22

OPTICALCOMMUNICATIONPPT BHUVANA

Embed Size (px)

Citation preview

8/6/2019 OPTICALCOMMUNICATIONPPT BHUVANA

http://slidepdf.com/reader/full/opticalcommunicationppt-bhuvana 1/22

8/6/2019 OPTICALCOMMUNICATIONPPT BHUVANA

http://slidepdf.com/reader/full/opticalcommunicationppt-bhuvana 2/22

Presented by,

R.BHUVANESHWARI S.S.MANOVIDHYAA

3RD ECE 3RD ECE 

[email protected] [email protected]

8/6/2019 OPTICALCOMMUNICATIONPPT BHUVANA

http://slidepdf.com/reader/full/opticalcommunicationppt-bhuvana 3/22

ABSTRACT Underwater Monitoring, Observing systems -

underwater wireless comm. , sensor n/w.

Providing high data rate.

Communication performance with absorption

Alternative to overcome acoustic comm. The link models

8/6/2019 OPTICALCOMMUNICATIONPPT BHUVANA

http://slidepdf.com/reader/full/opticalcommunicationppt-bhuvana 4/22

INTRODUCTION

PROPERTIES OF UNDERWATER W/L  OPTICAL 

COMMUNICATION

COMMUNICATION LINK MODELS

BER CALCULATION

NUMERICAL EXAMPLES CONCLUSION

8/6/2019 OPTICALCOMMUNICATIONPPT BHUVANA

http://slidepdf.com/reader/full/opticalcommunicationppt-bhuvana 5/22

Acoustic underwater communication.

Data rates.

Speed of acoustic waves in ocean-1500 m / s.

Distresses to marine mammals due to acoustic waves.

alternative means of  underwatercommunication.

Examples- UUVs and other network controlsystems.

8/6/2019 OPTICALCOMMUNICATIONPPT BHUVANA

http://slidepdf.com/reader/full/opticalcommunicationppt-bhuvana 6/22

8/6/2019 OPTICALCOMMUNICATIONPPT BHUVANA

http://slidepdf.com/reader/full/opticalcommunicationppt-bhuvana 7/22

Light pulse-attenuation-wavelength

The extinction co-eff icient[e.o.e]

c(e) = (a) + 3(s)

extinction coeff icient c(e)

Absorption(a) Scattering coeff icients3(s)

8/6/2019 OPTICALCOMMUNICATIONPPT BHUVANA

http://slidepdf.com/reader/full/opticalcommunicationppt-bhuvana 8/22

Absorption, scattering, and extinction

coeff icients for four types of water such as pure sea water,

clean ocean water,

coastal ocean water, and

turbid harbor water at

520-nm wavelength.

Turbidity e.o.e

The propagation loss

8/6/2019 OPTICALCOMMUNICATIONPPT BHUVANA

http://slidepdf.com/reader/full/opticalcommunicationppt-bhuvana 9/22

The line-of -sight communication

linkThe modulating retro ref lector

communication link

T

he ref le

cti

on

communi

cati

on link

8/6/2019 OPTICALCOMMUNICATIONPPT BHUVANA

http://slidepdf.com/reader/full/opticalcommunicationppt-bhuvana 10/22

8/6/2019 OPTICALCOMMUNICATIONPPT BHUVANA

http://slidepdf.com/reader/full/opticalcommunicationppt-bhuvana 11/22

� Most common link btwn two pts.

� Light beam from transmitter to receiver

� Signal reaching receiver

PR los = PT T RLpr .,(d/ cosx) ( ARec cos x)/{ 2 d 2(1 cos x}

PT  Avg. transmitter optical power

T,R-Optical efficiency of the transmitter, receiverd- perpendicular distance btwn. receiver

transmitter

x- laser beam divergence angle

8/6/2019 OPTICALCOMMUNICATIONPPT BHUVANA

http://slidepdf.com/reader/full/opticalcommunicationppt-bhuvana 12/22

One has high resources than other

e.g.: submarine, diver Interrogator illuminates modulating retro 

ref lector by continuous wave beam

Receiver Ref lects with modulatedinformation

8/6/2019 OPTICALCOMMUNICATIONPPT BHUVANA

http://slidepdf.com/reader/full/opticalcommunicationppt-bhuvana 13/22

If  LOS not available

Transmitter emits light wave by 0min, 0max,0i,0t

light reaching ocean-air surf ace bounce back

Ref ractive index<waterTIR

Anular area

Aann = 2 (h + x ) 2(1 cos 0max 1+

cos0min)= 2 (h + x )2(cos 0min cos 0max) Received power

P R ref(0) ARec f Rref(0)

8/6/2019 OPTICALCOMMUNICATIONPPT BHUVANA

http://slidepdf.com/reader/full/opticalcommunicationppt-bhuvana 14/22

simple, widespread technology

intensity modulation, OOK Receiver based on SiMPs

photo detector f abricated- form of  

arrays of  photodiodes operated inGeiger mode to create a photon-

counting device.

8/6/2019 OPTICALCOMMUNICATIONPPT BHUVANA

http://slidepdf.com/reader/full/opticalcommunicationppt-bhuvana 15/22

Accoding to poisson,gaussian distribution

BER = 1/ 2 erfc r1T-r0T

Ertc ( j) =2/j exp (-2)d

Where,r 1 = r d + r bg + r s

r 0 = r d + r bg

rd,rbg-sources of additive noise due to dark

counts and background illumination

8/6/2019 OPTICALCOMMUNICATIONPPT BHUVANA

http://slidepdf.com/reader/full/opticalcommunicationppt-bhuvana 16/22

LINK PHOTONS

LOS 8000

REFLECTIVE 10RETRO

REFLECTIVE

2

8/6/2019 OPTICALCOMMUNICATIONPPT BHUVANA

http://slidepdf.com/reader/full/opticalcommunicationppt-bhuvana 17/22

LINK  DISTANCEREFLECTIVE 40m

RETRO

REFLECTIVE

50m

LOS 60m

8/6/2019 OPTICALCOMMUNICATIONPPT BHUVANA

http://slidepdf.com/reader/full/opticalcommunicationppt-bhuvana 18/22

(a) when only

absorption isconsiderers

(b) when absorptionand scattering are

considered

8/6/2019 OPTICALCOMMUNICATIONPPT BHUVANA

http://slidepdf.com/reader/full/opticalcommunicationppt-bhuvana 19/22

High data rate

Mesg. transmission long distance-multiple relaynode

Hybrid An improvement

Acoustic-low data rate-high turbidity,distance

Optic-high data rate

Complexity ,cost increases In Future more accurate numerical results

Design multiple access, WDM, CDMA

8/6/2019 OPTICALCOMMUNICATIONPPT BHUVANA

http://slidepdf.com/reader/full/opticalcommunicationppt-bhuvana 20/22

S. Arnon and D. Kedar, Non-line-of sight underwater optical wire-lesscommunication network, J. Opt.

Soc. Am. A  26(3), 530539(2009)

B. Cochenour, L. Mullen, and A. Laux,Spatial and temporal dispersion in

high bandwidth underwater lasercommunication links, inPr oc. IEEE 

Military Communications Conf ., pp.17 (2008).

8/6/2019 OPTICALCOMMUNICATIONPPT BHUVANA

http://slidepdf.com/reader/full/opticalcommunicationppt-bhuvana 21/22

8/6/2019 OPTICALCOMMUNICATIONPPT BHUVANA

http://slidepdf.com/reader/full/opticalcommunicationppt-bhuvana 22/22