

decreasing gestational age. From this particular cohort of babies, the median length of

stay in hospital (the survivors) was 133 d if born at 23 w, 118 d at 24 w, and 106 d at 25

w. The length of stay steadily decreased as gestational age increased (9).

1.2.1 Strategies for Inducing Preterm Lung Maturation

Accelerated maturation of the lungs and the impact on the incidence and severity of

BPD have been widely investigated. Exposure to glucocorticoids, chorioamnionitis and

fetal stress in utero all contribute to decreasing the incidence of RDS and therefore

BPD (10, 11).

1.2.1.1 Antenatal Corticosteroids

Clinical and experimental observations of antenatal corticosteroid treatment

demonstrate that endogenous and exogenous glucocorticoids function primarily to

accelerate lung maturation by thinning alveolar walls and increasing lung gas volume

(8, 11). This functional maturation of the preterm fetal lung has led to the

administration of corticosteroids to women at risk of preterm delivery becoming

established therapy (10, 12, 13).

The optimal dose and timing of corticosteroid treatment should aim to stimulate

generalised lung maturation and surfactant synthesis. Human and animal studies have

been performed to investigate the effects of antenatal steroid administration and help

determine when to administer corticosteroids and how much to administer (12, 14-

16). Improvement in lung function and increases in surfactant production both

contribute to improved outcomes in preterm babies whose mothers have received

antenatal corticosteroids (12).

Page 23: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

11

1.2.1.2 Chorioamnionitis

Intrauterine inflammation is associated with a reduced risk of RDS in some preterm

babies (17, 18). This realisation has prompted a vast number of animal studies

examining the impact of induced chorioamnionitis on lung maturation and surfactant

production (19-21) and evidence suggests that fetal lung inflammation causes marked

improvements in preterm lung function. These improvements are primarily caused by

increases in pulmonary surfactant but remodelling of the lung parenchyma also occurs

(20). Whether or not chorioamnionitis and corticosteroid therapy work together to

reduce the risk of RDS to an extent greater than either alone is unknown.

Most cases of chorioamnionitis in preterm and term labour are sub-clinical (22) which

makes diagnosis difficult. The most common organism identified is Ureaplasma

urealyticum (22, 23) and a number of animal studies have documented lung

maturation associated with this infection (21). Colonisation of the chorioamnion incites

a fetal inflammatory response which targets a range of organs and tissues in the fetus,

including the lungs (22). Injury subsequent to infection develops and structural

changes to the lungs occur. These changes may in fact be beneficial, at least in the

short term.

1.2.1.3 Fetal stress

The short and long term effects of fetal stress may be both beneficial and adverse. The

beneficial effects result from accelerated organ and tissue maturation which improve

the capacity of a patient to cope with preterm birth (24). This ability to cope may be

interpreted as fetal adaptation to unfavourable circumstances and is likely to be

Page 24: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

12

associated with increased circulating cortisol and inflammatory mediators (24). The

manifestations of antenatal glucocorticoid therapy, chorioamnionitis and fetal stress

are comparable, albeit complex, and the balance between the beneficial and adverse

effects will vary according to gestational age and the presence of other pathology (24).

Nevertheless, fetal stress causes an increase in circulating cortisol and the release of

pro-inflammatory mediators which impact upon a number of organs, including the

lungs, to hasten maturation.

1.3 Respiratory Consequences of Premature Birth

1.3.1 Respiratory Distress Syndrome

Respiratory distress syndrome occurs as a result of both structural immaturity and

surfactant deficiency of the premature lung. The symptoms of RDS include

tachypnoea, chest wall retraction, cyanosis and characteristic radiological

abnormalities of the lungs. Clinical management invariably includes oxygen therapy

with or without ventilator support: 96 % of infants born at less than 28 w gestation in

Australasia in 2002, received supplemental oxygen (25). These extremely preterm

infants have a higher incidence of RDS and are hospitalised for longer compared to

those born after 28 w gestation (26). A range of ventilation techniques have been used

to support these preterm infants but mechanical ventilation has itself been implicated

as a cause of lung injury. Further, the combination of immature lung parenchyma and

lung injury may predispose the baby to bronchopulmonary dysplasia (BPD) (27).

Page 25: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

13

1.3.2 Bronchopulmonary Dysplasia

Bronchopulmonary dysplasia (BPD) was first defined in 1967 by Northway et al (28) to

describe the clinical, radiological and pathological changes in infants with severe RDS.

The definition applied to babies who had been treated with prolonged mechanical

ventilation and warmed, humidified 80-100 % inspired oxygen concentrations. The

term BPD was coined to emphasise the involvement of all tissues of the developing

lung in the pathological process and represented the toxic manifestations of high

oxygen concentrations and mechanical ventilation on the developing lung

superimposed upon the healing phase of RDS. In 1968 a radiographic description was

published highlighting the distinctive features of this phenomenon (29). The

radiographic features were staged with grade 4 representing the worst case scenario:

symptomatic chronic lung disease with strands of pulmonary parenchymal density;

increased thoracic volume; and cardiomegaly which may gradually clear or progress to

cor pulmonale and death at less than 1 month of age (29). These two publications

marked the beginning of an era.

Despite advances in antenatal glucocorticoid therapy, surfactant treatment and gentle

‘lung protective’ ventilation techniques, the incidence of BPD is increasing (30),

prompting further investigation into its multifactorial pathophysiology. In 2001 a new

NIH consensus definition of BPD was proposed by Jobe and Bancalari (27) to include

categorisation of the severity of BPD (Table 1-C).

Page 26: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

14

Table 1-C Diagnostic criteria for defining bronchopulmonary dysplasia

Gestational

Age

<32 weeks ≥ 32 weeks

Time point of

assessment

36 w PMA or discharge to home,

whichever comes first.

>28 d but < 56 d postnatal age or

discharge to home, whichever

comes first.

Treatment with >21 % oxygen for at least 28 d plus.

Mild BPD Breathing room air at 36 w PMA

or discharge, whichever comes

first.

Breathing room air by 56 d

postnatal age or discharge,

whichever comes first.

Moderate BPD Need* for < 30 % oxygen at 36 w

PMA or discharge, whichever

comes first.

Need* for < 30 % oxygen at 56 d

postnatal age or discharge,

whichever comes first.

Severe BPD Need* for ≥ 30 % oxygen and/or

positive pressure, (PPV or

NCPAP) at 36 w PMA or

discharge, whichever comes first.

Need* for ≥ 30 % oxygen and/or

positive pressure (PPV or

NCPAP) at 56 d postnatal age or

discharge, whichever comes

first.

Adapted from Jobe and Bancalari (27). BPD = bronchopulmonary dysplasia, NCPAP = nasal continuous

positive airway pressure, PMA = postmenstrual age; PPV = positive pressure ventilation. * A

physiological test confirming that the oxygen requirement at the assessment time point remains to be

defined. This assessment may include a pulse oximetry saturation range.

Page 27: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

15

As mechanical ventilation may contribute to the development of an inflammatory

response resulting in altered alveolar and pulmonary vasculature development (27),

the identification of ventilatory strategies that minimise this damage and prevent the

progression of BPD is an important research goal.

1.3.3 Respiratory Outcomes of Bronchopulmonary Dysplasia

In the last 30 years, the chances of surviving the neonatal period as a premature baby

have improved (31). The introduction and evolution of assisted ventilation, surfactant

therapy and antenatal steroid administration are primarily responsible for this

progress (32). Improved survival of extremely low gestational age infants is frequently

followed by significant long term respiratory morbidity and has fiscal implications. The

cost of initial care for this population of neonates in the United States is estimated at

US$10.2 billion each year. Infants born between 24 and 26 weeks gestation account for

11.9 % of this bill (33).

There are limited reports of the long term respiratory complications of preterm birth in

the contemporary era. The survivors of extremely preterm birth (prior to 26 weeks

gestation) are only just reaching adulthood so data are limited to patients less than 20

years of age (34-36). Furthermore, the cohort of patients is small. Despite these

limitations, there is evidence that lung function is reduced as a result of surviving BPD

(36).

Earlier studies present data on patients of a similar age group (gestational age and age

in adulthood at the time of data collection) but from a different era. These patients

Page 28: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

16

were born before the routine administration of antenatal corticosteroid therapy and

exogenous surfactant which makes comparisons inappropriate. The definitions of BPD,

the birth weight of the patients and the respiratory parameters that were assessed

vary. The data does however reflect, once again, that in adulthood, the survivors of

preterm birth have some degree of decreased lung function (37, 38).

Overall it appears that a significant number of adult survivors of moderate and severe

BPD may be left with residual functional and characteristic structural pulmonary

abnormalities. The limitation of these studies is a failure to demonstrate a correlation

between perinatal variables and the manifestations in adulthood. This lack of

correlation makes prognostication difficult and emphasises the importance of

exploring management strategies for these preterm babies that will minimise injury to

the preterm lung.

1.4 Respiratory Management of Preterm Babies

The management of preterm babies with RDS aims to reduce the incidence and

severity of BPD. This management goal is challenging given the complexity of the

disease process and the precarious balance between risk and benefit associated with

any therapy. The general treatment goals are to minimise ventilator induced lung

injury, minimise the inspired oxygen concentration, avoid infection and manage

nutritional and fluid requirements (39). Respiratory management of preterm babies

may be non-invasive (e.g. nasal continuous airway pressure (CPAP)) or invasive

(requiring endotracheal intubation). Invasive techniques range from supported

ventilation by CPAP to intermittent positive pressure ventilation (IPPV).

Page 29: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

17

1.4.1 Non-invasive Therapies

Endotracheal intubation and the prophylactic administration of surfactant is effective

for the management of RDS in preterm infants (40). A comparison of early versus later

administration of surfactant has demonstrated reduced mortality, frequency of BPD,

and the risk of pneumothorax in ventilated preterm infants with RDS (41).

Endotracheal intubation however, is itself associated with considerable risk and if it

can be avoided, so will the associated complications. Non-invasive respiratory support

may therefore be considered for some infants. This form of respiratory support is a

continuous distending pressure, or CPAP. Continuous positive airway pressure is

applied using a conventional ventilator, bubble circuit or CPAP driver via a face mask,

nasopharyngeal tube, or nasal prongs (40). A Cochrane review published in 2002 found

that these methods of respiratory support reduced the rate of death or the need for

assisted ventilation and reduced the need for IPPV in preterm babies that were able to

breathe spontaneously (40). Subsequent randomised trials have failed to confirm that

CPAP is superior to intubation and mechanical ventilation when outcomes such as BPD

and death are considered (42, 43).

1.4.2 Indications for Mechanical Ventilation

Mechanical ventilation is indicated for any patient unable to breathe spontaneously

and achieve adequate gas exchange. Preterm babies have underdeveloped lungs and

respiratory muscles, insufficient endogenous surfactant production and secretion and

a highly compliant chest wall. Not surprisingly, they may require sophisticated

respiratory support in the form of mechanical ventilation via an endotracheal tube.

Page 30: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

18

1.4.2.1 Goals of Mechanical Ventilation

The aims of any ventilation strategy include alveolar recruitment and stabilisation, the

acquisition and maintenance of appropriate arterial blood gas parameters and

minimising the impact of increased intra-thoracic pressure on cardiac output and lung

injury. Achieving just one of these aims may come at the expense of another so it is

essential to strike a balance between oxygenation, CO2 removal and the implications of

higher than normal airway pressures.

1.4.2.1.1 Oxygenation

Hypoxaemia is defined by either a low PaO2, low peripheral or arterial oxyhaemoglobin

saturation (SpO2 or SaO2) or low oxygen content of arterial blood (CaO2). Regardless of

the descriptor, hypoxaemia may result from hypoventilation, inspiration of a hypoxic

gas mixture and venous admixture. Venous admixture refers to the passage of blood

through the pulmonary circulation without oxygenation and occurs in the presence of

ventilation and perfusion mismatch, right to left shunting of blood and diffusion

impairment. Prevention and treatment of hypoxaemia should therefore be targeted to

decrease the impact of each of these factors.

Airway pressure

Airway pressure plays an important role in oxygenation insofar as preventing alveolar

collapse and maintaining an open lung. Lung volume recruitment to reduce shunting of

blood through the lungs is an established concept: in 1959 Mead and Collier showed

that periodic lung inflations were necessary to prevent a progressive fall in compliance

during mechanical ventilation (44). Lung volume recruitment is possible if the lung is

Page 31: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

19

inflated beyond the pressure at which atelectatic lung begins to open, and is

maintained at a pressure above its closing pressure (45). In immature or injured lungs

where compliance is poor, these pressures may be high and the detrimental effects of

increased airway pressure must be considered. The balance between sufficient airway

pressure to prevent alveolar collapse and conservative enough airway pressure to

prevent alveolar overdistention may be difficult to achieve. Furthermore, the

haemodynamic implications must also be closely monitored and managed.

Inspired gas mixture

In preterm infants, oxygen supplementation is a balancing act between the treatment

of tissue hypoxia, pulmonary vasoconstriction, and patency of the ductus arteriosus

with lung injury, retinal damage and oxidative stress. Oxygen has therapeutic and toxic

characteristics and optimal oxygenation, especially in the first few weeks of life is often

under-emphasised. Hypoxanthine accumulates during hypoxia, and during re-

oxygenation, superoxide radicals are produced, leading to cell injury (46). Optimal

oxygen concentrations for resuscitation were reviewed recently and it is

recommended that babies of gestational age greater than 32 weeks should be

ventilated initially with 21 % oxygen. Babies of gestational age less than 32 weeks

should be ventilated initially with 21-30 % oxygen (47). Changes in SpO2 and heart rate

are often used to monitor oxygenation, especially in the acute period following

delivery and alterations to the fractional inspired oxygen concentration (FiO2) should

be made to target a SpO2 range. The consequences of various SpO2 targets have been

investigated and while there may be fewer complications in neonates that have been

Page 32: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

20

managed to achieve a lower target range (48), the mortality rate must also be

considered. The current recommendation is a target SpO2 of 91-95% (49).

Automated oxygen delivery is an evolving technology that automatically adjusts the

FiO2 according to feedback information from a pulse oximeter. Preliminary studies

under routine clinical conditions showed this system increased the time in which SpO2

was maintained within a target range, decreased FiO2 and decreased the incidence of

hyperoxaemia without increasing severe hypoxaemia (50). This method of oxygen

delivery may be a useful tool to reduce exposure to hyperoxaemia and hypoxaemia

which may contribute to the development of BPD. Furthermore, this study is pertinent

as the optimal SpO2 range for the extremely preterm or very low birthweight infant

remains elusive (49, 51). There is, however, convincing evidence that there is an

association between oxidative stress and BPD (52).

While hypoxaemia usually stimulates more concern, judicious use of oxygen and

continuous, or at least regular, monitoring of oxygenation to minimise exposure to

high concentrations of oxygen is important. The optimal SpO2 is not known in

premature infants: 2008 data indicated lower mortality if SpO2 was kept below 93 %

and stable (53). More recent data demonstrates increased mortality in a lower SpO2

range (85-89 %) when compared to a higher SpO2 range (91-95%) (49). The incidence

of retinopathy of prematurity was lower in survivors from the lower SpO2 range group

but the higher mortality in this group raises question over the appropriate target range

for SpO2. Further investigations are currently being undertaken to determine the safest

SpO2 target for preterm infants. Results from the Neonatal Oxygenation Prospective

Meta-analysis Collaboration are expected in 2014 (54).

Page 33: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

21

1.4.2.1.2 Removal of Carbon Dioxide

Normal cellular metabolism relies upon oxygen supply exceeding oxygen demand and

normal pH. The partial pressure of carbon dioxide in arterial blood (PaCO2) is directly

related to pH and both are maintained within a narrow range. Normal PaCO2 is 35 – 45

mmHg (4.6-5.5 kPa) and normal pH is 7.35 – 7.45.

Carbon dioxide production is a product of the carbonic anhydrase equation:

Equation 1-A

H+ + HCO3- ↔ H2CO3 ↔ H2O + CO2

Carbon dioxide is a byproduct of cellular metabolism and is eliminated by the kidneys

or the lungs. PaCO2 is a balance between carbon dioxide production and elimination.

During conventional mechanical ventilation (CMV), CO2 removal is directly related to

minute volume:

Equation 1-B

V’CO2 α V’min = fx VT

where V’CO2 = rate of carbon dioxide elimination; V’min = minute volume; f = ventilator

frequency or respiratory rate; and VT = tidal volume (alveolar).

A decrease in V’min due to either a decrease in f, VT, or both will decrease the

elimination of carbon dioxide (potentially causing hypercapnia). Conversely, an

increase in V’min accelerates CO2 elimination (potentially causing hypocapnia).

Equipment and physiological dead space will impact upon VT and therefore V’CO2.

Page 34: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

22

During high-frequency ventilation, however, CO2 removal is more closely linked to the

VT:

Equation 1-C

V’CO2 α V’min = f x VT2 (55)

The side effects of abnormal CO2 levels are dose and time dependent. However, in

general, hypercapnia leads to cerebral vasodilation, an increase in intracranial

pressure, splanchnic vasodilation and hypotension. Hypocapnia causes cerebral and

splanchnic vasoconstriction and may compromise perfusion of important organs.

During growth and development, the effects of alterations in CO2 are potentially more

profound. Hypocapnia is associated with an increased risk of periventricular

leukomalacia in low birth weight infants (56, 57) while hypercapnia is a predictor of

severe intraventricular haemorrhage in very low birth weight infants (58).

Furthermore, fluctuations in PaCO2 are associated with worse neurodevelopmental

outcomes in extremely low birthweight infants (59).

Permissive hypercapnia refers to an acceptance of PaCO2 levels higher than the normal

range (usually ~ 45-55 mmHg) and has been promoted as a strategy to reduce cyclic

volutrauma and barotrauma associated with mechanical ventilation. Other beneficial

effects include maintenance of cardiovascular performance secondary to hypercapnic

stimulation of the sympathetic nervous system. Despite these potential benefits of

permissive hypercapnia, the impact upon neurological development must be

considered.

Page 35: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

23

1.4.2.1.3 Minimising Iatrogenic Injury

Managing preterm babies with RDS is challenging and the outcome data demonstrates

that adverse effects may have implications into adulthood. Minimising iatrogenic injury

is essential to ensure the risk/benefit balance is in favour of the latter. The main risk

factors are IPPV, the administration of supplemental oxygen, the presence of a patent

ductus arteriosus and infection (chorioamnionitis, sepsis, pneumonia, meningitis) (39).

The main therapeutic options which may be associated with adverse side effects are

exogenous surfactant, caffeine, vitamin A, late corticosteroids, IPPV, oxygen, nutrition,

fluid therapy and prophylactic antibiosis (39). The interplay between these factors is

complex and the balance may be precarious.

1.4.2.2 Types of Ventilators

There are 3 main modes of ventilation employed in the management of RDS in

preterm babies. These modes are considered ‘gentle’ if used appropriately in these

patients with immature lungs that are poorly compliant and lacking in surfactant. The

decision making process regarding choice of ventilation strategy should be driven by

the individual patient’s pathophysiology but may also be influenced by availability of

equipment and past experience. Conventional mechanical ventilation (CMV) utilising

high respiratory frequencies and small tidal volumes, high-frequency oscillatory

ventilation (HFOV) and high-frequency jet ventilation (HFJV) have become established

as the ventilator modes most appropriate for the management of RDS in preterm

babies.

Page 36: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

24

1.4.2.2.1 Conventional Mechanical Ventilation

There are a number of conventional mechanical ventilators available for use in a

neonatal intensive care unit (NICU). They can be broadly classified according to

whether or not they cycle between breaths when a set pressure or VT has been

delivered. These ventilators have a multitude of settings which include, but are not

limited to: time-cycled pressure-limited ventilation; flow-cycled pressure-limited

ventilation; pressure controlled ventilation; pressure support ventilation; volume

controlled ventilation; volume guarantee; pressure regulated volume control; volume

assured pressure support; synchronised, or patient triggered, ventilation; and assist

control (60). In the context of RDS these ventilators can be used to deliver gas which is

involved in gas exchange by bulk convection and diffusion.

1.4.2.2.2 High-frequency oscillatory ventilation

High-frequency oscillatory ventilation (HFOV) is a form of high-frequency ventilation

where gas is delivered at a rapid rate, with a tidal volume usually less than dead space

volume (61). HFOV generates individual breaths with either a piston and diaphragm

that is electromagnetically driven, a rotating ball and reverse jet, or a vibrating

diaphragm. However the oscillation is generated, both the exhalation and inhalation

phases are active (55). Adjustments to HFOV frequency and breath amplitude (∆P)

alter minute volume while changes to PEEP alter mean airway pressure (Paw), which in

combination with FiO2, determines oxygenation.

High-frequency oscillatory ventilation has increasingly been utilised in the clinical

management of preterm babies with RDS and has evolved over the last 3 decades.

Page 37: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

25

Theoretical knowledge and clinical experience led to the recognition by Bryan and

Froese that using higher mean airway pressures than those measured during CMV is

essential to optimise oxygenation (45). Strategies aimed at achieving higher lung

volumes resulted in decreased FiO2 requirements, improved pulmonary mechanics and

less structural injury (62-64). The use of a high volume approach in clinical trials was

shown to be safe and effective and substantially decreased the incidence of BPD (65-

67) compared to earlier trials in which a high volume strategy was not protocolised.

The high volume strategy prioritises alveolar expansion over airway pressure and

creates mean airways pressures higher than those created during CMV (64, 68). Airway

pressure is only decreased after FiO2 is < 0.3 and when decreasing Paw does not

increase the FiO2 requirement. This link between higher Paw and improved

oxygenation formed the basis for studies focused on the high lung volume strategy.

The mechanisms of gas exchange and lung mechanics relevant to HFOV will be

discussed in Chapter 2.

1.4.2.2.3 High-frequency jet ventilation

High-frequency jet ventilation is also a form of high-frequency ventilation that has

been extensively utilised in NICUs. Individual breaths are generated by a flow-

interrupting pinch valve which is located outside the ventilator itself, and close to the

tracheal tube. A detailed description of HFJV and the ways it differs from HFOV will be

presented in Chapter 2.

Page 38: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

26

1.4.3 Adjunctive Treatments

Management of preterm babies goes beyond ventilatory support: a multimodal

approach to their care is essential to minimise morbidity and mortality. Respiratory

support is just one aspect of treatment which includes adequate nutrition, appropriate

fluid therapy and pharmacological intervention (39). The overall aims are to limit lung

injury, avoid infection, provide optimal nutrition and carefully control fluid balance.

Caffeine is administered to stimulate spontaneous breathing and seems to be safe and

effective for the prevention of BPD and neurodevelopmental delays. A large

randomised controlled trial published in 2007 concluded that caffeine therapy for

apnoea of prematurity improved the rate of survival without neurodevelopmental

disability at 18 to 21 months in infants with very low birth weight (69). A recent study

assessing children at the age of 5 years, however, concluded that caffeine therapy as a

very low birth weight neonate was not associated with an improved rate of survival

without disability (70).

A number of studies demonstrate that vitamin A intake is inadequate in extremely low-

birthweight infants and that supplementation of vitamin A may reduce the risk of

chronic lung disease (71, 72). Vitamin A deficiency may promote chronic lung disease

by impairing lung healing, increasing the loss of cilia, increasing squamous-cell

metaplasia, increasing susceptibility to infection, and decreasing the number of alveoli

(73). While the short-term benefits of vitamin A supplementation are promising, the

long-term benefits are unclear (72) and as for caffeine treatment, the clinician must

always consider the risk and benefit of such treatment (39).

Page 39: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

27

The administration of postnatal corticosteroids has been extensively investigated.

Halliday et al (2009) identified 47 randomised controlled trials of postnatal systemic

corticosteroid administration for the prevention of BPD (74, 75) and found a decreased

risk of death or BPD at 28 d and 36 w post menstrual age when corticosteroids were

used in the first week of life. The adverse effects that were identified included

gastrointestinal bleeding and intestinal perforation, hyperglycaemia, hypertension,

hypertrophic cardiomyopathy, growth failure, developmental delay, cerebral palsy and

abnormal neurological examination results (75). When corticosteroids were

administered later (> 7 days) the risk of BPD and death or BPD was reduced at both 28

d and 36 w (74). Once again, adverse effects included hyperglycaemia, hypertension,

infection and cerebral palsy (if the initial risk of BPD was low). Given these data it has

been suggested that systemic corticosteroids given after 7 d of life should be limited to

infants who cannot be weaned from mechanical ventilation. Furthermore, the dose

and duration of any such course should be minimised (39).

Diuretics have also been administered to preterm infants in an effort to improve lung

compliance. There are no known long term benefits from these therapies so while they

may be appropriate for infants with poor lung compliance or those who are difficult to

wean from a ventilator, it is prudent to use them transiently (39).

Nitric oxide (NO) is a selective pulmonary vasodilator and has been shown to improve

gas exchange and lung maturation in animal models (76-78). Nitric oxide is usually

delivered via the airways in an inhaled form into the inspiratory limb of the breathing

system. In a study investigating 3 doses of NO in term babies it was concluded that a

higher dose (80 ppm) did not seem to have any advantages over either 5 or 20 ppm

Page 40: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

28

and caused an increase in methaemoglobin and NO2 levels (79). Its use for preterm

infants, however, has increased as the evidence suggests improved

neurodevelopmental and respiratory outcomes following treatment with inhaled NO

(80-83).

1.4.4 Surfactant

Surfactant is critical for lowering surface tension in the alveoli and prevents alveolar

collapse. It is usually produced by type II pneumocytes in time to promote alveolar

stability at term birth (84, 85). In utero the fetal lung is full of fluid which must be

cleared to enable the transition to air breathing at birth. The amount of fluid in the

lung after birth will be determined by the efficacy of fluid clearance mechanisms, the

length of labour, and whether or not delivery is vaginal or via caesarean section (84).

Delayed clearance of lung fluid will increase the potential for hypoxaemia and

hypercapnia. Furthermore the composition of the fluid also impacts upon the

transition to air breathing as fluid without surfactant, and therefore a high surface

tension, increases the risk of small airway obstruction and the pressure required to

open these airways (84).

In adult animal and human lungs, surfactant is a fluid composed of lipids and proteins,

the action of which is to lower the surface tension of an open air-water interface. It is

the saturated phosphatidylcholine species and surfactant protein B and C components

that give surfactant this unique property (85). Preterm infants with RDS have low levels

of surfactant that is deficient in these lipids and proteins. This deficiency promotes

alveolar collapse, instead of expansion, which contributes to the requirement for

mechanical ventilation.

Page 41: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

29

The administration of exogenous surfactant soon after birth has become routine in the

clinical management of neonates with RDS and has yielded significant improvements in

morbidity and mortality (85-87). The most common method of administration is direct

intratracheal instillation (88) and the response to treatment has been described in

three phases: acute, lasting minutes; a more prolonged phase lasting hours; and

chronic, with effects lasting days or even weeks (85). The magnitude of the acute

response depends upon the biophysical properties of the surfactant and the extent of

distribution throughout the lung. Uniform distribution is ideal and whether or not it is

achieved is governed by surface activity, volume of surfactant, gravity, speed of

delivery of surfactant, ventilator settings and the presence of lung fluid within the lung

(85). Attention to these factors will optimise the delivery and efficacy of exogenous

surfactant.

Preterm lungs ventilated without surfactant rapidly develop epithelial disruptions in

the airways and pulmonary oedema as proteins from the vascular space enter the

airspaces (89). Oedema fluid will adversely affect lung mechanics and gas exchange

(90) and potentiate VILI. If surfactant is administered prior to the initiation of

mechanical ventilation it facilitates the movement of fluid out of the small airways and

into the saccules and interstitium, effectively increasing total lung capacity and

decreasing the inflation pressures required to deliver gas volume to the lung (91).

Surfactant is most often delivered together with mechanical ventilation. Ventilatory

mode may influence the distribution of surfactant to the lungs and the clinical

response of the patient. A rabbit study investigating the response to surfactant and

either CMV or HFJV following saline lavage induced lung injury demonstrated

Page 42: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

30

improved gas exchange and reduced pulmonary right-to-left shunt in the animals in

which surfactant had been administered prior to HFJV (92). These results support the

hypothesis that the response to surfactant treatment in acute lung injury depends on

the mode of ventilation utilised after surfactant delivery. HFJV may facilitate the

delivery of surfactant to the distal alveoli, decrease alveolar dead space, support open

alveoli and improve gas exchange. This theory is not supported by any data and

warrants investigation in a controlled setting.

A pilot study of 28 newborn infants with RDS, meconium aspiration syndrome or

pneumonia who deteriorated in spite of optimal CMV and exogenous surfactant

therapy were treated with HFJV and continued surfactant therapy (93). The patients

that met the criteria for treatment with HFJV and additional surfactant showed

significant and sustained improvement in several respiratory variables. These results

suggested that the combination of HFJV and exogenous surfactant may be effective in

treating infants with more severe respiratory failure (93). Unfortunately this work has

not progressed and it remains that further investigation into the impact of specific

ventilation methods and strategies on the delivery, distribution and efficacy of

exogenous surfactants is required to optimise this therapy (88).

1.4.5 Postnatal Corticosteroids

The administration of corticosteroids to women at risk of preterm delivery induces

functional maturation of preterm fetal lungs (11) and has become established therapy

to improve the outcome for premature infants (12). The administration of postnatal

corticosteroids however is less encouraging. A recent review of several studies focused

on the risk/benefit balance of postnatal corticosteroids administered to premature

Page 43: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

31

babies for prevention and treatment of BPD highlights the risk of long-term adverse

neurodevelopmental outcomes (94). Their recommendations are that systemic

administration of corticosteroids for prevention or treatment of BPD: (i) should not be

used during the first 4 days of life; (ii) is not indicated in the first 3 weeks of life nor (iii)

in extubated infants (nasal ventilation or oxygen therapy) (94). Furthermore, these

authors advise that the systemic administration of steroids should only be considered

after the first 3 weeks of life in very preterm infants to facilitate extubation. In this

scenario corticosteroids may help wean the infant from the ventilator and decrease

the requirement for oxygen supplementation. The justification for these suggestions is

based upon potential unfavourable neurocognitive outcomes associated with the use

of postnatal steroids (94). A policy statement from the American Academy of Pediatrics

was released in 2010 and is in a similar vein, highlighting the deficiency of data to

support the use of corticosteroids in the post natal period without careful

consideration of the potential risks. The Academy did, however, recommend that

consideration of a course of corticosteroids be given if the patient is ventilator-

dependent at 1-2 weeks of age.

The debate regarding the administration of postnatal steroids is not over: in light of

Australian data it appears that low-dose dexamethasone treatment after the first week

of life facilitates extubation thereby decreasing the days of intubation of ventilator

dependent very preterm and extremely low birth weight infants (95). Doyle et al

(2006) reached these conclusions after a randomised controlled trail of either

dexamethasone or saline was administered to 70 infants recruited from 11 centres at a

median age of 23 days. A 2 year follow up on these patients revealed that there was no

Page 44: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

32

difference in the incidence of mortality or major disability at 2 years of age between

the treatment and the saline groups (96). Until further data are available it remains

that while dexamethasone administered after the first week of life may have short

term benefits, the long term implications are unknown.

1.5 Side Effects of Positive Pressure Ventilation

Positive pressure ventilation disrupts normal physiological processes and may interfere

with lung structure and cardiac output, and therefore pulmonary and systemic blood

flow. Furthermore, if blood flow to the brain is compromised and cerebral oxygen

delivery does not meet cerebral oxygen demand normal neurological development

may not occur. The side effects of IPPV will be divided into those effects pertaining to

the respiratory (ventilator induced lung injury), haemodynamic (pulmonary blood flow,

persistent pulmonary hypertension of the neonate and systemic blood flow) and

neurological systems.

1.5.1 Ventilator Induced Lung Injury

While mechanical ventilation has decreased mortality rates in neonates since its

introduction in the 1960s, at the same time it has created a new set of potentially life

threatening conditions for these patients (97). Ventilator induced lung injury is

considered an important risk factor for the development of BPD from barotrauma,

atelectatrauma, volutrauma and biotrauma (98, 99) and may have long term

implications for the patient. In preterm infants VILI may be attributed to a plethora of

mechanical ventilation strategies (65, 98, 100). The factors that contribute to the

deleterious effects of mechanical ventilation include the applied airway pressure, the

Page 45: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

33

volumes changes associated with that airway pressure, the size of the patient, the

duration of ventilation, whether or not the thorax is open or closed and the presence

of pre-existing respiratory disease (98).

Barotrauma causes the leakage of air due to disruption of the airspace wall (98). The

term is used to describe the impact of pressure related dysfunction resulting from

exposure to persistent, elevated pressures (99). Alveolar distension during IPPV causes

damage to the pulmonary epithelial-endothelial barrier which allows air to shift into

the pulmonary interstitium (101). The consequences of this damage includes:

interstitial airleak; pneumothorax; subcutaneous emphysema; pneumomediastinum;

pneumoperitoneum and pneumopericardium (102). Furthermore, a complex cascade

of physiological events occurs including fluid and protein shifts across the blood-air

interface resulting in a high permeability pulmonary oedema (103). Gas exchange

becomes compromised as ventilation and perfusion (V/Q) mismatch develops and lung

compliance decreases. The mechanical stress associated with barotrauma may activate

humoral and cellular immunological responses leading to the release of pro-

inflammatory mediators and neutrophils (99). Fibrin is then deposited in the alveolar

membrane, increasing V/Q mismatch and decreasing compliance further.

Atelectatrauma refers to lung injury associated with atelectasis and the consequent

shear forces associated with repetitive opening of collapsed alveoli. This creates V/Q

mismatch and increases the inflation pressures required to recruit those areas of the

lung (91). According to LaPlace’s law, the pressure required to inflate a lung unit

depends on the initial radius of that unit. To achieve a certain volume change in larger

alveoli, the necessary pressure changes are much smaller compared to alveoli which

Page 46: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

34

are collapsed or have a lower volume. It follows that the pressure needed to keep

alveoli open is lower at a higher functional residual capacity. The critical opening

pressure of a lung unit is therefore inversely proportional to the size of that unit so

higher pressures are required to recruit collapsed lung. The delivery of higher

pressures is potentially dangerous as these pressures may be transmitted to the

normal areas of lung, opening alveoli, promoting stretch, and causing over distension.

Furthermore, the opening of those collapsed units imposes large shear forces which

promotes alveolar disruption (91). Surfactant helps prevent alveolar collapse by

decreasing the surface tension of distal alveoli. The surface area of the alveolus will

however affect the efficacy of surfactant, especially if the surface area is smaller than

the total surface of surfactant molecules. The surfactant molecules will be squeezed

off the alveolar surface towards the alveoli and become inactive. When that lung unit

is inflated again, the surface is replenished with surfactant molecules, a proportion of

which will be ineffectual (104). Opening the lung, and keeping the lung open is the best

strategy for minimising atelectatrauma.

Volutrauma refers to lung injury associated with the static overdistention of the lung

as well as the cyclical delivery of high tidal volumes. By definition, it is independent of

the peak inspiratory pressure required for tidal volume delivery (98, 105). Volutrauma

can occur with only brief exposures to large tidal volumes (106) including as few as 6

consecutive large tidal volume breaths associated with the initiation of ventilation

after birth (107). Thus volutrauma is a risk for the preterm baby receiving IPPV during

postnatal resuscitation if tidal volumes are not monitored. Volutrauma not only causes

acute changes, but increases the injury associated with subsequent IPPV (106). At a

Page 47: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

35

microscopic and a molecular level, volutrauma leads to a plethora of abnormalities:

alveolar epithelial cell damage; alveolar protein leakage; altered lymphatic flow;

hyaline membrane formation; inflammatory cell influx; decreased lung compliance and

altered surfactant structure and function (106, 108, 109).

While efforts should be made to minimise volutrauma, there are sparse data in the

literature documenting the effect of predetermined tidal volumes during IPPV. One

prospective randomised controlled trial in preterm infants compared 3 mL kg-1 and 5

mL kg-1 tidal volumes delivered during volume guarantee ventilation. The authors

hypothesised that the lower tidal volume breaths would be associated with less

inflammation and less BPD (110). Their results found the converse, that the lower tidal

volume breaths were associated with greater expression of inflammatory markers,

likely due to progressive atelectasis with the delivery of small tidal volumes in the

absence of an accompanying strategy to optimise distending lung volume. This study

highlights the importance of delivering a targeted ventilation strategy: adequate PEEP

should be used to prevent atelectatrauma and optimal tidal volumes should be used to

prevent volutrauma.

Biotrauma refers to lung injury associated with the release of pro-inflammatory

mediators. This occurs in addition to the lung parenchymal and airway epithelial

changes previously described and results in an increased concentration of cytokines in

the lung tissue, which in turn incites an inflammatory response (102, 111, 112).

Quantification of these pro-inflammatory mediators is particularly useful when

assessing lung injury in an experimental setting as it provides information about the

potential systemic effects of IPPV.

Page 48: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

36

Barotrauma, atelectatrauma, volutrauma and biotrauma have been documented in

experimental studies in animals (98, 102, 111, 113) and while they may not be easy to

identify early in the pathogenesis of VILI in a clinical setting they are likely to occur to

some degree in response to mechanical ventilation. Controlled animal studies looking

directly at HFJV are scarce, but a study presented in 1990 was a turning point as it

reported less lung injury in a rabbit model of RDS when comparing high and low

volume strategies during HFJV and HFOV (114). Investigation and documentation of

injury associated with HFJV is therefore warranted to fully understand the impact of

this ventilation strategy on the lungs.

1.5.2 Haemodynamic Consequences of Positive Pressure Ventilation

Lowered right ventricular filling pressure, decreased central blood volume and a

consequent decrease in cardiac output are all side effects of IPPV (115). Animal studies

have demonstrated superior preservation of haemodynamic function during HFJV

when compared to CMV in dogs (115) and when compared to high-frequency positive

pressure ventilation in rabbits (116).

1.5.2.1 Pulmonary Blood Flow

A cat study comparing haemodynamic function during HFJV and HFOV aimed to

investigate the impact of Paw on cardiac output and pulmonary vascular resistance

(117). Despite demonstrating that increasing Paw caused a decrease in cardiac output

and an increase in pulmonary vascular resistance there was no cardiovascular

advantage of one strategy over the other. The major limitation of this study was the

Page 49: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

37

range of Paw was low: 2-12 cmH2O. A bigger difference may have been demonstrated

if higher airway pressures were applied.

Kawahito et al (2000) studied HFJV and CMV in adult patients with healthy lungs to

compare the impact of each strategy on pulmonary perfusion and cardiac output

(118). They used transoesphageal echocardiography and found significantly decreased

pulmonary arterial pressure and left atrial pressure during HFJV. These findings

correlated with increases in cardiac output and ejection fraction in their cohort of

healthy patients. Their conclusions that there is a haemodynamic advantage of HFJV

over CMV attributable to lower PIP during HFJV warrant consideration. While the

haemodynamic implications of a ventilation strategy will be affected by the presence

of cardiovascular and pulmonary disease it is still noteworthy that their findings

convincingly demonstrate that HFJV interferes less with venous return and therefore

cardiac output. It is also important to note that the respiratory frequency during HFJV

was 3 Hz in their study. This is considerably lower than would be used in a preterm

infant with RDS.

High-frequency jet ventilation has also been investigated in children. Kocis et al (1992)

studied the impact of pulmonary vascular resistance on cardiac output in the setting of

changing Paw in the transition from CMV to HFJV (7). They found that decreasing Paw

by 50 % caused a 59 % reduction in pulmonary vascular resistance and a 25 % increase

in cardiac output. Their conclusions were that HFJV was a suitable option for their

patient cohort (children with respiratory failure following congenital heart surgery).

While their patients are different to the target population for HFJV in this thesis, these

Page 50: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

38

cardiovascular data are nonetheless supportive of the use of HFJV in patients with

severe respiratory dysfunction.

Measurement of pulmonary blood flow is difficult in a clinical setting and given the

paucity of information on the impact of HFJV on pulmonary blood flow, it is prudent to

examine this in a controlled experimental environment. Soon after birth, neonates

undergo the transition from gas exchange across to the placenta to gas exchange

across the alveolar membrane. This transition requires establishment of a low

pressure pulmonary circulation and inflation of the lungs with air. If these patients

require mechanical ventilation, the intervention should not prevent this transition. For

this reason, and in light of the airway pressure required during mechanical ventilation,

animal studies are the only method by which this can be closely examined.

1.5.2.2 Persistent Pulmonary Hypertension of the Neonate

Persistent pulmonary hypertension of the neonate (PPHN) is defined as failure of the

pulmonary vasculature to relax (or dilate) at birth. The transition from fetal to neonatal

life is therefore complicated by right to left shunting of blood, resulting in V/Q

mismatch, venous admixture and hypoxaemia. Persistent pulmonary hypertension

occurs in approximately 1-2 newborns per 1000 live births and despite significant

improvements in treatment it is associated with substantial infant mortality and

morbidity (119). Diagnosis of PPHN can be made with echocardiography but a clinical

impression of the resistance in the pulmonary circulation versus the resistance in the

systemic circulation can be made by comparing pre- and post-ductal SpO2. If

pulmonary vascular resistance is higher than systemic vascular resistance, right-to-left

Page 51: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

39

shunting will occur through the ductus arteriosus. Pre-ductal (right forearm) SpO2 will

therefore be higher than post-ductal (lower extremities) SpO2.

Patients with PPHN may have adequate respiratory drive but can remain hypoxaemic

in spite of high FiO2. They may therefore require mechanical ventilation (77). The

suitability of HFJV for these patients has been investigated in a controlled prospective

clinical trial comparing HFJV and CMV. The authors found that in the acute period HFJV

improved oxygenation and ventilation without significantly increasing mortality.

Furthermore, HFJV may be a useful adjunct for stabilisation of the condition in

neonates with severe PPHN (120).

A potential complication of mechanical ventilation of patients with PPHN is a further

increase in pulmonary vascular resistance secondary to positive intrathoracic pressure.

Given the lower airway pressures during HFJV, it may have the least impact on

pulmonary vascular resistance and be the most appropriate ventilation strategy for

patients with PPHN.

Inhaled nitric oxide is widely used to manage PPHN (77, 119, 121). Nitric oxide is a

vasodilator and improves systemic oxygenation by decreasing the right to left shunting

of blood through the ductus arteriosus. It decreases the work of the right side of the

heart and prevents further right ventricular hypertrophy that occurs in response to the

increased pulmonary vascular resistance. The delivery of NO may be facilitated by HFJV

as the flow streaming of the inspired gases helps distribute it to the distal alveoli (122).

Page 52: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

40

1.5.2.3 Systemic Blood Flow

While perfusion of the pulmonary vasculature is essential to ensure matching of

ventilation and perfusion and therefore normal gas exchange, changes in systemic

blood flow will determine oxygen delivery to the brain, organs and other tissues.

Assessment of cardiac output is paramount to ensure oxygen supply exceeds oxygen

demand. Animal and clinical studies documenting the impact of HFJV on systemic

blood flow consistently find that there is comparable or better preservation of

systemic arterial blood pressure or cardiac output during HFJV compared to both HFOV

and CMV (7, 123-125).

Intrathoracic pressure during IPPV is higher than during spontaneous ventilation. This

pressure will alter the flow, pressure and resistance of intrathoracic vascular structures

and potentially decrease venous return and cardiac output. These alterations may be

minimised if the increase in intrathoracic pressure is small and short lived.

Furthermore, if respiratory frequency and heart rate are comparable cardiac output

may not decrease (126). Whereas synchronisation of HFJV PIP with ventricular systole

has been proposed for optimisation of ventricular loading in adult patients it is unlikely

to be as applicable to neonates. However, as the lowest respiratory frequency during

HFJV is 3 Hz (though this is determined by the manufacturer) and the normal heart

rate of the neonate is between 2-3 Hz it may be possible to synchronise every second

beat.

Intrathoracic pressure variations during HFJV are smaller than during CMV and it has

been postulated that there will be less cyclical change in cardiac output as a

consequence (127). Sherry et al (1988) measured cardiac output during CMV and HFJV

Page 53: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

41

in postoperative elective cardiac surgery patients to determine the impact of CMV or

HFJV at different PEEPs (0, 5, 10 cmH2O) and found that during HFJV with 0 cmH2O

PEEP there was little change in cardiac output. Increasing PEEP increased Paw and

intrathoracic pressure but did not significantly alter cardiac output during HFJV (127).

As premature infants undergo the transition to breathing air systemic arterial blood

pressure will increase. If this increase in blood pressure, and therefore perfusion of the

brain, organs and tissues, is inhibited oxygen delivery may not meet oxygen demand.

While the literature suggests that HFJV has relatively benign affects on cardiac output

it remains important to monitor continuously for evidence of anaerobic metabolism.

1.5.3 Central Nervous System Consequences of Positive Pressure Ventilation

Neurological injury associated with mechanical ventilation is assessed by the presence

of intraventricular haemorrhage (IVH) and periventricular leukomalacia (PVL). The

manifestations of this neurological injury vary in severity but cerebral palsy to some

degree is 25 to 30 times more likely to occur in infants weighing less than 1500 g (128).

Neurodevelopmental follow-up must also be performed in the first few years of life to

determine the consequences of any neurological injury sustained in the first few days

of life (129). The incidence of both IVH and PVL has a direct relationship to cerebral

palsy, intellectual impairment and visual disturbances (55). The causes of these lesions

are unclear but the following factors may predispose to both: asphyxia; severe

haemorrhage; septicaemia; patent ductus arteriosus; low arterial blood pressure;

impaired cardiac function; PaO2 and PaCO2 (130, 131).

Page 54: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

42

1.5.3.1 Intraventricular Haemorrhage and Periventricular Leukomalacia

Intraventricular haemorrhage refers to bleeding into the cerebrospinal fluid filled

lateral ventricles of the brain. The majority of IVH occurs in the first few days of life

and the incidence of it is inversely related to gestational age and body weight at birth

(132, 133). It is graded from I to IV by ultrasonography (134) and grades III or IV are

considered severe (135). Periventricular leukomalacia is the most common ischaemic

brain injury in premature infants and occurs in the white matter adjacent to the lateral

ventricles.

Hypocapnia has been investigated as a cause of IVH and PVL but the results of various

studies do not demonstrate an absolute link between hyperventilation (hypocapnia)

and adverse neurological outcomes. Murase and Ishida (2005) found that hypocapnia

(PaCO2 < 3.3 kPa (25 mmHg)) in the first 48 h of life was significantly associated with

cerebral palsy and late-onset PVL. This suggests that any association of cerebral palsy

with early hypocapnia is limited to a minor subtype of PVL, or to infants with cerebral

palsy not related to PVL (130). Fujimoto et al (1994) found that hypocapnia, and other

complications, were associated with PVL and concluded that mechanical ventilation in

premature infants should be managed carefully to avoid a PaCO2 lower than about

2.67 kPa (20 mmHg) (131). Other studies have similarly described periods of

hypocapnia as contributing factors to a poor neurological outcome (56, 136).

The HIFI Study comparing HFOV and CMV demonstrated a significant increase in

severe IVH and PVL (and respiratory and haemodynamic complications) in patients

ventilated with HFOV (137). The authors speculated that the poor outcome results

were a consequence of failure to emphasise volume recruitment and maintenance in

Page 55: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

43

the respiratory management of these infants (45). Although this study did not focus on

the PaCO2 targets for these patients and the impact of hypocapnia on cerebral blood

flow, it raised questions about whether the ventilation modality itself, or the blood gas

status of the patient, had an impact on adverse neurological outcome.

There are few clinical trials focusing on the neurological consequences in patients

managed with HFJV, and the results are inconsistent. Keszler et al (1997) documented

a randomised, controlled clinical trial of HFJV and CMV in 130 preterm infants between

700 and 1500 g born before 36 w post conceptional age. They found that HFJV reduced

the incidence of BPD at 36 w, decreased exposure to hypocapnia and reduced the risk

of grade III and IV IVH and/or PVL compared to CMV (138). Wiswell et al (1996) studied

infants born prior to 33 w gestation between 500 and 2000 g. In this randomised

controlled trial they aimed to ventilate infants to normocapnia and found that HFJV

was associated with a greater risk for adverse outcomes (grade IV IVH, PVL or death)

when compared to CMV (139). These authors went on to examine the role of

hypocapnia in the development of IVH and PVL during HFJV and found that the infants

with PVL had been hypocapnic for longer during the first day of life (140).

Direct comparison between HFJV and CMV has been attempted but the populations

are small (100, 120, 141). The results suggest HFJV is associated with lower mortality

but no significant differences were found in the incidence of IVH. There are multiple

limitations to these studies so to determine the cause of IVH and/or PVL the studies

need to target the at-risk population, include enough patients to give the results

power and incorporate long term pulmonary and neurodevelopmental follow up

assessment.

Page 56: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

44

The mechanism by which hypocapnia affects the development of IVH and PVL remains

unclear. Whether the PaCO2 level or the duration of time spent at a low PaCO2 has a

causative effect warrants further investigation. Furthermore, it’s possible the blood

gas status created during mechanical ventilation has a greater impact on adverse

neurological outcomes than the ventilation modality itself. Understanding how to

manage a particular ventilator to achieve target blood gas ranges is essential to

maintain a balance between the risks and benefits of mechanical ventilation.

Initial HFJV strategies more often created hypocapnia for periods of time. The focus on

managing Paw to maintain oxygenation and concern about the adverse effects of high

PEEP kept ∆P high enough to create hypocapnia. As the strategies have evolved and

higher PEEP settings are used the incidence of hypocapnia may decrease. Optimal

volume HFJV strategies have been shown to improve oxygenation and decrease

exposure to hypocapnia which in turn reduces the risk of grade III and IV IVH and/or

PVL (142). Future studies should focus on the incidence of adverse neurological effects

in the face of normocapnia.

1.6 Assessment of Lung Injury

The role of inflammation in VILI is important in the pathogenesis of BPD (143, 144). It

may be initiated by a pulmonary fetal inflammatory response and be exacerbated by

mechanical ventilation and exposure to supplemental oxygen. The response is a

complex interaction between proteins that attract inflammatory cells (chemokines),

proteins that facilitate the transendothelial migration of inflammatory cells from blood

vessels (adhesion molecules), proteins that promote tissue damage (pro-inflammatory

Page 57: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

45

cytokines and proteases) and proteins that modulate the process (e.g. anti-

inflammatory cytokines, binding proteins and receptor antagonists) (143).

Inflammation as a prelude to injury can be assessed in a number of ways: measuring

the protein content and assessing the cell population of bronchoalveolar lavage (BAL)

fluid; identifying the cellular infiltrate in lung tissue; assessing the expression of

messenger RNA (mRNA) for pro-inflammatory mediators; and measuring the products

of mRNA transcription. Non-invasive tests on BAL fluid are more appropriate in the

clinical setting and help identify infants at risk of BPD. In a research environment,

measurement of biomarkers in lung tissue, and BAL fluid, will further contribute to an

enhanced understanding of the significance of inflammation associated with

mechanical ventilation.

An appreciable increase in biomarkers may take many hours or days (144) which

makes it difficult to identify the initial injury pathways stimulated immediately after

birth. Injury is initiated on commencement of mechanical ventilation, when the lungs

are partially liquid-filled, surfactant deficient and partially aerated. The quantification

of expression of early response genes in the immediate postnatal period revealed that

VILI during the immediate newborn period can initiate changes in gene expression

within 15 minutes. This abnormal gene expression will potentiate inflammation and

promote abnormal lung development (145). Wallace et al concluded that connective

tissue growth factor (CTGF), cysteine-rich 61 (CYR61), early growth response factor 1

(EGR1), interleukin (IL) 1β, IL-6 and IL- 8 are likely to be useful biomarkers for VILI in

the newborn, particularly in the short term (111).

Page 58: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

46

Recent work has focused on the identification of mediators of lung injury and

characterisation of their interaction with alveologenesis. This discovery has enabled

identification of the protective mechanisms specific to the mediator of injury which in

turn enables robust protection against lung disease (146). Transforming growth factor

(TGF) β1 was identified in the lungs of preterm infants and is involved in inflammatory

and repair processes encountered in acute and chronic lung disease (147). High initial

levels of TGF β1 persisted over time and were predictive of the need for oxygen

therapy at home. Minoo et al have recently concluded that fibroblast growth factor

(FGF) 10 offers a distinct protective effect by attenuating the TGF β1 pathway and that

FGF 10 treatment strategies may provide protection to neonatal and other forms of

lung diseases caused by TGF β1 (146).

1.6.1 Bronchoalveolar Lavage Fluid

Bronchoalveolar lavage fluid can be collected via a tracheal tube in a clinical setting

and provides information about the permeability of the alveolar membrane and the

infiltration of inflammatory cells into the alveoli.

1.6.1.1 Protein in Bronchoalveolar Lavage Fluid

Two barriers form the alveolar-capillary interface: the microvascular endothelium and

the alveolar epithelium. In the acute phase of lung injury there is an influx of protein

rich oedema fluid into the air spaces as a consequence of increased permeability of the

alveolar-capillary barrier (148). The importance of endothelial injury causing increased

vascular permeability and pulmonary oedema in acute RDS is well established (149).

However, the importance of epithelial injury to recovery from lung injury has become

Page 59: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

47

better recognised (150) and the degree of alveolar injury is a predictor of outcome

(149).

The increase in capillary-alveolar permeability to plasma proteins can be quantified by

measuring BAL fluid total protein concentration (19, 106). An increase in BAL fluid

protein concentration is considered a global indicator of lung injury (106). The plasma

proteins that flood the alveoli contribute to the development of fibroproliferation

which in turn contributes to the risk of fibrosis. Efforts to monitor and reduce plasma

protein accumulation in the alveoli could benefit the patient (151).

The BAL procedure may be performed during sedation or anaesthesia, or post-mortem

in animals, and has been included in the overall assessment of lung injury in a number

of studies using a number of species. Measurement of total protein is an indicator of

lung injury but does not characterise the injury unless specific proteins or the actual

size of the protein is determined.

1.6.1.2 Inflammatory Cells in Bronchoalveolar Lavage Fluid

Extravasation of inflammatory cells due to endothelial and epithelial damage occurs as

a result of lung injury. Bronchoalveolar lavage fluid collected ante- or post mortem can

be examined to determine the number and composition of these inflammatory cells to

help determine the degree of lung injury. Bronchoalveolar lavage inflammatory cell

counts (neutrophils and mononuclear cells) increase in ventilated animals compared to

unventilated controls (106, 144, 152).

A recent review by Reynolds (2009) acknowledges that collection and analysis of BAL

fluid is a relatively non-invasive diagnostic test, but that it has limitations as a

Page 60: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

48

diagnostic tool. In both a clinical and a research setting BAL fluid analysis contributes

to the understanding of disease processes but the cellular components of BAL fluid are

not strongly correlated with definitive diagnosis (153).

1.6.2 Lung Tissue

Analysis of lung tissue is primarily a research tool. The identification and localisation of

inflammatory cells will characterise alterations in lung tissue associated with

mechanical ventilation. The maturity of inflammatory cells aids in assessing the

duration of the inflammatory process while the location helps characterise the insult.

1.6.2.1 Inflammatory Cells in Lung Tissue

Localisation of inflammatory cells in the microanatomy of the lung is useful to further

characterise an inflammatory response occurring as a prelude to lung injury.

Immunohistochemical staining and histopathological analysis of targeted enzymes

such as inducible nitric oxide synthase (iNOS) and myeloperoxidase (MPO) indicate the

location of inflammatory cells and form part of the overall assessment of inflammation

(112). Positive MPO staining identifies neutrophils and mononuclear cells while

positive iNOS staining identifies macrophages. This differentiation helps age the

inflammatory infiltrate.

1.6.2.2 Gene Expression in Lung Tissue

Describing the pattern of gene expression and activation associated with lung injury

provides the most precise account of the initial mechanisms involved in lung injury. As

the greatest risk of injury may be during the period immediately after birth when the

Page 61: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

49

lungs are particularly vulnerable, early response genes and growth factors are of

particular interest (108, 145, 154). The role of early response genes in VILI in the

preterm neonate was elucidated recently (145). Quantitative polymerase chain

reaction (qPCR) of mRNA for CTGF, CYR61, EGR1, IL-1β, IL-6 and IL-8 indicated that

resuscitation and mechanical ventilation at birth with high tidal volumes caused

upregulation of these genes compared to mechanical ventilation with low tidal

volumes. The authors concluded that these findings were indicative of more lung injury

from mechanical ventilation with low tidal volumes.

The precise role of specific mediators in the pathogenesis of VILI is not entirely

understood. The literature regarding the specific role of inflammatory mediators is

expanding, but is not comprehensive (155, 156). Inflammation and injury is a complex

process: initially gene expression is altered and these genes are subsequently

translated to specific proteins. Understanding the temporal properties of specific

genes and proteins enables appropriate analyses to demonstrate inflammation and

injury. Copland et al (2003) demonstrated that altered gene expression occurs before

demonstrable lung injury and that these alterations are time and stretch dependent

with characteristic spatial distributions (109). The choice of specific genes for

examination in the context of a particular study should be made carefully. Factors that

influence the suitability of particular genes include: the duration of the study; the

underlying pathophysiology of the lungs; and the ventilator strategy under

investigation.

Page 62: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

50

1.7 Lung Protective Ventilation Strategies

Mechanical ventilation was originally achieved by creating a negative extra-thoracic

pressure to simulate the negative intra-thoracic pressure created during normal

inspiration. These iron lungs mimicked normal spontaneous ventilation insofar as the

respiratory rate, tidal volume and airways pressures were comparable. There were

practical problems unrelated to breathing that led to the development of IPPV. Overall

patient management was a lot easier and ventilation was more efficient with the

ventilator attached to a tracheal tube. The main causes of ventilator associated

morbidity arise from the positive pressure within the chest and the impact on lung

tissue, pulmonary circulation and systemic and cerebral blood flow. These morbidities

may also be described as volutrauma, atelectatrauma, biotrauma and barotrauma with

reference to the impact on the lungs themselves. High-frequency ventilators were

developed as an alternative to conventional positive pressure ventilation as the

concept of smaller breaths more often was believed to be associated with fewer

adverse side effects (157).

Various ventilation strategies have been developed to reduce the prevalence of BPD,

but despite these advances the risk of BPD is still high for very preterm babies (30, 34).

There are 3 gentle ventilation strategies available to the neonatologist in the clinical

realm: gentle CMV with relatively high respiratory rates and small tidal volumes, HFOV

and HFJV. Each of these strategies has evolved to achieve a similar broad aim which is

described by the open lung approach. The open lung approach was first documented

in 1992 and incorporates the following basic treatment principles (91, 158):

Page 63: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

51

1. Open the whole lung with the necessary inspiratory pressure

2. Keep the lung open with PEEP above the closing pressure

3. Maintain optimal gas exchange at the smallest possible pressure amplitude to

optimise CO2 removal

This approach has changed the focus of ventilator management from targeting

physiological goals alone to protecting the lung from injury and decreasing the

cytokine modulation of the lung (98, 159, 160). The open lung approach can be applied

during CMV, HFOV and HFJV and aims to recruit and stabilise alveoli, minimise

atelectasis, and maximise gas exchange area without injury to the lung or compromise

to systemic or pulmonary blood flow (158).

Alveolar recruitment refers to the dynamic process of opening previously collapsed

lung units by increasing transpulmonary pressure (158). This pressure change is

primarily responsible for VILI (161, 162) and the effects of pressure should always be

monitored. The choice of recruitment manoeuvre will depend upon the individual

patient and the baseline ventilator mode. The delivery of a sustained high distending

pressure, an increase in PEEP and/or a transient increase in PIP will all facilitate

alveolar recruitment, but may also compromise blood flow and lung structure. Getting

the balance right is essential during lung protective ventilation.

Understanding hysteresis of the pressure-volume curve of lung inflation and deflation

will help attain this balance. The volume achieved on the deflation limb of the

pressure-volume curve is larger for the same distending pressure, compared to that

achieved on the inflation limb. The point of maximal curvature of the deflation

pressure-volume curve is the point at which the lowest pressure achieves optimal lung

Page 64: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

52

volume and PaO2 (163). Targeting ventilation to this point by delivering a sustained

inflation followed by small tidal volumes (5-6 mL kg-1) with PEEP above the inflection

point of the pressure-volume curve has been demonstrated to minimise lung injury in

a rat model (164). Alveolar recruitment using a sustained inflation followed by small

breaths with a PEEP below the inflection point will also boost the ventilator to cycle

onto the deflation limb of the pressure-volume curve (165). These findings suggest

that if sufficient lung volume recruitment is achieved with a sustained inflation that

relatively low airway pressures can be used to maintain tidal ventilation with a lower

pressure cost (165).

Page 65: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

53

Page 66: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

54

2 High-frequency Ventilation

2.1 High-frequency Ventilation

2.1.1 Gas Mixing during High-frequency Ventilation

The mechanisms determining gas flow, gas mixing and airway pressure during high-

frequency ventilation (HFV) are fundamentally different to ventilation at respiratory

frequencies employed during CMV. HFV is characterised by ventilation with tidal

volumes smaller than dead space volume but adequate gas exchange can still occur

because the increased energy of the gas molecules at the high frequencies and flows

leads to augmented mixing of gas in the airways (166). The dynamics of gas flow

distribution during HFV involve a number a different mechanisms including bulk

convection, asymmetric velocity profiles, pendelluft, cardiogenic mixing, Taylor

dispersion and turbulence, molecular diffusion and collateral ventilation (166, 167)

(Figure 2-A).

Page 67: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

55

Figure 2-A Gas Transport Mechanisms during High-frequency Ventilation. The gas transport mechanisms responsible for gas exchange during CMV (convection, convection and diffusion, and diffusion) are enhanced during HFV by seven mechanisms: turbulence; direct ventilation of proximal alveoli; turbulent flow with lateral convective mixing; pendelluft; gas mixing due to velocity profiles that cause a central stream of inspiratory gases along the airways and a stream of expiratory gas around this central stream; laminar flow with lateral transport by diffusion (Taylor dispersion); and collateral ventilation through non-airway connections between neighbouring alveoli (166).

High-frequency ventilators do not mimic normal breathing. Much smaller tidal volumes

are delivered at a much higher frequency and gas exchange occurs in a highly efficient

manner similar to that achieved by panting animals whereby:

Equation 2-A

V’CO2 = f x VT2

where V’CO2 = rate of CO2 elimination, f = ventilator frequency, and VT = tidal volume.

Page 68: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

56

During normal breathing, effective or physiological dead space must be greater than or

equal to anatomical dead space (157). In the context of the equation above there must

be a lower limit on VT that will effectively provide alveolar ventilation. That lower limit

is related to the effective or physiologic dead space of the lungs according to:

Equation 2-B

VA = f x (VT – VD, physiol)

where VA = alveolar ventilation and VD, physiol = physiological dead space.

As VT approaches VD, physiol, direct ventilation of the alveoli approaches zero at

conventional breathing frequencies. However, when an animal pants, physiological

dead space becomes smaller than anatomic dead space (168). This was demonstrated

in 1915 by Henderson et al in an experiment demonstrating the jet stream of smoke

created during fast and shallow breathing through a tube. Thus, the extent to which a

smaller tidal volume can ventilate alveoli is balanced by an increased in breathing

frequency.

2.1.2 Mechanical Properties of the Lung and High-frequency ventilation

The interaction of resistance, compliance and inertance in the frequency range of high-

frequency ventilators will govern gas exchange. Resistance refers to the opposition to

flow and is determined by the dimensions of the airway, the viscosity of the gas and

whether flow is laminar or turbulent. Compliance is determined by assessing changes

in volume per unit of pressure and inertance is the pressure required to cause a

change in flow. The behaviour of the respiratory system during mechanical ventilation

is determined by these 3 components (169). They therefore give the respiratory

Page 69: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

57

system a measure of impedance which will vary according to respiratory frequency.

Impedance is an important determinant of the efficiency of ventilation and is a global

term that encompasses compliance, resistance and inertance. Impedance therefore

represents a mechanical barrier to flow and as impedance increases, greater changes

in pressure are required to generate an equivalent flow (and VT) (170). As the

amplitude of the airway pressure waveform increases, the risk of barotrauma

increases, but if it is too small airway closure and alveolar collapse may ensue. It is

therefore essential to understand impedance throughout the respiratory system (from

the breathing system, the endotracheal tube, the airways and lung tissue) to

determine the magnitude of the pressure required to transmit gas to the alveoli during

high-frequency ventilation safely (170).

In vitro and in vivo studies found that a resonant frequency is observed below which

elastic behaviour of the lungs is dominant (impedance decreases with increasing

frequency) and above which inertial behaviour is dominant (impedance increases with

increasing frequency) (169). The resonant frequency of the lungs will vary according to

maturity and pathology and is inversely related to the square root of the compliance

and the inertance. In the overdamped lung (e.g. preterm lung), the corner frequency

(which is inversely proportional to the resistance and the compliance) defines the

frequency above which the pressure required to ventilate those lungs is minimised

(171). Hence optimal frequency for ventilation most likely falls between the corner

frequency and the resonant frequency. A study of 6 newborn infants with RDS found

the resonant frequency to range from 13 to 23 Hz (169) when an endotracheal tube

was in position. The impedance displayed compliance-like behaviour below the

Page 70: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

58

resonant frequency and inertance-like behaviour above the resonant frequency.

Without an endotracheal tube the resonant frequency was higher (169). This study

found that endotracheal tube resistance was equivalent to ~ 50 % of the respiratory

system resistance distal to the tip of the endotracheal tube, whereas virtually all the

respiratory system compliance resided distal to the tip of the endotracheal tube (169).

If the frequency of ventilation is greater than the resonant frequency of a set of lungs,

overriding the resonant frequency requires less pressure and energy compared to a

mechanical frequency that is less than the resonant frequency. The smaller the lungs

are, the higher the resonant frequency: resonant frequency of adult lungs is ~ 4 Hz,

while that of premature infants lungs may be as high as 40 Hz (157). High-frequency

ventilators deliver breaths up to 780 times per minute so come considerably closer to

the resonant frequency of immature lungs than conventional mechanical ventilators

do. This property alone is important when taking into account the potential for side

effects associated with positive pressure ventilation.

2.1.3 Airway Pressure Waveforms during High-frequency Ventilation

In the presence of normal lung compliance, the amplitude of the airway pressure

waveform is greatly attenuated during HFV as gas passes at rapid rates through the

rigid endotracheal tube (Figure 2-B) (55). During CMV, both peak and mean airway

pressures are transmitted to the distal airways and alveoli. During high-frequency

oscillatory ventilation (HFOV) the amplitude of the pressure waveform diminishes but

the Paw is sustained, while during high-frequency jet ventilation (HFJV) both the peak

and mean airway pressure are attenuated at the distal airways and alveoli. This gives

Page 71: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

59

HFJV a distinct theoretical advantage when considering the pressure cost of

ventilation.

Figure 2-B Pressure amplitudes generated at the ventilator are attenuated during HFV as high velocity gas passes through the rigid endotracheal tube. At slow respiratory rates during conventional ventilation this does not occur (55).

The impact of lung compliance on ventilator performance has been investigated

extensively for CMV and HFOV (170, 171). In vitro studies of HFOV have demonstrated

that if compliance is reduced, oscillation of alveolar pressure is large and coupled with

a concomitant reduction in VT (170). Furthermore, the clinical significance of changes

in compliance on the inspiratory pressures required to maintain normocapnia are best

assessed as the alveolar pressure cost per unit of ventilation. In a poorly compliant

lung, which has a higher corner frequency than a healthy recruited lung, the lowest

pressure cost of ventilation is achieved at higher frequencies.

Page 72: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

60

2.1.4 Modes of High-frequency Ventilation

The important differences between HFOV and HFJV are summarised (Table 2-A). These

differences give rise to the potential for physiological advantages of one strategy over

the other: during HFJV the Paw tends to be lower because less of the respiratory cycle

is spent in inspiration; HFJV enhances mucociliary clearance by combining fast

inspirations with relatively slow, passive exhalations (tI:tE ratio may be as low as 1:12);

and the high velocity and small VT breaths do not penetrate injured areas of lung with

high resistance, allowing for maturation and/or healing.

Table 2-A Differences between HFOV and HFJV.

Device tI:tE ratio Inspiratory time

Waveform Exhalation phase

CMV needed

Endotracheal tube adaptor

HFOV 1:3 to 1:1 0.02-0.1 s Squared or

sinusoidal

Active No No

HFJV 1:12 to 1:1.8

0.02-0.034 s Peaked Passive Yes Yes

The passive exhalation phase during HFJV gives this modality a distinct advantage in

certain scenarios. Gas trapping is less likely if the absolute expiratory time is

lengthened: the longer expiration period facilitates more complete passive exhalation.

Preterm infants with increased airway resistance and long time constants, as might

occur with pulmonary interstitial emphysema, need a longer expiration period to

accommodate exhalation (compared to patients with RDS that have shorter time

constant, less compliant lungs). Otherwise they may develop lung over-inflation and

enter a vicious cycle of progressive gas trapping that can’t be broken unless the

Page 73: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

61

absolute expiratory time is shortened. Time in expiration is not the only factor that

impacts upon gas trapping. If exhalation is active, airway collapse may ensue and gas

trapping is exacerbated. Friedlich et al (2003) presented the results of a cross-over

study from HFOV to HFJV in patients with refractory hypoxaemia. Ten patients crossed

over to HFJV and the survival rate was 90 % (2). They attributed this high survival rate

to their exploitation of the low tI:tE ratio and the passive exhalation phase possible

during HFJV.

2.2 Using a High-frequency Jet Ventilator

High-frequency jet ventilators deliver small tidal volume breaths at a very rapid rate.

Breaths may be as small as 0.5-1 mL kg-1 and can be delivered at a frequency of 4-12 Hz

(240-720 breaths/min). The Life Pulse high-frequency jet ventilator (Bunnell

Incorporated, Salt Lake City, U.S.A.) is a pressure limited and time cycled ventilator

with adjustable peak inspiratory pressure (PIP) and inspiratory time (tI). The jet pulse is

delivered via a special jet tracheal tube adaptor (replacing the normal adaptor) which

has a pressure monitoring port and jet port (Figure 2-C). Inspired gases pass through

the jet port from the jet ventilator and expired gases move out passively to the

breathing system. Opposite the jet port a pressure monitoring port feeds back

information to the ventilator.

Page 74: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

62

Figure 2-C Jet Port Adaptor (Bunnell Inc., Salt Lake City, Utah, U.S.A.)

The Life Pulse high-frequency jet ventilator displays set parameters and monitored

variables. The central control panel details PIP, respiratory rate, tI and calculates the

tI:tE ratio. The monitored variables are PIP, ∆P, PEEP, servo pressure and Paw (Figure

2-D). ∆P and Paw are calculated values.

Figure 2-D The Life Pulse high-frequency jet ventilator. The central control panel displays the current (now) and to be altered (new) PIP, respiratory rate and tI along

Page 75: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

63

with the tI:tE ratio. The uppermost panel displays the monitored variables: PIP, ∆P, PEEP, servo pressure and Paw.

Humidified gas travels to the patient through a patient box. This patient box is a flow

interrupter with a pinch valve which controls the breaths delivered to the patient. The

patient box is located in close proximity to the patient to minimise dampening of the

breaths between the flow interrupter and the endotracheal tube. The specialised jet

adaptor which replaces the endotracheal tube adaptor fits a pressure monitoring line

which provides feedback to the ventilator to control the pressure of subsequent

breaths. It also measures PEEP, providing a monitor of PEEP set on the conventional

ventilator (Figure 2-E).

Figure 2-E Configuration of the jet ventilator and conventional ventilator in the preterm lamb model used in the studies presented in this thesis. Gas from the jet ventilator passes through the patient box and a pinch valve acts as a flow interrupter to create the jet breaths. Gas enters the specialised jet adaptor through the green tube and a pressure monitoring line provides feedback to the jet ventilator. Expired gases pass through the expiratory limb of the CMV circuit.

The parameters to set on the jet ventilator are PIP, respiratory rate and tI. PIP is

discussed under ‘The role of the high-frequency jet ventilator’. The respiratory rate can

Page 76: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

64

be set between 240 and 720 breath/min (4-12 Hz). Slower rates are chosen if there is

resistance to expiration (e.g. pulmonary hyperinflation, pulmonary interstitial

emphysema). There are no data regarding the optimal respiratory rate during HFJV and

it will vary according to the disease process. An initial rate of 420 breaths/min is most

often chosen (172). The default tI setting is 0.02 s and works best in most situations.

This very short tI provides very small tidal volumes and keeps alveolar pressures low.

Such a short tI prevents the PIP set on the jet ventilator from being completely

transmitted to the alveoli. If the respiratory rate is decreased, and the tI remains the

same, the time in expiration is increased. Since exhalation is passive this facilitates the

movement of gas and secretions along the airways and out of the lungs.

2.2.1 The Role of the Conventional Ventilator

The jet ventilator is set up in tandem with a conventional mechanical ventilator which

provides the bias flow and PEEP, and channels expired gases away from the patient.

The conventional ventilator may be set to continuous positive airway pressure (CPAP)

mode or a ventilation mode where occasional CMV breaths are delivered. The role of

the conventional ventilator during HFJV in providing PEEP, and therefore controlling

Paw, is a major determinant of oxygenation in patients requiring HFJV. The role of

PEEP and Paw in optimising oxygenation is well documented (173-175).

2.2.1.1 Alveolar Recruitment and Positive End-expiratory Pressure

Positive end-expiratory pressure (PEEP) is the positive airway pressure maintained at

the end of expiration. It is used during mechanical ventilation to recruit alveoli and to

prevent alveolar collapse. PEEP is provided by the conventional mechanical ventilator

Page 77: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

65

and the jet ventilator monitors PEEP to alert the clinician to a discrepancy between set

and measured values and the development of auto, or inadvertent, PEEP. Choosing the

most appropriate level of PEEP will depend on the need for alveolar recruitment, the

haemodynamic state of the patient and the pulmonary pathophysiology. Excessive

PEEP will compromise cardiac output as the positive intra-thoracic pressure at the end

of expiration will, to some degree, impact upon the low pressure part of the

circulation, the venous return and the right atrium and ventricle. If venous return is

compromised, cardiac output will fall and this may have implications for the systemic

circulation. An algorithm (Figure 2-F) details the decision making process for altering

PEEP and incorporating CMV breaths. This algorithm has been developed from

experience in a clinical setting, however there is no documented evidence to support

the size, shape, frequency and duration of CMV breaths delivered during HFJV.

Page 78: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

66

Figure 2-F Algorithm for optimising PEEP when changing from CMV to HFJV with or without CMV breaths (176)

The relationship between PEEP and pulmonary blood flow (PBF) is complex and the

clearance of lung liquid during the first few minutes of ventilation will also impact

upon the haemodynamic effects of PEEP. The massive increase in PBF after birth (8

fold) results from the rapid increase in PaO2 at this time, the release of nitric oxide

Page 79: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

67

from the pulmonary vascular bed and aeration of the lung. Crossley et al (2007) found

that increasing PEEP (to a critical point) improved oxygenation at the same time as

reducing PBF. As increased oxygenation should promote pulmonary vascular

vasodilation it may be that increasing PEEP led to a gradual decrease in the number of

atelectatic regions and therefore improved oxygenation (177). Blood flow through

those recruited regions may have been reduced due to the compression of the

capillaries. A reduction in PBF is reported with increasing levels of PEEP and it is

postulated it may result from an increase in the alveolar capillary transmural pressure

causing capillary compression (177-179). Likewise, too little PEEP may also

compromise PBF, as extra-alveolar vessels lose support. In the preterm lung, however,

increased airway pressures caused by increasing PEEP have less compressive effects on

capillaries than in the mature lung as preterm lungs are less compliant. Increased lung

compliance following antenatal steroids or surfactant administration at delivery may,

however, increase the sensitivity of pulmonary vessels to changes in airway pressure

(177).

Optimising PEEP is essential during mechanical ventilation. Not only can PEEP prevent

alveolar de-recruitment and interfere with cardiac output, it will affect the pressure

cost of ventilation. Changing PEEP settings over a range of just a few cmH2O can

reduce the required PIP by as much as 50 % (171). These authors concluded that

optimising PEEP is especially important given that ventilator parameters (frequency,

PEEP, PIP and VT) that yield adequate ventilation with safe distension of recruited

alveoli are severely limited if lungs have collapsed because of inadequate PEEP (171).

Page 80: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

68

The algorithm for finding optimal PEEP during HFJV suggests that this is most easily

achieved when HFJV and CMV breaths are combined (Figure 2-F). The PEEP

optimisation process is based upon findings from HFOV and at the present time is not

substantiated by systematic research using HFJV in a controlled environment. The aim

of the algorithm is to assess the response to removing CMV breaths by changing to

CPAP mode on the conventional ventilator. The assessment variable is SpO2 as it is a

continuous non-invasive measurement but arterial blood gas analyses should also

guide decision making. If the SpO2 is stable and in the target range without CMV

breaths then PEEP is deemed to be adequate to maintain end-expiratory lung volume.

However, if SpO2 decreases after CMV breaths are turned off then the current PEEP

level is assumed to be below the closing pressure. In this scenario, CMV breaths should

be re-introduced and PEEP should be increased to improve alveolar stabilisation.

Optimal lung volume may be defined as having achieved satisfactory SpO2 when FiO2 is

approaching 0.21. To achieve this goal in acute atelectatic lung disease, PEEP may be

substantially higher than traditionally used in conventional ventilation. PEEP should be

decreased if cardiac output is compromised or if oxygenation is adequate and SpO2

doesn’t fall with a decrease in PEEP (176).

If PEEP is too low, alveoli will collapse and atelectasis will develop. If PEEP is too high

there is a risk of alveolar overdistension, impedance of pulmonary perfusion,

cardiovascular depression, poor right heart filling and impedance of venous return

(Figure 2-G).

Page 81: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

69

Figure 2-G During mechanical ventilation PEEP must be optimised to prevent ventilator induced lung injury and haemodynamic compromise (55).

The importance of optimising PEEP and the impact it has on oxygenation was

demonstrated in a study comparing the arterial blood gas and PBF parameters of

preterm lambs delivered by caesarean section at 126 d gestation. The effect of PEEP

was compared in groups of lambs that had received antenatal steroids, exogenous

surfactant, both or neither and ventilated in volume guarantee mode with CMV. When

VT was constant and PEEP was maintained at 8 cmH2O the effect of PEEP on

oxygenation was larger than the effect of antenatal steroid treatment or exogenous

surfactant administration (177). The improvement in oxygenation was not at the

expense of increased PaCO2 or decreased arterial blood pressure. Surprisingly

antenatal steroid treatment and postnatal surfactant had little impact on the effect of

PEEP on PBF.

Page 82: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

70

During HFJV, PEEP is set on the conventional ventilator and the jet ventilator displays

the measured value. This information is particularly useful if measured PEEP is higher

than set PEEP. This discrepancy indicates inadvertent intrinsic PEEP and most often

reflects an inappropriately high HFJV rate promoting gas trapping. This information is

also useful if a patient is changed from one ventilator to another. The measured PEEP

can be used to ensure that PEEP is maintained in the changeover (180).

2.2.1.2 Oxygenation and Mean Airway Pressure

Mean airway pressure is a measured value that is displayed on the jet ventilator. It is

determined by the relationship between frequency, tI, PIP and PEEP:

Equation 2-C

time cycle

time) exp x PEEP(time) insp x PIP (HFJVaw

P

where Paw = mean airway pressure, HFJV = high-frequency jet ventilation, PIP = peak

inspiratory pressure, PEEP = positive end-expiratory pressure.

Mean airway pressure is considered the primary determinant of oxygenation and is in

the most part manipulated by changing PEEP (174). During HFJV, Paw is closer to PEEP

than PIP as the tI:tE ratio range can be changed (by altering respiratory frequency) from

1:12 up to 1:1.8. Mean airway pressure is attenuated significantly during HFJV so the

pressure in the alveoli is considerably lower than at the endotracheal tube connector

(157). If Paw is too high, airways and alveoli may over distend and rupture. Conversely,

if Paw is too low airways and alveoli may collapse.

Page 83: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

71

In the clinical setting, the oxygenation index is calculated to determine the impact of

Paw on oxygenation. The oxygenation index describes the relationship between FiO2,

Paw and PaO2 and a lower value implies better arterial oxygenation (175):

Equation 2-D

OI = 2

2

aO

100 x aw xFiO

P

P

where OI = oxygenation index, FiO2 = fractional inspired oxygen concentration, Paw =

mean airway pressure, PaO2 = partial pressure of oxygen in arterial blood.

Calculation of the OI is a useful bedside tool for comparison of oxygenation between

different ventilation strategies that use different mean airway pressures. It is also used

for prognostication (181).

2.2.2 The Role of the High-frequency Jet Ventilator

The parameters that can be set on the Life Pulse high-frequency jet ventilator are PIP,

respiratory rate and tI. Given that carbon dioxide elimination is proportional to

respiratory rate and VT2 (Equation 2-A) and that VT is determined by lung compliance

and ∆P (PIP-PEEP) it is the high-frequency jet ventilator that provides the most control

over PaCO2 (compared to the conventional ventilator).

2.2.2.1 Carbon dioxide Elimination, HFJV Peak Inspiratory Pressure and ∆P

The PIP during HFJV is altered to achieve a target range for PaCO2 according to serial

arterial blood gas analysis. Increasing PIP will increase ∆P at the same PEEP, and

therefore decrease PaCO2. Conversely, decreasing PIP will decrease ∆P at the same

PEEP and increase PaCO2. Non-invasive methods for assessing CO2 elimination include

Page 84: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

72

capnography and transcutaneous monitoring but neither technique has a fast enough

response time for the frequency of breaths during HFJV. Transcutaneous monitoring is,

however, more commonly used as a trending tool.

While alterations in PIP will primarily affect PaCO2 they may also affect oxygenation if

Paw changes in parallel with PIP, as is the case if PEEP remains the same. At higher

respiratory frequencies during HFJV, PIP has a greater impact on Paw. Thus to maintain

Paw, and oxygenation, but alter PaCO2, PEEP must be changed at the same time as PIP.

The change in PEEP will be in the opposite direction to the change in PIP to maintain

Paw.

When compared to HFOV in an animal model, the PIP required to achieve comparable

pH and PaCO2 was significantly lower during HFJV (123). This difference is probably

greater than the actual values suggest as the jet ventilator measures PIP at the

proximal airway and this pressure will be significantly attenuated at the level of the

alveolus (55). If lung compliance is poor however, pressure attenuation is less marked

(182). High-frequency oscillatory ventilators do not display PIP or PEEP; rather

management of PaCO2 is by altering ∆P (amplitude). Despite the nomenclature, ∆P will

determine PIP, which will be higher during HFOV.

The difference between PIP (set and measured on the jet ventilator) and PEEP

(determined by the conventional ventilator settings) is equivalent to the amplitude of

the airway pressure waveform. ∆P is therefore a calculated value displayed on the

ventilator and will change as PIP and PEEP are altered. This will determine the VT of

each breath and control PaCO2. During HFJV the VT is as low as 0.1-1.0 mL kg-1 but will

change according to lung and chest wall compliance (183). Regardless of compliance

Page 85: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

73

the VT during HFJV remains considerably smaller than anatomical and equipment dead

space. The high velocity, central inspiratory flow spike generated during HFJV will

penetrate the dead space and ventilate alveoli (183). Concurrent measurement of VT

will provide information on compliance. For a given ∆P increasing VT indicates relatively

high compliance and decreasing VT indicates relatively poor compliance.

2.2.3 Monitoring during High-frequency Jet Ventilation

The Life Pulse high-frequency jet ventilator monitors airway pressures to provide

continuous feedback information to drive PIP. It also measures servo pressure and

PEEP. The former is the pressure generated within the ventilator that is required to

meet the set PIP and the latter monitors PEEP set on the conventional ventilator.

2.2.3.1 Servo Pressure

The concept of servo pressure is important during HFJV. It refers to the automatically

generated driving pressure that the ventilator itself creates to deliver a breath that

meets the set PIP. Servo pressure will change as lung volume and compliance change

and a decrease in servo pressure may occur as a result of worsening compliance,

endotracheal tube obstruction, the need for airway suctioning, tension pneumothorax,

right maintstem bronchial intubation or a deliberate decrease in ∆P. Servo pressure

will increase with any increase in ∆P, or as compliance improves, the circuit

disconnects or there is an airleak that does not put the lung under tension (184).

Monitoring servo pressure will provide information on lung compliance and contribute

to an understanding of the pathophysiology of lung disease and the progression of this

disease during mechanical ventilation. Servo pressure is measured in pounds per

Page 86: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

74

square inch (psi) by the Life Pulse high-frequency jet ventilator and will change from

breath to breath giving an early indication of changes within the lungs.

2.2.3.2 Positive End-Expiratory Pressure

The difference between PEEP set on the conventional ventilator and PEEP measured by

the jet ventilator should be negligible. If measured PEEP is higher than set PEEP it is an

indication of auto PEEP. This term refers to the development of end-expiratory

pressure within the patient, most likely due to gas trapping, creating resistance to

expiration. In this instance the VT can’t escape the lungs, servo pressure decreases and

PaCO2 increases. Decreasing the respiratory rate will help minimise the effects of this

inadvertent PEEP. Remaining at a lower respiratory rate is indicated until the set and

monitored PEEP correlate again. If CMV breaths are being delivered at this time,

decrease the frequency of these first, then the frequency of jet breaths.

2.3 High-Frequency Jet Ventilation in the Clinical Environment

Homogeneous restrictive lung disease caused by uniform restriction from extra

pulmonary pathology is difficult to manage with CMV. As a result HFV strategies have

been employed but there are no randomised controlled trials to support the use of

one strategy over another (157). While there are various reports of the use of HFJV in

infants, children and adults, the decision making process during patient management

with HFJV is not evidence based.

High-frequency jet ventilation is theoretically superior for the management of patients

with gas-trapping as the passive exhalation phase and relatively short tI:tE ratio

Page 87: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

75

facilitates the passage of gas along the periphery of the airways for exhalation. Early

studies report more rapid and more frequent resolution of pulmonary interstitial

emphysema (PIE) with no difference in the incidence of adverse side effects (157). A

rabbit study found that gas trapping was significantly greater during HFJV when

compared to HFOV and attributed the difference to the passive exhalation phase and

relatively short tI:tE ratio (185). This finding contradicts the clinical experience and

highlights the need to compare these ventilation strategies in a controlled setting.

In the 1980s, HFJV was employed in situations where other ventilation modalities had

failed. Early studies document the safety and effectiveness of HFJV in rescue situations

(100, 142, 186, 187). The outcomes of these studies reflected the severity of the

condition of the patients at the time of changeover to HFJV. More recently, however,

attention is shifting to the earlier use of HFJV in infants with RDS that is not yet

complicated by airleak (138).

To date there are 4 randomized controlled trials of HFJV (100, 138, 139, 188). Differing

entry criteria, treatment strategies and the definition of primary outcomes have

complicated interpretation of the results of these trials. The main features of each trial

are summarised in Table 2-B and are evaluated below with respect to their potential

benefits and adverse consequences as both early and rescue therapies in preterm

babies.

2.3.1 High-frequency Jet Ventilation as a Rescue Therapy

A Cochrane review published in 2006 eliminated all but one publication from their

examination of the use of HFJV as a rescue ventilator strategy (141). The study

Page 88: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

76

reviewed infants who had developed PIE within the first 7 days of life while receiving

CMV (100). Cross-over to HFJV occurred if the patient deteriorated. The results

demonstrated no statistically significant difference in the overall mortality between

the HFJV and CMV groups, no difference in the incidence of BPD in survivors, of new

air leaks after change-over, of total intraventricular haemorrhage, of necrotising

tracheobronchitis at autopsy or of airway obstruction (100). This study only included

144 infants and surfactant administration was not standard practice. Furthermore, the

long term neurological outcomes were not examined. These limitations made it

difficult to conclude that HFJV was a useful rescue therapy in preterm infants.

2.3.2 HFJV used Early in the Management of Respiratory Distress Syndrome

Despite the limited data generated from randomised controlled trials examining the

use of HFJV as a rescue therapy, neonatologists considered HFJV a worthy alternative

therapy when others had failed (100, 142, 186, 187). This acknowledgement led to

investigation of HFJV early in the time-course of patient management (138, 139, 188).

There are only 3 small randomised controlled trials of early HFJV. Carlo et al (1990)

studied 45 infants and found no difference in the incidence of adverse outcomes when

HFJV was compared to CMV in preterm infants. This study used a non-commercially

available high-frequency jet ventilator and none of the infants received surfactant.

Wiswell et al (1996) concluded that the incidence of adverse neurological outcomes

was higher in infants managed with HFJV compared to those managed with CMV (139).

A major factor in this study was the incidence of hypocapnia in the HFJV group of

infants. Despite comparable arterial blood gas values prior to randomisation these

infants had a significantly lower PaCO2 during the study. This complicates

Page 89: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

77

interpretation of the negative finding for HFJV in this study and is characteristic of the

era of hyperventilation with HFJV. The use of higher PEEP has since decreased the

incidence of hypocapnia during HFJV as higher PEEP allows for a smaller ∆P (at the

same PIP). Lastly, Keszler et al (1997) compared HFJV with CMV in preterm infants.

Despite guidelines for both protocols, during analysis they subdivided the HFJV group

into a low pressure (lung volume) strategy and an optimal volume strategy as some

centres violated the trial protocol. Concern stemming from Wiswell’s earlier study

inadvertently created a unique opportunity to compare 2 different HFJV strategies.

The optimal volume strategy was designed to provide alveolar recruitment, optimise

lung volume and improve V/Q matching, while minimising FiO2 and ∆P. This strategy

also included the delivery of 2 to 5 CMV breaths/min and maintenance of adequate

Paw with relatively high PEEP. They showed that the optimal volume strategy

improved oxygenation, decreased exposure to hypocapnia and reduced the incidence

of high grade IVH and/or PVL (138). This study is the only one in which surfactant was

administered to each infant before entry. They concluded that HFJV reduced the

incidence of BPD at 36 w and the need for home oxygen in preterm infants with

uncomplicated RDS. Further, they surmised that there was no increase in adverse

outcomes compared to CMV. While the results of this study created promise for HFJV

as an early management tool for preterm babies, larger studies have not been

performed.

Page 90: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

Table 2-B Summary of randomised controlled trials of high-frequency jet ventilation in preterm babies.

Study n Description Eligibility Surfactant Antenatal Steroids

Ventilators Outcome Measures

Carlo et al 1990

45 Single centre, crossover if failing the assigned therapy, mean randomisation age 14 h (CMV) vs. 15.5 h (HFJV)

Preterm, < 24 h of age, 1000-2000 g, RDS

0 % NR Locally developed, non commercially available jet ventilator with a time-cycled, pressure-limited infant ventilator (Bear Cub) for CMV

Mortality at 28 d, CLD at 28 d, ALS, progression of IVH, success after crossover, days on mechanical ventilation, days on supplemental oxygen, mechanical ventilation at 28 d

Keszler et al 1991

144 (CMV n=70, HFJV n-74)

Multicentre (15), crossover if failing the assigned therapy, mean randomisation age 29.3 w post conceptional age

Preterm, < 7 d of age, < 750 g at birth, PIE

0 % NR Life Pulse (Bunnell) with standard time-cycled, pressure-limited infant ventilators for CMV

Mortality at 28-30 d, success in the original assignment, CLD at 28-30 d, IVH, new airleak, necrotising tracheobronchitis, airway obstruction, CLD in survivors

Wiswell et al 1996

73 (CMV n=36, HFJV n=37)

Single centre, crossover if failing the assigned therapy, mean randomisation age 7.1 h (CMV) vs. 7.3 h (HFJV)

Preterm (< 33 w), 500-2000 g at birth, < 24 h of age at randomisation, chest roentgenographic findings consistent with RDS, requirement for ventilator support with FiO2 > 0.3 and PIP > 16 cmH2O

CMV 97 % HFJV 92 %

CMV 19 % HFJV 22 %

Life Pulse (Bunnell) with a time-cycled, pressure-limited infant ventilator (Bear Cub) for CMV

IVH, periventricular echodensities, cystic PVL, supplemental oxygen at 28 d and 36 w, mortality at 28 d and 36 w, days on mechanical ventilation, days in hospital

Keszler 130 Multicentre (8), Preterm (<36 w), 700- 100 % NR Life Pulse BPD at 28 d and 36 w post-

Page 91: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

CMV = conventional mechanical ventilation, HFJV = high-frequency jet ventilation, RDS = respiratory distress syndrome, NR = not recorded, CLD = chronic lung disease, ALS

= airleaks, IVH = intraventricular haemorrhage, PIE = pulmonary interstitial emphysema, BPD = bronchopulmonary dysplasia, PVL = periventricular leukomalacia, PDA =

patent ductus arteriosus, NEC = necrotising enterocolitis, ROP = retinopathy of prematurity.

et al 1997

(CMV n=65, HFJV n=65)

crossover if failing the assigned therapy, mean randomisation age 8.3 h (CMV) vs. 8.1 h (HFJV) HFJV groups subdivided (following analysis) to HF-OPT (optimal volume strategy) and HF-LO (low pressure strategy)

1500 g, requirement for mechanical ventilation with FiO2 > 0.3 at 2-12 h after surfactant administration, received surfactant by 8 h of age, < 20 h of age, and mechanically ventilated for < 12 h

(before entry to study)

(Bunnell) with standard time-cycled, pressure-limited infant ventilators for CMV

conceptional age, survival, gas exchange, airway pressures, airleak, IVH, PVL, pulmonary haemorrhage, PDA, NEC, ROP

Page 92: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

78

2.3.3 Clinical Strategies

The ventilation strategy employed by the clinician has important physiological

implications for infants treated with HFJV. Optimising lung volume has been

recognised as an important goal during HFJV (138) but as this requires the use of a

relatively high PEEP it may cause a decrease in cardiac output. This decrease in cardiac

output may be less profound in a preterm infant’s non-compliant lung but is

nevertheless a potential adverse side effect. The initial settings chosen for HFJV are

PIP, respiratory frequency, tI, PEEP (on the conventional ventilator). The latter

parameters will determine the tI:tE ratio. Furthermore, a decision must also be made

about whether or not CMV breaths should be delivered.

2.3.3.1 PIP

The optimal PIP during HFJV is determined by PaCO2. The initial setting however has

been made in accordance with the CMV PIP prior to cross-over. Keszler et al (1997)

started the HFJV PIP at the same level as CMV PIP (138) and found that it needed to be

decreased rapidly thereafter to avoid hypocapnia. This comparison to CMV PIP may be

valid, but it is likely that a higher PIP can be used during HFJV for less haemodynamic

expense given that the HFJV airway pressure waveform is attenuated (55). While

changes during patient management are more intuitive (based upon PaCO2) the

starting point is arguably more difficult to determine and there is little evidence in the

literature to support a particular decision making process.

Page 93: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

79

2.3.3.2 tI:tE ratio

The respiratory frequency and tI determine the tI:tE ratio during HFJV. As the

exhalation phase is passive during HFJV, the potential for gas trapping is decreased at

lower respiratory frequencies. The initial respiratory frequency and tI is rarely

documented in the literature. Wiswell et al (1996) commenced at 420 breaths/min and

0.02 s respectively, giving an tI:tE ratio of 1 : 6.1. Changes to these settings are made if

there is evidence of gas-trapping, in which case respiratory frequency is decreased,

increasing the tI:tE ratio (up to a maximum of 1:12). The advantages of the passive

exhalation phase are greater when respiratory frequency is decreased.

2.3.3.3 PEEP

The initial PEEP has been set at 6-8 cmH2O (138) and 4-5 cmH2O (139) but the key to

maintaining oxygenation is maintaining Paw. PEEP is therefore altered to optimise

oxygenation but the maximum PEEP tolerated has not been investigated. Paranoia

about the expense of high PEEP during CMV has been transferred to HFJV. The use of

low PEEP during HFJV necessitated delivery of CMV breaths and high jet PIP to achieve

adequate Paw, alveolar recruitment and satisfactory oxygenation. A direct

consequence of this approach was the generation of large ∆P, which promoted

hypocapnia. As the attenuation of the airway pressure waveform during HFJV is better

understood, higher PEEPs are being used, but once again, there is little evidence in the

literature to support or refute a suitable PEEP range during HFJV.

Transitioning from HFOV to HFJV may be indicated in some patients, especially in the

instance of airleak or PIE. To maintain open alveoli when changing from one modality

Page 94: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

80

to the other, maintenance of Paw is essential. Bass et al (2007) investigated the

accuracy of the Life Pulse high-frequency jet ventilator for measuring Paw during HFOV

and then determined a calculation for the PEEP setting required to maintain Paw (180).

In their ex vivo study they found the Life Pulse to be an accurate monitor of airway

pressure during HFOV and predicted PEEP was related to actual PEEP by Equation 2-E:

Equation 2-E

Actual PEEP = (Predicted PEEP x 1.12) – 2.38

The greatest difference was 2 cmH2O (180). This work makes the transition from HFOV

to HFJV less likely to derecruit alveoli, but the same comparison does not exist for

CMV.

2.3.3.4 CMV Breaths during HFJV

The delivery of CMV breaths during HFJV is used to recruit alveoli but the optimal

frequency and characteristics of these breaths is not known. The literature reports

CMV breath rates delivered 2-5 times/min with an tI of 0.5-0.8 s (138) or 5-10

times/min (139). The impact of CMV breath PIP, tI and frequency on oxygenation, CO2

removal, VILI and cardiac output is unknown.

2.4 Summary

The development of HFJV as a clinical tool has been somewhat haphazard. This has led

to a period of HFJV characterised by hypocapnia (most likely due to PEEP paranoia) and

uncertainty regarding the incidence of adverse outcomes (especially neurological). The

recognition of its usefulness and the importance of an open lung ventilation strategy

Page 95: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

81

have certainly contributed to more recent success with HFJV and it is widely used in

NICUs in the U.S.A. The full potential of HFJV is yet to be realised and with a better

understanding of the impact of different pressures and HFJV and CMV combinations

the management of preterm infants will improve.

The mechanisms of gas transport during HFJV are unique and to exploit this

therapeutic tool to its full potential a thorough understanding of these mechanisms

and the consequences of particular strategies in different clinical scenarios is

necessary. Despite extensive use, and in spite of limited randomised controlled trials,

the intricacies of gas exchange, airway pressure changes along the bronchial tree are

documented, but their impact on lung tissue and the cardiovascular system are for the

most part unknown. This thesis explores HFJV in an experimental setting with

emphasis on alveolar recruitment manoeuvres and their impact on blood flow and

lung tissue.

Page 96: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

82

Page 97: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

83

3 General Methodology

This chapter provides a detailed description of the materials and methodology relevant

to the studies described in this thesis. Information specific to a particular protocol is

presented within the relevant chapter. All animal procedures were approved by the

University of Western Australia animal ethics committee, according to the guidelines

of the National Health and Medical Research Council of Australia code of practice for

the care and use of animals for scientific purposes.

3.1 Animal Breeding and Welfare

Merino ewes between 5 and 6 years of age were mated over a 24 hour period. Oestrus

and ovulation was synchronised by the insertion of intra-vaginal sponges for the 14

days prior to mating. Pregnancy was confirmed 55-85 days later by transabdominal

ultrasound examination.

Date mated pregnant ewes were transported from the farm of origin in Darkan,

Western Australia at no later than 100 d gestation to either the Large Animal Facility at

the University of Western Australia or the Shenton Park Biomedical Research Facility.

During the week prior to transport, ewes were inspected by a veterinary surgeon to

ensure there was no evidence of disease or injury and that their body condition score

was adequate (minimum 2.5/5). At the Large Animal Facility, ewes were housed in

either single raised pens adjacent to one another or a raised communal pen (4 m x 4.7

m maximum capacity 16 sheep). They were fed a ration of chaff, lupins and pellets

Page 98: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

84

with free access to water through a dripper or in a bucket. At the Shenton Park

Biomedical Research Facility, ewes were run in a paddock and supplementary feed was

supplied if necessary.

3.1.1 Nutrition

3.1.1.1 Instrumented Lambs

For studies involving surgical instrumentation of the fetus prior to delivery, food was

withheld from the ewes 24 hours prior to surgery to minimise the potential for

regurgitation and aspiration of rumen contents, to decrease the incidence of bloat and

to reduce compression of the caudal vena cava when positioned in dorsal recumbency.

All ewes had free access to water up until the induction of anaesthesia.

3.1.1.2 Non-instrumented Lambs

Ewes bearing lambs that were not instrumented in utero had food withheld overnight

prior to non-recovery surgical delivery. All ewes had free access to water up until the

induction of anaesthesia.

3.1.2 General Anaesthesia and Instrumentation

3.1.2.1 Lambs Instrumented in utero

At 128-130 days of gestation, anaesthesia was induced with an intramuscular injection

of xylazine (0.2 mg kg-1; Xylazil 20 mg mL-1, Troy Laboratories, Australia) and ketamine

(15 mg kg-1; Ketamil 100 mg mL-1, Troy Laboratories, Australia). A cuffed oral

endotracheal tube (7.5 mm internal diameter, Portex Ltd, England) was positioned and

secured to facilitate maintenance of anaesthesia with isoflurane in 100 % oxygen

Page 99: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

85

delivered through a circle breathing system. Throughout surgery the ewe was

ventilated with a volume cycled bag-in-the-bottle mechanical ventilator to maintain

normocapnia (Ohio 7000, Ohio Medical Products, Division of Airco Inc. Madison,

Wisconsin). A side stream capnograph enabled breath to breath non-invasive

assessment of end expiratory CO2 concentration.

Studies involving pulmonary blood flow and pulmonary arterial blood pressure

measurements required instrumentation of the fetus prior to caesarean delivery. The

anaesthetised ewe was positioned in dorsal recumbency and the abdomen was clipped

and prepared for surgery. The uterus was exposed through a ventral midline incision

and the fetal head was located and exposed via hysterotomy at a poorly vascularised

site of the uterine wall. Two incisions were made for twin pregnancies.

The fetus was partially exteriorised to facilitate access to the lateral thorax. An incision

was made at the fourth intercostal space on the left side. Exposure of the heart was

achieved by blunt dissection through the intercostal muscles and pleura and incision of

the pericardium. The left pulmonary artery was isolated by careful blunt dissection and

an ultrasonic flow probe (4R, Transonic Systems, Ithaca, NY) was positioned around it,

upstream of the ductus arteriosus (Figure 3-A). A tapered polyvinyl intravenous

catheter was inserted through the main trunk of the pulmonary artery by direct

puncture and secured so the tip was located in the left main pulmonary artery. A

suture in the wall of the artery secured the catheter in place. The thoracotomy incision

was closed using silk suture material in a simple continuous pattern.

Page 100: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

86

Figure 3-A Instrumentation of the fetus: Pulmonary artery flow probe and pulmonary artery catheter in situ

3.1.2.2 Non-instrumented Lambs

An intravenous injection of medetomidine (0.02 mg kg-1; Domitor 1 mg mL-1, Pfizer

Animal Health, U.S.A.) and ketamine (10 mg kg-1; Ketamil 100 mg mL-1, Troy

Laboratories, Australia) was administered to induce anaesthesia in pregnant ewes at

128-130 days of gestation. A subarachnoid (spinal) injection of lidocaine (3 mL;

Lignocaine 20 mg mL-1, Troy Laboratories, Australia) was administered with access

through the intervertebral space between the 4th and 5th or 5th and 6th lumbar

vertebrae. A midline laparotomy incision was made, the position of the lamb was

determined by palpation, and the uterus was incised to facilitate exteriorisation of the

entire fetus.

Page 101: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

87

3.1.3 Caesarean Delivery

Immediately prior to delivery, a cuffed oral endotracheal tube (4.5 mm internal

diameter, Portex Ltd, England) was positioned under direct vision and secured with an

umbilical tape tie around the back of the lamb’s ears. Lung fluid was suctioned with

gentle negative pressure and 100 mg kg-1 surfactant was administered [either

beractant; (Survanta 25 mg of phospholipids mL-1, Abbott Laboratories, U.S.A.) or

poractant; (Curosurf 80 mg of phospholipids mL-1, Chiesi Pharmaceuticals Ltd, Parma,

Italy)]. The umbilical vessels were clamped and the lamb was delivered, weighed and

commenced immediately on the assigned ventilation protocol. A cord blood sample

was collected from the umbilical artery as the lamb was delivered and analysed

immediately for baseline blood gas status.

After commencement of ventilation, catheters were inserted into an umbilical artery

and an umbilical vein. The arterial catheter was advanced to approximately 15 cm and

the venous catheter to 9 cm. Serial arterial blood gas samples were collected from the

umbilical artery throughout the 2 or 3 hour ventilation period. Anaesthetic and

analgesic drugs were administered through the umbilical venous catheter to ensure

the lamb was unconscious and nonresponsive to the procedures. Propofol (Repose; 10

% Norbrook Laboratories Ltd., Victoria, Australia) and remifentanil (Ultiva; 1 mg vial

requiring reconstitution, Abbott Laboratories, U.S.A.) were infused at 0.1 mg kg-1min-1

and 0.05 µg kg-1min-1 respectively, in the first instance, and the rate adjusted according

to clinical effect.

The ewe was euthanased immediately after delivery of the lamb(s) by an intravenous

injection of pentobaritone (100 mg kg-1) (Valabarb 325 mg mL-1 Jurox, Australia) into

Page 102: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

88

the uterine vein or superficial abdominal vein. Death was confirmed by absence of a

heart beat during thoracic auscultation.

3.2 Ventilator Set-up

The high-frequency jet ventilator (Life Pulse High Frequency Ventilator, Bunnell Inc.,

Salt Lake City, U.S.A.) was used in tandem with a pressure limited, time cycled infant

ventilator with a humidifier (MR850 Humidifier, Fisher and Paykel Healthcare,

Auckland, N.Z.). Studies performed in 2007 used a Bourns ventilator (Bourns Life

Systems BP 200 Infant Pressure Ventilator, California, U.S.A.) for CMV. In subsequent

years CMV was delivered via a Drager Babylog (Babylog 8000+, Drägerwerk, Lubeck,

Germany). A LifePort™ Adaptor (Bunnel Inc, Utah, USA) replaced the usual tracheal

tube adaptor (Figure 3-B) to facilitate injection of inspired gas in high velocity spurts

and monitoring of pressure for estimation of the PIP and mean airway pressure (Paw)

at the end of the tracheal tube.

Page 103: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

89

Figure 3-B Ventilator Set Up: Life Pulse High-frequency Jet Ventilator with Conventional Mechanical Ventilator. The High-frequency Jet Ventilator (HFJV) is used in tandem with a Conventional Mechanical Ventilator (CMV). Humidified inspiratory gases pass from the HFJV to the Patient box where a pinch valve interrupts the inspiratory gas to create the jet breaths. This is connected to the LifePort adaptor which in turn connects to a standard tracheal tube. At the LifePort Adaptor, the CMV circuit connects and humidified inspiratory gases pass along the inspiratory limb and expired gases pass along the expiratory limb.

3.3 Data Collection

Continuous information regarding the ventilator frequency, PIP, amplitude of the

pressure waveform (ΔP), positive end expiratory pressure (PEEP), servo pressure, Paw,

rectal temperature, pulse rate, oxyhaemoglobin saturation and fractional inspired

oxygen concentration (FiO2) was available. If the lamb was instrumented, pulmonary

blood flow, pulmonary arterial blood pressure and systemic arterial blood pressure

Page 104: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

90

were also monitored continuously. Arterial blood samples were collected and data was

recorded at predetermined intervals. Any unexpected or unusual event was noted.

Arterial blood gas samples were collected as planned and analysed immediately to

provide information for decision making. HFJV PIP was adjusted to achieve permissive

hypercapnia (PaCO2 45-55 mmHg): HFJV PIP was increased (to a maximum of 40

cmH2O) if PaCO2 was above and decreased if PaCO2 was below this range. The initial

fractional inspired oxygen concentration (FiO2) was always 0.4 and adjusted according

to the oxyhaemoglobin saturation (SpO2). FiO2 was increased in increments of 0.1-0.2

(to a maximum of 1.0) if SpO2 dropped below 89 %.

3.3.1 Pulmonary Arterial Blood Pressure and Blood Flow Measurements

Left pulmonary arterial blood pressure was measured and recorded in real time using a

digital data acquisition system (Powerlab 8SP, AD Instruments, N.S.W., Australia). The

catheter was connected to a pressure transducer (Maxxim Medical, Tx, U.S.A.) and the

signal was amplified before it was recorded. The sampling frequency was 1 KHz. Mean

pressure values were calculated from the relevant pressure signals.

Left pulmonary arterial blood flow was also recorded in real time using a volume flow

meter (Transonic Systems T108, Neomedix Pty. Ltd., N.S.W., Australia). The transonic

flowmeter incorporates wide beam illumination whereby two transducers pass

ultrasonic signals back and forth, alternately intersecting the flowing blood in

upstream and downstream directions. The flowmeter derives an accurate measure of

the ‘transit time’ it takes for a sound wave to travel from one transducer to the other.

The difference between the upstream and downstream integrated transit times is a

Page 105: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

91

measure of blood volume flow and is independent of vessel diameter (Figure 3-C). The

transducers and flowmeter were calibrated every day before recordings began. Zero

and 100 mmHg was calibrated on the transducers and 0 and 400 mL min-1 on the

flowmeter.

Figure 3-C Widebeam Illumination: Schematic view of the perivascular Transonic ultrasonic volume flow-sensor. Using wide beam illumination, two transducers pass ultrasonic signals back and forth, alternately intersecting the flowing liquid in upstream and downstream directions. The flowmeter derives an accurate measure of the ‘transit time’ it takes for the wave of ultrasound to travel from one transducer to the other. The difference between the upstream and downstream integrated transit times is a measure of volume flow rather than velocity (189)

Pulmonary waveform data were recorded continuously throughout the ventilation

period (190). Measurements of mean PBF and pulse-by-pulse minimum values at the

end of diastole and systole were computed from the PBF waveform over 5 consecutive

waveforms at each time point. Mean systolic and diastolic PBF was also calculated at

each time point by including 5 consecutive waveforms. Pulsatility Index, a measure of

downstream resistance to blood flow, was calculated:

Equation 3-A

)cycles econsecutiv 5 over flow systolic peak mean

diastole after flow minimumflow systolic Peak(yIndexPulsatilit

Page 106: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

92

All data were analysed using a computer software package (Chart v4.2 Powerlab,

ADInstruments, N.S.W., Australia).

3.4 Euthanasia and Post Mortem

The ewes were euthanased immediately following delivery. Lambs were euthanased at

delivery (unventilated controls) or the end of the ventilation protocol. Pentobarbitone

(100 mg kg-1; Valabarb 325 mg mL-1, Jurox, Australia) was administered by intravenous

injection into either the uterine vein (ewe) or umbilical vein (lamb) and death was

confirmed when thoracic auscultation of the heart was negative. Prior to euthanasia

the lungs were ventilated with 100% oxygen for 3 minutes, to promote alveolar

collapse. A third of the dose of pentobarbitone was delivered, the chest cavity was

evacuated, the tracheal tube clamped, and the remainder of the dose of

pentobarbitone delivered to euthanase the lamb.

The thoracic cavity of each lamb was opened. The trachea was isolated and a short

tracheal tube was inserted and secured with the tip positioned 3 cm above the carina.

The gas volume of the lung was measured as the volume used to inflate the lung to 40

cmH20 pressure and maintain it at that pressure for 30 s. The lung was then deflated

sequentially, and the residual volume recorded at 40, 20, 15, 10, 5 and 0 cmH2O

pressure to yield a deflation pressure-volume curve.

Bronchoalveolar lavage (BAL) was performed on the left lung three times with saline

and BAL fluid was snap frozen in liquid nitrogen. Cytospin samples were collected and

prepared immediately for cytology and protein analysis by the Lowry method (191).

Page 107: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

93

The right upper lung lobe was fixed to 30 cmH2O in formalin for 24 hours prior to

preparation of tissue for immunohistochemistry. The tissue was washed in 0.1 molar

phosphate buffered saline (3 x 10 minutes), 30% ethanol (1 x 10 minutes), 50% ethanol

(1 x 10 minutes) and 70% ethanol (1 x 10 minutes). Lung sections were processed in

alcohol and xylene overnight then embedded in paraffin wax for cutting 5 µm slices for

histopathology.

Samples of the right lower lobe were collected and snap frozen in liquid nitrogen, then

stored at -80°C for later quantification of mRNA using Real-Time Polymerase Chain

Reaction (RT-PCR).

3.4.1 Cell Population of Bronchoalveolar Lavage Fluid

Cytospin samples of BAL fluid were prepared immediately after collection of BAL fluid.

10 mL of fluid was centrifuged for 10 minutes at 4°C, the supernatant removed to

leave a pellet of cells. This was resuspended and diluted with trypan blue for total cell

counts. Differential cell counts were performed at a later date following Diff-Quik

staining to allow identification and differentiation of inflammatory cells, epithelial cells

and other cells (including junk cells and mucoid cells). Total cell count per milliliter of

BAL fluid enabled calculation of total cell count per lamb based upon the formula:

Equation 3-B

Cell count per kg bodyweight = AWc) x BW)(AWv x (LL

RLLL

where LL = left lung weight (g), RL = right lung weight (g), BW = body weight (g), AWv =

alveolar wash volume (mL), AWc = alveolar wash cell count mL-1 BAL fluid.

Page 108: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

94

At 40x magnification 200 cells were counted to identify inflammatory, epithelial and

other cells. Further differentiation of inflammatory cells to mononuclear cells

(including macrophages), neutrophils, lymphocytes, eosinophils and basophils was also

performed. The division of cell numbers within the 200 cell sample was used to

extrapolate to the total cell population.

3.4.2 Bronchoalveolar Lavage Protein Assay

Bronchoalveolar lavage fluid was stored at -80°C until the protein assay was

performed. A standard curve (0-1000 µg mL-1) was created for each set of samples.

Each sample was prepared according to the Lowry method and measured in triplicate

with the Versa Max Microplate Reader Spectrophotometer. Three milliliters of Reagent

1 (Na2CO3 with K+ tartrate, CuSO4 and water) was added to each sample and left to

stand for 10 minutes. Two hundred microlitres of Reagent 2 (Follin’s Reagent and

water) was then added and mixed immediately. After a 30 minute incubation period

(at room temperature) the samples were analysed with the spectrophotometer.

3.4.3 Immunohistochemistry

Immunohistochemical stains were performed for myeloperoxidase (MPO) and

inducible nitric oxide synthetase (iNOS). The dilution of the primary antibody was

1:500 for MPO and 1:250 for iNOS. Biotinylated secondary antibody was diluted 1:200

for each. Anti-rabbit secondary antibody was used for the MPO stain and anti-mouse

for the iNOS stain. A control slide provided by the manufacturer was used for the MPO

staining. Antigen retrieval was performed in NaCitrate buffer (pH 8.45) at 80°C for 30

minutes then room temperature for 60 minutes.

Page 109: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

95

Three slices of lung were collected from each lamb, processed overnight and

embedded in paraffin wax. Five micron sections were cut from each block. Each animal

therefore had 3 areas of lung tissue for examination. From each slide 10 fields were

examined giving 30 fields (40x magnification) for each lamb. Each field was

photographed using SPOT insight 4MP, 2048 x 2048 colour mosaic camera with infra

red filter, 14 bit, 20 MHz, C Mount, Firewire, SPOT software through the C Mount

Adaptor 1.2x lens for the Olympus BX Microscope. The number of MPO or iNOS

positive cells were counted in each of the 10 fields/slide and the total cellular area of

those fields was quantified using densitometry software (Image-Pro Plus v4). An

average for each slide was calculated, and then averages for each animal given 3 slides

were examined. The results are expressed as number of positive cells per cellular area

(nm2).

3.4.4 Qualitative Polymerase Chain Reaction

Total RNA was isolated from 30 mg of homogenised lung tissue using the RNeasy Mini

kit (Qiagen, U.S.A.) according to the manufacturer’s instructions. The contaminating

genomic DNA was removed by an on-column DNaseI digestion performed using the

DNaseI digestion kit (Qiagen, U.S.A.). One microgram of RNA was then reverse

transcribed into complementary DNA in a 20 µL reaction with QuantiTect® Reverse

Transcription Kit (Qiagen, U.S.A.). The primers used for amplifying IL-1β and IL-6 (192)

and IL-8, EGR1 and CTGF (111) have been described elsewhere. Amplification and

detection of specific products were conducted on the Rotor-gene 3000 real time PCR

system (Corbett Life Science) with the published cycle profiles using Rotor-gene SYBR

Green PCR Kit (Qiagen, U.S.A.) following the manufacturer’s instructions. The

Page 110: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

96

expression levels of genes of interest were normalised into 18S RNA (193) using the 2-

∆∆CT method (194) and presented as expression ratio relative to the unventilated

control group.

3.4.5 Myeloperoxidase Activity in Lung Tissue

Myeloperoxidase (MPO) activity was measured spectrophotometrically using methods

described by McCabe et al in 2001 and Faith et al in 2008 (195, 196). Minor

modifications were made: lung tissue samples were homogenised in 50 nmol L-1

potassium-phosphate buffer (pH 6.0), containing 5 mg mL-1

hexadecyltrimethylammonium bromide. The samples were subjected to 3 cycles of

freeze-thaw, followed by sonication. The suspensions were then centrifuged at 10 000

rpm for 10 minutes. Ten microlitres of supernatant was mixed with 290 µL of 50 mmol

L-1 phosphate buffer (pH 6.0), containing 0.167 mg o-dianisidine dihydrochloride and

0.0005 % hydrogen peroxide in a standard 96 well microtiter plate. The changes in

absorbance at 30 second intervals were recorded at 450 nm. The MPO activity was

then normalised to the total protein content of the tested samples. Activity was

expressed as units of MPO activity per mg of protein, where one unit of MPO was

defined as the amount needed to degrade 1 µmol of hydrogen peroxide per minute at

room temperature.

3.5 Statistical Analyses

Parametric data were analysed with a Student’s t test (for comparisons against one

other group) and one way analysis of variance (ANOVA) for multiple group

comparisons. Non-parametric data were compared with a Rank Sum test for

Page 111: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

97

comparisons between two groups or ANOVA on Ranks for multiple comparisons. A

difference was considered significant if p < 0.05. Statistical analyses were performed

using SigmaStat (Version 3.5, Systat Software Incorporated, U.S.A.) and values in the

text are expressed as the mean ± the standard deviation (SD), standard error of the

mean (SEM), if multiple values were collected for each data point or Median (25, 75

centile).

Page 112: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

98

3.6 References

1. Plavka R, Dokoupilova M, Pazderova L, Kopecka P, Sebroa V, Zapadlo M, Keszler

M 2006 High-frequency jet ventilation improves gas exchange in extremely

immature infants with evolving chronic lung disease. American Journal of

Perinatology 23:467-472

2. Friedlich P, Subramanian, N, Sebald, M, Noori, S, Seri, I. 2003 Use of high-

frequency jet ventilation in neonates with hypoxaemia refractory to high-

frequency oscillatory ventilation. Journal of Maternal-Fetal and Neonatal

Medicine 13:398-402

3. Burri PH 1984 Fetal and postnatal development of the lung. Annual Review of

Physiology 46:617-628

4. Bhutani VK 2006 Development of the respiratory system. In Donn SM, Sinha SK

(eds) Manual of neonatal respiratory care. Mosby Elsevier, Philadelphia, pp 3-

10

5. Laws P, Sullivan EA 2009 Australia's mothers and babies 2007. Perinatal

statistics series no.23, Sydney

6. Newnham J, Simmer K, Bower C, French N, Sharp M, Sokol J, Wawryk A 2007

12th report of the perinatal and infant mortality committee of western

australia. Deaths 2002-2004. In Health Do (ed)

7. Kocis KC, Meliones JN, Dekeon MK, Callow LB, Lupinetti FM, Bove EL 1992 High-

frequency jet ventilation for respiratory failure after congenital heart surgery.

Circulation 86:II127-132

8. Jobe AH, Ikegami M 2000 Lung development and function in preterm infants in

the surfactant treatment era. Annual Review of Physiology 62:825

9. Abeywardana S 2007 The report of the australian and new zealand neonatal

network, 2005. Australian and New Zealand Neonatal Network, Sydney

Page 113: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

99

10. Crowley P 1995 Antenatal corticosteroid therapy: A meta analysis of the

randomized trials, 1972-1994. American Journal of Obstetrics and Gynecology

173:322-335

11. Moss TJM 2006 Respiratory consequences of preterm birth. Clinical and

Experimental Pharmacology and Physiology 33:280-284

12. Bunt J, Carnielli V, Wattimena J, Hop W, Sauer P, Simmermann L 2000 The

effect in premature infants of prenatal corticosteroids on endogenous

surfactant syntheseis as measured with stable isotopes. American Journal of

Respiratory and Critical Care Medicine 162:844-849

13. Liggins G, Howie R 1972 A controlled trail of antepartum glucocorticoid

treatment for prevention of the respiratory distress syndrome in premature

infants. Pediatrics 50:515-525

14. Ikegami M, Polk DH, Jobe AH, Newnham J, Sly P, Kohan R, Kelly R 1996 Effect of

interval from fetal corticosteriod treatment to delivery on postnatal lung

function of preterm lambs. J Appl Physiol 80:591-597

15. Bunt JEH, Carnielli VP, Seidner SR, Ikegami M, Darcos Wattimena JL, Sauer PJJ,

Jobe AH, Zimmermann LJI 1999 Metabolism of endogenous surfactant in

premature baboons and effect of prenatal corticosteroids. Am. J. Respir. Crit.

Care Med. 160:1481-1485

16. Willet KE, Jobe A, Ikegami M, Newnham J, Sly P 2000 Pulmonary interstitial

emphysema 24 hours after antenatal betamethasone treatment in preterm

sheep. American Journal of Respiratory and Critical Care Medicine 162:1087-

1094

17. Hannaford K, Todd DA, Jeffery H, John E, Blyth K, Gilbert GL 1999 Role of

ureaplasma urealyticum in lung disease of prematurity. Arch. Dis. Child. Fetal

Neonatal Ed. 81:F162-167

Page 114: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

100

18. Watterberg KL, Demers LM, Scott SM, Murphy S 1996 Chorioamnionitis and

early lung inflammation in infants in whom bronchopulmonary dysplasia

develops. Pediatrics 97:210-215

19. Jobe AH, Newnham JP, Willet KE, Sly P, Ervin MG, Bachurski C, Possmayer F,

Hallman M, Ikegami M 2000 Effects of antenatal endotoxin and glucocorticoids

on the lungs of preterm lambs. American Journal of Obstetrics and Gynecology

182:401-408

20. Bachurski CJ, Ross GF, Ikegami M, Kramer BW, Jobe AH 2001 Intra-amniotic

endotoxin increases pulmonary surfactant proteins and induces sp-b processing

in fetal sheep. Am J Physiol Lung Cell Mol Physiol 280:L279-285

21. Kemp MW, Saito M, Newnham JP, Nitsos I, Okamura K, Kallapur SG 2010

Preterm birth, infection, and inflammation advances from the study of animal

models. Reprod Sci 17:619-628

22. Romero R, Espinoza J, Gonçalves LF, Kusanovic JP, Friel LA, Nien JK 2006

Inflammation in preterm and term labour and delivery. Seminars in Fetal and

Neonatal Medicine 11:317-326

23. Goldenberg RL, Hauth JC, Andrews WW 2000 Intrauterine infection and

preterm delivery. New England Journal of Medicine 342:1500-1507

24. Amiel-Tison C, Cabrol D, Denver R, Jarreau P-H, Papiernik E, Piazza PV 2004

Fetal adaptation to stress: Part i: Acceleration of fetal maturation and earlier

birth triggered by placental insufficiency in humans. Early Human Development

78:15-27

25. Askie LM, Henderson-Smart DJ, Jones RA 2005 Management of infants with

chronic lung disease of prematurity in australasia. Early Human Development

81:135-142

Page 115: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

101

26. Gilbert WM, Nesbitt TS, Danielsen B 2003 The cost of prematurity:

Quantification by gestational age and birth weight. Obstetrics & Gynecology

102:488-492

27. Jobe AH, Bancalari E 2001 Bronchopulmonary dysplasia. Am J Respir Crit Care

Med 163:1723-1729

28. Northway WH, Rosan RC, Porter DY 1967 Pulmonary disease following

respirator therapy of hyaline-membrane disease. Bronchopulmonary dysplasia.

N Engl J Med 276:357-368

29. Northway WH, Jr., Rosan RC 1968 Radiographic features of pulmonary oxygen

toxicity in the newborn: Bronchopulmonary dysplasia. Radiology 91:49-58

30. Lemons J, Bauer, CR, Oh, W, Korones, SB, Papile, LA, Stoll, BH, Verter, J,

Temprosa, M, Wright, LL, Ehrenkranz, RA, Fanaroff, AA, Stark, A, Carlo, W,

Tyson, JE, Donovan, EF, Shankaran, S, Stevenson, DK. 2001 Very low birth

weight outcomes of the national institute of child health and human

development neonatal research network. Pediatrics 107:164

31. Philip AGS 1995 Neonatal mortality rate: Is further improvement possible? The

Journal of Pediatrics 126:427-433

32. Kennedy J 1999 Lung function outcome in children of premature birth. Journal

of Paediatrics and Child Health 35:516-521

33. St John E, Nelson K, Cliver S, Bishnoi R, RL G 2000 Cost of neonatal care

according to gestational age at birth and survival status. American Journal of

Obstetrics and Gynecology 182:170-175

34. Doyle LW, Faber B, Callanan C, Freezer N, Ford GW, Davis NM 2006

Bronchopulmonary dysplasia in very low birth weight subjects and lung

function in late adolescence. Pediatrics 118:108-113

Page 116: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

102

35. Wong PM, Lees AN, Louw J, Lee FY, French N, Gain K, Murray CP, Wilson A,

Chambers DC 2008 Emphysema in young adult survivors of moderate-to-severe

bronchopulmonary dysplasia. Eur Respir J 32:321-328

36. Halvorsen T, Skadberg BT, Eide GE, Røksund OD, Carlsen KH, Bakke P 2004

Pulmonary outcome in adolescents of extreme preterm birth: A regional cohort

study. Acta Paediatrica 93:1294-1300

37. Northway JW, Moss R, Carlisle K, Parker B, Popp R, Pitlick P, Eichler I, Lamb R,

Brown JB 1990 Late pulmonary sequelae of bronchopulmonary dysplasia. N

Engl J Med 323:1793-1799

38. Vrijlandt E, Gerritsen J, Boezen H, Grevink R, EJ D 2006 Lung function and

exercise capacity in young adults born prematurely. American Journal of

Respiratory and Critical Care Medicine 173:890

39. Schulzke SM, Pillow JJ 2010 The management of evolving bronchopulmonary

dysplasia. Paediatric Respiratory Reviews 11:143-148

40. Ho JJ, Subramaniam P, Henderson-smart DJ, Davis PG 2002 Continuous

distending pressure for respiratory distress syndrome in preterm infants.

Cochrane Database of Systematic Reviews 2:CD02271

41. Soll RF, Morley CJ 2001 Prophylactic versus selective use of surfactant in

preventing morbidity and mortality in preterm infants. Cochrane Database of

Systematic Reviews 2:CD000510

42. SUPPORTStudyGroup 2010 Early cpap versus surfactant in extremely preterm

infants. New England Journal of Medicine 362:1970-1979

43. Morley CJ, Davis PG, Doyle LW, Brion LP, Hascoet J-M, Carlin JB 2008 Nasal cpap

or intubation at birth for very preterm infants. New England Journal of

Medicine 358:700-708

44. Mead J, Collier C 1959 Relation of volume history of lungs to respiratory

mechanics in anesthetized dogs. J Appl Physiol 14:669-678

Page 117: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

103

45. Bryan A, Froese AB 1991 Reflections on the hifi trial. Pediatrics 87:565-567

46. Saugstad OD 2005 Oxygen for newborns: How much is too much? Journal of

Perinatology 25:S45-49

47. Vento M, Saugstad OD 2010 Resuscitation in the term and preterm infant.

Seminars in Fetal and Neonatal Medicine 15:216-222

48. Tin W, Milligan D, Pennefather P, Hey E 2001 Pulse oximetry, severe

retinopathy, and outcome at one year in babies of less than 28 weeks

gestation. Arch. Dis. Child. Fetal Neonatal Ed. 84:F106-110

49. SUPPORTStudyGroup 2010 Target ranges of oxygen saturation in extremely

preterm infants. New England Journal of Medicine 362:1959-1969

50. Claure N, Bancalari E 2009 Automated respiratory support in newborn infants.

Seminars in Fetal and Neonatal Medicine 14:35-41

51. Askie LM, Henderson-Smart DJ, Irwig L, Simpson JM 2003 Oxygen-saturation

targets and outcomes in extremely preterm infants. New England Journal of

Medicine 349:959-967

52. Saugstad OD 2010 Oxygen and oxidative stress in bronchopulmonary dysplasia.

J Perinat Med Aug 31 Epub ahead of print

53. Saugstad OD, Ramji S, Soll RF, Vento M 2008 Resuscitation of newborn infants

with 21% or 100% oxygen: An updated systematic review and meta-analysis.

Neonatology 94:176-182

54. Askie LM, Brocklehurst P, Darlow BA, Finer N, Schmidt B, Tarnow-Mordi W 2011

Neoprom: Neonatal oxygenation prospective meta-analysis collaboration study

protocol. BMC Pediatrics 11:1-9

55. Courtney SE, Asselin JM 2006 High-frequency jet and oscillatory ventilation for

neonates: Which strategy and when? Respir Care Clin N Am 12:453-467

Page 118: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

104

56. Shankaran S, Langer JC, Kazzi SN, Laptook AR, Walsh M, for the National

Institute of Child H, Human Development Neonatal Research N 2006

Cumulative index of exposure to hypocarbia and hyperoxia as risk factors for

periventricular leukomalacia in low birth weight infants. Pediatrics 118:1654-

1659

57. Hatzidaki E, Giahnakis E, Maraka S, Korakaki E, Manoura A, Saitakis E,

Papamastoraki I, Margari K-M, Giannakopoulou C 2009 Risk factors for

periventricular leukomalacia. Acta Obstetricia et Gynecologica Scandinavica

88:110-115

58. Kaiser JR, Gauss CH, Pont MM, Williams DK 2006 Hypercapnia during the first 3

days of life is associated with severe intraventricular hemorrhage in very low

birth weight infants. Journal of Perinatology 26:279-285

59. McKee LA, Fabres J, Howard G, Peralta-Carcelen M, Carlo WA, Ambalavanan N

2009 Paco2 and neurodevelopment in extremely low birth weight infants. The

Journal of Pediatrics 155:217-221.e211

60. Sinha SK, Donn SM 2008 Newer forms of conventional ventilation for preterm

newborns. Acta Paediatrica 97:1338-1343

61. Zimová-Herknerová M, Plavka R 2006 Expired tidal volumes measured by hot-

wire anemometer during high-frequency oscillation in preterm infants.

Pediatric Pulmonology 41:428-433

62. Hamilton PP, Onayemi A, Smyth JA, Gillan JE, Cutz E, Froese AB, Bryan AC 1983

Comparison of conventional and high-frequency ventilation: Oxygenation and

lung pathology. J Appl Physiol 55:131-138

63. McCulloch PR, Forkert P, Froese AB 1988 Lung volume maintenance prevents

lung injury during high-frequency oscillatory ventilation in surfactant-deficient

rabbits. Am Rev Resp Dis 137:1185-1192

Page 119: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

105

64. Meredith KS, deLemos RA, Coalson JJ, King RJ, Gerstmann DR, Kumar R, Kuehl

TJ, Winter DC, Taylor A, Clark RH, et a 1989 Role of lung injury in the

pathogenesis of hyaline membrane disease in premature baboons. J Appl

Physiol 66:2150-2158

65. Gertsmann DR, Minton SD 1996 The provo multicenter early high-frequency

oscillatory ventilation trial: Improved pulmonary and clinical outcome in

respiratory distress syndrome. Pediatrics 98:1044

66. Clark RH, Gerstmann DR, Null JDM, deLemos RA 1992 Prospective randomized

comparison of high-frequency oscillatory and conventional ventilation in

respiratory distress syndrome. Pediatrics 89:5

67. Courtney SE, Durand DJ, Asselin JM, Hudak ML, Aschner JL, Shoemaker CT, the

Neonatal Ventilation Study G 2002 High-frequency oscillatory ventilation versus

conventional mechanical ventilation for very-low-birth-weight infants. N Engl J

Med 347:643-652

68. Froese AB, Butler PO, Fletcher WA, Byford LJ 1987 High-frequency oscillatory

ventilation in premature infants with respiratory failure: A preliminary report.

Anesth Analg 66:814-824

69. Schmidt B, Roberts R, Davis P, Doyle LW, Barrington KJ, Ohlsson A, Solimano A,

Tin W 2007 Long-term effects of caffein therapy for apnea of prematurity. N

Engl J Med 357:1893-1902

70. Schmidt B, Anderson PJ, Doyle LW, Dewey D, Grunau RE, Asztalos EV, Davis PG,

Tin W, Moddemann D, Solimano A, Ohlsson A, Barrington KJ, Roberts RS 2012

Survival without disability to age 5 years after neonatal caffeine therapy for

apnea of prematurity. JAMA: The Journal of the American Medical Association

307:275-282

71. Tyson JE, Wright LL, Oh W, Kennedy KA, Mele L, Ehrenkranz RA, Stoll BJ,

Lemons JA, Stevenson DK, Bauer CR, Korones SB, Donovan EF, Carlo WA,

Shankaran S, Stark AR, Papile L-A, Jobe A, Stacewicz-Sapuntzakis M, Verter J,

Page 120: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

106

Fanaroff AA 1999 Vitamin a supplementation for extremely-low-birth-weight

infants. New England Journal of Medicine 340:1962-1968

72. Ambalavanan N, Tyson JE, Kennedy KA, Hansen NI, Vohr BR, Wright LL, Carlo

WA, and National Institute of Child H, Human Development Neonatal Research

N 2005 Vitamin a supplementation for extremely low birth weight infants:

Outcome at 18 to 22 months. Pediatrics 115:e249-254

73. Shenai JP, Kennedy KA, Chytil F, Stahlman MT 1987 Clinical trial of vitamin a

supplementation in infants susceptible to bronchopulmonary dysplasia. J

Pediatr 111:269-277

74. Halliday HL, Ehrenkranz RA, Doyle LW 2009 Late (>7 days) postnatal

corticosteroids for chronic lung disease in preterm infants. Cochrane Database

of Systematic Reviews 21:CD001145

75. Halliday HL, Ehrenkranz RA, Doyle LW 2009 Early (<8 days) postnatal

corticosteroids for preventing chronic lung disease in preterm infants.

Cochrane Database of Systematic Reviews 21:CD001146

76. Abman S 2007 Recent advances in the pathogenesis and treatment of peristent

pulmonary hypertension of the newborn. Neonatology 91:283-290

77. Ambalavanan N, St John E, Carlo W, Bulger A, Philips J 2002 Feasibility of nitric

oxide administration by oxygen hood in neonatal pulmonary hypertension. J

Perinatol 22:50-56

78. Martin RJ, Mhanna MJ, Haxhiu MA 2002 The role of endogenous and

exogenous nitric oxide on airway function. Seminars in Perinatology 26:432-438

79. Davidson D, Barefield ES, Kattwinkel J, Dudell G, Damask M, Straube R, Rhines J,

Chang C-T 1998 Inhaled nitric oxide for the early treatment of persistent

pulmonary hypertension of the term newborn: A randomized, double-masked,

placebo-controlled, dose-response, multicenter study. Pediatrics 101:325-334

Page 121: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

107

80. Mestan KKL, Marks JD, Hecox K, Huo D, Schreiber MD 2005

Neurodevelopmental outcomes of premature infants treated with inhaled nitric

oxide. New England Journal of Medicine 353:23-32

81. Ballard RA, Truog WE, Cnaan A, Martin RJ, Ballard PL, Merrill JD, Walsh MC,

Durand DJ, Mayock DE, Eichenwald EC, Null DR, Hudak ML, Puri AR, Golombek

SG, Courtney SE, Stewart DL, Welty SE, Phibbs RH, Hibbs AM, Luan X, Wadlinger

SR, Asselin JM, Coburn CE 2006 Inhaled nitric oxide in preterm infants

undergoing mechanical ventilation. New England Journal of Medicine 355:343-

353

82. Hibbs AM, Walsh MC, Martin RJ, Truog WE, Lorch SA, Alessandrini E, Cnaan A,

Palermo L, Wadlinger SR, Coburn CE, Ballard PL, Ballard RA 2008 One-year

respiratory outcomes of preterm infants enrolled in the nitric oxide (to prevent)

chronic lung disease trial. The Journal of Pediatrics 153:525-529.e522

83. Walsh MC, Hibbs AM, Martin CR, Cnaan A, Keller RL, Vittinghoff E, Martin RJ,

Truog WE, Ballard PL, Zadell A, Wadlinger SR, Coburn CE, Ballard RA 2010 Two-

year neurodevelopmental outcomes of ventilated preterm infants treated with

inhaled nitric oxide. The Journal of Pediatrics 156:556-561.e551

84. Bilek AM, Dee KC, Gaver DP 2003 Mechanisms of surface-tension-induced

epithelial cell damage in a model of pulmonary airway reopening. Journal of

Applied Physiology 94:770-783

85. Jobe A 2006 Why surfactant works for respiratory distress syndrome.

NeoReviews - Pharmacology Review 17:e95-e106

86. Mazela J, Merritt T, Gadzinowski J, Sinha S 2006 Evolution of pulmonary

surfactants for the treatment of neonatal respiratory distress syndrome and

paediatric lung disease. Acta Paediatrica 95:1036-1048

87. Jobe AH, Polk D, Ikegami M, Newnham J, Sly P, Kohen R, Kelly R 1993 Lung

responses to ultrasound-guided fetal treatments with corticosteroids in

preterm lambs. J Appl Physiol 75:2099-2105

Page 122: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

108

88. Willson DF, Chess PR, Notter RH 2008 Surfactant for pediatric acute lung injury.

Pediatr Clin North Am 55:545-575

89. Robertson B, Berry D, Curstedt T 1985 Leakage of protein in the immature

rabbit lung: Effect of surfactant replacement. Respiratory Physiology 61:265-

276

90. Jackson JC, MacKenzie AP, Chi EY, Standaert TA, Truog WE, Hodson WA 1990

Mechanisms for reduced total lung capacity at birth and during hyaline

membrane disease in premature newborn monkeys. American Review of

Respiratory Disease 142:413-419

91. Lachmann B 1992 Open up the lung and keep the lung open. Intensive Care

Med 18:319-321

92. Calkovska A, Sevecova-Mokra D, Javorka K, Petraskova M, Adamicova K 2005

Exogenous surfactant administration by asymmetric hfjv in experimental

respiratory distress syndrome. Croatian Medical Journal 46:209-217

93. Davis JM, Richter SE, Kendig JW, Notter RH 1992 High-frequency jet ventilation

and surfactant treatment of newborns with severe respiratory failure. Pediatric

Pulmonology 13:108-112

94. Jarreau PH, Fayon M, Baud O, Autret-Leca E, Danan M, de Verdelhan A, Castot

A 2010 The use of postnatal corticosteroid therapy in premature infants to

prevent or treat bronchopulmonary dysplasia: Current situation and

recommendations. Archives de Pédiatrie 17:1480-1487

95. Doyle LW, Davis PG, Morley CJ, McPhee A, Carlin JB, and the DSI 2006 Low-dose

dexamethasone facilitates extubation among chronically ventilator-dependent

infants: A multicenter, international, randomized, controlled trial. Pediatrics

117:75-83

96. Doyle LW, Davis PG, Morley CJ, McPhee A, Carlin JB, and the DSI 2007 Outcome

at 2 years of age of infants from the dart study: A multicenter, international,

Page 123: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

109

randomized, controlled trial of low-dose dexamethasonef. Pediatrics 119:716-

721

97. Henderson-Smart DJ, Wilkinson A, Raynes-Greenow C 2002 Mechanical

ventilation for newborn infants with respiratory failures due to pulmonary

disease. Cochrane Database of Systematic Reviews 4:(CD002770)

98. Dreyfuss D, Saumon G 1998 Ventilator-induced lung injury. Lessons from

experimental studies. Am. J. Respir. Crit. Care Med. 157:294-323

99. Jauncey-Cooke JI, Bogossian F, East CE 2010 Lung protective ventilation

strategies in paediatrics--a review. Australian Critical Care 23:81-88

100. Keszler M, Donn SM, Bucciarelli RL, Alverson DC, Hart M, Lunyong V, Modanlou

HD, Noguchi A, Pearlman SA, Puri A, Smith D, Stavis R, Watkins MN, Harris TR

1991 Multicenter controlled trial comparing high-frequency jet ventilation and

conventional mechanical ventilation in newborn infants with pulmonary

interstitial emphysema. J Pediatr 119:85-93

101. Halter J, Steinberg J, Gatto L, DiRocco J, Pavone L, Schiller H, Albert S, Lee H-M,

Carney D, Nieman G 2007 Effect of positive end-expiratory pressure and tidal

volume on lung injury induced by alveolar instability. Crit Care 11:1-13

102. Monkman S, Andersen C, Nahmias C, Ghaffer H, JM B, Roberts R, Schmidt B,

Kirpalani H 2004 Positive end-expiratory pressure above lower inflection point

minimizes influx of activated neutrophils into lung. Crit Care Med 32:2471-2475

103. Ranieri VM, Suter PM, Tortorella C, De Tullio R, Dayer JM, Brienza A, Bruno F,

Slutsky AS 1999 Effect of mechanical ventilation on inflammatory mediators in

patients with acute respiratory distress syndrome: A randomized controlled

trial. J Am Med Assoc 282:54-61

104. Faridy E 1976 Effect of distension on release of surfactant in excised dogs'

lungs. Respir Physiol 27:99-114

Page 124: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

110

105. Muscedere J, Mullen J, K G, slutsky A 1994 Tidal ventilation at low airway

pressures can augment lung injury. Am J Respir Crit Care Med 149:1327-1334

106. Hillman NH, Moss TJM, Kallapur SG, Bachurski C, Pillow JJ, Polglase GR, Nitsos I,

Kramer BW, Jobe AH 2007 Brief, large tidal volume ventilation initiates lung

injury and a systemic response in fetal sheep. Am. J. Respir. Crit. Care Med.

176:575-581

107. Hillman NH, Kallapur SG, Pillow JJ, Moss TJM, Polglase GR, Nitsos I, Jobe AH

2010 Airway injury from initiating ventilation in preterm sheep. Pediatric

Research 67:60-65

108. Wada K, Jobe AH, Ikegami M 1997 Tidal volume effects on surfactant treatment

responses with the initiation of ventilation in preterm lambs. J Appl Physiol

83:1054-1061

109. Copland IB, Kavanagh BP, Engelberts D, McKerlie C, Belik J, Post M 2003 Early

changes in lung gene expression due to high tidal volume. Am. J. Respir. Crit.

Care Med. 168:1051-1059

110. Lista G, Castoldi F, Fontana P, Reali R, Reggiani A, Bianchi S, Compagnoni G

2006 Lung inflammation in preterm infants with respiratory distress syndrome:

Effects of ventilation with different tidal volumes. Pediatric Pulmonology

41:357-363

111. Wallace MJ, Probyn M, Zahra V, Crossley K, Cole T, Davis P, Morley C, Hooper S

2009 Early biomarkers and potential mediators of ventilation-induced lung

injury in very preterm lambs. Respir Res 10:1-15

112. Kallapur SG, Jobe AH 2006 Contribution of inflammation to lung injury and

development. Arch Dis Child Fetal Neonatal Ed 91:F132-F135

113. Naik AS, Kallapur SG, Bachurski CJ, Jobe AH, Michna J, Kramer BW, Ikegami M

2001 Effects of ventilation with different positive end-expiratory pressures on

Page 125: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

111

cytokine expression in the preterm lamb lung. Am J Respir Crit Care Med

164:494-498

114. Sugiura M, Nakabayashi H, Vaclavik S, Froese AB 1990 Lung volume

maintenance during high frequency jet ventilation improves physiological and

biochemical outcome of lavaged rabbit lung. Queens University, Kingston, ON,

U.S.A.

115. Otto CW, Quan SF, Conahan TJ, Calkins JM, Waterson CK, Hameroff SR 1983

Hemodynamic effects of high-frequency jet ventilation. Anesth Analg 62:298-

304

116. Courtney S, Spohn W, Weber K, Miles D, Gotshall R, Wong R 1989

Cardiopulmonary effects of high-frequency positive pressure ventilation versus

jet ventilation in respiratory failure. Am Rev Resp Dis 139:504-512

117. Traverse J, Korvenranta H, Adams E, Goldthwait D, Carlo W 1989 Cardiovascular

effects of high-frequency oscillatory and jet ventilation. Chest 96:1400-1404

118. Kawahito S, Kitahata H, Tanaka K, Nozaki J, Oshita S 2000 Transesophageal

echocardiographic assessment of pumonary arterial and venous flow during

high-frequency jet ventilation. Journal of Clinical Anesthesia 12:308-314

119. Latini G, Del Vecchio A, De Felice C, Verrotti A, Bossone E 2008 Persistent

pulmonary hypertension of the newborn: Therapeutic approach. Mini-reviews

in Medicinal Chemistry 8:1507-1513

120. Engle WA, Yoder MC, Andreoli SP, Darragh RK, Langefeld CD, Hui SL 1997

Controlled prospective randomised comparison of high-frequency jet

ventilation and conventional ventilation in neonates with respiratory failure

and persistent pulmonary hypertension. J Perinatol 17:3-9

121. Kiefer AS, Wickremasinghe AC, Johnson JN, Hartman TK, Hintz SR, Carey WA,

Colby CE 2009 Medical management of extremely low-birth-weight infants in

Page 126: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

112

the first week of life: A survey of practices in the united states. Amer J Perinatol

26:407-418

122. Platt DR, Swanton D, Blackney D 2003 Inhaled nitric oxide (ino) delivery with

high-frequency jet ventilation. J Perinatol 23:387-391

123. Boros SJ, Mammel MC, Coleman JM, Horcher P, Gordon MJ, Bing DR 1989

Comparison of high-frequency oscillatory ventilation and high-frequency jet

ventilation in cats with normal lungs. Pediatric Pulmonology 7:35-41

124. Greenspan J, Davis D, Russo P, Antunes M, Spitzer A, Wolfson M 1994 High-

frequency jet ventilation: Intraoperative application in infants. Pediatric

Pulmonology 17:155-160

125. Davis D, Russo P, Greenspan J, Speziali G, Spitzer A 1994 High-frequency jet

versus conventional ventilation in infants undergoing blalock taussig shunts.

Annals of Thoracic Surgery 57:846-849

126. Angus D, Lidsky N, Dotterweight L, Pinsky M 1997 The influence of high-

frequency jet ventilation with varying cardiac-cycle specific synchronisation on

cardiac output in acute respiratory distress syndrome. Chest 112:1600-1006

127. Sherry K, Feneck R, Normandale J 1988 Thermodilution cardiac output

measurements during conventional and high frequency ventilation. J

Cardiothorac Anesth 2:320-325

128. Kuban KCK, Leviton A 1994 Cerebral palsy. N Engl J Med 330:188-195

129. Bhuta T, Henderson-Smart DJ 1997 Elective high-frequency oscillatory

ventilation versus conventional ventilation in preterm infants with pulmonary

dysfunction: Systematic review and meta-analyses. Pediatrics 100:e6-

130. Murase M, Ishida A 2005 Early hypocarbia of preterm infants: Its relationship to

periventricular leukomalacia and cerebral palsy, and its perinatal risk factors.

Acta Paediatrica 94:85-91

Page 127: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

113

131. Fujimoto S, Togari H, Yamaguchi N, Mizutani F, Suzuki S, Sobajima H 1994

Hypocarbia and cystic perventricular leukomalacia in premature infants. Arch.

Dis. Child. Fetal Neonatal Ed. 71:F107-110

132. Linder N, Haskin O, Levit O, Klinger G, Prince T, Naor N, Turner P, Karmazyn B,

Sirota L 2003 Risk factors for intraventricular haemorrhage in very low birth

weight premature infants: A retrospective case-control study. Pediatrics

111:590-595

133. Vohr B, Ment LR 1996 Intraventricular haemorrhage in the perterm infant. Early

Human Development 44:1-16

134. Papile LA, Burstein J, Burstein R, Koffler H 1978 Incidence and evolution of

subependymal and intraventricular haemorrhage: A study of infants with birth

weights less than 1500 gm. J Pediatr 92:529-534

135. Lim WH, Lien R, Chiang MC, Fu RH, Lin JJ, Chu SM, Hsu JF, Yang PH 2010

Hypernatraemia and grade iii/iv intraventricular hemorrhage among extremely

low birth weight infants. J Perinatol July:1-6

136. Pappas A, Shankaran S, Laptook AR, Langer JC, Bara R, Ehrenkranz RA, Goldberg

RN, Das A, Higgins RD, Tyson JE, Walsh MC 2011 Hypocarbia and adverse

outcome in neonatal hypoxic-ischemic encephalopathy. The Journal of

Pediatrics 158:752-758.e751

137. HIFI, Study, Group 1989 High-frequency oscillatory ventilation compared wtih

conventional mechanical ventatilon in the treatment of respiratory failure in

preterm infants. N Engl J Med 320:88-93

138. Keszler M, Modanlou H, Brudno D, Clark F, Cohen R, Ryan R, Kaneta M, Davis J

1997 Multicenter controlled clinical trial of high-frequency jet ventilation in

preterm infants with uncomplicated respiratory distress syndrome. Pediatrics

100:593-599

Page 128: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

114

139. Wiswell T, Graziani, LJ, Kornhauser, MS, Cullen, J, Merton, DA, McKee, L,

Spitzer, AR 1996 High-frequency jet ventilation in the early management of

respiratory distress syndrome is associated with a greater risk for adverse

outcomes. Pediatrics 98:1035-1043

140. Wiswell TE, Graziani LJ, Kornhauser MS, Stanley C, Merton DA, McKee L, Spitzer

AR 1996 Effects of hypocarbia on the development of cystic periventricular

leukomalacia in premature infants treated with high-frequency jet ventilation.

Pediatrics 98:918-924

141. Joshi VH, Bhuta T 2006 Rescue high frequency jet ventilation versus

conventional ventilation for severe pulmonary dysfunction in preterm infants

(review). Cochrane Database of Systematic Reviews:1-13

142. Spitzer A, Butler S, Fox W 1989 Ventilatory response to combined high

frequency jet ventilation and conventional mechanical ventilation for the

rescue treatment of severe neonatal lung disease. Pediatric Pulmonology

7:244-250

143. Bose CL, Dammann CEL, Laughon MM 2008 Bronchopulmonary dysplasia and

inflammatory biomarkers in the premature neonate. Arch. Dis. Child. Fetal

Neonatal Ed. 93:F455-461

144. Groneck P, Gotze-Speer B 1994 Association of pulmonary inflammation and

increased microvascular permeability during the development of

bronchopulmonary dysplasia: A sequential analysis of inflammatory mediators

in respiratory fluids of high-risk preterm neonates. Pediatrics 93:712-718

145. Polglase GR, Wallace MJ, Morgan DL, Hooper SB 2006 Increases in lung

expansion alter pulmonary hemodynamics in fetal sheep. J Appl Physiol

101:273-282

146. Minoo P, Li C 2010 Cross-talk between transforming growth factor-[beta] and

wingless/int pathways in lung development and disease. The International

Journal of Biochemistry & Cell Biology 42:809-812

Page 129: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

115

147. Lecart C, Cayabyab R, Buckely S, Morrison J, Kwong K, Warburton D,

Ramanathan R, Jones CA, Minoo P 2000 Bioactive transforming growth factor-

beta in the lungs of extremely low birthweight neonates predicts the need for

home oxygen supplementation. Biology of the Neonate 77:217-223

148. Pugin JMD, Verghese GMD, Widmer M-CMS, Matthay MAMD 1999 The alveolar

space is the site of intense inflammatory and profibrotic reactions in the early

phase of acute respiratory distress syndrome. Critical Care Medicine 27:304-

312

149. Ware LB, Matthay MA 2000 The acute respiratory distress syndrome. N Engl J

Med 342:1334-1349

150. Wiener-Kronish JP, Albertine KH, Matthay MA 1991 Differential responses of

the endothelial and epithelial barriers of the lung in sheep to escherichia coli

endotoxin. The Journal of Clinical Investigation 88:864-875

151. Briot R, Bayat S, Anglade D, Martiel J, Grimbert F 2009 Increased cardiac index

due to terbutaline treatment aggravates capillary-alveolar macromolecular

leakage in oleic acid lung injury in dogs. Crit Care 13:R166

152. Polglase GR, Hillman NH, Ball MK, Kramer BW, Kallapur SG, Jobe A, Pillow JJ

2009 Lung and systemic inflammation in preterm lambs on continuous positive

airway pressure or conventional mechanical ventilation Pediatric Research

65:67-71

153. Reynolds HY 2009 Present status of bronchoalveolar lavage in interstitial lung

disease. Current Opinion in Pulmonary Medicine 15:479-485

154. Sozo F, O'Day L, Maritz G, Kenna K, Stacy V, Brew N, Walker D, Bocking A, Brien

J, Harding R 2009 Repeated ethanol exposure during late gestation alters the

maturation and innate immune status of the ovine fetal lung. Am J Physiol Lung

Cell Mol Physiol 296:L510-L518

Page 130: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

116

155. Ricard J-D, Dreyfuss D, Saumon G 2001 Production of inflammatory cytokines in

ventilator-induced lung injury: A reappraisal. Am. J. Respir. Crit. Care Med.

163:1176-1180

156. Ricard J-D, Dreyfuss D, Saumon G 2003 Ventilator-induced lung injury. Eur

Respir J 22:2s-9s

157. Bunnell JB 2006 High frequency ventilation. In Webster JG (ed) Encyclopedia of

medical devices and instrumentation. John Wiley and sons, New Jersey, pp 497-

514

158. Papadakos PJ, Lachmann B 2007 The open lung concept of mechanical

ventilation: The role of recruitment and stabilization. Critical Care Clinics

23:241-250

159. Jobe A, Ikegami M 1998 Mechanisms initiating lung injury in the preterm. Early

Hum Dev 53:81-94

160. Uhlig S, Ranieri M, Slutsky AS, Dreyfuss D, Ricard J-D, Saumon G 2004

Biotrauma hypothesis of ventilator-induced lung injury. Am. J. Respir. Crit. Care

Med. 169:314-316

161. Gattinoni L, Caironi P, Cressoni M, Chiumello D, Ranieri VM, Quintel M, Russo S,

Patroniti N, Cornejo R, Bugedo G 2006 Lung recruitment in patients with the

acute respiratory distress syndrome. N Engl J Med 354:1775-1786

162. Lapinsky SE, Mehta S 2005 Bench-to-bedside review: Recruitment and

recruiting maneuvers. Crit Care 9:60-65

163. Gothberg S, Parker TA, Griebel J, Abman ASH, Kinsella JP 2001 Lung volume

recruitment in lambs during high-frequency oscillatory ventilation using

respiratory inductive plethysmography. Pediatric Research 49:38-44

164. Rimensberger PC, Pristine G, Mullen JBM, Cox PN, Slutsky AS 1999 Lung

recruitment during small tidal volume ventilation allows minimal positive end-

Page 131: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

117

expiratory pressure without augmenting lung injury. Critical Care Medicine

27:1940-1945

165. Rimensberger PC, Cox PN, Frndova H, Bryan AC 1999 The open lung during

small tidal volume ventilation: Concepts of recruitment and "Optimal" Positive

end-expiratory pressure. Critical Care Medicine 27:1946-1952

166. Slutsky AS, Drazen JM 2002 Ventilation with small tidal volumes. N Engl J Med

347:630-631

167. Pillow JJ 2005 High-frequency oscillatory ventilation: Mechanisms of gas

exchange and lung mechanics. Crit Care Med 33:S135-141

168. Henderson Y, Chillingworth FP, Whitney JL 1915 The respiratory dead space.

Am J Physiology 38:1-19

169. Dorkin HL, Stark AR, Werthammer JW, Strieder DJ, Fredberg JJ 1983 Respiratory

system impedance from 4 to 40 hz in paralyzed intubated infants with

respiratory disease. J Clin Invest 72:903-910

170. Pillow JJ, Wilkinson MH, Neil HL, Ramsden CA 2001 In vitro performance

characteristics of high-frequency oscillatory ventilators. Am. J. Respir. Crit. Care

Med. 164:1019-1024

171. Venegas J, Fredberg J 1994 Understanding the pressure cost of ventilation: Why

dose high-frequency ventilation work? Critical Care Medicine 22:S49-S57

172. Bunnell J 2007 How to use the lifepulse high-frequency ventilator - seven steps

to success. Bunnell Incorporated (www.bunl.com/clinical.html) Accessed July

2008, Salt Lake City, Utah

173. Groeneveld ABJ, Schneider AJ 2008 The relationship between arterial po2 and

mixed venous po2 in response to changes in positive end-expiratory pressure in

ventilated patients. Anaesthesia 63:488-494

Page 132: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

118

174. Keszler M 2006 High frequency jet ventilation. In Donn SM, Sinha SK (eds)

Manual of neonatal respiratory care. Mosby Elsevier, Philadelphia, pp 232-233

175. Trachsel D, McCrindle BW, Nakagawa S, Bohn D 2005 Oxygenation index

predicts outcome in children with acute hypoxemic respiratory failure. Am J

Respir Crit Care Med 172:206-211

176. Bunnell JB 2002 Finding optimal peep during high-frequency jet ventilation.

Bunnell Incorporated (www.bunl.com/clinical.html) Accessed July 2008, Salt

Lake City, U.S.A.

177. Crossley KJ, Morley CJ, Allison BJ, Polglase GR, Dargaville PA, Harding R, Hooper

SB 2007 Blood gases and pulmonary blood flow during resuscitation of very

preterm lambs treated with antenatal betamethasone and/or curosurf: Effect

of positive end-expiratory pressure. Pediatr Res 62:37-42

178. Polglase GR, Moss TJM, Nitsos I, Allison BJ, Pillow JJ, Hooper SB 2008

Differential effect of recruitment manoeuvres on pulmonary blood flow and

oxygenation during hfov in preterm lambs. J Appl Physiol 105:603-610

179. Polglase GR, Morley CJ, Crossley KJ, Dargaville P, Harding R, Morgan DL, Hooper

SB 2005 Positive end-expiratory pressure differentially alters pulmonary

hemodynamics and oxygenation in ventilated, very premature lambs. J Appl

Physiol 99:1453-1461

180. Bass A, Gentile M, Heinz J, Craig D, Hamel D, Cheifetz I 2007 Setting positive

end-expiratory pressure during jet ventilation to replicate the mean airway

pressure of oscillatory ventilation. Respiratory Care 52:50-55

181. Baurngart S, Hirschl RB, Butler SZ, Coburn CE, Spitzer AR 1992 Diagnosis-related

criteria in the consideration of extracorporeal membrane oxygenation in

neonates previously treated with high-frequency jet ventilation. Pediatrics

89:491

Page 133: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

119

182. Pillow JJ, Sly PD, Hantos AZ, Bates JHT 2002 Dependence of intrapulmonary

pressure amplitudes on respiratory mechanics during high-frequency oscillatory

ventilation in preterm lambs. Pediatric Research 52:538-544

183. Bunnell JB 2008 What is the lifepulse high frequency ventilator? Bunnell

Incorporated (www.bunl.com/clinical.html) Accessed July 2008, Salt Lake City,

Utah, U.S.A.

184. Bunnell JB 2002 The importance of servo pressure. Bunnell Incorporated

(www.bunl.com/clinical.html) Accessed July 2008, Salt Lake City, Utah

185. Bancalari A, Gerhardt T, Bancalari E, Suquihara C, Hehre D, Reifenberg L,

Goldberg RN 1987 Gas trapping with high-frequency ventilation: Jet versus

oscillatory ventilation. Journal of Pediatrics 110:617-622

186. Boros SJ, Mammel MC, Coleman JM, Lewallen PK, Gordon MJ, Bing DR,

Ophoven JP 1985 Neonatal high-frequency jet ventilation: Four years'

experience. Pediatrics 75:657-663

187. Gonzalez F, Harris T, Black P, Richardson P 1987 Decreased gas flow through

pneumothoraces in neonates receiving high-frequency jet versus conventional

ventilation. Journal of pediatrics 110:464-466

188. Carlo W, Siner, B, Chatburn, RL, Robertson, S, Martin, RJ. 1990 Early

randomised intervention with high-frequency jet ventilation in respiratory

distress syndrome. Journal of Paediatrics 117:765-770

189. Transonic 2008. Transonic http://www.transonic.com/transit-time.shtml

Accessed March 2008

190. Polglase GR, Wallace MJ, Grant DA, Hooper SB 2004 Influence of fetal breathing

movements on pulmonary hemodynamics in fetal sheep. Pediatr Res 56:932-

938

191. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ 1951 Protein measurement with

the folin phenol reagent. J Biol Chem 193:265-275

Page 134: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

120

192. Smeed J, Watkins C, Rhind S, Hopkins J 2007 Differential cytokine gene

expression profiles in the three pathological forms of sheep paratuberculosis.

BMC Vet Res 3:18

193. VanHarmelen V, Ariapart P, Hoffstedt J, Lundkvist I, Bringman S, Arner P 2000

Increased adipose angiotensinogen gene expression in human obesity. Obes

Res 8:337-341

194. Livak K, Schmittgen T 2001 Analysis of relative gene expression data using real-

time quantitative pcr and the 2(-delta delta c(t)) method. Methods 25:402-408

195. Faith M, Sukumaran A, Pulimood A, Jacob M 2008 How reliable an indicator of

inflammation is myelperoxidase activity? Clin Chim Acta 396:23-25

196. McCabe A, Dowhy M, Holm B, Glick P 2001 Myeloperoxidase activity as a lung

injury marker in the lamb model of congenital diaphragmatic hernia. J Pediatr

Surg 36:334-337

Page 135: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

121 

 

4       High Positive End‐Expiratory Pressure during High Frequency 

Jet Ventilation  Improves Oxygenation and Ventilation  in Preterm 

Lambs. 

 

Gabrielle C Musk1, Graeme R Polglase1, J Bert Bunnell2, Carryn J McLean1,  Ilias Nitsos1, 

Yong Song1 and J Jane Pillow1. 

1   School of Women’s and Infants’ Health, University of Western Australia, Perth, Western 

Australia, 6009, Australia. 

2   Bunnell  Inc, Salt Lake City, Utah, USA and Department of Bioengineering, University of 

Utah, Salt Lake City, Utah, USA.   

 

 

This  first  study  investigated  the  role  of  positive  end‐expiratory  pressure  for  alveolar 

recruitment during high‐frequency jet ventilation. 

 

 

Page 136: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

122 

 

Abstract 

Increasing positive end‐expiratory pressure  (PEEP)  is advocated  to  recruit alveoli during 

high‐frequency  jet  ventilation  (HFJV)  but  its  effect  on  cardiopulmonary  physiology  and 

lung  injury  is poorly documented. We hypothesised  that high PEEP would recruit alveoli 

and  reduce  lung  injury but  compromise pulmonary blood  flow  (PBF). Preterm  lambs of 

anaesthetised ewes were instrumented, intubated and delivered by cesarean section after 

instillation of  surfactant. HFJV was  commenced with  a positive end‐expiratory pressure 

(PEEP)  of  5  cmH2O.  Lambs were  allocated  randomly  at  delivery  to  remain  on  constant 

PEEP (PEEPconst, n=6) or to recruitment via stepwise adjustments in PEEP (PEEPadj, n=6) to 

12  cmH2O  then  back  to  8  cmH2O  over  the  initial  60 min.  Pulmonary  blood  flow was 

measured  continuously  while  ventilatory  parameters  and  arterial  blood  gases  were 

measured  at  intervals.  At  postmortem,  in  situ  pressure‐volume  deflation  curves  were 

recorded,  and  bronchoalveolar  lavage  fluid  and  lung  tissue  were  obtained  to  assess 

inflammation.  PEEPadj  lambs  had  lower  pressure  amplitude,  fractional  inspired  oxygen 

concentration,  oxygenation  index  and  PBF,  and  more  compliant  lungs.  Inflammatory 

markers  were  lower  in  the  PEEPadj  group.  Adjusted  PEEP  during  HFJV  improves 

oxygenation and  lung compliance and  reduces ventilator  requirements despite  reducing 

pulmonary perfusion.     

 

Page 137: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

123 

 

Introduction 

High‐frequency ventilation (HFV) is advocated as a lung protective ventilation strategy for 

the treatment of respiratory distress syndrome (RDS) in preterm newborn infants. HFV has 

proven  particularly  useful  for  optimising  lung  volume,  reducing  atelectotrauma  and 

volutrauma,  and  therefore  reducing  injurious  lung  stimuli  associated  with 

bronchopulmonary dysplasia  (BPD)  (1‐3). High  frequency  jet ventilation  (HFJV) and high‐

frequency oscillatory ventilation (HFOV) are the two main forms of HFV used in neonatal 

intensive  care units and while  there  is  substantial  research on  the optimal approach  to 

lung volume optimisation  in preterm RDS using HFOV, data are  limited for HFJV. To date 

there  is one multicentre controlled trial and one single centre controlled trial comparing 

the  use  of  HFJV  (with  a  low  positive  end‐expiratory  pressure  (PEEP)  strategy)  to 

conventional  mechanical  ventilation  (CMV)  for  treatment  of  preterm  RDS  (4,  5).  The 

results give conflicting information regarding the respiratory and neurological outcomes of 

neonates treated with HFJV.  Increased adverse neurological outcomes  for HFJV group  in 

the Wiswell  study  (1996)  were  attributed  to  hypocarbia  (6).  Subgroup  analysis  in  the 

Keszler trial (1997) suggested that the use of  low PEEP was associated with an  increased 

risk  for  grade  III‐IV  intraventricular  hemorrhage  or  periventricular  leukomalacia.  An 

important  limitation of these trials  is that the HFJV groups were not compared to a true 

“lung protective” CMV strategy. Further research assessing the pros and cons of optimised 

versus low PEEP in HFJV is therefore warranted.   

Page 138: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

124 

 

HFJV  is characterised by a (normally) fixed brief  inspiratory time, passive expiration, and 

coupling with  a  conventional  ventilator  for  provision  of  conventional  breaths,  positive 

end‐expiratory  pressure  (PEEP)  and  bias  flow.  The  current  recommended  strategy  for 

treatment of RDS with HFJV is to commence HFJV early in the disease process with a peak 

inspiratory  pressure  (PIP)  just  below  that  being  used  during  conventional  mechanical 

ventilation (CMV) (http://www.bunl.com/7%20Steps%20NO%20QT.html). The initial PEEP 

is set to achieve a mean airway pressure (Paw) equal to that used prior to commencement 

of HFJV. The primary method advocated for optimising lung volume recruitment in HFJV is 

by incrementing PEEP until stable peripheral oxyhemoglobin saturation (SpO2) is achieved, 

with  low‐rate  CMV  breaths  added  to  HFJV  as  a  supplementary method  for  recruiting 

collapsed alveoli.   

Despite  the detailed guidelines provided  for optimising  lung volume during  initiation of 

HFJV,  the  evidence  basis  for  this  approach  is  limited.  Whereas  inadequate  PEEP  will 

encourage airway collapse and atelectasis and initiate the lung injury sequence, excessive 

PEEP promotes alveolar overdistension,  impedes pulmonary perfusion, decreases venous 

return, and depresses cardiovascular function (7‐9).   

We hypothesised  that  a PEEP driven  lung  volume  recruitment protocol would  enhance 

arterial oxygenation and ventilation without promoting lung injury during the initiation of 

ventilation  in a preterm ovine model of RDS. Furthermore, we hypothesised  that  these 

effects would be achieved at the expense of pulmonary perfusion. We aimed to compare 

Page 139: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

125 

 

the effect of an adjusted PEEP strategy on pulmonary blood flow (PBF), blood gases and 

lung injury with a constant low PEEP strategy in an instrumented preterm lamb model.  

Page 140: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

126 

 

Materials and Methods 

All animal procedures were approved by the University of Western Australia animal ethics 

committee,  according  to  the  guidelines  of  the  National  Health  and Medical  Research 

Council of Australia code of practice for the care and use of animals for scientific purposes 

(10).  

Animals, Instrumentation and Delivery  

Single  and  twin‐bearing  date‐mated  merino  ewes  were  anaesthetised  at  128‐130  d 

gestation  (term  is ~ 150 d) with  intramuscular  xylazine  (0.5 mg  kg‐1,  Troy  Laboratories, 

N.S.W., Australia) and ketamine (20 mg kg‐1, Parnell Laboratories, N.S.W., Australia), and 

intubated  (7.5 mm cuffed tracheal tube, Portex Ltd. England). Maternal anaesthesia was 

maintained with  halothane  in  100%  O2.  The  fetus was  exteriorised  and  a  right  lateral 

thoracotomy  was  performed.  A  flow  probe  (4R,  Transonic  Systems,  Ithaca,  NY)  was 

positioned around  the  left pulmonary artery and a  catheter was  inserted  into  the main 

pulmonary artery (7). The fetus was intubated orally (4.5 mm cuffed tracheal tube, Portex 

Ltd.  England),  lung  fluid  was  suctioned  and  intra‐tracheal  surfactant  (100  mg  kg‐1: 

Survanta,  25 mg  of  phospholipids mL‐1,  Abbott  Laboratories,  U.S.A.) was  administered 

prior  to  caesarian  section delivery of  the  lamb.   Unventilated  controls  (UVC; n=6) were 

euthanased (pentobarbitone 100 mg kg‐1 i.v.) at delivery without instrumentation.  

Page 141: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

127 

 

Postnatal care 

Instrumented  lambs  were  dried,  weighed  and  randomised  to  one  of  two  ventilation 

groups:  constant  PEEP  (PEEPconst;  n=6)  and  adjusted  PEEP  (PEEPadj;  n=6).  They  were 

commenced on HFJV according to a predetermined protocol (Figure 1). Umbilical venous 

and  arterial  catheters were  inserted.  Propofol  (0.1 mg/kg/min;  Repose  10%, Norbrook 

Laboratories  Ltd.,  Victoria,  Australia)  and  remifentanil  (0.05  µg/kg/min;  Ultiva,  Abbott 

Laboratories, U.S.A.) were infused continuously through an umbilical vein for anaesthesia 

and  analgesia. An  umbilical  arterial  catheter was  used  for  continuous measurement  of 

systemic  arterial blood pressure  and  intermittent  sampling  to  assess  gas  exchange  and 

acid‐base  balance.    Rectal  temperature  was  monitored  continuously  and  maintained 

between 38° and 39° C (normothermic for newborn lambs).  

The Oxygenation  Index  (OI) was calculated as OI=2

2

PaO

100 x Paw xFiO where FiO2  is  fractional 

inspired oxygen concentration, Paw is mean airway pressure and PaO2 is partial pressure 

of oxygen in arterial blood. 

High Frequency Jet Ventilation 

HFJV (Life Pulse High Frequency Ventilator, Bunnell Inc., Salt Lake City, U.S.A.) coupled to a 

pressure‐limited  time‐cycled  infant  conventional  ventilator  (Bourns  Life  Systems BP 200 

Infant  Pressure  Ventilator,  California,  U.S.A.)  was  commenced  immediately  following 

delivery.  HFJV was commenced using a respiratory rate of 420 breaths per minute (7 Hz) 

Page 142: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

128 

 

and peak inspiratory pressure (PIP) of 40 cmH2O. HFJV PIP was adjusted to a maximum of 

40 cmH2O to target moderate permissive hypercapnia (Partial pressure of carbon dioxide 

in arterial blood  (PaCO2) 45‐55 mmHg). The  initial FiO2 of 0.4 was adjusted  to maintain 

peripheral oxyhemoglobin saturation  (SpO2) of 90‐95%.  Inspiratory  time  (tI) was  fixed at 

0.02 s.  No conventional ventilator breaths were applied during the 2 hour study period. 

PEEP was maintained  at  5  cmH2O  in  the PEEPconst  group  for  the  duration of  the  study. 

Lambs  in  the PEEPadj group were stabilised on a PEEP of 5 cmH2O  for 10 min  then PEEP 

was incremented at 10 min (8 cmH2O), 15 min (10 cmH2O) and 20 min (12 cmH2O). PEEP 

was decreased by 2 cmH2O at 35 min and 60 min and then maintained at 8 cmH2O from 

60 min until euthanasia at 120 min. 

Continuous measurements of PBF, pulmonary artery blood pressure  (PAP) and  systemic 

arterial blood pressure (ABP) were processed via calibrated pressure transducers (Maxxim 

Medical, Tx, U.S.A.). Data were amplified and stored on a digital data acquisition system 

(Powerlab  8SP,  ADInstruments,  N.S.W.,  Australia).  Pulmonary  waveform  analysis  was 

performed at regular time points as described previously (11). Pulsatility Index, a measure 

of downstream resistance to blood flow, was calculated as (peak systolic flow – minimum 

flow after diastolic flow)/mean peak systolic flow over five consecutive cardiac cycles). 

Tidal  volume  (VT)  was measured  continuously  using  an  electronic  flowmeter  (Florian, 

Acutronics, CH).   Ventilator settings (respiratory rate, PIP, PEEP; Paw, Delta P (∆P), Servo 

Pressure and ti) were recorded at intervals.  After final measurements were obtained, the 

Page 143: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

129 

 

FiO2 was increased to 1.0 for 2 minutes, the tracheal tube was occluded for 3 min, and the 

lamb was euthanased (100 mg kg‐1 pentobarbitone i.v.).   

Post‐mortem 

The lung was exposed by thoracotomy, and an in situ deflation pressure volume curve was 

obtained  (12). The  right upper  lung  lobe was  inflation  fixed  (30 cmH2O)  in  formalin and 

samples of the right lower lobe were snap frozen for molecular analyses. Bronchoalveolar 

lavage (BAL) was performed on the left lung for cytology and protein analysis by the Lowry 

method.  Differential  cell  counts were  performed  on  cytospin  samples  of  the  BAL  fluid 

stained with Diff‐Quik (Fronine Lab Supplies, N.S.W., Australia).  

Total RNA was isolated from 30 mg of homogenised lung tissue using the RNeasy Mini kit 

(Qiagen, U.S.A.) according to the manufacturer’s instructions. The contaminating genomic 

DNA  was  removed  by  an  on‐column  DNaseI  digestion  performed  using  the  DNaseI 

digestion kit  (Qiagen, U.S.A.). One microgram of RNA was  then  reverse  transcribed  into 

complementary  DNA  in  a  20  µL  reaction  with  QuantiTect®  Reverse  Transcription  Kit 

(Qiagen, U.S.A.). The primers used for amplifying interleukin (IL) 1β and IL‐6 (13) and IL‐8, 

early growth response  (EGR) 1, connective tissue growth  factor  (CTGF) and cysteine rich 

61  (CYR 61) have been described elsewhere  (14). Amplification and detection of specific 

products were  conducted  on  the  Rotor‐gene  3000  real  time  PCR  system  (Corbett  Life 

Science) with the published cycle profiles using Rotor‐gene SYBR Green PCR Kit  (Qiagen, 

U.S.A.)  following  the  manufacturer’s  instructions.  The  expression  levels  of  genes  of 

Page 144: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

130 

 

interest were normalized into 18S RNA (15) using the 2‐∆∆CT method (16) and presented as 

expression ratio relative to the unventilated control group (UVC). 

 

Myeloperoxidase  (MPO)  activity  was  measured  spectrophotometrically  using  methods 

described by McCabe et al in 2001 and Faith et al in 2008 (17, 18). The MPO activity was 

normalized to the total protein content of the tested samples. Activity was expressed as 

units  of MPO  activity  per mg  of  protein, where  one  unit  of MPO was  defined  as  the 

amount  needed  to  degrade  1  µmol  of  hydrogen  peroxide  per  minute  at  room 

temperature. 

Statistical Analyses 

For comparison of 2 groups of ventilated animals at specific time points, a Mann‐Whitney 

Rank  Sum  test  (non‐parametric  data)  or  a  Student’s  t‐test  (parametric  data) was  used. 

Comparisons  of  two  ventilated  groups  against  the  unventilated  controls  used  one‐way 

analysis  of  variance  (ANOVA).  A  two‐way  repeated  measure  ANOVA  was  used  to 

determine the effect of PEEP on PBF and Pulsatility  Index and the effect of  time on PIP, 

Delta P, Paw  and  Servo Pressure. Data  in  the  text  and  legends  are  expressed  as mean 

(SEM) or median (25,75 centile) unless otherwise stated. Analyses were performed using 

SigmaStat  (Version  3.5,  Systat  Software  Incorporated,  U.S.A.)  with  p<0.05  considered 

statistically significant.   

Page 145: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

131 

 

Results 

Baseline characteristics of lambs in each group were not different (Table 1). 

Ventilator Settings and Lung Mechanics 

Changes in Paw reflected the different PEEP protocols (Figure 2A) but as PIP decreased in 

both groups, the amplitude of the airway pressure waveform (∆P) also decreased (Figure 

2B). The VT was higher in PEEPadj group (pooled time points: p <0.01) despite a significantly 

lower ∆P (Figure 2C). Servo pressure was lower (p = 0.026) in the PEEPadj group at 120 min 

(Table 2). Pressure‐volume curves showed a higher volume achieved per unit of pressure 

for  the PEEPadj  lambs compared  to  the PEEPconst  lambs  (p = 0.003 at 40 cmH2O) and  for 

both of the ventilated groups compared to the UVCs (Figure 2D).    

Oxygenation 

The  target SpO2 of 90%  to 95% was achieved  in both groups within  the  first 10 minutes 

and was maintained  throughout  the  ventilation  period.  FiO2  and OI were  lower  in  the 

PEEPadj  group  compared  to  the  PEEPconst  lambs  from  45 minutes  until  the  end  of  the 

ventilation period (Figure 3A and 3B).  

Blood gases 

The  target  PaCO2 was  achieved within  10 minutes  in  both  groups  and was maintained 

between 45‐55 mmHg  throughout  the  ventilation procedure  (Table 2).  The pH,  arterial 

Page 146: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

132 

 

lactate concentration and base excess (BE) were comparable between the two groups for 

the duration of the ventilation period (Table 2).   

Hemodynamic consequences of different PEEP protocols 

PBF  increased  over  the  first  10 min  of  ventilation  in  both  groups  and  there were  no 

significant differences between  the groups at any  time point between 10 and 120 min. 

PBF decreased by approximately 8%  in the PEEPconst group and by approximately 48%  in 

the PEEPadj group between 10 and 120 min (p = 0.507 and p = 0.026 respectively) (Figure 

4A). After an  initial decrease during the transition from fetal to neonatal circulation, the 

Pulsatility  Index  increased  in both  groups over  time  and was  significantly higher  in  the 

PEEPadj  group  over much  of  the  first  60 min  (Figure  4B).  The  pulmonary  and  systemic 

arterial blood pressures were no different between the groups at any time point (Table 2).  

End diastolic  and end  systolic pulmonary blood  flow were  significantly decreased at 15 

min in the PEEPadj group (p<0.001 for each parameter). For all pulmonary artery variables, 

the difference between PEEPconst and PEEPadj was temporary (Figure 4C and 4D). 

Lung Injury 

Bronchoalveolar Lavage Fluid 

BAL fluid protein concentration was higher  in ventilated groups than  in the unventilated 

controls,  but  no  difference  between  PEEPadj  and  PEEPconst  was  observed.  The  cell 

populations of BAL fluid did not differ between the groups (Table 3).   

Page 147: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

133 

 

Lung Tissue 

Compared to unventilated controls, IL‐1β, IL‐6, IL‐8, CTGF and EGR1 mRNA was elevated in 

the  PEEPconst  group  compared  to  UVCs,  whereas  CYR  61  expression  was  significantly 

elevated  in the PEEPadj group compared to UVCs. The expression of  IL‐1β,  IL‐6, EGR1 and 

CTGF was greater  in the PEEPconst group compared to PEEPadj. There was no difference  in 

MPO activity (Table 3) between each of the three groups. 

Page 148: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

134 

 

Discussion 

Alveolar recruitment during HFJV can be achieved by delivering CMV breaths or adjusting 

PEEP, or both. To examine the role of PEEP for alveolar recruitment during HFJV, this study 

aimed  to  compare  the  effect  of  an  adjusted  versus  a  constant  PEEP  protocol  on 

oxygenation,  ventilation,  pulmonary  haemodynamics  and  lung  injury  during  HFJV. We 

showed that lambs in the PEEPadj group had better oxygenation and lung compliance but 

decreased PBF  compared  to PEEPconst  lambs. Markers of  lung  injury were higher  in  the 

PEEPconst group in this short‐term study.    

The  correlation  between  Paw  and  oxygenation  during  HFJV  is  well  understood.  As 

expected by study design, the Paw of the PEEPadj group was significantly higher than the 

PEEPconst  group  throughout  the  ventilation  period.  The  benefit  of  higher  Paw  was 

evidenced by  lower FiO2  requirements  from as early as 45 min,  supporting  the  concept 

that  a  high  Paw  strategy  enhances  arterial  oxygenation,  decreasing  the  FiO2  required 

during ventilation  (19).  In a clinical setting, PEEP  is  increased and FiO2  is decreased until 

the SpO2 or PaO2 plateaus or  falls.   When FiO2  is  stable at 0.21 optimal PEEP has been 

achieved  (20).  The OI  describes  the  relationship  between  FiO2,  Paw  and  PaO2:  a  lower 

value  implies better arterial oxygenation  (21). After  the  initial decrease  in OI within  the 

PEEPconst group, the OI increased over the remainder of the study.  In the PEEPadj group it 

remained relatively  low and stable despite the higher Paw, suggesting more efficient gas 

exchange  due  to  either  airway  stenting,  or  increased  gas‐exchange  surface  due  to 

effective volume recruitment.  

Page 149: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

135 

 

Servo  pressure  is  the  automatically  controlled  driving  pressure  of  the  ventilator  and 

changes  in response to altered monitored airway pressure, to ensure that the ventilator 

will continue to deliver inspiratory gas to meet the set PIP (22). Servo pressure increases 

as PIP  increases, with  increased  lung and/or chest wall compliance, a decrease  in airway 

resistance, or if there  is an air‐leak or circuit disconnection. A decrease  in servo pressure 

however,  indicates either a reduction  in set PIP, or worsening compliance and  increased 

resistance  to  gas  flow,  obstruction  of  the  tracheal  tube,  tension  pneumothorax,  the 

requirement  for  suctioning  or  right  mainstem  bronchus  intubation 

(www.bunl.com/ServoSlidesNEW.html). Our finding of a lower Servo pressure throughout 

most of the study period in PEEPadj lambs despite evidence of increased lung compliance, 

likely  reflects  the  reductions  in  PIP  required  to  maintain  moderate  permissive 

hypercapnea and avoid overventilation.      

The  haemodynamic  consequences  of  the  ventilation  protocol  were  assessed  by 

measurement of PBF, PAP,  systemic ABP, pulse  rate and  calculation of Pulsatility  Index. 

Pulsatility Index is directly related to resistance to blood flow. An increase in intrathoracic 

pressure  during  any  kind  of  positive  pressure  ventilation  impacts  on  venous  return, 

cardiac  output,  right  ventricular  end  diastolic  volume,  PBF  and  pulmonary  vascular 

resistance  (23).    Increased  PEEP  reduces  PBF  during  conventional  ventilation  of  very 

premature lambs by increasing pulmonary vascular resistance (PVR) (8). A similar decrease 

in PBF  in response  to Paw driven alveolar recruitment maneuvers during HFOV of up  to 

69.3%  is also reported  (7).  Importantly, during HFOV, the  fall  in PBF persisted after Paw 

Page 150: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

136 

 

was decreased following recruitment (7). The mechanism causing a fall  in PBF as PEEP  is 

increased may  include  an  increase  in  the  alveolar  capillary  transmural pressure  causing 

capillary compression  (8, 24). The non‐compliant  immature  lung may be  less susceptible 

to capillary compression than a mature lung (8, 24). Factors that increase lung compliance 

(e.g.  antenatal  corticosteroids,  exogenous  surfactant,  lung  volume  recruitment)  may 

increase the sensitivity of PBF to changes in airway pressure (24). We observed improved 

oxygenation  at  the  expense  of  PBF  when  PEEP  was  increased  up  to  12  cmH2O,  as 

previously described during HFOV (8). However, this decrease  in PBF was relatively small 

and  of  shorter  duration  relative  to  the  change  associated with  increasing  Paw  during 

HFOV (7).  

The  fall  in  PBF  in  the  PEEPadj  group  reversed  rapidly  as  PEEP  was  initially  decreased, 

suggesting  the  impact  of  a  PEEP  recruitment  strategy  on  PBF  during  HFJV  was  not 

sustained. During HFOV however, PBF does not recover after a temporary increase in Paw. 

(7). Furthermore,  the  impact of  increased PEEP on end diastolic and end  systolic blood 

flow coincided with the initial increase in PEEP from 5 cmH2O to 8 cmH2O at 10 min. The 

difference between the 2 groups was temporary and despite further increases in PEEP  in 

the  PEEPadj  group,  the  blood  flow  variables  did  not  remain  significantly  different.  The 

maintenance of a higher Paw in the PEEPadj group likely contributed to the continued slow 

decline  in PBF in this group and returning to PEEP of 5 cmH2O (instead of 8 cmH2O) may 

have been prudent. Nevertheless, a direct comparison of HFJV and HFOV  in a controlled 

Page 151: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

137 

 

setting is warranted to determine the impact of each of these ventilation strategies on the 

extent and duration of effect on pulmonary haemodynamics. 

Lung  inflammation  is a prelude  to  lung  injury. We examined  inflammatory markers  that 

we anticipated would be increased at 120 min in response to lung injury (14, 25‐27). There 

was  a  clear  increase  in  lung  injury  across  the  range  of  inflammatory markers  for  the 

PEEPconst  group,  compared  to  the  unventilated  controls  and  for  the  PEEPconst  group 

compared to PEEPadj. These findings support our hypothesis regarding reduced lung injury 

with PEEP recruitment of the lung during HFJV.   

Myeloperoxidase activity has been  shown  to correlate with  IL‐6 expression  (17) but our 

results did not show a clear relationship between these variables. The MPO activity was 

not different between the groups, despite a trend for an increase in the ventilated groups. 

It is possible that this is a result of maternal anaesthesia, and this finding in itself warrants 

further  investigation.  It  is  also possible  that a Type  II  statistical error as  a  result of  the 

small group sizes prohibited a demonstrable difference between the groups. 

There are a number of  limitations to our study. We wanted to examine the physiological 

changes  associated  with  each  PEEP  alteration  and  required  at  least  10  minutes  to 

accommodate and document any changes. Consequently, the adjusted PEEP protocol we 

studied  does  not  reflect  standard  clinical  practice  given  that  the  60  min  period  for 

increasing  and  decreasing  PEEP  is  considerably  longer  than  optimally  used  in  a  clinical 

setting.  and  potentially masked  significant  differences  between  the  ventilated  groups. 

Page 152: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

138 

 

Secondly,  surfactant  was  administered  to  the  lambs  prior  to  the  commencement  of 

ventilation. This practice may not be achieved routinely in a clinical setting. However, our 

goal was  to  isolate  the effect of PEEP and standardise and optimise all other aspects of 

care.  Thirdly,  the  lambs  in  our  study  were  anaesthetised  and  underwent  an  invasive 

surgical procedure. The haemodynamic effects of anaesthesia combined with the physical 

impact of  instrumentation on  lung  inflation are  likely  to  impact physiological outcomes. 

Lastly,  the  flowmeter used  for measuring VT  slightly overestimates  tidal volume at 7 Hz 

(28).  However,  as  HFJV  frequency  was  constant  throughout  the  study,  we  would  not 

expect this to affect comparisons between the ventilatory groups. 

In conclusion, adjusted PEEP during HFJV improves oxygenation and lung compliance and 

reduces  ventilator  requirements despite  reducing pulmonary perfusion. The majority of 

markers of  injury were higher when PEEP was constant during HFJV. Evaluation of PEEP 

recruitment manoeuvers  in  human  patients  is  indicated  to  explore  the  efficacy  of  the 

technique in the target patient population. 

 

Page 153: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

139 

 

Acknowledgements 

Surfactant was  donated  by Abbott Australia.  The  Life  Pulse High  Frequency Ventilators 

were supplied on  long‐term  loan by Bunnell  Incorporated. We would  like to express our 

sincere appreciation to the members of the Ovine Research Group for technical assistance 

and JRL Hall and Co. for provision and early antenatal care of the ewes.   

Page 154: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

140 

 

Tables 

 

Table 1: Baseline characteristics  

  UVC  PEEPconst  PEEPadj 

n (male)  6 (3) 6 (4) 6 (4)

Twin (singleton)  4 (2) 6 (0) 6 (0)

Birthweight (kg)  2.9 (0.4) 3 (0.3) 2.8 (0.2) 

Gestational Age (d)  127.2 (0.4)  128 (0.8)  128 (0.8) 

Cord pH  7.15 (0.1)  7.15 (0.05)  7.09 (0.1) 

Cord PaCO2  (mmHg)  81 (13)  73.8 (7.4)  89.7 (20.8) 

 

UVC = Unventilated Control, PEEPconst = Constant Positive End Expiratory Pressure, 

PEEPadj = Adjusted Positive End Expiratory Pressure. Values are mean (SEM). 

   

Page 155: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

141 

 

Table 2: Cardiovascular and Respiratory Physiological Measurements 

 

  PEEPconst  PEEPadj 

Time  10 min  60 min  120 min  10 min  60 min  120 min 

PIP (cmH2O)  40 (0) 34.5 (2.5) 30.2 (2.3) 40 (0)  32.8 (1.9) 27.9 (1)

Paw (cmH2O)  14.1 (0.9)  13.5 (0.6) 12 (0.6) 14.5 (0.2)  16.7 (0.4)† 13.5 (0.3)†

Servo Pressure (psi)  6.6 (0.8)  8.3 (0.3) 7 (0.3) 7.8 (0.4)  6.8 (0.7) 5.9 (0.3)†

PaCO2 (mmHg)  52.0 (4.6)  41.5 (2) 43.3 (2.6) 39.8 (3.4)  38.2 (3.5) 41.4 (3.1)

pH  7.1 (0.1)  7.4 (0.02) 7.4 (0.04) 7.3 (0.1)  7.3 (0.04) 7.4 (0.03)

Lactate (mg dL‐1)  83.9 (13.4)  67.4 (10.7) 48.1 (10.9) 87.2 (22.6)  67.2 (19) 50.4 (20.1)

Base Excess  ‐8.8 (2.1)  ‐2.2 (1.4) ‐0.9 (2.1) ‐6.8 (3.2)  ‐5.4 (1.9) ‐1.5 (2.2)

Left PAP (mmHg)  43.6 (4.3)  35.6 (3.8) 43.2 (6.8) 48.5 (1.6)  37.4 (3.4) 43.8 (5.6)

Systemic ABP (mmHg)  53.5 (6.2)  50.1 (4.4) 60.3 (6.7) 53 (3.2)  50.2 (3.1) 53.3 (3.4)

Pulse rate (bpm)  140 (7)  170 (15) 194 (8)* 145 (8)  181 (15) 210 (8)*

PIP  =  Peak  Inspiratory  Pressure,  ∆P  =  Pressure  differential  (PIP  –  PEEP),  Paw  = Mean 

Airway Pressure, psi = pounds per square inch, PaCO2 = partial pressure of carbon dioxide 

in  arterial  blood,  PAP  =  pulmonary  arterial  blood  pressure,  Systemic  ABP  =  systemic 

arterial blood pressure, bpm = beat per minute. * p<0.001 time 120 compared to time 10 

in the same group, † p<0.05 PEEPadj compared to PEEPconst at the same time.   Values are 

mean (SEM). 

Page 156: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

142 

 

 

Table 3: Post mortem inflammatory markers  

  UVC  PEEPconst  PEEPadj 

BAL fluid       

Protein concentration (mg mL‐1)  14.7 (7.4)  120.2 (28)*  89.2 (18.5)* 

Inflammatory cells (x 103 kg‐1)  0.3 (0.02)  7.5 (3.9)*  2.0 (1.0) 

Neutrophils  (x 103 kg‐1)  0  4.4 (2.4)  0.4 (0.2) 

Mononuclear cells (x 103 kg‐1)  0.3 (0.02)  2.7 (1.4)*  1.5 (0.8) 

Lymphocytes (x 103 kg‐1)  0  0.4 (0.3)  0.1 (0.1) 

Lung Tissue       

IL‐1β fold change  0.6 (0.4, 3.2)  262.9 (159.3, 350)**  37.2 (18.2, 53.7)‡ 

IL‐6 fold change  1.0 (0.6, 1.6)  95.5 (57.2, 155.4)*  13.4 (3.2, 23.8)‡ 

IL‐8 fold change  0.7 (0.6, 2.0)  77.6 (26.1, 101.1)**  28.0 (6.3, 53.9) 

EGR1 fold change   1.1 (0.3, 2.9)  48.9 (33.5, 94.7)*  15.6 (5.4, 27.1)‡ 

CTGF fold change   0.8 (0.6, 2.4)  31.2 (13.3, 44.3)*  4.0 (1.97, 5.9)‡ 

CYR61 fold change   0.9 (0.7, 1.3)  9.7 (5.4, 20.1)  11.0 (5.9, 12.2)* 

MPO ac vity †  18.2 (1.4)  29.3 (3.8)  26.6 (6.1) 

 

IL = interleukin, EGR = early growth response, CTGF = connective tissue growth factor, CYR 

61 = cysteine rich 61, MPO = myeloperoxidase. † units per mg of protein where 1 unit of 

MPO  is  defined  as  the  amount  needed  to  degrade  1  µmol  of  hydrogen  peroxide  per 

minute at room temperature. *p<0.05 compared to UVC, **p<0.001 compared to UVC, ‡

p<0.05 compared to PEEPconst.  Values are mean (SEM) or median (25,75 centile). 

 

 

Page 157: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

143 

 

 

 

Figure 1 

 

Page 158: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

144 

 

 

 

      Figure 2 

Page 159: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

145 

 

 

Figure 3 

Page 160: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

146 

 

 

 

Figure 4

Page 161: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

147 

 

 

Figure Legends 

 

Figure  1  Constant  and  Adjusted  PEEP  protocols:    Lambs  were  ventilated  at  either  a 

constant  PEEP  of  5  cmH2O  (PEEPconst,  solid  line)  or  with  stepwise  increments  and 

decrements to PEEP (PEEPadj, grey). Values are Mean (SEM). 

Figure  2 Ventilator  Settings  and  Lung Mechanics:   A: Mean Airway  Pressure  (Paw),  B: 

Delta  P  (ΔP),  C:  Tidal  Volume,  D:  Deflation  limb  of  the  post‐mortem  in  situ  pressure‐

volume curves. ◊ = PEEPconst, ● = PEEPadj,    = Unventilated control.  * p<0.05 compared to 

PEEPconst ** p<0.05 compared to unventilated control. Values are Mean (SEM). 

Figure 3 Oxygenation: A: Fractional inspired oxygen concentration (FiO2), B: Oxygenation 

index  (OI)  over  the  120  min  ventilation  period.  ◊  =  PEEPconst,  ●  =  PEEPadj.    *  p<0.05 

compared to PEEPconst. Values are Mean (SEM). 

Figure 4 Pulmonary Perfusion:  A: Pulmonary Blood Flow, B: Pulsatility Index over the 120 

min  ventilation  period,  C:  End  Diastolic  Blood  Flow,  D:  End  Systolic  Blood  Flow.  ◊  = 

PEEPconst, ● = PEEPadj , * p<0.05 compared to PEEPadj ** p<0.05 time 120 min compared to 

time 10 min. Values are Mean (SEM). 

Page 162: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

148 

 

References 

1.  Jobe AH, Bancalari E 2001 Bronchopulmonary dysplasia. Am J  Respir Crit Care Med 

163:1723‐1729 

2.  Jobe A 1999 The new bpd: An arrest of lung development. Pediatr Res 46:641‐646 

3.  Jobe A,  Ikegami M 1998 Mechanisms  initiating  lung  injury  in  the preterm.  Early 

Hum Dev 53:81‐94 

4.  Keszler M, Modanlou H, Brudno D, Clark  F, Cohen R, Ryan R, Kaneta M, Davis  J 

1997  Multicenter  controlled  clinical  trial  of  high‐frequency  jet  ventilation  in 

preterm  infants  with  uncomplicated  respiratory  distress  syndrome.  Pediatrics 

100:593‐599 

5.  Wiswell T, Graziani, LJ, Kornhauser, MS, Cullen,  J, Merton, DA, McKee, L, Spitzer, 

AR  1996  High‐frequency  jet  ventilation  in  the  early management  of  respiratory 

distress  syndrome  is  associated  with  a  greater  risk  for  adverse  outcomes. 

Pediatrics 98:1035‐1043 

6.  Wiswell TE, Graziani LJ, Kornhauser MS, Stanley C, Merton DA, McKee L, Spitzer AR 

1996  Effects  of  hypocarbia  on  the  development  of  cystic  periventricular 

leukomalacia  in  premature  infants  treated  with  high‐frequency  jet  ventilation. 

Pediatrics 98:918‐924 

7.  Polglase GR, Moss TJM, Nitsos  I, Allison BJ, Pillow JJ, Hooper SB 2008 Differential 

effect  of  recruitment  manoeuvres  on  pulmonary  blood  flow  and  oxygenation 

during hfov in preterm lambs. J Appl Physiol 105:603‐610 

8.  Polglase GR, Morley CJ, Crossley KJ, Dargaville P, Harding R, Morgan DL, Hooper SB 

2005  Positive  end‐expiratory  pressure  differentially  alters  pulmonary 

Page 163: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

149 

 

hemodynamics  and  oxygenation  in  ventilated,  very  premature  lambs.  J  Appl 

Physiol 99:1453‐1461 

9.  Courtney  SE,  Asselin  JM  2006  High‐frequency  jet  and  oscillatory  ventilation  for 

neonates: Which strategy and when? Respir Care Clin N Am 12:453‐467 

10.  Australian Government NHMRC 2004 Australian code of practice for the care and 

use  of  animals  for  scientific  purposes  7th  edition.  Australian  Government, 

Canberra 

11.  Polglase GR, Wallace MJ, Grant DA, Hooper SB 2004  Influence of  fetal breathing 

movements on pulmonary hemodynamics in fetal sheep. Pediatr Res 56:932‐938 

12.  Jobe  AH,  Polk  D,  Ikegami M,  Newnham  J,  Sly  P,  Kohen  R,  Kelly  R  1993  Lung 

responses  to ultrasound‐guided  fetal  treatments with  corticosteroids  in preterm 

lambs. J Appl Physiol 75:2099‐2105 

13.  Smeed J, Watkins C, Rhind S, Hopkins J 2007 Differential cytokine gene expression 

profiles  in  the  three pathological  forms of  sheep paratuberculosis. BMC Vet Res 

3:18 

14.  Wallace MJ, Probyn M, Zahra V, Crossley K, Cole T, Davis P, Morley C, Hooper S 

2009 Early biomarkers and potential mediators of ventilation‐induced lung injury in 

very preterm lambs. Respir Res 10:1‐15 

15.  VanHarmelen  V,  Ariapart  P,  Hoffstedt  J,  Lundkvist  I,  Bringman  S,  Arner  P  2000 

Increased adipose angiotensinogen gene expression  in human obesity. Obes Res 

8:337‐341 

16.  Livak K,  Schmittgen  T  2001 Analysis of  relative  gene expression data using  real‐

time quantitative pcr and the 2(‐delta delta c(t)) method. Methods 25:402‐408 

Page 164: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

150 

 

17.  Faith M,  Sukumaran A,  Pulimood A,  Jacob M  2008 How  reliable  an  indicator  of 

inflammation is myelperoxidase activity? Clin Chim Acta 396:23‐25 

18.  McCabe A, Dowhy M, Holm  B, Glick  P  2001 Myeloperoxidase  activity  as  a  lung 

injury marker in the lamb model of congenital diaphragmatic hernia. J Pediatr Surg 

36:334‐337 

19.  Keszler M 2006 High frequency jet ventilation. In Donn SM, Sinha SK (eds) Manual 

of neonatal respiratory care. Mosby Elsevier, Philadelphia, pp 232‐233 

20.  Groeneveld  ABJ,  Schneider  AJ  2008  The  relationship  between  arterial  po2  and 

mixed  venous po2  in  response  to  changes  in positive end‐expiratory pressure  in 

ventilated patients. Anaesthesia 63:488‐494 

21.  Trachsel D, McCrindle BW, Nakagawa S, Bohn D 2005 Oxygenation  index predicts 

outcome  in  children with  acute  hypoxemic  respiratory  failure. Am  J   Respir Crit 

Care Med 172:206‐211 

22.  Keszler M, Durand D 2001 High  frequency ventilation.   Past, present and  future. 

Clin Perinatol 28:579‐607 

23.  Sherry  K,  Feneck  R,  Normandale  J  1988  Thermodilution  cardiac  output 

measurements during conventional and high frequency ventilation. J Cardiothorac 

Anesth 2:320‐325 

24.  Crossley K, Morley C, Allison B, Polglase G, Dargaville P, Harding R, Hooper S 2007 

Blood gases and pulmonary blood flow during resuscitation of very preterm lambs 

treated  with  antenatal  betamethasone  and/or  curosurf:  Effect  of  positive  end‐

expiratory pressure. Pediatric Research 62:37‐42 

Page 165: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

151 

 

25.  Ikegami M, Jobe AH 2002 Postnatal  lung  inflammation  increased by ventilation of 

preterm  lambs  exposed  antenatally  to  escherichia  coli  endotoxin.  Pediatr  Res 

52:356‐362 

26.  Naik AS, Kallapur SG, Bachurski CJ, Jobe AH, Michna J, Kramer BW, Ikegami M 2001 

Effects of ventilation with different positive end‐expiratory pressures on cytokine 

expression in the preterm lamb lung. Am J Respir Crit Care Med 164:494‐498 

27.  Merritt  T,  Cochrane  C, Holcombe  K,  Bohl  B,  Hallman M,  Strayer  D,  Edwards  D, 

Gluck  L  1983  Elastase  and  alpha  1‐proteinase  inhibitor  activity  in  the  tracheal 

aspirates  during  respiratory  distress  syndrome.    Role  of  inflammation  in  the 

pathogenesis of bronchopulmonary dysplasia. J Clin Invest 72:656‐666 

28.  Scalfaro P, Pillow  JJ, Sly PD, Cotting  J 2001 Reliable tidal volume estimates at the 

airway  opening  with  an  infant  monitor  during  high‐frequency  oscillatory 

ventilation. Crit Care Med 29:1925‐1930 

 

 

 

Page 166: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

152 

 

 

Page 167: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

 

153 

 

5     The Impact of Conventional Breath Inspiratory Time during 

High‐frequency Jet Ventilation in Preterm Lambs  

 

Gabrielle C Musk,1* Graeme R Polglase,1 Yong Song,1 and J Jane Pillow1 

1School of Women’s and  Infants’ Health,  the University of Western Australia, M550, 35 

Stirling Highway, Crawley, 6009, Western Australia, Australia. 

 

 

This is the first study investigating the role of conventional mechanical ventilator breaths 

for alveolar recruitment during high‐frequency jet ventilation.  We isolated the effect of 

the inspiratory time of the conventional mechanical ventilation breath in this study. 

Page 168: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

 

154 

 

Abstract 

Background:  The  delivery  of  conventional mechanical  ventilator  (CMV)  breaths  during 

high‐frequency  jet  ventilation  (HFJV)  is  advocated  to  recruit  and  stabilise  alveoli. 

Objectives:  To  establish  if  CMV  breath  duration  delivered  during  HFJV  influences  gas 

exchange, lung mechanics and lung injury. 

Methods: Sedated newborn preterm lambs at 128 d gestational age were studied. HFJV (7 

Hz, PEEP 8 cmH2O, PIPHFJV 40 cmH2O, FiO2 0.4) with superimposed CMV breaths (PIPCMV 25 

cmH2O, rate 5 breaths/min) was commenced after delivery and continued for 2 h.   CMV 

breath  inspiratory  time  (tI) was  either  0.5  s  (HFJV+CMV0.5:  n=8)  or  2.0  s  (HFJV+CMV2.0: 

n=8). Age matched unventilated controls (UVC) were included for comparison.   

Results: Serial arterial blood gas analyses were performed. PIPHFJV was adjusted to target a 

PaCO2  of  45‐55  mmHg.  FiO2  was  adjusted  to  target  SpO2  90‐95  %.  Static  deflation 

pressure‐volume  curves,  bronchoalveolar  lavage  (BAL)  and  lung  tissue  samples  were 

obtained post‐mortem. Gas exchange, ventilation parameters, static lung compliance and 

BAL  inflammatory markers were  not  different  between HFJV+CMV0.5  and HFJV+CMV2.0. 

Both ventilation groups had higher BAL inflammatory markers and increased iNOS positive 

cells on histology compared to UVC, whilst lung tissue IL‐1β and IL‐6 mRNA expression was 

higher in the HFJV+CMV2.0 group compared to the UVC group. 

Conclusions:  Preterm  lambs  were  ventilated  effectively  with  HFJV  and  5  CMV 

breaths/min.  CMV  breath  duration  did  not  alter  blood  gas  exchange,  ventilation 

parameters  ex  vivo  static  lung mechanics  or markers  of  lung  injury  over  a  2  h  study, 

Page 169: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

 

155 

 

although  consistent  trends  towards  increased  inflammatory markers with  the  longer  tI 

suggest greater risk of injury. 

Page 170: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

 

156 

 

Introduction 

High‐frequency  jet ventilation (HFJV)  is a  lung protective ventilation strategy for patients 

with respiratory distress syndrome (RDS) (1, 2). As with any ventilation strategy, the aim 

during  HFJV  is  to  recruit,  stabilise  and maintain  open  alveoli  to  facilitate  efficient  gas 

exchange and to prevent lung injury (3, 4). The primary method advocated for optimising 

lung  volume  recruitment  during  HFJV  includes  recruiting  collapsed  units with  low‐rate 

conventional mechanical ventilator  (CMV) breaths superimposed on  the HFJV waveform 

(1,  5).  The  peak  inspiratory  pressure  (PIP)  of  the  CMV  breath  (CMVPIP)  is  optimally  set 

above  the  opening  pressure  (lower  inflection  point)  on  the  inflation  pressure‐volume 

curve. Alveoli are stabilised in expiration by incrementing positive end‐expiratory pressure 

(PEEP)  until  the  target  oxyhemoglobin  saturation  (SpO2)  is  achieved  and  maintained 

without a background CMV rate (6, 7) 

While the delivery of CMV breaths during HFJV is advocated, there is little information to 

guide  the  selection  of  the  inspiratory  time  (tI)  of  the  CMV  breath  (8).  Extending  the 

duration of the CMV breath beyond that required to complete tidal volume delivery may 

promote aeration of alveolar units with long time constants, but will expose aerated lung 

regions to unnecessarily high peak inspiratory pressures for extended times. 

The duration of the inspiratory phase of the CMV breath potentially affects the delivered 

CMV  tidal  volume  (depending  on  the  time  constant  of  the  lung),  and  the  duration  of 

exposure of alveoli to the set PIPCMV. When HFJV is applied to poorly compliant, atelectatic 

Page 171: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

 

157 

 

lungs, the  lungs will  inflate completely with a short tI. Whereas a  longer tI may enhance 

recruitment by facilitating aeration of long time constant acini, this approach may expose 

existing aerated units to barotrauma.  

We aimed to compare the effect of different duration CMV breaths during HFJV on HFJV 

ventilator requirements, gas exchange and markers of lung injury in a preterm lamb model 

of  respiratory  distress  syndrome.  We  hypothesised  that  in  the  setting  of  preterm 

respiratory distress  syndrome,  a CMV breath with  a  long  tI would promote  lung  injury, 

without improvement in arterial oxygenation.  

Page 172: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

 

158 

 

Materials and Methods 

All animal procedures were approved by the University of Western Australia animal ethics 

committee,  according  to  the  guidelines  of  the  National  Health  and Medical  Research 

Council of Australia code of practice for the care and use of animals for scientific purposes 

(9).  

Animals, Instrumentation, and Delivery  

An intravenous injection of medetomidine (0.02 mg kg‐1, Pfizer Animal Health, U.S.A.) and 

ketamine  (10  mg  kg‐1,  Troy  Laboratories,  Australia)  was  administered  to  induce 

anaesthesia  in  pregnant  ewes  at  a mean  (SD)  of  128  (0.8)  d  gestation,  prior  to  spinal 

anaesthesia  (3  mL  lidocaine,  20  mg  mL‐1,  Troy  Laboratories,  Australia)  and  surgical 

delivery.  Lambs were  randomised  to  either unventilated  controls  (UVC, n=5)  that were 

euthanased  at  delivery  (pentobarbitone  100  mg  kg‐1  i.v.,  Valabarb,  Jurox,  Australia) 

immediately prior to postmortem, or to one of two HFJV strategies. For ventilation groups, 

the fetus was exteriorised through a uterine  incision,  intubated orally (4.5 mm  ID cuffed 

tracheal  tube, Portex  Ltd. England),  suctioned  and  intratracheal  surfactant was  instilled 

(100 mg kg‐1: Survanta, Abbott Laboratories, U.S.A.) prior to delivery of the lamb.  

Postnatal care 

Lambs were  dried, weighed  and  commenced  on  their  randomised  ventilation  strategy: 

HFJV with  CMV  breaths  delivered  over  0.5  s  (HFJV+CMV0.5;  n=8);  and  HFJV with  CMV 

breaths delivered over 2.0  s  (HFJV+CMV2.0; n=8). Propofol  (0.1 mg  kg‐1 min‐1; Norbrook 

Page 173: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

 

159 

 

Laboratories  Ltd.,  Victoria,  Australia)  and  remifentanil  (0.05  µg  kg‐1min‐1;  Abbott 

Laboratories,  U.S.A.)  were  infused  continuously  via  an  umbilical  venous  catheter  for 

anaesthesia and  analgesia. An umbilical  arterial  catheter was  sampled  intermittently  to 

assess  gas  exchange  and  acid‐base  status.  Core  body  temperature  was  monitored 

continuously  and  maintained  between  38°  C  and  39°  C.  Oxygenation  Index  (OI)  was 

calculated as: 

OI=1.36 x aO

100 x aw xFiO

2

2

P

P  

where  FiO2  is  fractional  inspired  oxygen  concentration,  Paw  is mean  airway  pressure 

(cmH2O) and PaO2  is partial pressure of oxygen  in arterial blood  (mmHg). The  constant 

1.36 is for conversion of mmHg to cmH2O. 

Mechanical Ventilation 

HFJV (Life Pulse High Frequency Ventilator, Bunnell Inc., Salt Lake City, U.S.A.) coupled to 

pressure‐limited  time‐cycled  infant  conventional  ventilator  (Bourns  Life  Systems  BP200 

Infant  Pressure  Ventilator,  California,  U.S.A.)  was  commenced  immediately  following 

administration of exogenous surfactant. Initial HFJV settings included a respiratory rate of 

420 breaths/min (7 Hz), FiO2 0.4 and a PIPHFJV of 40 cmH2O. PIPHFJV was adjusted to achieve 

permissive hypercapnia (partial pressure of carbon dioxide in arterial blood (PaCO2) 45‐55 

mmHg) to a maximum of 40 cmH2O. FiO2 was altered to maintain SpO2 at 90‐95 %. HFJV tI 

was fixed at 0.02 s. Intermittent CMV breaths using the assigned tI were superimposed on 

Page 174: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

 

160 

 

the HFJV waveform to a PIPCMV of 25 cmH2O and a rate of 5 breaths/min. The PEEP was 

constant throughout at 8 cmH2O. 

High‐frequency  jet  ventilation  measured  variables  (PIPHFJV,  PEEP;  Paw,HFJV,  pressure 

differential (∆PHFJV) and servo pressure) were recorded at regular intervals. After obtaining 

final measurements at 2 h, the FiO2 was  increased to 1.0  for 2 min  followed by a 3 min 

tracheal tube occlusion to facilitate lung collapse for post‐mortem pressure‐volume curve 

and then euthanasia (pentobarbitone 100 mg kg‐1 i.v. Jurox, Australia). 

Post‐mortem 

The collapsed  lung was exposed by thoracotomy,  inflated slowly to 40 cmH2O, and an  in 

situ deflation pressure volume curve was recorded (10). Bronchoalveolar lavage (BAL) fluid 

was collected from the left lung for protein analysis (11, 12) and cytology. Differential cell 

counts  were  performed  on  cytospin  samples  of  the  BAL  fluid  stained  with  Diff‐Quik 

(Fronine Lab Supplies, N.S.W., Australia). The right upper lung lobe was inflation fixed (30 

cmH2O)  in  10  %  formalin.  Immunohistochemical  staining  for  inducible  nitric  oxide 

synthase  (iNOS) was performed on 5 µm sections of  lung  tissue  (13). Positive cells were 

identified and quantified per  field as number of cells per  total cellular area  (nm2) using 

densitometry (Image‐Pro Plus version 4.5, Media Cybernetics, U.S.A.). 

RNA  was  extracted  from  the  left  lung  and  reverse  transcribed  to  cDNA  (QuantiTect® 

Reverse Transcription Kit, Qiagen, U.S.A.). Expression of  IL‐1β and  IL‐6 was measured by 

qRT‐PCR (14) and normalized to 18S RNA (15) using the 2‐∆∆CT method (16). 

Page 175: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

 

161 

 

Statistical Analyses 

Kruskal‐Wallis one way analysis of variance was used to compare groups at specific time 

points  while  the  effect  of  CMV  strategy  on  ventilator  requirements  and  physiological 

changes over the duration of the study was determined using two‐way repeated measure 

analysis  of  variance.  A  Holm  Sidak  post‐hoc  test  was  used  to  determine  significance 

(p<0.05).  Analyses  were  performed  using  SigmaStat  (Version  3.5,  Systat  Software 

Incorporated, U.S.A.). Data are expressed as mean (SEM) unless otherwise stated. 

Page 176: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

 

162 

 

Results 

Baseline characteristics of the lambs were not different between groups (Table 1).  

Physiological Measurements 

HFJV  and  CMV monitored  pressures  (PIPHFJV,  Paw,HFJV,  ∆PHFJV  or  servo  pressure,  Fig.  1), 

oxygen requirements (FiO2, Fig. 2A) or indices of arterial oxygenation (PaO2 and OI, Fig. 2B 

and 2C) were not different between the two ventilation groups over the 2 h study. PaCO2 

was similar for each group throughout the study (Fig. 2D). PaCO2  initially fell rapidly, but 

subsequently  increased with ventilator adjustment and stabilised within the target range 

by 60 min. 

Post‐mortem static  lung compliance was comparable  for HFJV+CMV0.5 and HFJV+CMV2.0. 

Lung  volume was  higher  in  both  ventilated  groups  compared  to  the UVC  group  at  15 

cmH2O, 20 cmH2O and 40 cmH2O (Fig. 3).  

Lung Injury 

The  total  protein  concentration  of  BAL  fluid  was  higher  in  both  ventilated  groups 

compared  to UVCs, but did not differ between HFJV+CMV0.5 and HFJV+CMV2.0  (p=0.38). 

Similarly, there was no difference in the total inflammatory cell population of the BAL fluid 

between  the  ventilated  groups  (p=0.16),  although  total  inflammatory  cell  counts were 

increased compared to UVCs (Table 2). 

Page 177: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

 

163 

 

The number of iNOS positive cells was not different between the ventilated groups. Lung 

IL‐1β and IL‐6 mRNA expression was significantly greater in the HFJV+CMV2.0 group (Table 

2) compared to UVCs.  

Page 178: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

 

164 

 

Discussion 

Although low rate CMV breaths are often used to assist alveolar recruitment during HFJV, 

few data exist  to guide clinicians on  the selection of  rate, size or duration of such CMV 

breaths. We  investigated  the effect of  two different  inspiratory  times  for  low  rate CMV 

breaths  during  HFJV  and  found  no  significant  differences  in  gas  exchange,  ventilation 

parameters,  static  lung  compliance  or  inflammatory  markers  (as  determined  by  BAL 

protein, tissue iNOS or pro‐inflammatory cytokine mRNA expression) between a CMV tI of 

0.5 s and 2.0 s.  

The primary purpose of CMV breaths during HFJV  is to promote alveolar recruitment via 

alveolar  exposure  to  a  distending  pressure  above  the  opening  pressure  threshold.  In 

previous  studies  using  similar  gestation  naïve  lambs, we  have  consistently  observed  a 

pressure of 25 cmH2O to be above the lower inflection point (17). In the current study we 

expected  the opening pressure  to be  lower  than our previous experience given  that  the 

ventilated  lambs  received  prophylactic  surfactant,  thus  an  initial  PIPCMV  of  25  cmH2O 

should achieve  recruitment. Although PIPCMV was weaned alongside PIPHFJV  to  remain 5 

cmH2O  lower  than PIPHFJV  throughout  the study period,  the PIPCMV did not  fall below 20 

cmH2O  or  differ  between  the  two  ventilation  groups  at  any  time  during  the  study. 

Nonetheless,  it  is possible that the PIPCMV was  lower than the opening pressure and that 

this may account  for the  failure to demonstrate differences between the short and  long 

duration PIPCMV. 

Page 179: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

 

165 

 

To isolate the effect of CMV breath tI we kept other CMV variables constant between the 

two  ventilated  groups:  a CMV breath  rate of 5 breaths/min  reflects  the  recommended 

upper limit for common clinical practice (1). Likewise, a constant PEEPCMV of 8 cmH2O was 

maintained throughout the study. We showed previously that a constant PEEP of 5 cmH2O 

was insufficient to stabilise alveoli (18) during HFJV.   

Our selection of 0.5 s for the short tI was guided by our previous experience using CMV in 

preterm lambs: in the 128 d preterm lamb, 0.5 s is sufficient to complete inspiration with a 

constant ventilator flow of 8 L/min with a waveform pattern comparable to that achieved 

using 0.3 s ‐ 0.4 s  inspiratory times commonly used  in small babies (19). We rationalised 

the  selection of 2.0  s as  the  long  tI  for comparison as  it would provide at  least 1.5  s of 

pressure plateau. If an extended tI for the CMV breath enhanced lung volume recruitment 

during HFJV, we would have expected  improved oxygenation  in  the group  receiving  the 

2.0  s CMV breath. The  absence of  any difference  in  FiO2, PaO2 or OI between  the  two 

ventilator groups suggests a 2.0 s CMV breath has no volume recruitment advantage over 

a  0.5  s  CMV  breath  during  HFJV  in  the  preterm  lamb  over  2  hours  in  the  postnatal 

transition period.   

Whilst no specific advantage of inspiratory time was demonstrated, there was evidence of 

improved  compliance  for  both  CMV  tI  strategies:  servo  pressure  initially  stayed  high 

despite  a  rapid  decrease  in  PIPHFJV  and  ∆PHFJV,  indicative  of  increased  lung  compliance. 

Servo pressure is the automatically controlled driving pressure of the jet ventilator which 

changes in response to monitored airway pressure to ensure that the ventilator continues 

Page 180: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

 

166 

 

to  deliver  sufficient  inspiratory  gas  flow  to meet  the  set  PIPHFJV  (20).  There  were  no 

differences  between  the  ventilator  groups  in  the  servo  pressure  at  any  time  point, 

suggesting that similar improvements in compliance were achieved for both groups during 

the  initial phases.  Interpretation of servo pressure  in the  latter half of the study  is more 

complicated: decreases in servo pressure in the latter half of the study paralleled further 

reductions  in  PIPHFJV  and  ΔPHFJV  suggesting  that  the  previously  achieved  level  of 

compliance  was  at  least  maintained.  Reduced  servo  pressure  in  the  absence  of 

corresponding reductions  in ΔPHFJV would have implied decreased compliance and loss of 

lung  volume.  There  was  a  slow  increase  in  OI  towards  the  end  of  the  study  in  both 

ventilated  groups  likely  indicative  of  alveolar  instability  and  collapse  due  to  the  use of 

Paw,HFJV or PEEPHFJV that was too low to maintain end expiratory lung volume.  

We deliberately used a constant PEEP strategy throughout the study to isolate the effect 

of  different  CMV  tI  strategies  during  HFJV  on  oxygenation  from  the  potentially 

confounding effects arising from altered PEEP.  In clinical practice, however, adequacy of 

PIPCMV and PEEPCMV settings would be  important considerations  in assessing response to 

changes in the OI. Increasing PEEPCMV rather than decreasing PIPHFJV may have effectively 

decreased  ΔPHFJV  and  controlled  PaCO2  whilst  maintaining  Paw,HFJV  and  optimal  lung 

volume.  Regardless,  Paw,HFJV was  not  different  between  the  two  groups  over  the  study 

duration despite our rigid protocol. 

Low rate CMV has a negligible contribution to ventilation during HFJV, during which CO2 

removal is primarily influenced by HFJV frequency and HFJV tidal volume. The absence of 

Page 181: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

 

167 

 

difference  in  HFJV  parameters  between  the  two  ventilator  groups  is  therefore  not 

surprising given the same HFJV ventilator strategy was used to target the desired PaCO2 

range. The initial rapid fall in PaCO2 values to a level below the target range is most likely 

related to the initial PIPHFJV selection.  

In the absence of benefits of a specific CMV tI strategy on oxygenation or ventilation, the 

question remains whether a  long CMV breath tI  is more  injurious than a shorter breath. 

Lung  injury  is preceded by  lung  inflammation, evidenced by  increased  inflammatory cells 

in  the  airspaces  and  lung  tissue  that  release  pro‐inflammatory  mediators  (21).  We 

hypothesised that lung injury would be increased in the HFJV+CMV2.0 group compared to a 

shorter CMV breath tI, and chose to measure  inflammatory markers that we anticipated 

would increase within 120 min (22‐25). Whereas HFJV+CMV was injurious in both groups 

compared to UVC, there were no statistical differences in mRNA expression or static lung 

compliance between  the  two ventilated groups. Nonetheless, all markers of  injury  (BAL 

protein  concentration,  BAL  inflammatory  cells,  lung  tissue  iNOS  positive  cells  and  lung 

mRNA  pro‐inflammatory  cytokine  expression),  showed  a  consistent  pattern  of  higher 

levels  in the 2.0 s group compared to the 0.5 s group. The  lack of statistically significant 

difference is likely related to a type II error. Regardless, any potential increase in injury of 

a 2.0  s CMV breath  tI compared  to 0.5  s,  is  likely  to be  subtle at most over a 2 h  time 

frame. Based on our observed differences  in the oxygenation  index and  IL‐6 and  IL‐1β a 

group size of 21 would have been required to detect a statistically significant difference 

with 80% power. 

Page 182: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

 

168 

 

Potential mechanisms promoting injury with a long CMV breath tI likely relate to extended 

exposure  of  distal  airways  and  alveoli  to  high  continuous  inflating  pressures.  Using  a 

PIPCMV less than the PIPHFJV, we deliberately prevented the CMV breath from interrupting 

the HFJV breaths. Thus, theoretically at  least,  longer exposure to  ‘jet‐stacking’ may have 

been a consequence of this strategy for the HFJV+CMV2.0 group. However, the amplitude 

of  the  HFJV  pulses  is  markedly  damped  by  the  time  the  HFJV  pressure  waves  are 

transmitted to the periphery, and  jet‐stacking does not result  in PIPHFJV more than a few 

cmH2O greater  than  the preset PIPHFJV.    It  is more  likely  that any consequence of  longer 

CMV breath  inspiratory times are related to the PIPCMV (which  is fully transmitted to the 

periphery) rather than any stacking of HFJV breaths resulting from this approach. 

Conclusions 

We found no significant differences in gas exchange or markers of injury and inflammation 

between HFJV with CMV breaths delivered with an tI of 0.5 s or 2.0 s over 2 h. However, a 

consistent  tendency  for  increased  inflammatory  markers  when  CMV  breaths  were 

delivered with  an  tI of 2.0  s  compared  to  a  tI of 0.5  s  suggests  the use of  longer CMV 

breath inspiratory times may be more injurious if continued over a longer time frame, and 

warrants  further  investigation. Further studies  to provide evidence to support strategies 

aiming to establish optimal lung volume recruitment during HFJV are recommended. 

Page 183: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

 

169 

 

Acknowledgements 

We would like to express our sincere appreciation to the members of the Ovine Research 

Group,  Ilias  Nitsos  and  Carryn  McLean,  for  technical  assistance,  JRL  Hall  and  Co.  for 

provision and early antenatal care of  the ewes and Professor Karen Simmer  for support 

and encouragement.   

Page 184: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

 

170 

 

Tables 

 

Table 1: Baseline characteristics  

  UVC HFJV+CMV0.5  HFJV+CMV2.0 

n (male)  6 (3)  8 (6)  8 (4) 

Twin (singleton)  4 (2)  8 (0)  8 (0) 

Birthweight (kg)  2.9 (0.4)  2.9 (0.2)  3.0 (0.2) 

Cord pH  7.15 (0.04)  7.15 (0.05)  7.16 (0.05) 

Cord PaCO2  (mmHg)  81.0 (5.8)  73.8 (9.2)  80.6 (10.1) 

 

UVC = Unventilated Control, HFJV+CMV0.5 = HFJV with CMV breaths delivered with 

an inspiratory time of 0.5 s, HFJV+CMV2.0 = HFJV with CMV breaths delivered with an 

inspiratory time of 2.0 s. Values are mean (SEM). 

   

Page 185: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

 

171 

 

 

Table 2: Post‐mortem inflammatory markers  

 

 UVC  HFJV+CMV0.5  HFJV+CMV2.0 

BAL fluid 

Protein concentration  (mg mL‐1)  

14.7 (7.4)  164.1 (27.2)*  197.8 (32.5)* 

Total Inflammatory Cells (cells x 106 kg‐1)  

1.9 (0.8)  44.3 (14.8)*  83.5 (22.6)* 

Neutrophils               (cells x 106 kg‐1)  

0.5 (0.5)  31.3 (15.2)*  66.0 (20.9)* 

Mononuclear cells   (cells x 106 kg‐1)  

1.4 (0.4)  12.2 (4.0)*  16.6 (3.2)* 

      Lymphocytes                         (cells x 106 kg‐1) 

 

0.03 (0.01)  0.2 (0.2)  0.2 (0.1) 

Lung Tissue       

iNOS positive cells   (cells (nm2)‐1)  

0  154.9 (62)*  219.3 (83)* 

IL‐1β (fold change)#  1.0 (0.6, 1.6) 64.1 (42.2, 110.9)  82.1 (57.2, 120.8)†

IL‐6 (fold change)#  0.6 (0.4, 3.2) 238.2 (66.3, 295.6)  266.1 (179.9, 490.5)†

 

UVC = Unventilated Control, HFJV+CMV0.5 = HFJV with CMV breaths delivered with 

an inspiratory time of 0.5 s, HFJV+CMV2.0 = HFJV with CMV breaths delivered with an 

inspiratory time of 2.0 s. * p<0.01 compared to UVC, † p=0.04 compared to UVC, #  

n=7 for analyses. Values are mean (SEM) or median (25th, 75th centile) for parametric 

and non‐parametric data respectively.   

Page 186: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

 

172 

 

 

 

Figure 1 

 

Page 187: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

 

173 

 

                                                                                                                                           Figure 2 

Page 188: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

 

174 

 

 

                                                      Figure 3

Page 189: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

 

175 

 

Figure Legends 

 

Figure 1 Ventilator variables: A: Peak Inspiratory Pressure (PIP); B: Mean Airway Pressure 

(Paw) calculated by the high‐frequency jet ventilator; C: ∆P (Pressure differential); D: Servo 

Pressure  (psi = pounds per  square  inch). ∆ HFJV with CMV breaths delivered over 0.5  s 

(HFJV+CMV0.5),  о HFJV with CMV breaths delivered over 2.0  s  (HFJV+CMV2.0). Solid  fill = 

PIPHFJV, gray fill = PIPCMV. 

 

Figure 2 Ventilation and Oxygenation: A: Fractional inspired oxygen concentration (FiO2); 

B:  Partial  pressure  of  oxygen  in  arterial  blood  (PaO2);  C: Oxygenation  Index; D:  Partial 

pressure  of  carbon  dioxide  in  arterial  blood  (PaCO2);  E:  pH.  ∆ HFJV with  CMV  breaths 

delivered  over  0.5  s  (HFJV+CMV0.5),  о  HFJV  with  CMV  breaths  delivered  over  2.0  s 

(HFJV+CMV2.0). 

 

Figure  3  Pressure  Volume  Curve:  ∆  HFJV  with  CMV  breaths  delivered  over  0.5  s 

(HFJV+CMV0.5),  о  HFJV  with  CMV  breaths  delivered  over  2.0  s  (HFJV+CMV2.0),     

Unventilated  control  (UVC).  *  p<0.05  HFJV+CMV0.5  compared  to  UVC,  **  p<0.01 

HFJV+CMV2.0 compared to UVC. 

 

Page 190: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

 

176 

 

 References 

 

1.  Keszler M, Modanlou H, Brudno D, Clark  F, Cohen R, Ryan R, Kaneta M, Davis  J 

1997  Multicenter  controlled  clinical  trial  of  high‐frequency  jet  ventilation  in 

preterm  infants  with  uncomplicated  respiratory  distress  syndrome.  Pediatrics 

100:593‐599 

2.  Carlo W, Siner, B, Chatburn, RL, Robertson, S, Martin, RJ. 1990 Early  randomised 

intervention with high‐frequency  jet ventilation  in  respiratory distress syndrome. 

Journal of Paediatrics 117:765‐770 

3.  Courtney  SE,  Asselin  JM  2006  High‐frequency  jet  and  oscillatory  ventilation  for 

neonates: Which strategy and when? Respir Care Clin N Am 12:453‐467 

4.  Bunnell  JB  2006 High  frequency  ventilation.  In Webster  JG  (ed)  Encyclopedia  of 

medical devices and  instrumentation.  John Wiley and  sons, New  Jersey, pp 497‐

514 

5.  Keszler M, Durand D 2001 High  frequency ventilation.   Past, present and  future. 

Clin Perinatol 28:579‐607 

6.  Lachmann B 1992 Open up the  lung and keep the  lung open.  Intensive Care Med 

18:319‐321 

7.  Papadakos PJ, Lachmann B 2007 The open lung concept of mechanical ventilation: 

The role of recruitment and stabilization. Critical Care Clinics 23:241‐250 

Page 191: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

 

177 

 

8.  Bunnell  B  2007  General  guidelines  for  high  frequency  jet  ventilation.  Bunnell 

Incorporated  (www.bunl.com/clinical.html)  Accessed  July  2008,  Salt  Lake  City, 

Utah 

9.  Australian Government NHMRC 2004 Australian code of practice for the care and 

use  of  animals  for  scientific  purposes  7th  edition.  Australian  Government, 

Canberra 

10.  Jobe  AH,  Polk  D,  Ikegami M,  Newnham  J,  Sly  P,  Kohen  R,  Kelly  R  1993  Lung 

responses  to ultrasound‐guided  fetal  treatments with  corticosteroids  in preterm 

lambs. J Appl Physiol 75:2099‐2105 

11.  Lowry OH, Rosebrough NJ, Farr AL, Randall RJ 1951 Protein measurement with the 

folin phenol reagent. J Biol Chem 193:265‐275 

12.  Jobe A, Jacobs H, Ikegami M, Berry D 1985 Lung protein leaks in ventilated lambs: 

Effects of gestational age. J Appl Physiol 58:1246‐1251 

13.  Kallapur  SG,  Jobe  AH,  Ball MK,  Nitsos  I, Moss  TJM,  Hillman  NH,  Newnham  JP, 

Kramer  BW  2007  Pulmonary  and  systemic  endotoxin  tolerance  in  preterm  fetal 

sheep exposed to chorioamnionitis. J Immunol 179:8491‐8499 

14.  Sozo F, O'Day L, Maritz G, Kenna K, Stacy V, Brew N, Walker D, Bocking A, Brien J, 

Harding  R  2009  Repeated  ethanol  exposure  during  late  gestation  alters  the 

maturation and  innate  immune  status of  the ovine  fetal  lung. Am  J Physiol Lung 

Cell Mol Physiol 296:L510‐L518 

15.  VanHarmelen  V,  Ariapart  P,  Hoffstedt  J,  Lundkvist  I,  Bringman  S,  Arner  P  2000 

Increased adipose angiotensinogen gene expression  in human obesity. Obes Res 

8:337‐341 

Page 192: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

 

178 

 

16.  Livak K,  Schmittgen  T  2001 Analysis of  relative  gene expression data using  real‐

time quantitative pcr and the 2(‐delta delta c(t)) method. Methods 25:402‐408 

17.  Pillow  JJ,  Sly  PD,  Hantos  Z  2004  Monitoring  of  lung  volume  recruitment  and 

derecruitment  using  oscillatory  mechanics  during  high‐frequency  oscillatory 

ventilation in the preterm lamb. Pediatric Critical Care Medicine 5:172‐180 

18.  Musk GC, Polglase GR, Bunnell JB, McLean CJ, Nitsos I, Song Y, Pillow JJ 2010 High 

positive  end‐expiratory  pressure  during  high‐frequency  jet  ventilation  improves 

oxygenation and ventilation  in preterm  lambs. Pediatr Res Dec 20:Epub ahead of 

print 

19.  Kamlin  COF,  Davis  PG  2003  Long  versus  short  inspiratory  times  in  neonates 

receiving  mechanical  ventilation  (review).  Cochrane  Database  of  Systematic 

Reviews 4:CD004503 

20.  Bunnell  JB  2002  The  importance  of  servo  pressure.  Bunnell  Incorporated 

(www.bunl.com/clinical.html) Accessed July 2008, Salt Lake City, Utah 

21.  Kallapur  SG,  Jobe  AH  2006  Contribution  of  inflammation  to  lung  injury  and 

development. Arch Dis Child Fetal Neonatal Ed 91:F132‐F135 

22.  Wallace MJ, Probyn M, Zahra V, Crossley K, Cole T, Davis P, Morley C, Hooper S 

2009 Early biomarkers and potential mediators of ventilation‐induced lung injury in 

very preterm lambs. Respir Res 10:1‐15 

23.  Ikegami M, Jobe AH 2002 Postnatal  lung  inflammation  increased by ventilation of 

preterm  lambs  exposed  antenatally  to  escherichia  coli  endotoxin.  Pediatr  Res 

52:356‐362 

Page 193: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

 

179 

 

24.  Naik AS, Kallapur SG, Bachurski CJ, Jobe AH, Michna J, Kramer BW, Ikegami M 2001 

Effects of ventilation with different positive end‐expiratory pressures on cytokine 

expression in the preterm lamb lung. Am J Respir Crit Care Med 164:494‐498 

25.  Merritt  T,  Cochrane  C, Holcombe  K,  Bohl  B,  Hallman M,  Strayer  D,  Edwards  D, 

Gluck  L  1983  Elastase  and  alpha  1‐proteinase  inhibitor  activity  in  the  tracheal 

aspirates  during  respiratory  distress  syndrome.    Role  of  inflammation  in  the 

pathogenesis of bronchopulmonary dysplasia. J Clin Invest 72:656‐666 

 

 

Page 194: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

 

180 

 

 

Page 195: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

  181

6           The Effect of Conventional Breath Peak  Inspiratory Pressure 

during High‐frequency Jet Ventilation in Preterm Lambs  

 

 

Gabrielle C Musk 1, Graeme R Polglase2 and J Jane Pillow 1. 

1School of Women’s and Infants’ Health, University of Western Australia, Perth, Australia. 

2The  Ritchie  Centre,  Monash  Institute  of  Medical  Research,  Monash  University, 

Melbourne, Australia. 

 

 

 

This  is  the  second  study  investigating  the  role  of  conventional  mechanical  ventilator 

breaths  for alveolar  recruitment during high‐frequency  jet  ventilation.   We  isolated  the 

effect of the peak  inspiratory pressure of the conventional mechanical ventilation breath 

in this study. 

 

 

Page 196: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

  182

Abstract 

Alveoli are recruited with conventional mechanical ventilator (CMV) breaths during high‐

frequency  jet ventilation  (HFJV). We assessed  the effect of CMV breath peak  inspiratory 

pressure  (PIP)  on  gas  exchange,  ventilator  requirements  and  lung  injury  during  HFJV. 

Preterm  lambs  of  anaesthetised  ewes  were  delivered  surgically  at  128  d  gestation 

(term=150  d)  and  randomised  to  an  unventilated  control  group  (UVC)  or  one  of  3 

ventilated  groups: HFJV;  or HFJV with  5  CMV  breaths/min  to  a  PIPCMV  either  5  cmH2O 

below or above PIPHFJV  (HFJV+CMVlow and HFJV+CMVhigh). Set PEEP was maintained at 8 

cmH2O. PIPHFJV and FiO2 were adjusted to maintain PaCO2 45‐55 mmHg and SpO2 88‐95 %. 

Lambs were euthanased after 2 h and a post mortem performed. FiO2 was  lowest  in the 

HFJV+CMVhigh  group  from  60 min. Oxygenation  index  increased  over  time  in  the HFJV 

group. In situ lung volume at 40 cmH2O and bronchoalveolar lavage (BAL) protein content 

and inflammatory cell count was higher in all the ventilated groups compared to UVC. BAL 

neutrophil count was higher in the HFJV+CMVlow group compared to UVC. Lung tissue IL‐6 

mRNA was higher in HFJV+CMVlow compared to UVC. The most physiological benefit with 

the least evidence of harm was apparent in the HFJV+CMVhigh group of preterm lambs.  

 

Page 197: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

  183

Introduction 

High‐frequency  jet  ventilation  (HFJV)  is  a  novel  mode  of  high‐frequency  ventilation 

offering  the  potential  for  lung  protective  low  tidal  volume  ventilation  during  the 

management  of  respiratory  distress  syndrome  (1,  2).  In  neonates, HFJV  is  delivered  in 

tandem  with  a  conventional  ventilator  that  provides  positive  end‐expiratory  pressure 

(PEEP), bias  flow  for  spontaneous breaths, a passage  for exhaled gases and a means of 

delivering sigh breaths. Alveolar recruitment during HFJV  is achieved by altering PEEP or 

by  delivering  conventional  mechanical  ventilator  (CMV)  breaths  (3).  Neonatal  clinical 

protocols suggest that during HFJV CMV breaths should be delivered at very low rates (0‐3 

breaths per minute), with more frequent CMV breaths (5‐10 breaths per minute) used to 

recruit  collapsed  alveoli  (4). Despite  the widespread  use  of  such  protocols  in  neonatal 

units  over  the  last  few  decades,  studies  that  explore  how  these  breaths  should  be 

delivered are limited.  

The peak  inspiratory pressure (PIP) of CMV breaths delivered during HFJV will determine 

whether  or  not  HFJV  breaths  are  interrupted  during  delivery  of  CMV  breaths. 

Conventional mechanical  ventilator  breaths  delivered  to  a  PIPCMV  higher  than  the HFJV 

breaths will  interrupt the HFJV breaths while those delivered to a PIPCMV  lower than the 

HFJV breaths will allow  the HFJV breaths  to  stack on  top of  the CMV breath, delivering 

peak  pressures  in  excess  of  those  set  on  the  ventilator  and  potential  barotrauma. 

However, at any given PIPHFJV, a higher PIPCMV will deliver a higher tidal volume, with the 

potential of  increased  volutrauma  compared  to  that  resulting  from  a PIPCMV below  the 

Page 198: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

  184

PIPHFJV.  Whether  a  series  of  CMV  breaths  that  interrupt  the  HFJV  breaths  are  more 

harmful than those that don’t is unknown.  

We aimed to investigate the effect of 2 different CMV breath PIPCMV settings during HFJV. 

We  hypothesised  that  during  HFJV  in  a  preterm  lamb  model  of  RDS,  CMV  breaths 

delivered to a PIPCMV greater than the PIPHFJV would promote lung injury. 

Page 199: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

  185

Materials and Methods 

All animal procedures were approved by the University of Western Australia animal ethics 

committee,  according  to  the  guidelines  of  the  National  Health  and Medical  Research 

Council of Australia code of practice for the care and use of animals for scientific purposes 

(5).  

Animals, Instrumentation and Delivery  

Anaesthesia  was  induced  in  ewes  at  128‐130  days  of  gestation  with  an  intravenous 

injection of medetomidine (0.02 mg/kg, Pfizer Animal Health, U.S.A.) and ketamine (10 mg 

kg‐1, Troy Laboratories, Australia) followed by a subarachnoid (spinal) injection of lidocaine 

(3 mL, 20 mg mL‐1, Troy Laboratories, Australia). The fetus was exteriorised surgically and 

intubated  orally  (4.5  mm  cuffed  tracheal  tube,  Portex  Ltd.  England).  Lung  fluid  was 

suctioned and intra‐tracheal surfactant (100 mg kg‐1: 25 mg of phospholipids mL‐1, Abbott 

Laboratories, U.S.A.)  instilled prior  to delivery of  the  lamb. Unventilated  controls  (UVC, 

negative controls: n=8) were euthanased (pentobarbitone 100 mg kg‐1 i.v. Jurox, Australia) 

at delivery.  

Postnatal care 

Lambs were dried, weighed and randomised to one of three ventilation groups: HFJV only 

(HFJV; n=8); HFJV with 5 CMV breaths delivered  to  a PIP 5  cmH2O below  the HFJV PIP 

(HFJV+CMVlow, n=8); or HFJV with 5 CMV breaths delivered  to a PIP 5 cmH2O above  the 

HFJV PIP (HFJV+CMVhigh, n=8).  

Page 200: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

  186

Propofol  (0.1  mg  kg‐1  min‐1,  Norbrook  Laboratories  Ltd.,  Victoria,  Australia)  and 

remifentanil  (0.05 µg  kg‐1 min‐1, Abbott  Laboratories, U.S.A.) were  infused  continuously 

through an umbilical vein for anaesthesia and analgesia. An umbilical arterial catheter was 

sampled  intermittently  to assess gas exchange and acid‐base status. Rectal  temperature 

was monitored  continuously and maintained at 38 – 39  °C  (normothermic  for newborn 

lambs).  Oxygenation  Index  (OI)  was  calculated  as  OI  = 2

2

aO

100 xaw xFiO

P

P  where  FiO2  is 

fractional  inspired oxygen concentration, Paw  is mean airway pressure measured by the 

HFJV ventilator and PaO2 is partial pressure of oxygen in arterial blood. 

High Frequency Jet Ventilation 

HFJV (Life Pulse High Frequency Ventilator, Bunnell Inc., Salt Lake City, U.S.A.) coupled to a 

pressure‐limited time‐cycled conventional ventilator (Dräger, Babylog 8000+, Drägerwerk 

AG,  Lübeck,  Germany)  was  commenced  immediately  following  delivery.  Initial  HFJV 

settings were respiratory rate 420 breaths/min, PIPHFJV 30 cmH2O and inspiratory time (tI) 

0.02  s. PIPHFJV was adjusted  to  target permissive hypercapnia  (PaCO2 45‐55 mmHg)  to a 

maximum of 40 cmH2O. The initial FiO2 (0.4) was adjusted to maintain SpO2 88‐95 %.  

CMV breaths were delivered to a PIP (PIPCMV) 5 cmH2O above or below PIPHFJV, and with a 

rate  of  0  or  5  breaths/min  as  per  randomisation.  PIPCMV was  adjusted  in  parallel with 

PIPHFJV to maintain the predefined low and high PIP strategy relative to the PIPHFJV. A PEEP 

of 8 cmH2O and tI of 0.5 s, were maintained throughout the study. 

Page 201: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

  187

After  obtaining  final measurements,  the  FiO2 was  increased  to  1.0  for  2 minutes.  The 

tracheal  tube was  occluded  for  3 min  to  facilitate  lung  collapse  before  the  lamb was 

euthanased (pentobarbitone 100 mg kg‐1 i.v. Jurox, Australia). 

Post‐mortem 

The lung was exposed by thoracotomy, and an in situ deflation pressure volume curve was 

obtained  (6).  The  right upper  lung  lobe was  inflation  fixed  (30  cmH2O)  in  formalin  and 

samples of the right lower lobe were snap frozen for molecular analyses. Bronchoalveolar 

lavage  (BAL)  was  performed  on  the  left  lung  for  cytology  and  protein  analysis  (7). 

Differential cell counts were performed on cytospin samples of the BAL fluid stained with 

Diff‐Quik  (Fronine  Lab  Supplies,  N.S.W.,  Australia).  Immunohistochemical  staining  for 

myeloperoxidase (MPO) was performed on 5 µm sections of lung tissue (8). Positive cells 

were  identified and quantified per  field as number of  cells per  total  cellular area  (nm2) 

using densitometry  (Image‐Pro Plus version 4.5, Media Cybernetics, U.S.A.) by a blinded 

observer  (GCM).  RNA was  extracted  from  lung  tissue  and  reverse  transcribed  to  cDNA 

(Bioscript, Bioline, N.S.W., Australia) for measurement of IL‐1β  and IL‐6 mRNA expression 

by qRT‐PCR (9). 

Statistical Analyses 

Kruskal‐Wallis one way analysis of variance was used to compare groups at specific time 

points.  The  effect  of  time  on  ventilator  requirements  and  physiological  changes  was 

determined  using  two‐way  repeated  measure  analysis  of  variance.  Analyses  were 

Page 202: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

  188

performed using  SigmaStat  (Version 3.5,  Systat  Software  Incorporated, U.S.A.) with p < 

0.05 considered statistically significant. Data are expressed as mean  (SEM) unless stated 

otherwise. 

Page 203: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

  189

Results 

Baseline characteristics of lambs in each group were not different (Table 1). 

Ventilator Settings  

The  PIPCMV  was  5.3  (0.6)  cmH2O  higher  than  PIPHFJV  throughout  the  study  in  the 

HFJV+CMVhigh group and 3.8  (1.5)  cmH2O  lower  than PIPHFJV  in  the HFJV+CMVlow group.  

There  were  no  differences  in  PIPHFJV,  Paw,HFJV,  ΔPHFJV  and  servo  pressure  between  the 

groups (Figure 1A, 1B, 1C and 1D).  

Gas Exchange 

The target SpO2 was achieved in all groups within the first 10 min and maintained for the 

duration of the ventilation period. FiO2 was lower in the HFJV+CMVhigh group from 60 min 

compared  to  the HFJV+CMVlow  group  (p<0.03)  and  from 90 min  compared  to  the HFJV 

group (p<0.03) (Figure 2A). The oxygenation index increased over time in the HFJV group 

(p=0.02) but did not change over time in either of the HFJV+CMV groups (Figure 2B).  

The target PaCO2 was achieved within 30 min and maintained in all groups (Figure 2C). The 

HFJV+CMVhigh group tended to have PaCO2 at the higher end of the target range but it was 

not  different  to  the  other  ventilated  groups.    There were no  differences  in  arterial  pH 

(Figure 2D).  

Static lung compliance 

Page 204: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

  190

HFJV+CMVlow  (p<0.02)  and  HFJV+CMVhigh  (p<0.01) were more  compliant  than  the HFJV 

group  as  determined  by  a  post‐mortem  deflation  static  pressure‐volume  curve.  All 

ventilated groups had a higher static compliance compared to the UVC group. (Figure 3).  

Bronchoalveolar Lavage Fluid 

The total protein concentration of BAL  fluid was higher  in each of  the ventilated groups 

compared to the UVC group, however there were no significant differences between the 

ventilatory strategies. There were more  inflammatory cells  in the BAL  fluid from each of 

the ventilated groups compared to the UVC group (p<0.01). There were more neutrophils 

in the HFJV+CMVlow group compared to UVC (p<0.05) (Table 2). 

Lung Tissue 

The number of MPO positive cells in the lung tissue of ventilated groups was comparable 

between all groups  (Table 2). The mRNA expression of  IL‐1β was similar between all the 

ventilated groups. The mRNA expression of  IL‐6 was higher  in HFJV+CMVlow compared to 

the UVC group (Table 2).   

Page 205: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

  191

Discussion 

While the delivery of CMV breaths during HFJV  is advocated  to recruit alveoli,  there are 

few data to justify the selection of CMV breath parameters. CMV breaths delivered during 

HFJV improved static lung compliance and in the HFJV+CMVhigh group this was associated 

with decreased oxygen requirements and a consistent trend towards lower expression of 

pro‐inflammatory markers.  The use of a PIPCMV higher than the set PIPHFJV appeared more 

protective  than  a  PIPCMV  lower  than  the  set  PIPHFJV.  These  findings  suggest  that  in  the 

setting of atelectatic lungs at the initiation of ventilation in preterm lambs with a constant 

PEEP,  the  inclusion of CMV breaths may  improve  lung  volume  recruitment. Of  the  two 

strategies  including  CMV  breaths,  the  strategy  using  PIPCMV  above  PIPHFJV  appeared  to 

have  the greatest physiological benefit with  the  least evidence of harm, contrary  to our 

hypothesis that this approach may invoke barotrauma.   

Alveolar recruitment during HFJV can be achieved by adjusting PEEP, delivering occasional 

CMV  breaths,  or  both  approaches  in  parallel.  PEEP  facilitates  alveolar  stabilisation  and 

avoidance  of  collapse.  PEEP may  also  contribute  to  recruitment  after  achievement  of 

partial  aeration  if  PEEP  exceeds  the  opening  pressure  of  atelectatic  lung  units,  or  by 

assisting  airway  patency  through  the  action  of  alveolar‐airway  attachments  in  areas  of 

recruited lung. The CMV breaths open the lung primarily by exposing the distal alveoli to a 

pressure greater than the opening pressure and by the delivery of recruiting volumes. The 

PIPCMV  determines  the  delivered  volume  of  inflation  above  the  opening  pressure  for  a 

given lung impedance. If the delivered PIPCMV and consequently the delivered tidal volume 

Page 206: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

  192

are  excessive,  the  cost  of  alveolar  recruitment  from  CMV  breaths may  outweigh  any 

benefit of more rapid alveolar recruitment.  

We  compared  HFJV+CMVlow  and  HFJV+CMVhigh  with  HFJV  alone  to  investigate  the 

cost:benefit ratio for inclusion of CMV breaths, and size of those conventional breaths for 

effective alveolar recruitment during HFJV. If PIPCMV is above PIPHFJV, the HFJV breaths are 

interrupted for the duration of the CMV breath. Provided the PIPCMV is above the opening 

pressure of the  lung,  this breath will act  to recruit  lung volume. Although  this approach 

(PIPCMV > PIPHFJV) has been the preferred clinical strategy, CMV breaths may be injurious if 

they  induce excessive parenchymal stretch (10, 11). As PIPHFJV  is primarily determined by 

the  need  to  achieve  satisfactory  clearance  of  CO2,  the  situation  often  arises whereby 

PIPHFJV  is  increased  significantly  above  PIPCMV.  In  this  scenario,  (PIPCMV  <  PIPHFJV),  the 

phenomenon  of  ‘HFJV‐stacking’  is  observed  such  that  the  peak  pressure  in  the  central 

airways may  be  higher  than  either  the  preset  PIPCMV  or  PIPHFJV. However,  as  the HFJV 

waveform is delivered at high velocity, the PIPHFJV is substantially attenuated such that the 

absolute  PIP  during  an  HFJV  stacked  CMV  breath  is  usually  only marginally  above  the 

preset  PIPHFJV  (unpublished  observations).  Thus  it  is  unlikely  that  the  distal  alveoli  are 

exposed  to excessive peak pressures. Therefore,  the most  important proviso  is  that  the 

PIPCMV  remains higher  than  the opening pressure of  the  lung,  such  that  it  recruits  lung 

volume, without being so high that  it promotes cyclic overdistension. As volutrauma  is a 

more  important determinant of  lung  injury  than barotrauma  (12), we hypothesised  that 

the HFJV+CMVhigh strategy would be more injurious than a HFJV+CMVlow approach. 

Page 207: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

  193

Whereas  we  observed  differences  in  oxygenation  outcome  variables,  there  were  no 

intergroup differences  in  the pro‐inflammatory markers between  the ventilated groups. 

There was however a consistent trend towards less injury in the HFJV+CMVhigh group in all 

pro‐inflammatory  markers  studied  compared  to  the  HFJV  and  HFJV+CMVlow  group. 

Without accurate measurements of lung volume or CMV breath tidal volume (inaccurately 

reported  by  the  conventional  ventilator  during  HFJV),  we  were  unable  to  determine 

whether  this  trend  towards  less  injury  in  the HFJV+CMVhigh  group  is  a  consequence  of 

interrupted  HFJV  breaths,  or more  effective  CMV  breath  related  volume  recruitment. 

Some  variability  in  delivered  tidal  volumes  has  beneficial  effects  in  preterm  lambs  as 

lambs managed with a variable ventilation strategy had improved in vivo lung compliance 

without  increased  lung  injury  (J  Pillow,  unpublished  data).  Intermittent  delivery  of 

relatively  large  breaths  to  a  relatively  high  pressure  is  less  likely  to  facilitate  alveolar 

recruitment more so than uniform breaths delivered repeatedly. The HFJV+CMVhigh group 

in  this  study  is  likely  to  have  received  the most  variable  set  of  breaths  over  2  h.  This 

variation may have contributed to the favourable results for this group.  

We deliberately kept PEEP constant for the duration of this study to  isolate the effect of 

including CMV breaths and  the magnitude of  those breaths on oxygenation, ventilation 

and lung injury. PEEP during HFJV is used primarily to stabilise alveoli and prevent alveolar 

derecruitment  (13‐16)  although  it  can  contribute  to  lung  volume  recruitment  (17). We 

selected a PEEP of 8 cmH2O as previous studies (18) found a PEEP of 5 cmH2O insufficient 

to  stabilise  alveoli  (18).  Nonetheless,  the  increased  OI  in  the  HFJV  group  and  the 

comparable trend  in the HFJV+CMV groups over the 2 h suggests progressive atelectasis 

Page 208: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

  194

and  inadequate  PEEP  stabilisation of  the  lung  at  end  expiration.  In  clinical practice,  an 

increment  in PEEP  as PIPHFJV  and  ∆PHFJV  are weaned may be  essential  to  avoid  alveolar 

collapse. 

In earlier studies we had observed the lower inflection point of similar gestation preterm 

lambs as 20‐25 cmH2O (19) and hence expected that an initial PIPCMV of 25 cmH2O (in the 

HFJV+CMVlow group) would be above the critical opening pressure. Nonetheless, it seems 

likely  that  the HFJV+CMVlow group generated  insufficient pressures and  tidal volumes  to 

achieve effective recruitment and hence to provide the same benefit as the HFJV+CMVhigh 

group.  

We chose  inflammatory markers of ventilation  induced  lung  injury that typically  increase 

within 120 min  (20‐23), and confirmed previous observations using CMV  strategies  that 

any ventilation, even using HFJV alone, increases inflammatory markers in the premature 

lung (17, 24). With only 8 lambs per group we cannot exclude a type II statistical error for 

detection of  significant differences between  the  ventilated groups. Even  so,  the  lack of 

significant  differences  between  the  different  ventilated  groups  suggests  that  such 

differences, if present, are likely to have minimal significance over a 2 h ventilation period.   

Nonetheless, the trends towards  increased BAL protein and  inflammatory cells, and  lung 

tissue MPO  and  interleukin  expression  in  the  HFJV+CMVlow  group  compared  to  other 

ventilated groups and the UVC group are suggestive of increased lung injury in this group. 

A  possible  explanation  may  be  the  trend  to  lower  mean  airway  pressures  in  the 

HFJV+CMVlow group compared to the other two ventilated groups, resulting from the fall 

Page 209: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

  195

in  ΔP  over  the  study  period.  In  clinical  practice,  a  drop  in mean  airway  pressure with 

weaning of the PIPHFJV could be offset by increases in PEEP, however by design, PEEP was 

maintained at a constant level throughout the study duration, in all groups. 

A higher static compliance  in  the HFJV+CMVhigh group was expected given  the  improved 

oxygenation  and  likely  increased  lung  volume  in  vivo  protecting  the  lung  from  injury. 

Whereas  the  OI  increased  over  time  in  the  HFJV  group,  it  is  unlikely  that  there  was 

significant alveolar recruitment in either the HFJV only or the HFJV+CMVlow group as with 

the  exception  of  the  15  min  time  point,  their  oxygenation  indexes  did  not  differ 

subsequently and FiO2 remained elevated throughout the study. It is intriguing therefore, 

that  the  static  lung  compliance  was  lower  in  the  HFJV  group  compared  to  the 

HFJV+CMVlow  group  given  the  trends  towards  increased  lung  injury  in  the  latter  group. 

One  explanation  for  this  finding  may  be  that  the  intermittent  CMV  breaths  in  the 

HFJV+CMVlow  group  stimulated  surfactant  production  and  release.  Further  studies  to 

quantify surfactant protein mRNA may help to elucidate the answer to this question. 

In summary, CMV breaths delivered to a PIPCMV 5 cmH2O above the PIPHFJV provided the 

most physiological benefit with  the  least evidence of harm over a 2 h period  following 

initiation  of  ventilation  in  preterm  lambs.  Our  results  support  the  judicious  use  of 

infrequent,  but  appropriately  targeted,  CMV  breaths  for  alveolar  recruitment  during 

initiation  of  HFJV  in  acute  neonatal  respiratory  distress  syndrome.  Further  studies 

investigating  CMV  breath  parameters  during HFJV  in  the  target  patient  population  are 

indicated. 

Page 210: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

  196

Acknowledgements 

Surfactant was  donated  by Abbott Australia.  The  Life  Pulse High  Frequency Ventilators 

were supplied on  long‐term  loan by Bunnell  Incorporated. We would  like to express our 

sincere  appreciation  to  the members  of  the Ovine Research Group,  Ilias Nitsos, Carryn 

McLean, Richard Dalton and Yong Song  for  technical assistance and  JRL Hall and Co.  for 

provision and early antenatal care of the ewes.   

Page 211: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

  197

Tables 

 

Table 1: Baseline lamb data   

  UVC  HFJV  HFJV+CMVlow  HFJV+CMVhigh 

n (male)  5 (3)  8 (5)  8 (3)  8 (4) 

Birth weight (kg)  2.6 (0.3)  2.6 (0.6)  2.8 (0.6)  3.1 (0.3) 

Gestational age (d)  129.6 (0.5) 129.1 (0.8) 129.1 (0.6)  129.5 (0.5) 

Cord pH  7.11 (0.18) 7.15 (0.09) 7.09 (0.04)  7.11 (0.13) 

Cord PaCO2  (mmHg)  88.9 (28)  77.1 (14.3) 99.3 (24.1)  84.0 (37.0) 

 

Term = 150 d. UVC = unventilated control; HFJV = high‐frequency  jet ventilation 

(HFJV)  alone;  HFJV+CMVlow  =  HFJV with  5  conventional mechanical  ventilation 

(CMV)  breaths/min  to  a  peak  inspiratory  pressure  5  cmH2O  below  HFJV  peak 

inspiratory pressure; HFJV+CMVhigh =   HFJV with 5 CMV breaths/min  to  a peak 

inspiratory pressure 5 cmH2O above HFJV peak  inspiratory pressure. Values are 

mean (SD). Cord samples were collected from the umbilical artery. 

 

 

 

 

 

 

 

 

 

 

 

Page 212: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

  198

 

 

Table 2: Post‐mortem inflammatory markers 

  UVC  HFJV  HFJV+CMVlow  HFJV+CMVhigh 

         

BAL fluid   

Protein (mg mL‐1)  153.0 (85.9) 209.8 (90.5)* 353.3(212.1)*  273.(169.7)* 

Total Inflammatory Cells  

(x 106 kg‐1) 1.9 (0.8)  43.0 (13.9)*  90.2 (28.3)*  36.8 (15.0)* 

Neutrophils  (x 106 kg‐1)  0.5 (0.5)  14.2 (5.9)  34.7 (18.1)*  12.1 (6.4) 

Mononuclear cells (x 106 kg‐1)  1.4 (0.4) 25.5 (11)* 53 (33.2)* 24.5 (10.9)*

         

Lung Tissue   

MPO positive cells   (cells (nm2)‐1)  0 (0, 1.5)  0.8 (0, 14.2)  1.1 (0, 4.4)  2.5 (0, 6.8) 

        

IL‐1β (fold change)  1.0  (0.5, 1.4) 

4.6 (1.6, 8.8) 

5.6 (2.1, 9.4) 

2.4 (1.7, 8.1) 

        

IL‐6 (fold change)  1.0(0.7, 1.5) 

19.4(1.0, 29.8) 

21.5*(4.6, 38.1) 

10.7 (6.9, 22.0) 

        

*p<0.05 compared to UVC. Values are Mean (SD) or median (25, 75 centile). 

 

Page 213: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

  199

 

Figure 1 

Page 214: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

  200

 

Figure 2 

Page 215: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

  201

 

Figure 3 

Page 216: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

  202

Figure Legends 

 

Figure  1 Ventilator  Parameters:   A: High‐frequency  jet  ventilation  inspiratory  pressure 

(PIPHFJV)  (cmH2O)was  adjusted  to  target  PaCO2  45‐55  mmHg;  B:  HFJV  Mean  Airway 

Pressure  (cmH2O); C: HFJV Delta P  (HFJVPIP  ‐ HFJVPEEP)  (cmH2O); D: HFJV  Servo Pressure 

(psi).  Grey diamond = HFJV, open circle = HFJV+CMVlow, solid circle = HFJV+CMVhigh. 

 

Figure 2 Gas Exchange: A: FiO2   * p<0.03 HFJV+CMVhigh  compared  to HFJV+CMVlow, # p 

<0.03  HFJV+CMVhigh  compared  to  HFJV  B:  Oxygenation  Index  *  p  =  0.02  time  120 

compared to time 5 for HFJV C: PaCO2 (mmHg); D: pH.  Grey diamond = HFJV, open circle = 

HFJV+CMVlow, solid circle = HFJV+CMVhigh. 

 

Figure 3 Pressure‐Volume Curve:   # p<0.02 HFJV+CMVhigh compared  to HFJV, ## p<0.02 

HFJV+CMVlow compared to HFJV, * p<0.01 compared to unventilated controls (UVC). Grey 

diamond = HFJV, open circle = HFJV+CMVlow, solid circle = HFJV+CMVhigh, open triangle = 

UVCs. 

 

Page 217: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

  203

References 

1.  Plavka R, Dokoupilova M, Pazderova L, Kopecka P, Sebroa V, Zapadlo M, Keszler M 

2006 High‐frequency jet ventilation improves gas exchange in extremely immature 

infants  with  evolving  chronic  lung  disease.  American  Journal  of  Perinatology 

23:467‐472 

2.  Friedlich  P,  Subramanian,  N,  Sebald,  M,  Noori,  S,  Seri,  I.  2003  Use  of  high‐

frequency  jet  ventilation  in  neonates  with  hypoxaemia  refractory  to  high‐

frequency oscillatory ventilation. Journal of Maternal‐Fetal and Neonatal Medicine 

13:398‐402 

3.  Keszler M, Durand D 2001 High  frequency ventilation.   Past, present and  future. 

Clin Perinatol 28:579‐607 

4.  Bunnell  B  2007  General  guidelines  for  high  frequency  jet  ventilation.  Bunnell 

Incorporated  (www.bunl.com/clinical.html)  Accessed  July  2008,  Salt  Lake  City, 

Utah 

5.  Australian Government NHMRC 2004 Australian code of practice for the care and 

use  of  animals  for  scientific  purposes  7th  edition.  Australian  Government, 

Canberra 

6.  Jobe  AH,  Polk  D,  Ikegami M,  Newnham  J,  Sly  P,  Kohen  R,  Kelly  R  1993  Lung 

responses  to ultrasound‐guided  fetal  treatments with  corticosteroids  in preterm 

lambs. J Appl Physiol 75:2099‐2105 

7.  Jobe A, Jacobs H, Ikegami M, Berry D 1985 Lung protein leaks in ventilated lambs: 

Effects of gestational age. J Appl Physiol 58:1246‐1251 

Page 218: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

  204

8.  Kallapur  SG,  Jobe  AH,  Ball MK,  Nitsos  I, Moss  TJM,  Hillman  NH,  Newnham  JP, 

Kramer  BW  2007  Pulmonary  and  systemic  endotoxin  tolerance  in  preterm  fetal 

sheep exposed to chorioamnionitis. J Immunol 179:8491‐8499 

9.  Sozo F, O'Day L, Maritz G, Kenna K, Stacy V, Brew N, Walker D, Bocking A, Brien J, 

Harding  R  2009  Repeated  ethanol  exposure  during  late  gestation  alters  the 

maturation and  innate  immune  status of  the ovine  fetal  lung. Am  J Physiol Lung 

Cell Mol Physiol 296:L510‐L518 

10.  Polglase GR, Hillman NH,  Pillow  JJ,  Cheah  F‐C, Nitsos  I, Moss  TJM,  Kramer  BW, 

Ikegami M, Kallapur SG,  Jobe AH 2008 Positive end‐expiratory pressure and  tidal 

volume during initial ventilation of preterm lambs. Pediatr Res 64:517‐522 

11.  Jobe AH, Hillman NH, Polglase GR, Kramer BW, Kallapur SG, Pillow  JJ 2008  Injury 

and  inflammation  from  resuscitation of  the preterm  infant. Neonatology 94:190‐

196 

12.  Jobe A,  Ikegami M 1998 Mechanisms  initiating  lung  injury  in  the preterm.  Early 

Hum Dev 53:81‐94 

13.  Venegas  J, Fredberg  J 1994 Understanding  the pressure cost of ventilation: Why 

dose high‐frequency ventilation work? Critical Care Medicine 22:S49‐S57 

14.  Bass A, Gentile M, Heinz J, Craig D, Hamel D, Cheifetz I 2007 Setting positive end‐

expiratory pressure during jet ventilation to replicate the mean airway pressure of 

oscillatory ventilation. Respiratory Care   52:50‐55 

15.  Crossley KJ, Morley CJ, Allison BJ, Polglase GR, Dargaville PA, Harding R, Hooper SB 

2007 Blood gases and pulmonary blood flow during resuscitation of very preterm 

lambs  treated with  antenatal  betamethasone  and/or  curosurf:  Effect  of  positive 

end‐expiratory pressure. Pediatr Res 62:37‐42 

Page 219: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

  205

16.  Courtney  SE,  Asselin  JM  2006  High‐frequency  jet  and  oscillatory  ventilation  for 

neonates: Which strategy and when? Respir Care Clin N Am 12:453‐467 

17.  Musk GC, Polglase GR, Bunnell JB, McLean CJ, Nitsos I, Song Y, Pillow JJ 2011 High 

positive  end‐expiratory  pressure  during  high‐frequency  jet  ventilation  improves 

oxygenation and ventilation in preterm lambs. Pediatr Res 69:319‐324 

18.  Musk  GC,  Polglase  GR,  Bunnell  JB,  Nitsos  I,  PIllow  JJ  2008  High  positive  end 

expiratory pressure during high  frequency  jet  ventilation  improves  ventilation  in 

preterm lambs (a96). Journal of Paediatrics and Child Health 44:31 

19.  Pillow  JJ,  Sly  PD,  Hantos  Z  2004  Monitoring  of  lung  volume  recruitment  and 

derecruitment  using  oscillatory  mechanics  during  high‐frequency  oscillatory 

ventilation in the preterm lamb. Pediatric Critical Care Medicine 5:172‐180 

20.  Wallace MJ, Probyn M, Zahra V, Crossley K, Cole T, Davis P, Morley C, Hooper S 

2009 Early biomarkers and potential mediators of ventilation‐induced lung injury in 

very preterm lambs. Respir Res 10:1‐15 

21.  Ikegami M, Jobe AH 2002 Postnatal  lung  inflammation  increased by ventilation of 

preterm  lambs  exposed  antenatally  to  escherichia  coli  endotoxin.  Pediatr  Res 

52:356‐362 

22.  Naik AS, Kallapur SG, Bachurski CJ, Jobe AH, Michna J, Kramer BW, Ikegami M 2001 

Effects of ventilation with different positive end‐expiratory pressures on cytokine 

expression in the preterm lamb lung. Am J Respir Crit Care Med 164:494‐498 

23.  Merritt  T,  Cochrane  C, Holcombe  K,  Bohl  B,  Hallman M,  Strayer  D,  Edwards  D, 

Gluck  L  1983  Elastase  and  alpha  1‐proteinase  inhibitor  activity  in  the  tracheal 

aspirates  during  respiratory  distress  syndrome.    Role  of  inflammation  in  the 

pathogenesis of bronchopulmonary dysplasia. J Clin Invest 72:656‐666 

Page 220: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

  206

24.  Hillman NH, Kallapur SG, Pillow JJ, Moss TJM, Polglase GR, Nitsos I, Jobe AH 2010 

Airway  injury  from  initiating  ventilation  in  preterm  sheep.  Pediatric  Research 

67:60‐65 

 

 

Page 221: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

  207

7      Alveolar  Recruitment  with  Five  or  Twenty  Conventional 

Mechanical Ventilator Breaths per minute during High‐frequency 

Jet Ventilation in Preterm Lambs.   

 

 

Gabrielle C Musk1, Graeme R Polglase2 and J Jane Pillow 1. 

1School of Women’s and Infants’ Health, University of Western Australia, Perth, Australia. 

2The  Ritchie  Centre,  Monash  Institute  of  Medical  Research,  Monash  University, 

Melbourne, Australia. 

3Centre  for  Neonatal  Research  and  Education,  University  of Western  Australia,  Perth, 

Australia. 

 

 

This is the third study investigating the role of conventional mechanical ventilator breaths 

for alveolar recruitment during high‐frequency  jet ventilation.   We  isolated the effect of 

conventional ventilator breath frequency in this study. 

 

 

 

Page 222: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

  208

Abstract 

Alveoli are recruited with conventional mechanical ventilator (CMV) breaths during high‐

frequency jet ventilation (HFJV). We assessed the impact of CMV breath frequency on gas 

exchange, ventilator requirements and lung injury during HFJV.  

Preterm  lambs  of  anaesthetised  ewes  were  delivered  surgically  at  128  d  gestation 

(term=150  d)  and  randomised  to  an  unventilated  control  group  (UVC)  or  one  of  3 

ventilated groups including HFJV alone or HFJV with either 5 or 20 CMV breaths/min to a 

PIPCMV 5 cmH2O below PIPHFJV (HFJV+CMV5 or HFJV+CMV20). Set PEEP was maintained at 8 

cmH2O. PIP and FiO2 were adjusted  to maintain PaCO2 45‐55 mmHg and SpO2 88‐95 %. 

Lambs were euthanased after 2 hours and a post mortem performed.  

Physiological  variables  and  ventilator  requirements  did  not  differ  between  groups. 

Compared  to other ventilated groups  the HFJV+CMV20 group had higher measured PEEP 

(auto PEEP)  from 15 min and higher FiO2  from 30 min.  In situ  lung volume at 40 cmH2O 

was higher in the HFJV+CMV5 group compared to all other groups. Bronchoalveolar lavage 

(BAL)  fluid  inflammatory  cell  count  was  higher  in  HFJV+CMV  groups  and  BAL  protein 

concentration was  higher  in  all  ventilated  groups  compared  to UVCs.  Surprisingly,  lung 

tissue  IL‐1β  and  IL‐6 mRNA  was  lowest  in  HFJV+CMV20  compared  to  other  ventilated 

groups.  Whereas  the  improved  static  compliance  in  the  HFJV+CMV5  group  suggests 

potential  benefit  of  low‐rate  CMV  breaths  during HFJV  during  the  initiation  of HFJV  in 

acute neonatal  respiratory distress  syndrome,  the mixed  inflammatory outcomes  in  the 

Page 223: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

  209

HFJV+CMV  groups  suggests  further  studies  to  clarify  the  optimal  frequency  of  CMV 

breaths are required.  

Page 224: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

  210

Introduction 

High‐frequency  jet ventilation  (HFJV)  is considered a  lung protection ventilation strategy 

suitable  for  ventilatory  support  of  preterm  infants  with  respiratory  distress  syndrome 

(RDS)  (1,  2).  A  high‐frequency  jet  ventilator  is  set  up  in  tandem  with  a  conventional 

ventilator  that  provides  positive  end‐expiratory  pressure  (PEEP),  bias  flow  for 

spontaneous breaths, a passage for exhaled gases and a means of delivering sigh breaths. 

This tandem arrangement facilitates alveolar recruitment manoeuvers during HFJV which 

may  be  achieved  by  altering  PEEP  or  by  delivering  conventional mechanical  ventilator 

(CMV)  breaths  (3).  Neonatal  clinical  protocols  suggest  that  during  routine  HFJV,  CMV 

breaths  should  be  delivered  at  very  low  rates  (0‐3  breaths  per  minute),  with  more 

frequent  CMV  breaths  (5‐10  breaths  per minute)  used  to  recruit  collapsed  alveoli  (4). 

Whereas  protocols  are  based  on  the  presumption  that  excessive  CMV  breaths  are 

injurious,  there  are  no  experimental  data  that  define  the  optimal  frequency  for  CMV 

breaths during HFJV in the setting of acute neonatal RDS. 

Compared to the small volume HFJV breath, CMV breaths are more  likely to cause cyclic 

stretch of the lung parenchyma and contribute to volutrauma (5). The frequency of CMV 

breaths  during  HFJV  may  therefore  influence  volume  recruitment.  However,  whereas 

occasional  sigh  breaths may  promote  recruitment,  repetitive  cyclic  stretch  of  the  lung 

parenchyma may also promote injury. The CMV breath parameters that must be selected 

include  the  inspiratory  time  (tI),  the peak  inspiratory pressure  (PIP) and  the  respiratory 

frequency.  

Page 225: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

  211

We aimed to investigate the effect of 2 different CMV breath frequencies during HFJV. We 

hypothesised that during HFJV in a preterm model of RDS, 20 CMV breaths/min would be 

more injurious to the lung than 5 CMV breaths/min.  

Page 226: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

  212

Materials and Methods 

All animal procedures were approved by the University of Western Australia animal ethics 

committee,  according  to  the  guidelines  issued  by  the  National  Health  and  Medical 

Research Council of Australia (6).  

Animals, Instrumentation and Delivery  

Pregnant  ewes  at  128‐130  days  of  gestation  were  anaesthetised  with  an  intravenous 

injection of medetomidine (0.02 mg/kg, Pfizer Animal Health, U.S.A.) and ketamine (10 mg 

kg‐1, Troy Laboratories, Australia) followed by a subarachnoid (spinal) injection of lidocaine 

(3 mL, 20 mg mL‐1, Troy Laboratories, Australia). The fetus was exteriorized surgically and 

intubated  orally  (4.5  mm  cuffed  tracheal  tube,  Portex  Ltd.  England).  Lung  fluid  was 

suctioned and intra‐tracheal surfactant (100 mg kg‐1: 25 mg of phospholipids mL‐1, Abbott 

Laboratories, U.S.A.)  instilled prior  to delivery of  the  lamb. Unventilated  controls  (UVC, 

negative controls: n=8) were euthanased at delivery with pentobarbitone (100 mg kg‐1 i.v. 

Jurox, Australia).  

Postnatal care 

Lambs were dried, weighed and randomised to one of three ventilation groups: HFJV only 

(HFJV; n=8); HFJV with 5 or 20 CMV breaths delivered to a PIP 5 cmH2O below the PIPHFJV 

(HFJV+CMV5, n=8; HFJV+CMV20, n=8). 

Page 227: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

  213

Propofol  (0.1  mg  kg‐1  min‐1,  Norbrook  Laboratories  Ltd.,  Victoria,  Australia)  and 

remifentanil  (0.05 µg  kg‐1 min‐1, Abbott  Laboratories, U.S.A.) were  infused  continuously 

through an umbilical vein for anaesthesia and analgesia. An umbilical arterial catheter was 

sampled  intermittently  to assess gas exchange and acid‐base status. Rectal  temperature 

was monitored continuously and maintained between 38° and 39° C  (normothermic  for 

newborn lambs). Oxygenation Index (OI) was calculated as OI = 2

2

aO

100  x aw  x FiO

P

P where FiO2 

is fractional inspired oxygen concentration, Paw is mean airway pressure measured by the 

jet ventilator and PaO2 is partial pressure of oxygen in arterial blood. 

High Frequency Jet Ventilation 

HFJV (Life Pulse High Frequency Ventilator, Bunnell Inc., Salt Lake City, U.S.A.) coupled to a 

pressure‐limited time‐cycled conventional ventilator (Dräger, Babylog 8000+, Drägerwerk 

AG,  Lübeck,  Germany)  was  commenced  immediately  following  delivery.  Initial  HFJV 

settings were: respiratory rate 420 breaths/min; PIPHFJV 30 cmH2O; and inspiratory time (tI) 

0.02 s. PIPHFJV was adjusted to achieve permissive hypercapnia (PaCO2 45‐55 mmHg) to a 

maximum of 40 cmH2O. The initial FiO2 (0.4) was adjusted to maintain SpO2 88‐95 %.  

CMV breaths were delivered to a PIPCMV 5 cmH2O below the PIPHFJV, and with a rate of 0, 5 

or 20 breaths/min as per  randomisation. PIPCMV was adjusted  in parallel with PIPHFJV  to 

maintain PIPCMV 5 cmH2O below  the PIPHFJV. A PEEP of 8 cmH2O and  tI of 0.5 s  for CMV 

breaths, were maintained throughout the study. 

Page 228: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

  214

After  final measurements were  obtained,  the  FiO2 was  increased  to  1.0  for  2 minutes, 

after which the tracheal tube was occluded for 3 min to facilitate lung collapse before the 

lamb was euthanased (100 mg kg‐1 i.v. Jurox, Australia). 

Post‐mortem 

The lung was exposed by thoracotomy, and an in situ deflation pressure volume curve was 

obtained  (7).  The  right upper  lung  lobe was  inflation  fixed  (30  cmH2O)  in  formalin  and 

samples of the right lower lobe were snap frozen for molecular analyses of IL‐1β and IL‐6 

mRNA expression by qRT‐PCR (8). Bronchoalveolar lavage (BAL) was performed on the left 

lung  for  cytology  and  protein  analysis  (9).  Differential  cell  counts were  performed  on 

cytospin  samples  of  the BAL  fluid  stained with Diff‐Quik  (Fronine  Lab  Supplies, N.S.W., 

Australia). Immunohistochemical staining for myeloperoxidase (MPO) was performed on 5 

µm sections of  lung  tissue  (10). Positive cells were  identified and quantified per  field as 

number of cells per  total cellular area  (nm2) using densitometry  (Image‐Pro Plus version 

4.5, Media Cybernetics, U.S.A.) by a blinded observer (GCM).  

Statistical Analyses 

Kruskal‐Wallis one way analysis of variance was used to compare groups at specific time 

points.  The  effect  of  time  on  ventilator  requirements  and  physiological  changes  was 

determined  using  two‐way  repeated  measure  analysis  of  variance.  Analyses  were 

performed using SigmaStat (Version 3.5, Systat Software Incorporated, U.S.A.) with p<0.05 

Page 229: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

  215

considered  statistically  significant.  Data  are  expressed  as  mean  (SEM)  unless  stated 

otherwise. 

Page 230: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

  216

Results 

Baseline  characteristics  of  lambs  in  each  group,  including  weight  and  cord  blood  gas 

status, were not different (Table 1). 

Ventilator Settings  

The  PIPHFJV,  Paw,HFJV,  ΔPHFJV  and  servo  pressure were  similar  between  the  3  ventilated 

groups during the 2 h ventilation period (Figure 1A, 1B, 1C and 1D). The measured PEEP 

was higher than set PEEP in HFJV+CMV20 animals at all time points (p=0.03; Figure 1E). 

Gas Exchange 

The target SpO2 was achieved in all groups within the first 10 minutes and maintained for 

the duration of the ventilation period (data not shown). PaO2 was not different between 

groups for the duration of the study (data not shown). From 90 minutes, FiO2 and OI were 

significantly higher  in  the HFJV+CMV20 group compared  to HFJV+CMV5 and HFJV  (Figure 

2A  and  2B).  The  target  PaCO2  was  achieved  within  15 minutes  and maintained  in  all 

groups (Figure 2C). There were no differences in arterial pH (Figure 2D).  

Static lung compliance 

The  lungs of animals  in  the HFJV+CMV5 group were more  compliant  compared  to HFJV 

and HFJV+CMV20 (p<0.02) as determined by a post‐mortem static pressure‐volume curve. 

As  expected,  unventilated  control  lambs  had  the  lowest  compliance  compared  to  all 

ventilated groups (p<0.01; Figure 3). 

Bronchoalveolar Lavage Fluid 

Page 231: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

  217

The  total  protein  concentration  of  BAL  fluid  was  higher  in  all  the  ventilated  groups 

compared  to  the  UVC  group.  The  total  inflammatory  cell  counts,  and  the  differential 

neutrophil counts, were higher in the BAL fluid from HFJV+CMV5 and HFJV+CMV20 groups 

compared to the UVC group  (p<0.01; Table 2) but were not different to HFJV alone. The 

differential  mononuclear  cell  counts  were  higher  in  each  of  the  ventilated  groups 

compared to the UVC group. 

Lung Tissue 

The number of MPO positive  cells  in  the  lung  tissue of  ventilated  groups was  low  and 

comparable between all groups (Table 2). The expression of IL‐1β mRNA was higher in all 

the  ventilated  groups  compared  to HFJV+CMV20  (p<0.05).  The expression of  IL‐6 mRNA 

was higher in the HFJV+CMV5 group compared to the UVC group and higher in both HFJV 

alone and HFJV+CMV5 compared to HFJV+CMV20 (p<0.05) (Table 2). 

Page 232: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

  218

Discussion 

While the delivery of CMV breaths during HFJV  is advocated  to recruit alveoli,  there are 

few studies justifying the selection of CMV breath parameters, including breath frequency. 

In the current study, we showed that 20 CMV breaths/min increased oxygen requirements 

and decreased static  lung compliance compared to a strategy using 5 CMV breaths/min, 

but resulted in less up‐regulation of pro‐inflammatory markers in the lung.  

PIPHFJV was comparable between groups and between the commencement and the end of 

the study within each group. The PIPCMV was maintained 5 cmH2O below the PIPHFJV in this 

study.  Recent work from this group compared PIPCMV in relation to PIPHFJV and found that 

the most physiological benefit, with the least evidence of harm, was apparent if the PIPCMV 

was  5  cmH2O  above  the  PIPHFJV when  5  CMV  breaths/min were  delivered  during HFJV 

(unpublished  data  –  see  Chapter  6).  These  results were  not  available  at  the  time  the 

current  study  was  performed,  and  it  may  be  that  we  have  hindered  our  ability  to 

demonstrate a difference between our HFJV+CMV groups by using  insufficient CMVPIP to 

recruit the lung effectively in either HFJV alone, or HFJV+CMV5.  

ΔPHFJV was not different during the study but there was a trend towards a higher ΔPHFJV in 

the HFJV only group  for  the second hour of  the study. Given  that during high‐frequency 

ventilation, ventilation  is proportional  to  the product of  respiratory  frequency and  tidal 

volume  (VT)2  (11),  this  finding  demonstrates  how  little  the  CMV  breaths  contribute  to 

overall minute ventilation during HFJV. Even when 20 CMV breaths/min were delivered, 

Page 233: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

  219

the contribution to overall minute volume did not translate to a  lower ΔPHFJV. This trend 

may be due  to a  low VT of  the CMV breaths and despite delivering 20 breaths/min,  the 

impact on PaCO2 was negligible. 

PEEP during HFJV is provided by the conventional ventilator and used primarily to stabilise 

alveoli  and  prevent  alveolar  derecruitment  (11‐14).  To  avoid  confounding  the 

interpretation  of  CMV  breath  strategy  on  outcomes,  PEEP  was  kept  constant  for  the 

duration of this study. We selected a PEEP of 8 cmH2O as a previous study found a PEEP of 

5 cmH2O insufficient to stabilise alveoli (15). Despite our attempts to maintain a constant 

PEEP between and within groups there was a negative difference between PEEP set on the 

conventional ventilator and PEEP measured by  the  jet ventilator  for  the duration of  the 

study  in  the  HFJV+CMV20  group.    This  discrepancy  is  indicative  of  auto  PEEP,  or  gas 

trapping, and might be expected at higher CMV breath frequencies. This auto PEEP should 

translate  to a higher Paw but  there was no difference  in Paw between  the groups. Gas 

trapping,  however,  will  compromise  oxygenation  and  may  explain  the  higher  FiO2 

requirements and OI in the HFJV+CMV20 group. The value for Paw on the high‐frequency 

jet ventilator is an estimate of the mean pressure at the tip of the tracheal tube and may 

not  reflect  intrapulmonary  pressure.  It  is  therefore  possible  that mean  pressure  at  the 

parenchymal level was higher and compromised pulmonary blood flow and oxygenation. 

We assessed oxygenation by recording the FiO2 required to achieve a target SpO2 and by 

calculating OI. Paw  is a determinant of oxygenation  (16), but was  similar  for all groups, 

leaving differences  in oxygenation parameters attributable  to variables other  than Paw. 

Page 234: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

  220

There was a higher  inspired oxygen requirement and OI  in the HFJV+CMV20 group which 

suggests  either  inferior  alveolar  recruitment,  or  shunting  due  to  impaired  pulmonary 

blood flow and increased pulmonary vascular resistance. Although Paw was not different 

between  groups,  it  is  estimated  by  the  high‐frequency  jet  ventilator  at  the  tip  of  the 

tracheal  tube  and  it  is  conceivable  that  inadvertent  PEEP  translated  to  a  higher mean 

pressure  at  the  parenchyma  level  that may  have  impaired  pulmonary  blood  flow  and 

oxygenation.   

In  the  absence  of  a  clear  advantage  of  higher  CMV  breath  frequency  for  lung  volume 

recruitment  and  arterial  oxygenation,  we  expected  the  HFJV+CMV20  approach  to  be 

associated with  increased potential  for  lung  injury due  to  increased  frequency of distal 

alveolar exposure to the PIPCMV (which  is transmitted along the airways) and volutrauma 

from  the  associated  cyclic  tidal  volume.  Despite  choosing  inflammatory  markers  of 

ventilation  injury  that  typically  increase  within  120  min  (17‐20),  the  results  provided 

conflicting evidence with a trend towards higher BAL protein and inflammatory cell counts 

in the HFJV+CMV groups compared to the HFJV only group, but a higher compliance in the 

HFJV+CMV5 group compared  to either  the HFJV+CMV20 and  the HFJV only group on  the 

post‐mortem  static  pressure‐volume  curve.  The  finding  of  reduced  pro‐inflammatory 

markers  in  the  lung  tissue  for  the  HFJV+CMV20  group  was  similarly  unexpected.  

Inadvertent PEEP may have protected the HFJV+CMV20  lungs from atelectatrauma at the 

expense of impaired oxygenation.  

Page 235: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

  221

The  limitations of  this study may contribute  to  the  lack of significant differences  in  lung 

injury markers. With 8 animals per group we cannot exclude a type II statistical error for 

detection  of  small  significant  differences  between  groups.  It  is  also  possible  that  the 

strategies  were  not  injurious  enough  to  elicit  a  strong  inflammatory  response.    The 

combination of endogenous surfactant administered immediately after delivery, the short 

duration of the study and a modestly high  level of PEEP throughout the study may have 

limited  injury  in all  three ventilated groups. Furthermore, we have a  single  snapshot of 

inflammation  in  the  lungs  and  captured  a  higher  BAL  neutrophil  population  in  the 

HFJV+CMV groups along without an  increase  in  IL‐1β and  IL‐6 mRNA  in the HFJV+CMV20 

group.    It  is possible that a  longer ventilation period may have resulted  in an  increase  in 

these cytokines in all groups. 

In  summary  the  use  of  a  high CMV  breath  rate  during HFJV  strategy  increased oxygen 

requirements and decreased static  lung compliance over a 2 h study compared to a  low 

CMV  breath  frequency  strategy.  The  increased  compliance  of  the  post‐mortem  static 

deflation curve in the absence of a significant increase in pro‐inflammatory markers in the 

low‐rate  CMV  breath  HFJV  strategy  over  HFJV  alone  supports  the  judicious  use  of 

infrequent CMV breaths during  initiation of HFJV  in  acute neonatal  respiratory distress 

syndrome.  The  lack  of  significantly  enhanced  oxygenation  in  the  HFJV+CMV5  group 

compared  to  HFJV  alone  suggests  that  specific  targeting  of  the  PIPCMV  to  achieve 

recruitment may  be  essential  to  derive  further  benefit  from  inclusion  of  low‐rate CMV 

breaths during HFJV.  Further  studies  investigating  the use of CMV breaths during HFJV 

Page 236: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

  222

that measure  the effect of  these breaths on  lung volume, gas exchange and  lung  injury 

during neonatal RDS are indicated.  

Page 237: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

  223

Acknowledgements 

Surfactant was donated by Abbott Australia.   The  Life Pulse High Frequency Ventilators 

were supplied on  long‐term  loan by Bunnell Incorporated.   We would  like to express our 

sincere  appreciation  to  the members  of  the Ovine Research Group,  Ilias Nitsos, Carryn 

McLean, Richard Dalton and Yong Song  for  technical assistance and  JRL Hall and Co.  for 

provision and early antenatal care of the ewes.   

Page 238: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

  224

Tables 

 

Table 1: Baseline lamb data   

  UVC  HFJV  HFJV+CMV5  HFJV+CMV20 

n (male)  5 (3)  8 (5)  8 (3)  8 (4) 

Birth weight (kg)  2.6 (0.3)  2.6 (0.6)  2.8 (0.6)  3.0 (0.5) 

Gestational age (d)  129.6 (0.5) 129.1 (0.8) 129.1 (0.6)  129.2 (0.7) 

Cord pH  7.11 (0.18) 7.15 (0.09) 7.09 (0.04)  7.14 (0.12) 

Cord PaCO2  (mmHg)  88.9 (28)  77.1 (14.3) 99.3 (24.1)  86.0 (22.3) 

 

Term  =  150  d. UVC  =  unventilated  control;  HFJV  =  high‐frequency  jet 

ventilation  (HFJV)  alone;  HFJV+CMV5  =  HFJV  with  5  conventional 

mechanical ventilation (CMV) breaths/min to a peak inspiratory pressure 

5 cmH2O below HFJV peak inspiratory pressure; HFJV+CMV20 = HFJV with 

20 CMV breaths to a peak inspiratory pressure 5 cmH2O below HFJV peak 

inspiratory pressure.  Values are mean (SD). Cord samples were collected 

from the umbilical artery. 

 

 

 

 

 

 

 

 

Page 239: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

  225

 

Table 2: Post‐mortem inflammatory markers 

 

UVC  HFJV  HFJV+CMV5  HFJV+CMV20 

 

BAL fluid        

Protein (mg mL‐1)  83.2 (23.)  306.5 (27)* 437.4 (105)*  411.4 (37)* 

Total Inflammatory Cells  

(x 106 kg‐1) 1.93 (0.8)  43.0 (13.9) 90.2 (28.3)*  81.3 (30.6)* 

Neutrophils  (x 106 kg‐1)  0.5 (0.5)  14.2 (5.9)  34.7 (18.1)*  39.3 (18.1)* 

Mononuclear cells (x 106 kg‐1) 1.4 (0.4) 25.5 (11)* 53 (33.2)*  41.8 (15.2)*

Lung Tissue         

MPO positive cells   (cells (nm2)‐1) 0 (0, 1.5) 

0.8         (0, 14.2) 

1.1  (0, 4.4) 

3.0 (0, 7.0) 

         

IL‐1β (fold change)  1.0  (0.5, 1.4) 

4.6† (1.6, 8.8) 

5.6† (2.1, 9.4) 

0.7 (0.2, 1.4) 

        

IL‐6 (fold change)  1.0 (0.7, 1.5) 

19.4† (1.0, 29.8)

21.5*† (4.6, 38.1) 

2.5 (0.6, 5.7) 

        

 

*p<0.05 compared to UVC, †p<0.05 compared to HFJV+CMV20.  Values are Mean (SEM) or 

median (25, 75 centile). 

Page 240: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

  226

 

Figure 1 

Page 241: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

  227

 

Figure 2 

 

 

Page 242: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

  228

 

Figure 3 

Page 243: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

  229

Figure Legends 

 

Figure  1  Ventilator  Parameters:    A:  High‐frequency  jet  ventilation  peak  inspiratory 

pressure  (PIPHFJV)  (cmH2O)was  adjusted  to  target  PaCO2  45‐55  mmHg;  B:  HFJV Mean 

Airway  Pressure  (cmH2O);  C:  HFJV  Delta  P  (HFJVPIP  ‐  HFJVPEEP)  (cmH2O);  D:  HFJV  Servo 

Pressure (psi); E:  The difference between set PEEP and measured PEEP (cmH2O). *p<0.05 

HFJV+CMV20  compared  to  HFJV+CMV5  and  HFJV.  Grey  diamond  =  HFJV,  open  circle  = 

HFJV+CMV5, solid circle = HFJV+CMV20. 

 

Figure 2 Gas Exchange: A: FiO2  * p<0.03 HFJV+CMV20  compared to HFJV+CMV5, # p<0.03 

HFJV+CMV20 compared to HFJV; B: Oxygenation Index * p=0.04 HFJV+CMV20  compared to 

HFJV+CMV5,  #  p=0.05 HFJV+CMV20  compared  to HFJV;  C:  PaCO2  (mmHg); D:  pH.   Grey 

diamond = HFJV, open circle = HFJV+CMV5, solid circle = HFJV+CMV20. 

 

Figure  3  Pressure‐Volume  Curve:    *  p<0.02  HFJV+CMV5  compared  to  HFJV,  #  p<0.02 

HFJV+CMV5 compared to HFJV+CMV20, ** p<0.01 unventilated controls (UVC) compared to 

all  ventilated  groups.  Grey  diamond  =  HFJV,  open  circle  =  HFJV+CMV5,  solid  circle  = 

HFJV+CMV20, open triangle = UVCs. 

Page 244: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

  230

References 

1.  Plavka R, Dokoupilova M, Pazderova L, Kopecka P, Sebroa V, Zapadlo M, Keszler M 

2006 High‐frequency jet ventilation improves gas exchange in extremely immature 

infants  with  evolving  chronic  lung  disease.  American  Journal  of  Perinatology 

23:467‐472 

2.  Friedlich  P,  Subramanian,  N,  Sebald,  M,  Noori,  S,  Seri,  I.  2003  Use  of  high‐

frequency  jet  ventilation  in  neonates  with  hypoxaemia  refractory  to  high‐

frequency oscillatory ventilation. Journal of Maternal‐Fetal and Neonatal Medicine 

13:398‐402 

3.  Keszler M, Durand D 2001 High  frequency ventilation.   Past, present and  future. 

Clin Perinatol 28:579‐607 

4.  Bunnell  B  2007  General  guidelines  for  high  frequency  jet  ventilation.  Bunnell 

Incorporated  (www.bunl.com/clinical.html)  Accessed  July  2008,  Salt  Lake  City, 

Utah 

5.  Dreyfuss  D,  Saumon  G  1998  Ventilator‐induced  lung  injury.  Lessons  from 

experimental studies. Am. J. Respir. Crit. Care Med. 157:294‐323 

6.  Australian Government NHMRC 2004 Australian code of practice for the care and 

use  of  animals  for  scientific  purposes  7th  edition.  Australian  Government, 

Canberra 

7.  Jobe  AH,  Polk  D,  Ikegami M,  Newnham  J,  Sly  P,  Kohen  R,  Kelly  R  1993  Lung 

responses  to ultrasound‐guided  fetal  treatments with  corticosteroids  in preterm 

lambs. J Appl Physiol 75:2099‐2105 

8.  Sozo F, O'Day L, Maritz G, Kenna K, Stacy V, Brew N, Walker D, Bocking A, Brien J, 

Harding  R  2009  Repeated  ethanol  exposure  during  late  gestation  alters  the 

Page 245: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

  231

maturation and  innate  immune  status of  the ovine  fetal  lung. Am  J Physiol Lung 

Cell Mol Physiol 296:L510‐L518 

9.  Jobe A, Jacobs H, Ikegami M, Berry D 1985 Lung protein leaks in ventilated lambs: 

Effects of gestational age. J Appl Physiol 58:1246‐1251 

10.  Kallapur  SG,  Jobe  AH,  Ball MK,  Nitsos  I, Moss  TJM,  Hillman  NH,  Newnham  JP, 

Kramer  BW  2007  Pulmonary  and  systemic  endotoxin  tolerance  in  preterm  fetal 

sheep exposed to chorioamnionitis. J Immunol 179:8491‐8499 

11.  Courtney  SE,  Asselin  JM  2006  High‐frequency  jet  and  oscillatory  ventilation  for 

neonates: Which strategy and when? Respir Care Clin N Am 12:453‐467 

12.  Venegas  J, Fredberg  J 1994 Understanding  the pressure cost of ventilation: Why 

dose high‐frequency ventilation work? Critical Care Medicine 22:S49‐S57 

13.  Bass A, Gentile M, Heinz J, Craig D, Hamel D, Cheifetz I 2007 Setting positive end‐

expiratory pressure during jet ventilation to replicate the mean airway pressure of 

oscillatory ventilation. Respiratory Care   52:50‐55 

14.  Crossley KJ, Morley CJ, Allison BJ, Polglase GR, Dargaville PA, Harding R, Hooper SB 

2007 Blood gases and pulmonary blood flow during resuscitation of very preterm 

lambs  treated with  antenatal  betamethasone  and/or  curosurf:  Effect  of  positive 

end‐expiratory pressure. Pediatr Res 62:37‐42 

15.  Musk GC, Polglase GR, Bunnell JB, McLean CJ, Nitsos I, Song Y, Pillow JJ 2011 High 

positive  end‐expiratory  pressure  during  high‐frequency  jet  ventilation  improves 

oxygenation and ventilation in preterm lambs. Pediatr Res 69:319‐324 

16.  Keszler M 2006 High frequency jet ventilation. In Donn SM, Sinha SK (eds) Manual 

of neonatal respiratory care. Mosby Elsevier, Philadelphia, pp 232‐233 

Page 246: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

  232

17.  Wallace MJ, Probyn M, Zahra V, Crossley K, Cole T, Davis P, Morley C, Hooper S 

2009 Early biomarkers and potential mediators of ventilation‐induced lung injury in 

very preterm lambs. Respir Res 10:1‐15 

18.  Ikegami M, Jobe AH 2002 Postnatal  lung  inflammation  increased by ventilation of 

preterm  lambs  exposed  antenatally  to  escherichia  coli  endotoxin.  Pediatr  Res 

52:356‐362 

19.  Naik AS, Kallapur SG, Bachurski CJ, Jobe AH, Michna J, Kramer BW, Ikegami M 2001 

Effects of ventilation with different positive end‐expiratory pressures on cytokine 

expression in the preterm lamb lung. Am J Respir Crit Care Med 164:494‐498 

20.  Merritt  T,  Cochrane  C, Holcombe  K,  Bohl  B,  Hallman M,  Strayer  D,  Edwards  D, 

Gluck  L  1983  Elastase  and  alpha  1‐proteinase  inhibitor  activity  in  the  tracheal 

aspirates  during  respiratory  distress  syndrome.    Role  of  inflammation  in  the 

pathogenesis of bronchopulmonary dysplasia. J Clin Invest 72:656‐666 

 

 

Page 247: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

233  

8       A Comparison of High‐frequency  Jet Ventilation and High‐

frequency Oscillatory Ventilation with Conventional Mechanical 

Ventilation in Preterm Lambs 

Gabrielle C Musk 1, Graeme R Polglase 1,2, J Bert Bunnell 3, Ilias Nitsos 1, David Tingay 

4, J Jane Pillow 1,5 

1 School of Women’s and  Infants’ Health, The University of Western Australia, Perth, 

Australia. 

2  The  Ritchie  Centre,  Monash  Institute  of  Medical  Research,  Monash  University, 

Clayton, Australia. 

3 Bunnell Inc, Salt Lake City, Utah, USA and Department of Bioengineering, University of 

Utah, Salt Lake City, Utah, USA.  

4 Murdoch Children’s Research Institute, Melbourne, Australia 

5 Centre  for Neonatal Research  and  Education,  The University  of Western Australia, 

Perth, Australia 

This  is  the  final  study  in  this  thesis.   We  compared  an  optimal  high‐frequency  jet 

ventilation  strategy  against  a  high‐frequency  oscillatory  ventilation  and  a  gentle 

conventional mechanical ventilation strategy in our preterm lamb model of respiratory 

distress  syndrome. The high‐frequency  jet  ventilation  strategy was developed based 

upon the results of the previous study chapters. 

Page 248: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

234  

Abstract 

Conventional  mechanical  ventilation  (CMV),  high‐frequency  oscillatory  ventilation 

(HFOV)  and high‐frequency  jet  ventilation  (HFJV)  are  accepted  ventilatory  strategies 

for  respiratory  distress  syndrome  (RDS)  in  preterm  babies. We  hypothesised  these 

strategies would successfully manage oxygenation and ventilation, but that HFJV and 

HFOV  would  cause  the  least  lung  injury.  Furthermore,  we  hypothesised  that  HFJV 

would have the least impact on pulmonary blood flow. Preterm lambs of anaesthetised 

ewes  were  instrumented,  intubated  and  delivered  by  caesarean  section  after 

intratracheal suction and instillation of surfactant. Each lamb was managed for 3 hours 

according  to  a  predetermined  algorithm  for  ventilator  support  consistent with  the 

open lung approach. Pulmonary blood flow was measured continuously and pulsatility 

index  was  calculated,  while  ventilatory  parameters  and  arterial  blood  gases  were 

measured at  intervals. At postmortem,  in situ pressure‐volume deflation curves were 

recorded,  and bronchoalveolar  lavage  fluid  and  lung  tissue were obtained  to  assess 

inflammation.  There was  no  difference  in  arterial  oxygenation  despite  lower mean 

airway pressure during CMV for most of the study. HFOV animals had a higher PaCO2 

at multiple  time  points.  The  lack  of  significant  differences  in  end  systolic  and  end 

diastolic PBF for the majority of the study, lung injury data and static lung compliance 

demonstrate that in the absence of airleaks each of these strategies can be employed 

in the clinical setting with a comparable pressure cost of ventilation. 

  

Page 249: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

235  

Introduction 

The  lungs  of  preterm  infants  are  vulnerable  to  ventilation  induced  lung  injury  (1). 

Preterm newborns often  require  invasive ventilatory support which exposes  them  to 

positive  intrathoracic  pressures,  the  risk  of  lung  injury  and  compromised  cardiac 

output.  The  three  contemporary  ventilatory  strategies  most  frequently  used  for 

preterm  babies with  respiratory  distress  syndrome  (RDS)  are  synchronised,  volume‐

targeted/guaranteed  conventional mechanical  ventilation  (CMV),  high‐frequency  jet 

ventilation (HFJV) and high‐frequency oscillatory ventilation (HFOV).  

A  number  of  clinical  trials  have  compared  HFOV  and  CMV  for  the management  of 

preterm infants with acute RDS but the results are conflicting (2, 3). Cools et al (2010) 

found in their systematic review and meta‐analysis HFOV and CMV equally effective (2) 

while Bhuta and Henderson‐Smart (1998) found little difference other than a decrease 

in new pulmonary airleak following treatment with HFOV (3). Variation in study design, 

ventilator management  and outcome measures between  studies make  it difficult  to 

substantiate  a  clear  benefit  of  one  strategy  over  another.  Perhaps  the  greatest 

limitation to these studies was failure to pursue a protective lung ventilation approach 

which  relies upon opening  the  lung and keeping  it open  to optimise ventilation and 

perfusion (4, 5). HFJV and CMV have also been compared  in a number of studies but 

similar issues exist in that an open lung strategy was not always employed, or achieved 

(6‐8).  

A direct comparison of all  three of  these ventilatory  strategies  for neonatal RDS has 

not been performed  in a controlled setting. Each modality has unique features which 

Page 250: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

236  

provide justification for its use in certain scenarios. A CMV strategy delivers breaths of 

a  similar  size  and  at  a  similar  frequency  to  spontaneous  ventilation  while  high‐

frequency  strategies deliver breaths  smaller  than dead  space  volume  at  frequencies 

varying  from  3‐20  Hz  depending  on  the  specific  ventilator  used.  High‐frequency 

ventilation offers potential  lung protective ventilation (9‐14) as the  low tidal volumes 

reduce  the  risk  of  cyclic  volutrauma.  The  airway  pressure waveform  is  attenuated 

along  the airways during HFJV and HFOV which may decrease  the pressure and  flow 

cost of ventilation induced lung injury (15).   

There are  important differences between HFJV and HFOV which give rise to potential 

physiological advantages of one strategy over another: optimal mean airway pressure 

(Paw)  is  lower during HFJV compared to HFOV because less of the respiratory cycle  is 

spent  in  inspiration;  HFJV  enhances  mucociliary  clearance  by  combining  fast 

inspirations with relatively slow, passive exhalations (I:E ratio may be as  low as 1:12); 

and  the  use  of  small  tidal  volume  (VT)  breaths  during  HFJV  at  low  frequencies,  in 

combination with  low  inspiratory  to expiratory  ratios, make HFJV especially useful  in 

patients with gas  trapping. Both strategies deliver high velocity and small VT breaths 

that  do  not  penetrate  injured  areas  of  lung  with  high  resistance,  allowing  for 

maturation  and  healing  (15). HFOV,  however,  has  an  active  expiratory  phase which 

makes  it  useful  at  higher  respiratory  frequencies.  This  feature  is  advantageous  for 

lungs  that  are  poorly  compliant  and  that  have  a  higher  corner  frequency,  as  it 

facilitates  gas  exchange  but  avoids  unnecessary  barotrauma  (16).  HFOV  has  been 

investigated  in  and  ex  vivo  and  gas  flow  and  gas  exchange  is  more  extensively 

documented (16, 17). This extensive data from HFOV has facilitated its widespread use 

Page 251: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

237  

in neonatal intensive care units. Furthermore, during HFOV, a conventional mechanical 

ventilator is not required and a standard endotracheal tube adaptor is suitable. 

Early  recruitment  of  the  functional  residual  capacity  immediately  after  birth  may 

facilitate  the  commencement  of  ventilation  on  the  deflation  limb  of  the  pressure‐

volume  curve.  The  delivery  of  a  sustained  inflation  before  commencing  a  particular 

ventilation  strategy  has  consistently  decreased  the  requirement  for  subsequent 

aggressive  alveolar  recruitment manoeuvres  in both  animal  and human  studies  (18‐

20).   

The aim of this study was to compare HFJV and HFOV with a moderate lung protective 

CMV  strategy  in a preterm  lamb model of RDS. We hypothesised  that each  strategy 

would  facilitate  acceptable  oxygenation  and  ventilation,  but  that  the  low  delivered 

tidal volumes of HFJV and HFOV would  result  in  less evidence of ventilation  induced 

lung injury than a CMV strategy. Furthermore, based upon the findings of Polglase et al 

(2008) (21) we hypothesised that compared to HFOV, HFJV would cause less reduction 

of pulmonary blood flow due to a proportionately greater duration of the cycle spent 

at the positive end expiratory pressure with less impairment of venous return.  

 

 

Page 252: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

238  

Materials and Methods 

All animal procedures were approved by  the University of Western Australia animal 

ethics  committee,  in accordance with guidelines of  the National Health and Medical 

Research Council of Australia (22).  

Animals, Instrumentation and Delivery  

Twin‐bearing  date‐mated merino  ewes  were  anaesthetised  at  128‐130  d  gestation 

(term  ≈  150  d) with  intramuscular  xylazine  (0.5 mg  kg‐1,  Troy  Laboratories, N.S.W., 

Australia)  and  ketamine  (20  mg  kg‐1,  Parnell  Laboratories,  N.S.W.,  Australia)  and 

intubated  (7.5 mm  cuffed  tracheal  tube, Portex  Ltd. England). Maternal  anaesthesia 

was  maintained  with  isoflurane  in  100  %  O2.  The  fetus  was  exteriorized  via 

hysterotomy  and  a  right  lateral  thoracotomy  was  performed.  A  flow  probe  (4R, 

Transonic Systems, Ithaca, NY) was positioned around the left pulmonary artery and a 

catheter was  inserted  into  the main pulmonary artery  (21). The  fetus was  intubated 

orally (4.5 mm cuffed tracheal tube, Portex Ltd. England), lung fluid was suctioned and 

intra‐tracheal surfactant  (100 mg kg‐1, Abbott Laboratories, U.S.A.) was administered 

prior  to  delivery  of  the  lamb.  Unventilated  controls  (UVC;  n=6)  were  euthanised 

(pentobarbitone 100 mg kg‐1 i.v. Jurox, Australia) at delivery without instrumentation, 

suctioning or surfactant. Remaining lambs were randomized to one of three ventilation 

groups  including  conventional mechanical ventilation  (CMV: n=6), high‐frequency  jet 

ventilation  (HFJV;  n=8)  and  high‐frequency  oscillatory  ventilation  (HFOV;  n=8)  as 

outlined below.  

Page 253: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

239  

Ventilation 

Instrumented lambs were dried, weighed. Functional residual capacity was established 

by delivering 2 sustained  inflations to 30 cmH2O (20 s and 10 s duration respectively) 

with an  infant T‐piece resuscitator  (NeopuffTM, Fisher & Paykel Healthcare, Auckland, 

New  Zealand),  immediately  before  ventilation  was  commenced  using  the  assigned 

ventilation strategy as detailed below. The initial FiO2 was 0.4 for all groups. 

Conventional Mechanical Ventilation 

Initial  settings  for  positive  pressure  ventilation  (PPV)  with  volume  guarantee  (VG) 

included: respiratory rate 50 breaths/min; tI 0.5 s; VG 5 mL/kg; positive end‐expiratory 

pressure  (PEEP) 7 cmH2O; and a peak  inspiratory pressure  limit  (PIPlimit) of 30 cmH2O 

(Babylog 8000+, Drägerwerk, Lubeck, Germany). After 5 min, the VG was increased to 7 

mL/kg and PIPlimit was increased to 40 cmH2O. FiO2 was altered to target SpO2 88‐94 %, 

VT was altered  to  target PaCO2 45‐55 mmHg and PEEP was altered according  to  the 

response of SpO2 to changes in FiO2 (Figure 1A). 

High‐frequency Jet Ventilation 

High‐frequency jet ventilation (Life Pulse™, Bunnell Inc., Salt Lake City, U.S.A.) coupled 

to  a  pressure‐limited  time‐cycled  infant  conventional  ventilator  (Babylog  8000+, 

Drägerwerk,  Lubeck,  Germany)  was  commenced  with  the  following  initial  settings: 

respiratory rate 420 breaths/min (7 Hz); peak inspiratory pressure (PIPHFJV) 40 cmH2O; 

PEEP  8  cmH2O;  FiO2  0.4  and  tI was  fixed  at  0.02  s.  PIPHFJV was  adjusted  to  achieve 

permissive hypercapnia  (PaCO2 45‐55 mmHg)  to a maximum of 40  cmH2O. FiO2 was 

Page 254: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

240  

altered  to  target  SpO2  88‐94 %  and  CMV  breaths were  delivered  according  to  the 

protocol algorithm (Figure 1 B) to target lung volume recruitment. 

High‐frequency Oscillatory Ventilation 

High‐frequency  oscillatory  ventilation  (3100A,  Care  Fusion,  CA,  U.S.A.)  was 

commenced as  follows:  frequency 12 Hz  (720 breaths/min); Paw 16  cmH2O;  tI 33 % 

(tI:tE 1:2) and an amplitude (ΔP) of 30 cmH2O. The amplitude was adjusted to achieve 

permissive hypercapnia  (PaCO2 45‐55 mmHg)  to a maximum of 50  cmH2O. The Paw 

was adjusted  to optimise oxygenation, preceding adjustments  to FiO2  to  target SpO2 

88‐94 % (Figure 1 C). 

Postnatal care 

Propofol  (0.1  mg/kg/min;  Norbrook  Laboratories  Ltd.,  Victoria,  Australia)  and 

remifentanil  (0.05 µg/kg/min; Abbott Laboratories, U.S.A.) were  infused continuously 

through an umbilical vein for anaesthesia and analgesia. An umbilical arterial catheter 

was  used  for  intermittent  sampling  to  assess  gas  exchange  and  acid‐base  balance. 

Rectal temperature was monitored continuously and maintained between 38° and 39° 

C (normothermic for newborn  lambs). Ventilator settings and physiological data were 

recorded at intervals. After final measurements were obtained, the FiO2 was increased 

to 1.0 for 2 min after which the tracheal tube was occluded for 3 min to facilitate lung 

collapse  prior  to  euthanasing  the  lamb  (pentobarbitone  100  mg  kg‐1  i.v.  Jurox, 

Australia). 

Page 255: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

241  

Physiological Analyses 

Continuous measurements of pulmonary blood flow (PBF) and pulmonary artery blood 

pressure (PABP) were processed via calibrated pressure transducers (Maxxim Medical, 

Tx, U.S.A.). Data were amplified and digitally recorded (Powerlab 8SP, ADInstruments, 

N.S.W., Australia). Pulmonary waveform analysis was performed at regular time points 

as described previously (23) to quantifiy changes in pulmonary blood flow throughout 

the cardiac cycle. Pulsatility  Index (PI), a measure of downstream resistance to blood 

flow, was calculated as (peak systolic flow – minimum flow after systolic peak)/mean 

peak systolic flow and averaged over five consecutive cardiac cycles.   

The Oxygenation Index (OI) was calculated as OI=2

2

aO

100 x aw xFiO

P

P where FiO2 is fractional 

inspired  oxygen  concentration,  Paw  is  mean  airway  pressure  and  PaO2  is  partial 

pressure of oxygen  in arterial blood. An  increase  in  the OI  suggests deterioration  in 

arterial oxygenation. 

Post‐mortem 

The lung was exposed by thoracotomy, and an in situ deflation pressure volume curve 

was obtained (24). The right upper lung lobe was inflation fixed (30 cmH2O) in formalin 

and  samples  of  the  right  lower  lobe  were  snap  frozen  for  molecular  analyses. 

Bronchoalveolar lavage (BAL) was performed on the left lung for cytology and protein 

analysis  by  the  Lowry method  (25,  26). Differential  cell  counts were  performed  on 

cytospin samples of the BAL fluid stained with Diff‐Quik (Fronine Lab Supplies, N.S.W., 

Australia).  

Page 256: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

242  

RNA was extracted  from  the  left  lung and  reverse  transcribed  to cDNA  (QuantiTect® 

Reverse Transcription Kit, Qiagen, U.S.A.). Expression of  IL‐1β and  IL‐6 was measured 

by qRT‐PCR (27) and normalized to 18S RNA (28) using the 2‐∆∆CT method (29). 

Statistical Analyses 

Kruskal‐Wallis one way analysis of variance on ranks was used to compare groups at 

specific time points while the effect of ventilator strategy on ventilator requirements 

and physiological changes over the duration of the study were determined using two‐

way  repeated measure  analysis  of  variance.  Posthoc  comparisons  were  performed 

using the Holm‐Sidak method. Analyses were performed using SigmaStat (Version 3.5, 

Systat  Software  Incorporated, U.S.A.) with p<0.05  considered  statistically  significant. 

Data are expressed as mean (SEM) unless otherwise stated. 

Page 257: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

243  

Results 

Baseline characteristics of lambs in each group were not different (Table 1). 

Ventilation and Oxygenation 

PaCO2 was higher (and above the target range)  in the HFOV group compared to both 

HFJV and CMV at 45, 60, 120 and 180 min (Figure 2A). The ∆P was highest for HFOV 

from 20 min (Figure 2B).   

FiO2 commenced at 0.4  in all ventilated groups. At 60 and 75 min, FiO2 was higher  in 

the HFOV group compared to HFJV and CMV groups. At 75 min FiO2 was higher in the 

HFJV group compared to the CMV group (Figure 2C). The alveolar‐arterial difference in 

partial pressure of oxygen  (AaDO2) was higher  in  the HFOV group at 60 and 75 min 

(Figure 2D). Paw was  lowest  in the CMV group for most of the study while HFJV Paw 

was lower than HFOV Paw at 45, 120, 150 and 180 min (Figure 2E). 

Pulmonary Blood Flow 

End systolic and end diastolic pulmonary blood flows were comparable until 150 min 

from  which  time  HFJV  lambs  had  lower  flows  (Figure  3A  and  3B  respectively). 

Pulsatility  Index was  comparable  between  all  groups  for  the  duration  of  the  study 

(Figure 3C). 

Post‐mortem 

BAL fluid protein concentration and cell populations were similar between all groups. 

The expression of  IL‐1β and  IL‐6 were not different between groups  (Table 2). There 

Page 258: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

244  

was no difference  in  the static  lung compliance, as assessed by  the deflation  limb of 

the  post‐mortem  pressure‐volume  curve,  between  the  ventilated  groups.    The UVC 

group had lower static lung compliance (Figure 4A). 

Page 259: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

245  

Discussion 

This study aimed to compare a CMV strategy that included moderate PEEP (7 cmH2O) 

with both HFJV and HFOV over a 3 hour ventilation study using a preterm lamb model 

of RDS. Gas exchange was comparable for both CMV and HFJV lambs, however, HFOV 

did  not  achieve  oxygenation  and  ventilation  targets  within  the  algorithm  utilised. 

Pulmonary vascular resistance was similar for all groups though HFJV caused shunting 

of blood at the end of the ventilation period. Despite these differences in gas exchange 

and pulmonary blood flow there were no differences in the markers of lung injury. 

Each lamb was managed identically immediately after delivery and then according to a 

predetermined  ventilation  strategy  specific  algorithm  that  aimed  to open  the  lungs, 

keep the lungs open and maintain optimal oxygenation as described by the open lung 

approach  (4,  5).  The  initial  sustained  inflations  were  performed  as  a  specific  lung 

volume recruitment manoeuvre for all animals so the subsequent ventilation strategy 

followed a  lung volume recruitment process which was  less aggressive  than  it would 

have been otherwise.  In  the CMV group,  the  initial PEEP was chosen on  the basis of 

previous  observations  in  the  preterm  lamb model  to maintain  end‐expiratory  lung 

volume above the closing volume as PEEP below the  inflection point will  increase the 

potential  for  atelectotrauma  (30).  During  HFOV,  we  used  a  stepwise  recruitment 

strategy as standardly performed in clinical practice (31, 32). The maximum Paw in this 

group was limited to, but did not reach 26 cmH2O as we expected that the prophylactic 

administration of surfactant and the delivery of sustained inflations immediately prior 

to HFOV would  establish  ventilation  above  the  critical  closing pressure of  the  lungs 

Page 260: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

246  

(33). For the HFJV group we chose to use a combination of  intermittent CMV breaths 

and incrementing PEEP to recruit and stabilise alveoli. The maximum PIPHFJV was set at 

40  cmH2O  as we  have  previously  successfully  ventilated  lambs without  needing  to 

exceed this limit (34). The number of CMV breaths was limited to 5 breaths/min in line 

with clinical recommendations and our previous experience that this CMV breath rate 

was sufficient to provide physiological benefit at  initiation of ventilation (unpublished 

data    ‐  see Chapter 7). Despite our previous experience  that PIPCMV 5  cmH2O  above 

PIPHFJV  provides  greater  physiological  benefit  with  the  least  evidence  of  harm 

(unpublished  data  –  see  Chapter  6),  the  PIPCMV was  kept  5  cmH2O  below  PIPHFJV  as 

results  of  the  previous  study were  not  fully  available  at  the  time  of  the  study.  All 

ventilation  protocols  aimed  to  minimise  cyclic  stretch  within  the  lung  using  a 

permissive hypercapnia approach.  

The comparison of 3 different ventilation strategies is a challenge as ventilator settings 

and displayed measurements vary between modalities. During CMV and HFJV, Paw  is 

determined by PIP, PEEP,  respiratory  frequency, and  the  tI:tE  ratio  (35). During CMV, 

PIP, ∆P and Paw are fully transmitted to the distal airways so pressure measurements 

at  the  airway  opening  closely  approximate  alveolar  pressures  (15).  During  high‐

frequency  ventilation  (both HFJV  and HFOV),  however,  the  ∆P  is  attenuated  in  the 

distal airways and alveoli. During HFJV, pressure monitored at the airway opening via 

the custom designed tracheal tube adaptor closely approximates the mean pressure at 

the distal tip of the tracheal tube (36). In contrast, during HFOV the mean pressure  is 

measured  at  the  airway  opening  and  hence  does  not  reflect mean  pressure  drop 

across the tracheal tube.  

Page 261: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

247  

One of the aims of this study was to compare the physiological responses to different 

ventilation  strategies  in  a  standardised model  of  RDS.  Oxygenation  and  ventilation 

variables were recorded to determine whether or not the different strategies achieved 

similar physiological outcomes. In the HFOV group we were unable, without exceeding 

the preset limits of Paw and ∆P, to approach optimal oxygenation and ventilation and 

there  were  times  when  FiO2  and  PaCO2  were  higher  in  this  group.  Oxygen 

requirements followed a similar trend between the groups with a gradual  increase  in 

FiO2  and  AaDO2  over  the  3  h  study  indicating  progressive  ventilation‐perfusion 

mismatching. Nonetheless, FiO2  requirements and AaDO2 were  increased  from 60‐75 

min ventilation  in the HFOV group compared to both HFJV and CMV  lambs. The Paw 

during  HFOV,  however,  was  highest  throughout  the  study  but  the  indices  of 

oxygenation were worst for this group. Given the correlation of Paw and oxygenation it 

is surprising that this higher Paw did not translate to a  lower FiO2  in this group. FiO2 

tended to be higher in the HFOV group from soon after initiation of ventilation hence it 

is conceivable that the limit of 26 cmH2O placed on Paw may have limited achievement 

of an open  lung. Secondly, while an  tI:tE  ratio of 1:2 during HFOV may minimise gas 

trapping,  it  may  also  create  a  mean  pressure  drop  across  the  tracheal  tube  that 

becomes clinically significant (37). If alveolar pressure  is  lower than Paw displayed on 

the  ventilator,  the  benefits  to  oxygenation may  not manifest.  Conversely,  it  is  also 

feasible  that  Paw  remained  too  high  for  too  long  during  HFOV  and  the  associated 

barotrauma  caused  the  deterioration  in  oxygenation  in  this  group.  Another 

explanation  is  that  the sustained  inflations may have been more effective at volume 

recruitment  than  we  appreciated  and  our  subsequent  ventilation  strategy  caused 

overinflation of the lungs in the HFOV lambs. 

Page 262: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

248  

There were differences  in ventilation which may be attributed to the upper  limits set 

on the parameter primarily responsible for carbon dioxide elimination (VT/kg for CMV, 

∆P  for HFJV and ∆P  for HFOV). The ∆P measurements during HFOV reflect measured 

pressure at the proximal end of the tracheal tube, while ∆P for HFJV are calculated (by 

the  ventilator  algorithm)  to  estimate  the  airway  pressure  at  the  distal  end  of  the 

tracheal  tube.  The  pressure  transmitted  along  the  airway  will  be  affected  by  lung 

compliance where reduced  lung compliance will  increase transmission of ∆P from the 

airway opening to the alveoli (38) The ∆P recorded during HFOV may be attenuated by 

between 40 and 80 % when measured just distal to the tracheal tube (32). This means 

the highest ∆P of 50 cmH2O during HFOV is likely to have created between 20 and 40 

cmH2O of pressure in the trachea, which creates a range which includes the highest ∆P 

during HFJV of 27.5 cmH2O. Nevertheless we did not achieve the target PaCO2 for the 

HFOV animals and in hindsight a higher limit on ∆P may have been appropriate. 

There was a predictable  initial  increase  in PBF  in all groups with  the  transition  from 

fetal  to  neonatal  circulation  as  the  pulmonary  vasculature dilates.  Pulmonary  blood 

flow subsequently steadily became more negative over the remainder of the study  in 

all groups. Given the fall in PBF was mirrored by a steady increase in pulsatility index, 

particularly in the first 90 min after birth, these findings are most likely explained by an 

increase  in pulmonary vascular resistance and right to  left shunting of blood through 

fetal vascular channels (39).  

The significant fall  in end systolic and end diastolic pulmonary blood flow  in the HFJV 

animals over the last 30 min of the study compared to both CMV and HFOV groups was 

unexpected and  is difficult  to explain. We had expected  the magnitude of change  in 

Page 263: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

249  

pulmonary blood  flow to mirror changes  in Paw  in all the ventilated groups as  it has 

been  reported  that  increasing Paw decreases PBF and  increases pulmonary  vascular 

resistance during CMV (40), HFJV (34) and HFOV (21).  With a Paw consistently lower in 

HFJV than that observed in the HFOV group, we would have expected that HFJV would 

be less likely to negatively impact pulmonary blood flow and to have a lower pulsatility 

index compared  to HFOV. Although  the pulsatility  index  increased  in  the HFJV group 

over  the  last 30 min of  the  study,  it was not  significantly higher  than  the pulsatility 

index  in either  the CMV or HFOV  groups  throughout  the  study  and hence does not 

explain the late fall in PBF in the HFJV animals.     

Given  that we  followed an algorithm  for optimal ventilation with each  strategy, and 

there were not marked differences in ventilator parameters it is not surprising that we 

did not  find a difference  in  lung  injury markers. A  comparison  such as ours has not 

been performed before but  there are a multitude of  studies assessing  lung  injury  in 

response  to mechanical  ventilation  in  neonates  and  animals  (41‐44).  The  results  of 

studies comparing  lung  injury  following HFOV and CMV vary and demonstrate either 

little difference  in  the alveolar  leakage  and  systemic  inflammation  in neonates  (45), 

probable attenuation of early activation of inflammation and clotting in preterm lambs 

during HFOV when compared to CMV (46) and reduced pro‐inflammatory cytokines in 

HFOV  treated  neonates  compared  to CMV  (47).  There  are  fewer  studies  comparing 

lung injury during HFJV but a comparison of HFJV and HFOV in rabbits showed a clear 

reduction  in  lung  injury  following HFJV  (48). The  lack of difference  in  the markers of 

lung  injury we  chose  to  study  suggests  that  the  strategies were  equivalent  in  their 

ability to produce inflammation in the lung.   

Page 264: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

250  

There are a number of limitations to this study. We aimed to compare three different 

ventilation strategies utilising an open  lung approach but failed to achieve our target 

arterial blood gas parameters  in all the groups. The basis for the higher PaCO2  in the 

HFOV group  is unknown and  the higher  FiO2  required  to achieve equivalent  SpO2  is 

difficult  to  interpret  given  that  the  limit  of  Paw  was  reached.  Furthermore,  the 

ventilation  period was  short which may  have  prevented  a  difference  in  lung  injury 

markers. The changes  in end systolic and end diastolic blood flow are also difficult to 

interpret in light of the short duration of the study. It is also important to acknowledge 

that surfactant was administered to the  lambs  immediately after delivery, which may 

not always be achieved in clinical practice. The lambs in our study were anaesthetised 

and  underwent  an  invasive  surgical  procedure.  The  hemodynamic  effects  of 

anaesthesia  combined with  the physical  impact of  instrumentation on  lung  inflation 

are  likely  to  impact physiological outcomes. Nevertheless,  these  limitations were  for 

the most  part  standard  across  each  group  and  this model  provides  the  first  direct 

comparison of these three lung protective ventilation strategies in an animal model. 

In conclusion, the open lung approach to CMV, HFJV and HFOV were all suitable for the 

respiratory management in the context of our model of RDS in preterm lambs. The lack 

of significant differences  in end systolic and end diastolic PBF  for the majority of the 

study, lung injury data and static lung compliance demonstrate that in the absence of 

airleaks  each  of  these  strategies  can  be  employed  in  the  clinical  setting  with  a 

comparable pressure cost of ventilation. 

Page 265: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

251  

 

Acknowledgements 

We  would  like  to  express  our  sincere  appreciation  to  the  members  of  the  Ovine 

Research Group,  Ilias Nitsos and Carryn McLean, for technical assistance and JRL Hall 

and Co. for provision and early antenatal care of the ewes.  

 

 

 

Page 266: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

252  

 

Tables 

Table 1: Baseline lamb data   

  UVC  CMV  HFJV  HFOV 

n (male)  6 (3)  6 (3)  8 (4)  8 (6) 

Birth weight (kg)  3.9 (0.2)  3.5 (0.2)  3.6 (0.2)  3.5 (0.2) 

Gestational age (d)  129.0 (0.5)  128.8 (0.3) 129.2 (0.3)  129.0 (0.3) 

Cord pH  7.16 (0.03)  7.21 (0.03) 7.19 (0.03)  7.20 (0.04) 

Cord PaCO2  (mmHg)  75.7 (3.6)  75.4 (6.7)  75.6 (5.2)  81.9 (10.5) 

UVC = Unventilated Control, CMV = Conventional Mechanical Ventilation, HFJV = High‐

frequency  Jet Ventilation, HFOV = High‐frequency Oscillatory Ventilation.   Values are 

mean (SEM). 

Page 267: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

253  

 

Table 2: Post mortem inflammatory markers 

  UVC  CMV  HFJV  HFOV 

BAL fluid         

Protein (mg mL‐1)  183.2 (37.9) 363.3 (71.4)  272.3 (37.9)  275.9 (28.1) 

Total Inflammatory Cells  

(x 106 kg‐1) 1 (0.3)  17.6 (18.9)  6.7 (1.7)  6.9 (2.6) 

Neutrophils  (x 106 kg‐1)  0.6 (0.3)  14.4 (18)  4.9 (1.4)  4.9 (2.1) 

Mononuclear cells (x 106 kg‐1)  0.3 (0.1)  3.2 (3)  1.5 (0.4)  1.7 (0.8) 

Lung Tissue         

IL‐1β (fold change) 1.4  

(0.7, 2.2) 

4.8  

(3.2, 18.0) 

7.9  

(3.1, 15.4) 

10.9  

(3.1, 53.1) 

IL‐6 (fold change) 1.2  

(0.5, 2.4) 

3.0 

 (2.2, 33.5) 

6.8  

(2.2, 19.8) 

11.8  

(2.4, 40.4) 

UVC = Unventilated Control, CMV = Conventional Mechanical Ventilation, HFJV = High‐

frequency  Jet  Ventilation,  HFOV  =  High‐frequency  Oscillatory  Ventilation,  IL‐1β  = 

interleukin 1 beta,  IL‐6 =  interleukin 6. Values are mean (SEM) or median (25th, 75th 

centile) for parametric and non‐parametric data respectively.    

 

Page 268: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

254  

 

 

Figure 1A

Page 269: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

255  

 

  

Figure 1B 

Page 270: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

256  

 

 

Figure 1C 

 

 

 

 

 

 

 

 

Page 271: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

257  

 

 

Figure 2 

 

Page 272: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

258  

 

Figure 3 

Page 273: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

259  

 

Figure 4 

Page 274: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

260  

Figure Legends 

 

Figure 1 Ventilation strategies: 

A:  Conventional mechanical  ventilation.    PPV  =  Positive  pressure  ventilation,  VG  = 

volume  guarantee,  tI  =  inspiratory  time,  VT  =  tidal  volume,  PIP  =  peak  inspiratory 

pressure, PEEP = positive end‐expiratory pressure SpO2 = oxyhaemoglobin saturation 

measured  by  the  pulse  oximeter,  FiO2  =  fractional  inspired  oxygen  concentration, 

PaCO2 = partial pressure of carbon dioxide in arterial blood.  

B: High‐frequency  jet  ventilation  strategy. HFJV = high‐frequency  jet  ventilation,  tI = 

inspiratory  time,  PIP  =  peak  inspiratory  pressure,  CMV  =  conventional  mechanical 

ventilation,  PEEP  =  positive  end‐expiratory  pressure,  CPAP  =  continuous  positive 

airway pressure, SpO2 = oxyhaemoglobin saturation measured by the pulse oximeter, 

FiO2  =  fractional  inspired  oxygen  concentration,  PaCO2  =  partial  pressure  of  carbon 

dioxide in arterial blood. 

C: High‐frequency  oscillatory  ventilation  strategy.  Paw  = mean  airway  pressure,  tI  = 

inspiratory  time,  I:E  =  inspiratory  to  expiratory  time  ratio,  SpO2  =  oxyhaemoglobin 

saturation  measured  by  the  pulse  oximeter,  FiO2  =  fractional  inspired  oxygen 

concentration, PaCO2 = partial pressure of carbon dioxide in arterial blood. 

Figure 2 Ventilation and Oxygenation: A: Partial pressure of carbon dioxide in arterial 

blood  (PaCO2),  B:  Airway  pressure  differential  (∆P)  (cmH2O),  C:  Fractional  inspired 

oxygen concentration (FiO2), D: Alveolar ‐ arterial difference  in the partial pressure of 

oxygen  (AaDO2)  (mmHg), E: Mean airway pressure  (Paw). *p<0.05 HFJV compared to 

Page 275: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

261  

CMV,  #p<0.05 HFOV  compared  to  CMV,  ^  p<0.05 HFJV  compared  to HFOV.  Closed 

circle = CMV, closed square = HFJV,   closed triangle = HFOV. 

Figure 3 Pulmonary Blood Flow: A: End Systolic Pulmonary Blood Flow  (PBF), B: End 

Diastolic Pulmonary Blood Flow, C: Pulsatility Index. *p<0.05 HFJV compared to CMV, ^ 

p<0.05 HFJV compared to HFOV. Closed circle = CMV, closed square = HFJV,     closed 

triangle = HFOV. 

Figure 4  Static Lung Compliance: Deflation limb of the post‐mortem in situ pressure‐

volume curves, * p<0.05 HFJV compared to CMV, ^ p<0.05 HFJV compared to HFOV, ** 

p<0.05 UVC compared to HFJV, HFOV and CMV. Closed circle = CMV, closed square = 

HFJV, closed triangle = HFOV, open diamond = UVC. 

 

 

 

Page 276: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

262  

References 

1.  Jobe A, Ikegami M 1998 Mechanisms initiating lung injury in the preterm. Early 

Hum Dev 53:81‐94 

2.  Cools  F,  Askie  LM, Offringa M,  Asselin  JM,  Calvert  SA,  Courtney  SE,  Dani  C, 

Durand DJ, Gerstmann DR, Henderson‐Smart DJ, Marlow N, Peacock JL, Pillow 

JJ, Soll RF, Thome UH, Truffert P, Schreiber MD, Van Reempts P, Vendettuoli V, 

Vento  G  2010  Elective  high‐frequency  oscillatory  versus  conventional 

ventilation  in  preterm  infants:  A  systematic  review  and  meta‐analysis  of 

individual patients' data. The Lancet 375:2082‐2091 

3.  Bhuta  T,  Henderson‐Smart,  DJ  1998  Rescue  high  frequency  oscillatory 

ventilation  versus  conventional  ventilation  for  pulmonary  dysfunction  in 

preterm  infants.  Cochrane  Database  of  Systematic  Reviews:doi: 

10.1002/14651858.CD14000438 

4.  Lachmann B 1992 Open up  the  lung  and  keep  the  lung open.  Intensive Care 

Med 18:319‐321 

5.  Papadakos  PJ,  Lachmann  B  2007  The  open  lung  concept  of  mechanical 

ventilation:  The  role  of  recruitment  and  stabilization.  Critical  Care  Clinics 

23:241‐250 

6.  Carlo  W,  Siner,  B,  Chatburn,  RL,  Robertson,  S,  Martin,  RJ.  1990  Early 

randomised  intervention  with  high‐frequency  jet  ventilation  in  respiratory 

distress syndrome. Journal of Paediatrics 117:765‐770 

Page 277: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

263  

7.  Wiswell  T,  Graziani,  LJ,  Kornhauser,  MS,  Cullen,  J,  Merton,  DA,  McKee,  L, 

Spitzer,  AR  1996  High‐frequency  jet  ventilation  in  the  early management  of 

respiratory  distress  syndrome  is  associated  with  a  greater  risk  for  adverse 

outcomes. Pediatrics 98:1035‐1043 

8.  Keszler M, Modanlou H, Brudno D, Clark F, Cohen R, Ryan R, Kaneta M, Davis J 

1997 Multicenter  controlled  clinical  trial  of  high‐frequency  jet  ventilation  in 

preterm  infants with uncomplicated  respiratory distress  syndrome. Pediatrics 

100:593‐599 

9.  Gertsmann DR, Minton  SD  1996  The  provo multicenter  early  high‐frequency 

oscillatory  ventilation  trial:  Improved  pulmonary  and  clinical  outcome  in 

respiratory distress syndrome. Pediatrics 98:1044 

10.  van Kaam A, Haitsma J, De Jaeger A, van Aalderen W, Kok J, Lachmann B 2004 

Open  lung ventilation  improves gas exchange and attentuates secondary  lung 

injury in a piglet model of meconium aspiration. Critical Care Medicine 32:443‐

449 

11.  Bass A, Gentile M, Heinz  J, Craig D, Hamel D, Cheifetz  I 2007 Setting positive 

end‐expiratory  pressure  during  jet  ventilation  to  replicate  the mean  airway 

pressure of oscillatory ventilation. Respiratory Care   52:50‐55 

12.  Joshi  VH,  Bhuta  T  2006  Rescue  high  frequency  jet  ventilation  versus 

conventional ventilation  for  severe pulmonary dysfunction  in preterm  infants 

(review). Cochrane Database of Systematic Reviews:1‐13 

Page 278: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

264  

13.  Bhuta  T,  Henderson‐Smart,  DJ  1998  Elective  high  frequency  jet  ventilation 

versus  conventional  ventilation  for  respiratory  distress  syndrome  in  preterm 

infants (review). Cochrane Database of Systematic Reviews:1‐13 

14.  Bhuta  T,  Henderson‐Smart  DJ  1997  Elective  high‐frequency  oscillatory 

ventilation versus conventional ventilation  in preterm  infants with pulmonary 

dysfunction: Systematic review and meta‐analyses. Pediatrics 100:e6‐ 

15.  Courtney SE, Asselin JM 2006 High‐frequency jet and oscillatory ventilation for 

neonates: Which strategy and when? Respir Care Clin N Am 12:453‐467 

16.  Pillow  JJ  2005  High‐frequency  oscillatory  ventilation:  Mechanisms  of  gas 

exchange and lung mechanics. Crit Care Med 33:S135‐141 

17.  Pillow  JJ,  Wilkinson  MH,  Neil  HL,  Ramsden  CA  2001  In  vitro  performance 

characteristics of high‐frequency oscillatory ventilators. Am. J. Respir. Crit. Care 

Med. 164:1019‐1024 

18.  Rimensberger  PC,  Pristine  G,  Mullen  JBM,  Cox  PN,  Slutsky  AS  1999  Lung 

recruitment during small tidal volume ventilation allows minimal positive end‐

expiratory  pressure  without  augmenting  lung  injury.  Critical  Care  Medicine 

27:1940‐1945 

19.  Rimensberger  PC,  Cox  PN,  Frndova H,  Bryan  AC  1999  The  open  lung  during 

small tidal volume ventilation: Concepts of recruitment and "Optimal" Positive 

end‐expiratory pressure. Critical Care Medicine 27:1946‐1952 

Page 279: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

265  

20.  te Pas AB, Siew M, Wallace MJ, Kitchen MJ, Fouras A, Lewis RA, Yagi N, Uesugi 

K, Donath S, Davis PG, Morley CJ, Hooper SB 2009 Effect of sustained  inflation 

length  on  establishing  functional  residual  capacity  at  birth  in  ventilated 

premature rabbits. Pediatric Research 66:295‐300 

21.  Polglase  GR,  Moss  TJM,  Nitsos  I,  Allison  BJ,  Pillow  JJ,  Hooper  SB  2008 

Differential  effect  of  recruitment manoeuvres  on  pulmonary  blood  flow  and 

oxygenation during hfov in preterm lambs. J Appl Physiol 105:603‐610 

22.  Australian Government NHMRC 2004 Australian code of practice  for  the care 

and use of animals for scientific purposes 7th edition. Australian Government, 

Canberra 

23.  Polglase GR, Wallace MJ, Grant DA, Hooper SB 2004 Influence of fetal breathing 

movements on pulmonary hemodynamics  in  fetal  sheep. Pediatr Res 56:932‐

938 

24.  Jobe AH,  Polk D,  Ikegami M, Newnham  J,  Sly  P,  Kohen R,  Kelly R  1993  Lung 

responses  to  ultrasound‐guided  fetal  treatments  with  corticosteroids  in 

preterm lambs. J Appl Physiol 75:2099‐2105 

25.  Lowry OH, Rosebrough NJ, Farr AL, Randall RJ 1951 Protein measurement with 

the folin phenol reagent. J Biol Chem 193:265‐275 

26.  Jobe  A,  Jacobs H,  Ikegami M,  Berry D  1985  Lung  protein  leaks  in  ventilated 

lambs: Effects of gestational age. J Appl Physiol 58:1246‐1251 

Page 280: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

266  

27.  Sozo F, O'Day L, Maritz G, Kenna K, Stacy V, Brew N, Walker D, Bocking A, Brien 

J, Harding R 2009 Repeated ethanol exposure during  late gestation alters  the 

maturation and innate immune status of the ovine fetal lung. Am J Physiol Lung 

Cell Mol Physiol 296:L510‐L518 

28.  VanHarmelen V, Ariapart P, Hoffstedt J, Lundkvist  I, Bringman S, Arner P 2000 

Increased  adipose  angiotensinogen  gene  expression  in  human  obesity. Obes 

Res 8:337‐341 

29.  Livak K, Schmittgen T 2001 Analysis of relative gene expression data using real‐

time quantitative pcr and the 2(‐delta delta c(t)) method. Methods 25:402‐408 

30.  Muscedere  J, Mullen  J,  K  G,  slutsky  A  1994  Tidal  ventilation  at  low  airway 

pressures can augment lung injury. Am J  Respir Crit Care Med 149:1327‐1334 

31.  Courtney SE, Durand DJ, Asselin JM, Hudak ML, Aschner JL, Shoemaker CT, the 

Neonatal Ventilation Study G 2002 High‐frequency oscillatory ventilation versus 

conventional mechanical ventilation for very‐low‐birth‐weight  infants. N Engl J 

Med 347:643‐652 

32.  Pillow  JJ,  Sly  PD, Hantos  Z  2004 Monitoring  of  lung  volume  recruitment  and 

derecruitment  using  oscillatory  mechanics  during  high‐frequency  oscillatory 

ventilation in the preterm lamb. Pediatric Critical Care Medicine 5:172‐180 

33.  Soll  RF,  Morley  CJ  2001  Prophylactic  versus  selective  use  of  surfactant  in 

preventing morbidity and mortality  in preterm  infants. Cochrane Database of 

Systematic Reviews 2:CD000510 

Page 281: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

267  

34.  Musk GC, Polglase GR, Bunnell  JB, McLean CJ, Nitsos  I, Song Y, Pillow  JJ 2011 

High  positive  end‐expiratory  pressure  during  high‐frequency  jet  ventilation 

improves  oxygenation  and  ventilation  in  preterm  lambs.  Pediatr  Res  69:319‐

324 

35.  Bunnell JB 2006 High frequency ventilation. In Webster JG (ed) Encyclopedia of 

medical devices and instrumentation. John Wiley and sons, New Jersey, pp 497‐

514 

36.  Bunnell JB Life pulse high frequency ventilator ‐ operator's manual.IV‐1 

37.  Pillow JJ, Neil H, Wilkinson MH, Ramsden CA 1999 Effect of  i/e ratio on mean 

alveolar  pressure  during  high‐frequency  oscillatory  ventilation.  Journal  of 

Applied Physiology 87:407‐414 

38.  Pillow  JJ,  Sly  PD, Hantos  AZ,  Bates  JHT  2002 Dependence  of  intrapulmonary 

pressure amplitudes on respiratory mechanics during high‐frequency oscillatory 

ventilation in preterm lambs. Pediatric Research 52:538‐544 

39.  Latini  G,  Del  Vecchio  A,  De  Felice  C,  Verrotti  A,  Bossone  E  2008  Persistent 

pulmonary hypertension of the newborn: Therapeutic approach. Mini‐reviews 

in Medicinal Chemistry 8:1507‐1513 

40.  Polglase GR, Morley CJ, Crossley KJ, Dargaville P, Harding R, Morgan DL, Hooper 

SB  2005  Positive  end‐expiratory  pressure  differentially  alters  pulmonary 

hemodynamics  and  oxygenation  in  ventilated,  very  premature  lambs.  J  Appl 

Physiol 99:1453‐1461 

Page 282: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

268  

41.  Dreyfuss  D,  Saumon  G  1998  Ventilator‐induced  lung  injury.  Lessons  from 

experimental studies. Am. J. Respir. Crit. Care Med. 157:294‐323 

42.  Naik AS, Kallapur SG, Bachurski CJ, Jobe AH, Michna J, Kramer BW,  Ikegami M 

2001 Effects of ventilation with different positive end‐expiratory pressures on 

cytokine  expression  in  the  preterm  lamb  lung.  Am  J  Respir  Crit  Care  Med 

164:494‐498 

43.  Monkman S, Andersen C, Nahmias C, Ghaffer H,  JM B, Roberts R, Schmidt B, 

Kirpalani H 2004 Positive end‐expiratory pressure above  lower  inflection point 

minimizes influx of activated neutrophils into lung. Crit Care Med 32:2471‐2475 

44.  Wallace MJ, Probyn M, Zahra V, Crossley K, Cole T, Davis P, Morley C, Hooper S 

2009  Early  biomarkers  and  potential  mediators  of  ventilation‐induced  lung 

injury in very preterm lambs. Respir Res 10:1‐15 

45.  Sarafidis K, Stathopoulous T, Agakidous E, Taparkou A, Soubasi V, Diamanti E, 

Drossou  V  2011  Comparable  effect  of  conventional  ventilation  versus  early 

high‐frequency oscillation on serum cc16 and il‐6 levels in preterm neonates. J 

Perinatol 31:104‐111 

46.  Jaarsma AS, Braaksma MA, Geven WB, VanOeveren W, Oetomo SB 2001 Early 

activation of inflammation and clotting in the preterm lamb with neonatal rds: 

Comparison  of  conventional  ventilation  with  high  frequency  oscillatory 

ventilation. Pediatr Res 50:650‐657 

Page 283: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

269  

47.  Capoluongo E, Vento G, Santonocito C, Matassa PG, Vaccarella C, Giardina B, 

Romagnoli  C,  Zuppi  C, Ameglio  F  2005  Comparison  of  serum  levels  of  seven 

cytokines in premature newborns undergoing different ventilatory procedures: 

High  frequency oscillatory ventilation or synchronized  intermittent mandatory 

ventilation. Eur Cytokine Netw 16:199‐205 

48.  Sugiura  M,  Nakabayashi  H,  Vaclavik  S,  Froese  AB  1990  Lung  volume 

maintenance during high  frequency  jet ventilation  improves physiological and 

biochemical outcome of  lavaged rabbit  lung. Queens University, Kingston, ON, 

U.S.A. 

 

 

Page 284: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

270  

 

Page 285: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

271 

 

9  Discussion 

The overall aim of this collection of studies was to systematically investigate high‐frequency 

jet ventilation  (HFJV),  in a preterm  lamb model of respiratory distress syndrome  (RDS),  to 

establish  an  evidence  base  to  support  clinical HFJV  strategies  in  neonatal  intensive  care 

units. Although HFJV  has  been  available  to  clinicians  for  over  20  years,  extensive  in  vivo 

studies exploring HFJV for RDS have not been performed. This has led to the development of 

clinical  strategies  that  lack  an  evidence  based  structure.  Furthermore,  the  results  of 

randomised  controlled  trials  have  not  demonstrated  convincingly  a  clear  benefit  of HFJV 

over other ventilatory strategies in preterm infants. In order to elucidate optimal ventilator 

settings  during HFJV  the  impact  of  positive  end‐expiratory  pressure  (PEEP)  and  the  size, 

duration  and  frequency  of  conventional  mechanical  ventilator  (CMV)  breaths  delivered 

during HFJV were examined. The results of these controlled studies  led to the composition 

of an algorithm which was used to compare HFJV with high‐frequency oscillatory ventilation 

(HFOV) and a gentle CMV strategy in the preterm lamb model. 

We hypothesised that increasing PEEP would recruit alveoli and improve oxygenation at the 

expense  of  pulmonary  blood  flow  and  lung  injury.  Further,  we  hypothesised  that  CMV 

breaths delivered  at  a  longer  inspiratory  time,  to  a higher  peak  inspiratory pressure  and 

more  frequently would  recruit  alveoli  and  improve  oxygenation  at  the  expense  of  lung 

injury.  To  this  end  we  investigated  and  documented  the  effect  of  HFJV  on  ventilation 

(elimination of CO2), oxygenation, pulmonary blood  flow,  static  lung compliance and  lung 

Page 286: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

272 

 

injury.  These  investigations  were  undertaken  by  categorising  the  ventilator  parameters 

responsible  for  alveolar  recruitment  and maintenance  of  an  open  lung  during HFJV  into 

PEEP and CMV breaths. The CMV breaths delivered during HFJV were  then  compared by 

isolating  the effect of 2 different CMV breath  inspiratory  times, peak  inspiratory pressure 

settings and  frequencies. We  chose a preterm  lamb model  for  these  studies as  this non‐

primate animal model has been extensively utilised in the past. This widespread application 

of the preterm lamb model has enabled correlation of lung developmental stages between 

Ovis aries and Homo sapiens. Furthermore, ventilatory equipment used  for human babies 

can be used in the laboratory without modifications as the size of a preterm lamb is close to 

a term baby. 

The high‐frequency  jet ventilator we used must be  set up  in  tandem with a conventional 

ventilator.  The  conventional  ventilator,  amongst  other  functions,  delivers  PEEP.  PEEP  is 

utilised during mechanical ventilation to prevent alveolar collapse at the end of expiration, 

but  also  to  recruit  and  stabilise  alveoli.  PEEP  is  usually  employed  during  mechanical 

ventilation of preterm babies but the consequences of PEEP may outweigh the benefit. The 

first study  in this thesis: “"High Positive End‐Expiratory Pressure during High‐Frequency Jet 

Ventilation  Improves  Ventilation  in  Preterm  Lambs"  investigated  PEEP  recruitment 

manoeuvres  and  found  that  incrementing  PEEP  up  to  12  cmH2O  facilitated  lung  volume 

recruitment  without  significant  adverse  effects  on  pulmonary  blood  flow,  ex  vivo  lung 

compliance and lung injury. The premise of this study challenged common clinical practices 

which  rarely  increased  PEEP  to  this  level.  The  results were  presented  the  following  year 

(2008)  and  clinical  strategies  have  been  altered  to  increase  PEEP  to  a  higher  level  for 

Page 287: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

273 

 

alveolar  recruitment  manoeuvres  based  upon  the  results  of  that  first  study  (personal 

communication: Rob Graham, R.R.T./N.R.C.P., N.I.C.U., Sunnybrook Health Sciences Centre 

Toronto,Ontario,Canada). 

The subsequent studies examined the parameters of the CMV breaths that can be delivered 

during  HFJV  using  a  ventilated  control  group  and  an  unventilated  control  group  for 

comparison. A comparison of CMV breaths delivered over 0.5 s and 2 s was made over a 2 h 

study:  “The  Impact  of  Conventional  Breath  Inspiratory  Time  during  High‐frequency  Jet 

Ventilation  in Preterm Lambs”. Consistent with our hypothesis for this study we concluded 

that a longer CMV breath inspiratory time was more injurious to the lung given the trend for 

increased  inflammatory markers  in  this group. To  follow  this  study a  comparison of CMV 

breaths delivered to a peak  inspiratory pressure (PIP) 5 cmH2O above and below the HFJV 

PIP was made:  “The Effect of Conventional Breath Peak  Inspiratory Pressure during High‐

frequency Jet Ventilation in Preterm Lambs”. The results of this study were contrary to our 

hypothesis that CMV breaths delivered to a PIP 5 cmH2O above the HFJV PIP would be more 

injurious.  In  both  of  the  aforementioned  CMV  breath  studies  we  delivered  5  CMV 

breaths/min  so  our  final  study  compared  CMV  breaths  delivered  5  or  20  times/min: 

“Alveolar Recruitment with Five or Twenty Conventional Mechanical Ventilator Breaths per 

minute during High‐frequency  Jet Ventilation  in Preterm Lambs”. The CMV breaths  in  this 

study were delivered to a PIP 5 cmH2O below the HFJV PIP and while more frequent CMV 

breaths increased oxygenation requirements and compromised static lung compliance there 

was no clear evidence of greater  lung  injury in this group. An  issue with this study was the 

lack  of  a  third  treatment  group.  There was  an  unventilated  control  group,  a  HFJV  only 

Page 288: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

274 

 

ventilated control group and 2 HFJV+CMV groups. In hindsight the addition of another group 

in which 20 CMV breaths were delivered  to PIP 5 cmH2O above  the HFJV PIP would have 

been  interesting, especially  in  light of the results of the CMV breath PIP comparison study. 

We attributed the differences in the CMV breath PIP comparison study to less effective lung 

volume recruitment when 5 CMV breaths/min were delivered to a PIP 5 cmH2O below HFJV 

PIP. This finding left us comparing a strategy of sub optimal lung volume recruitment (5 CMV 

breaths/min  to a  low PIP) with a strategy  that we hypothesised would cause greater  lung 

injury  (20 CMV breaths/min) Whether optimal  lung  volume  recruitment  can be  achieved 

when CMV breaths are delivered to PIP higher than HFJV breaths or when CMV breaths are 

delivered at a faster rate (>5 CMV breaths/min) is difficult to say without comparing a high 

CMV PIP, high CMV breath  rate group  to  the groups we already have. However,  the high 

CMV  breath  rate  group  did  demonstrate  convincing  inadvertent  PEEP  and  this  should 

increase Paw which, to a point, may improve oxygenation, at the expense of lung injury. The 

combination of  inadvertent PEEP when CMV breaths are delivered more often with a CMV 

breath PIP higher  than HFJV PIP may cause greater  lung  injury. The data we have suggest 

CMV breaths delivered to a PIP 5 cmH2O above HFJV PIP is better, but the optimal frequency 

for these breaths is unknown and warrants further investigation. 

The  final  study:  “A  Comparison  of  High‐frequency  Jet  Ventilation  and  High‐frequency 

Oscillatory  Ventilation  with  Conventional  Mechanical  Ventilation  in  Preterm  Lambs” 

provided  an  opportunity  to  compare  the  3  strategies  most  commonly  utilised  in  the 

neonatal intensive care unit. This direct comparison has not been performed previously and 

gave us a unique opportunity to investigate the ventilatory efficacy of these 3 strategies in a 

Page 289: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

275 

 

controlled  environment. Our  hypothesis was  not  supported  by  our  results  insofar  as  the 

cardiovascular side effects of HFJV were not substantially different to the other strategies. 

At  best, we  demonstrated  that when  an  open  lung  approach  drives  the  decision making 

process there was no clear benefit of one strategy over another in our preterm lamb model 

of RDS.   

There  are  a  number  of  limitations  to  the  studies  in  this  thesis.  The  short  duration  of 

ventilation prevented extensive temporal data collection, which  limits the relevance of the 

information  to  the  clinical  setting  as  babies  requiring  HFJV  will  be  ventilated  for  days, 

potentially weeks.  Nevertheless,  the  acute  effect  of  changes  in  airway  pressures  is  still 

relevant  to  the  neonatal  intensive  care  unit  environment.  An  animal model will  always 

introduce species specific characteristics which may or may not be recognized. Furthermore, 

the use of animals  in research  is bound by the Australian code of practice for the care and 

use of animals for scientific purposes. Working within the code requires anaesthesia of the 

pregnant ewe  for caesarean delivery, and  therefore  transplacental  transfer of anaesthetic 

drugs  to  the  fetus, and  the administration of additional anaesthesia and analgesia  to  the 

lamb  following  delivery.  The  influence  of  anaesthetic  drugs  was  controlled  as  it  was 

standard  throughout  the  studies,  however,  it  remains  that  these  drugs  will  affect  the 

cardiovascular  system  and  the  target  population  is  unlikely  to  be  subject  to  the  same 

pharmacological restraint.  

A major  limitation  of  these  studies was  the  sample  size. Our  largest  study  group  had  8 

animals which, in light of the variability of some data, decreased the power of these studies. 

Larger  groups would  have  increased  study  power,  but  the  financial  and  animal welfare 

Page 290: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

276 

 

expense was too great to accommodate this. This limitation is particularly applicable to the 

final study: “A Comparison of High‐frequency Jet Ventilation and High‐frequency Oscillatory 

Ventilation with Conventional Mechanical Ventilation in Preterm Lambs” where the decision 

making process was governed by the physiological status of the lamb at preset time points. 

We wanted  to manage  this group as  though  they were  individual patients where  survival 

was  imperative.  This  was  in  contrast  to  the  preceding  studies  where  a  predetermined 

ventilatory strategy was set without aiming for survival, but rather, aiming to document the 

effects of individual ventilator settings. It is also noteworthy that comparing the efficacy of 

ventilation of one strategy compared to another was difficult as we targeted a tight PaCO2 

and SpO2  range. This meant  that our primary outcome variables were other  indicators of 

physiology (not including PaCO2 and SpO2) and injury.   

It is also important to note that our preterm lamb model of RDS represents just one of the 

many clinical presentations that may require ventilatory support. Preterm babies are at risk 

of a number of different lung diseases and may not be commenced on a ventilator protocol 

immediately after delivery. With this in mind, the results of these studies cannot be directly 

translated  to  babies  with  heterogeneous  lung  disease  or  those  requiring  ‘rescue’  from 

another  ventilatory  strategy.  Nonetheless  these  data  are  still  useful  for more  evidence 

based decision making in the context of an individual patient. 

The  results  of  these  studies  contribute  to  the  sparse  data  on  HFJV  and  have  provided 

fundamental  information  that  will  enable  a  more  evidence  based  approach  to  clinical 

decision making in the neonatal intensive care unit. Future work in this area should focus on 

Page 291: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

277 

 

the target population and incorporate randomised controlled trials comparing HFJV to other 

ventilatory strategies.  

 

Page 292: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

278 

 

 

Page 293: Optimisation of High frequency Jet Ventilation for the Preterm · Pressure and Frequency during High‐frequency Jet Ventilation in Preterm Lambs. Manuscript in preparation (Chapters

279 

Appendix 

Musk GC, Polglase GR, Bunnell JB, McLean CJ, Nitsos I, Song Y and Pillow JJ 2011 High 

Positive  End‐Expiratory  Pressure  during  High‐Frequency  Jet  Ventilation  Improves 

Oxygenation and Ventilation in Preterm Lambs. Pediatric Research 69(4):319‐324  

See attached pdf