62
Optical Tweezers A revolution in micro-manipulation Jonathan Leach [email protected] c.uk University of Glasgow

Optical Tweezers A revolution in micro-manipulation Jonathan Leach [email protected] University of Glasgow

Embed Size (px)

Citation preview

Page 1: Optical Tweezers A revolution in micro-manipulation Jonathan Leach j.leach@physics.gla.ac.uk University of Glasgow

Optical Tweezers

A revolution in

micro-manipulation

Jonathan [email protected]

k

University of Glasgow

Page 2: Optical Tweezers A revolution in micro-manipulation Jonathan Leach j.leach@physics.gla.ac.uk University of Glasgow

Today’s talk

• What are optical tweezers?

• Dynamic movement and multiple particles

• Current research around the World

Page 3: Optical Tweezers A revolution in micro-manipulation Jonathan Leach j.leach@physics.gla.ac.uk University of Glasgow

What are optical tweezers?

Optical tweezers use light to trap, manipulateand position micron sized objects.

Invented approximately 20 years ago by A. Ashkin et al.

K.C. Neuman and S. M. Block, Optical Trapping, Rev. Sci. Inst., (2004)

J. E. Molloy and M. J. Padgett, Lights, Action: Optical Tweezers, Cont. Phys., (2002)

Page 4: Optical Tweezers A revolution in micro-manipulation Jonathan Leach j.leach@physics.gla.ac.uk University of Glasgow

What are optical tweezers?

A tightly focused laserproduces a force great enough to trap micron sized dielectric particles.

Require……1. Laser2. Lens3. Object4. Damping medium

Fscatt

Fgrad

Page 5: Optical Tweezers A revolution in micro-manipulation Jonathan Leach j.leach@physics.gla.ac.uk University of Glasgow

Optical tweezers in action

QuickTime™ and aYUV420 codec decompressor

are needed to see this picture.

Page 6: Optical Tweezers A revolution in micro-manipulation Jonathan Leach j.leach@physics.gla.ac.uk University of Glasgow

The equipment

Optical tweezers are based on high magnification microscope lenses

–produces tightly focussed beam–provides visualisation of image

Samples suspended in fluid

–provides cooling–provides buoyancy

Page 7: Optical Tweezers A revolution in micro-manipulation Jonathan Leach j.leach@physics.gla.ac.uk University of Glasgow

The equipment

Require tight focusing so needhigh numerical aperture, N.A.

Magnification typically X100

N.A. = n sin()

n is the refractive index of the medium between the objective lens and the sample. Using oilimmersion lenses, n ~ 1.3 so N.A >1is possible.

Page 8: Optical Tweezers A revolution in micro-manipulation Jonathan Leach j.leach@physics.gla.ac.uk University of Glasgow

Optical Trapping - a>> Conditions for Mie scattering when the particleradius a is larger than the wavelength of the light .

We can use a ray optics argument andlook at the transfer of momentum

a

Page 9: Optical Tweezers A revolution in micro-manipulation Jonathan Leach j.leach@physics.gla.ac.uk University of Glasgow

Optical Trapping - a<< Condition for Rayleigh scattering when the particleradius a is smaller than the wavelength of the light .

Scattering force and gradient force are separable

Fgrad > Fscatt requires tight focusing

a

Page 10: Optical Tweezers A revolution in micro-manipulation Jonathan Leach j.leach@physics.gla.ac.uk University of Glasgow

The scalesCan trap 0.1 to 10’s m

1m is…..…the same as 1/100th diameter of a hair.

In water, you can move a particle at about 20-30m per sec.

Require 10mW per trap.

Can rotate at 100’s of Hz.

Page 11: Optical Tweezers A revolution in micro-manipulation Jonathan Leach j.leach@physics.gla.ac.uk University of Glasgow

If absorbed by particle of refractive index n, a beam of power P produces a reaction force

F = nP/c

(e.g. P = 1mW: F = 5pN)

The Q factor of optical tweezers

The efficiency Q, of optical tweezers is defined as

Q = Factual/ (nP/c)(typically Q ≈ 0.05-0.3)

Page 12: Optical Tweezers A revolution in micro-manipulation Jonathan Leach j.leach@physics.gla.ac.uk University of Glasgow

Optical Trap Dynamics

Equation of motion of particle in a potential well

restoring force

Brownian motion

Newtonian force

drag force

Page 13: Optical Tweezers A revolution in micro-manipulation Jonathan Leach j.leach@physics.gla.ac.uk University of Glasgow

Particle in fluid

Solution is of exponential decay

Damping provided by water

Page 14: Optical Tweezers A revolution in micro-manipulation Jonathan Leach j.leach@physics.gla.ac.uk University of Glasgow

Particle in ideal trap

Solution is of simple harmonic motion

Spring constant

Page 15: Optical Tweezers A revolution in micro-manipulation Jonathan Leach j.leach@physics.gla.ac.uk University of Glasgow

Trapped particle in fluid

Solution is of damped simple harmonic motion

Page 16: Optical Tweezers A revolution in micro-manipulation Jonathan Leach j.leach@physics.gla.ac.uk University of Glasgow

The whole picture

Time averaged effect is 0

Stochastic events introduce fluctuations in the particle’s position

Add in the effect of Brownian motion

Page 17: Optical Tweezers A revolution in micro-manipulation Jonathan Leach j.leach@physics.gla.ac.uk University of Glasgow

Trap dynamics

Look at the movement of the particle in x and y

Page 18: Optical Tweezers A revolution in micro-manipulation Jonathan Leach j.leach@physics.gla.ac.uk University of Glasgow

Power spectrum

Trap strength

Fourier transform to get the power spectrum

Lorenzian

Page 19: Optical Tweezers A revolution in micro-manipulation Jonathan Leach j.leach@physics.gla.ac.uk University of Glasgow

Real data

Page 20: Optical Tweezers A revolution in micro-manipulation Jonathan Leach j.leach@physics.gla.ac.uk University of Glasgow

Coming next

QuickTime™ and a decompressor

are needed to see this picture.

Page 21: Optical Tweezers A revolution in micro-manipulation Jonathan Leach j.leach@physics.gla.ac.uk University of Glasgow

Exam question?

In groups of 3 or 4, create two exam questions, one long, (6 marks), one short (3 marks).

5mins

Page 22: Optical Tweezers A revolution in micro-manipulation Jonathan Leach j.leach@physics.gla.ac.uk University of Glasgow

Collecting data

How can we collect this data?

Moving 100s nm at a few kHz!!!

3 options

Page 23: Optical Tweezers A revolution in micro-manipulation Jonathan Leach j.leach@physics.gla.ac.uk University of Glasgow

Option 1 - Camera

Camera placed in the image plane ofthe objective lens.

Uses the light fromthe illumination source.

Fast shutter speed to take clean image of particle.

Page 24: Optical Tweezers A revolution in micro-manipulation Jonathan Leach j.leach@physics.gla.ac.uk University of Glasgow

Option 1 - Camera

Advantages

• Easy to use• Visual image of particle• Multiple particles

Disadvantages

• 2D measurement • Bandwidth limitations <100Hz• Very slow compared to f0

• Require very fast shutter so need a sensitive camera

Page 25: Optical Tweezers A revolution in micro-manipulation Jonathan Leach j.leach@physics.gla.ac.uk University of Glasgow

Option 2 - Quadrant Photodiode A

Quadrant photodiode placed in the image plane of the objective lens (exactly the same as the camera).

Uses the light fromthe illumination source.

Page 26: Optical Tweezers A revolution in micro-manipulation Jonathan Leach j.leach@physics.gla.ac.uk University of Glasgow

Option 2 - Quadrant Photodiode A

Advantages

• Large bandwidth 100s kHz• Very fast compared to f0

Disadvantages

• Single particle• Low light level, so small signal• 2D measurement

Page 27: Optical Tweezers A revolution in micro-manipulation Jonathan Leach j.leach@physics.gla.ac.uk University of Glasgow

Option 3 - Quadrant Photodiode B

Quadrant photodiode collects the laser light transmitted through the condenser lens.

Small changes in the transmitted and scattered light are measured.

Page 28: Optical Tweezers A revolution in micro-manipulation Jonathan Leach j.leach@physics.gla.ac.uk University of Glasgow

Option 3 - Quadrant Photodiode B

Advantages

• Large bandwidth 100s kHz• Very fast compared to f0

• 3D measurement•High light level as collecting

laser light

Disadvantages

• Complex arrangement• Single particle

Page 29: Optical Tweezers A revolution in micro-manipulation Jonathan Leach j.leach@physics.gla.ac.uk University of Glasgow

Moving particles and multiple particles

Page 30: Optical Tweezers A revolution in micro-manipulation Jonathan Leach j.leach@physics.gla.ac.uk University of Glasgow

Some background optics

An angular shift in the object plane results in a lateral shift in the imageplane.

Collimated light is brought to a focus a distance f, from a lens of focal length f.

Object plane

Image plane

Page 31: Optical Tweezers A revolution in micro-manipulation Jonathan Leach j.leach@physics.gla.ac.uk University of Glasgow

Some background optics

If the beam is not collimated there isa shift in the axial position of the focus.

Page 32: Optical Tweezers A revolution in micro-manipulation Jonathan Leach j.leach@physics.gla.ac.uk University of Glasgow

Moving objects around

f f f f f’ f’

Relay lenses

Beam steeringmirror

Angular deflection at mirror gives lateral shift of trap

Page 33: Optical Tweezers A revolution in micro-manipulation Jonathan Leach j.leach@physics.gla.ac.uk University of Glasgow

Diffractive optics

Placing a diffractive optical element in theobject plane can generate a number of focused spots.

Diffraction grating

Page 34: Optical Tweezers A revolution in micro-manipulation Jonathan Leach j.leach@physics.gla.ac.uk University of Glasgow

Spatial Light ModulatorsCalculated pattern

Video signal

Incoming beam

reflected/diffractedbeam

SLM

optical addressing

• Spatial light modulator = computer-controlled hologram– Liquid crystal (introduce phase or amplitude modulation)– Optically addressed SLMs convert intensity pattern to phase– diffraction efficiency >50%– >VGA resolution

Page 35: Optical Tweezers A revolution in micro-manipulation Jonathan Leach j.leach@physics.gla.ac.uk University of Glasgow

Holograms at work

split the beam focus the beam

transform the beam combinations of the above

Page 36: Optical Tweezers A revolution in micro-manipulation Jonathan Leach j.leach@physics.gla.ac.uk University of Glasgow

Whole beam path

SLM

beam-steerin

g mirror mirror imaged on

microscope entrance pupil

microscope objective

SLM imaged on beam-steering mirror

also: plane waves conserved

Page 37: Optical Tweezers A revolution in micro-manipulation Jonathan Leach j.leach@physics.gla.ac.uk University of Glasgow

Holographic optical tweezers can do (just

about) anything!Hologram

Incident beam

Diffracted beams

Curtis et al. Opt. Commun. 207, 169 (2002)

• Holographic beam generation can create– multiple beams– modified beams– focussed beams– or all these at the

same time• REAL TIME control

of the beams

Page 38: Optical Tweezers A revolution in micro-manipulation Jonathan Leach j.leach@physics.gla.ac.uk University of Glasgow

Dynamic multiple traps

Eriksen et al. Opt. Exp. 10, 597 (2002)

• Use spatial light modulator to create multiple traps– Lateral

displacement– Axial

displacement• Update trap positions

– Video frame rate

Page 39: Optical Tweezers A revolution in micro-manipulation Jonathan Leach j.leach@physics.gla.ac.uk University of Glasgow

Rotating cube

QuickTime™ and aYUV420 codec decompressor

are needed to see this picture.

Page 40: Optical Tweezers A revolution in micro-manipulation Jonathan Leach j.leach@physics.gla.ac.uk University of Glasgow

Coming next

QuickTime™ and aCinepak decompressor

are needed to see this picture.

?

Page 41: Optical Tweezers A revolution in micro-manipulation Jonathan Leach j.leach@physics.gla.ac.uk University of Glasgow

Exam question?

In groups of 3 or 4, create two exam questions, one long, (6 marks), one short (3 marks).

5mins

Page 42: Optical Tweezers A revolution in micro-manipulation Jonathan Leach j.leach@physics.gla.ac.uk University of Glasgow

Applications of optical tweezers

Page 43: Optical Tweezers A revolution in micro-manipulation Jonathan Leach j.leach@physics.gla.ac.uk University of Glasgow

Bio-applications

The size of particles that can be trapped is ~0.1m to 10’s m

Approximately the same size asmany biological specimen.

e.g. Blood cells, stem cells, DNA molecules

Either trapped directly, or beads used as handles to reduce optical damage.

Ashkin et al. Nature. 330, 768 (1987)

Block et al. Nature. 338, 514 (1989)

Page 44: Optical Tweezers A revolution in micro-manipulation Jonathan Leach j.leach@physics.gla.ac.uk University of Glasgow

Measuring force/motion

Molloy et al. Biophys J. 68, S298 (1995)

biologicalobject

trapped bead

quadrant detector

imaging lens

• Image trapped bead (handle) onto quadrant detector

• Measure movement of shadow– nm accuracy!– kHz response

• Adjust trap to maintain position gives measurement of force– sub-pN accuracy!

Page 45: Optical Tweezers A revolution in micro-manipulation Jonathan Leach j.leach@physics.gla.ac.uk University of Glasgow

e.g. Observation of myosin binding

• Handles attached to actin filament

• Intermittent binding to myosin suppresses thermal motion of beads due to stiff physical bond

Page 46: Optical Tweezers A revolution in micro-manipulation Jonathan Leach j.leach@physics.gla.ac.uk University of Glasgow

e.g. Stretching/twisting of DNA

Perkins et al. Science. 264, 822 (1994)

Wang et al. Science. 282, 902 (1998)

• Attach handles to ends of DNA molecule

• Pull, let go and observe what happens!– understanding of

protein folding

Page 47: Optical Tweezers A revolution in micro-manipulation Jonathan Leach j.leach@physics.gla.ac.uk University of Glasgow

QuickTime™ and aCinepak decompressor

are needed to see this picture.

Work at Glasgow

5 microns5 microns

Jordan et al., J. Mod. Opt.,2004

• Permanent micro-structures

• Use SLM to create tweezers arrays

• Trap pseudo 2D crystals (≈100) (Curtis 2002)

• What happens when you turn the light off?– Fix structure in gel

• Permanent micro-structures

• Use SLM to create tweezers arrays

• Trap pseudo 2D crystals (≈100) (Curtis 2002)

• What happens when you turn the light off?– Fix structure in gel

Page 48: Optical Tweezers A revolution in micro-manipulation Jonathan Leach j.leach@physics.gla.ac.uk University of Glasgow

Physical applications

Page 49: Optical Tweezers A revolution in micro-manipulation Jonathan Leach j.leach@physics.gla.ac.uk University of Glasgow

Transfer of angular momentum

Angular momentum per photon = hbar

Angular momentum per photon = -hbar

If the particle Is birefringent it will absorb angular momentum and rotate.

Half-waveplate

Circularlypolarised light

Direction of propagation

Page 50: Optical Tweezers A revolution in micro-manipulation Jonathan Leach j.leach@physics.gla.ac.uk University of Glasgow

Physical applications

Polarisation vectors rotatePolarisation vectors rotate(circular polarisation)(circular polarisation)

Spin angular momentumSpin angular momentum

Phase structure rotatesPhase structure rotates(helical phase fronts)(helical phase fronts)

Orbital angular Orbital angular momentummomentum

Padgett and Allen, Contemp. Phys. 41, 275 (2000)

QuickTime™ and aAnimation decompressor

are needed to see this picture.

QuickTime™ and aNone decompressor

are needed to see this picture.

Page 51: Optical Tweezers A revolution in micro-manipulation Jonathan Leach j.leach@physics.gla.ac.uk University of Glasgow

Absorption of orbital and spin angular momentum

Orbital AMOrbital AMSpinSpin

O’Neil et al. Phys. Rev. Lett. 053601 (2002)

QuickTime™ and aCinepak decompressor

are needed to see this picture.

QuickTime™ and aCinepak decompressor

are needed to see this picture.

Page 52: Optical Tweezers A revolution in micro-manipulation Jonathan Leach j.leach@physics.gla.ac.uk University of Glasgow

Microfluidic applications

Page 53: Optical Tweezers A revolution in micro-manipulation Jonathan Leach j.leach@physics.gla.ac.uk University of Glasgow

Micro-machines driven by optical tweezers

optical micro-pump

Terray et al. Science. 296, 1841 (2002)

QuickTime™ and aSorenson Video 3 decompressorare needed to see this picture.

• Translational (or rotational) control

• Fluid pumps• Optically driven stirring

Page 54: Optical Tweezers A revolution in micro-manipulation Jonathan Leach j.leach@physics.gla.ac.uk University of Glasgow

Vortex Arrays

QuickTime™ and aYUV420 codec decompressor

are needed to see this picture.

Ladvac and Grier, Optics Express, 2004

Page 55: Optical Tweezers A revolution in micro-manipulation Jonathan Leach j.leach@physics.gla.ac.uk University of Glasgow

Work at Glasgow

Optically driven pump using two counter rotating birefringent particles

QuickTime™ and aCinepak decompressor

are needed to see this picture.

Page 56: Optical Tweezers A revolution in micro-manipulation Jonathan Leach j.leach@physics.gla.ac.uk University of Glasgow

Work at Glasgow

Flow

Flow meter

v = d/t

Turn laser on and off and measure particle displacement.

d

Page 57: Optical Tweezers A revolution in micro-manipulation Jonathan Leach j.leach@physics.gla.ac.uk University of Glasgow

Work at Glasgow

Flow meter

Page 58: Optical Tweezers A revolution in micro-manipulation Jonathan Leach j.leach@physics.gla.ac.uk University of Glasgow

Work at Glasgow

Flow meter results

Page 59: Optical Tweezers A revolution in micro-manipulation Jonathan Leach j.leach@physics.gla.ac.uk University of Glasgow

A few of the (many) active groups

• World-wide– Grier et al. NY USA– Glückstad et al. Risø Denmark– Rubinstein-Dunlop et al. Queensland, Australia

• UK– Us! Glasgow– Dholakia et al. St Andrews– Molloy et al. National Institute for Medical Research, London

Page 60: Optical Tweezers A revolution in micro-manipulation Jonathan Leach j.leach@physics.gla.ac.uk University of Glasgow

Conclusions

Trap dynamics and mechanisms

Positioning, manipulation and control

Bio, micro, physical applications

Page 61: Optical Tweezers A revolution in micro-manipulation Jonathan Leach j.leach@physics.gla.ac.uk University of Glasgow

ConstantsN.A. = numerical aperturen = refractive index= anglea = radius of particle = wavelength of lightI0 = intensity nm = refractive index trapping mediumnp= refractive index particlem = np/nm (in the Fscatt, Fgrad equation)c = speed of lightm = mass (in the equation of motion)P = powerQ = trapping efficiencya = accelerationv = velocityx = positiont = timeT = temperaturekB = Boltzmann’s constantS = power spectrum = 6a= viscosity = trap strength

Page 62: Optical Tweezers A revolution in micro-manipulation Jonathan Leach j.leach@physics.gla.ac.uk University of Glasgow

Exam question?

In groups of 3 or 4, create two exam questions, one long, (6 marks), one short (3 marks).

5mins