40
Optical bias selector based on a multilayer a-SiC:H optical filter 1 Lisbon We demonstrate an integrated VIS-NIR optical filter based on SiC technology. The concept is extended to implement a 1 x 5 WDM in the VIS-NIR range. FCT ref. UID/EEA/00066/2013 ACKNOWLEDGEMENTS

Optical bias selector based on a multilayer a-SiC:H ... · A-C HMS) 0 5 0 5 0 5 0 5 d 0 d 3 d 5 d 7 d 9 d 11 d 13 d 15 m m RGB V V O nm 0 1 0 001 1 0 010 1 0 011 1 0 100 1 0 101 1

  • Upload
    others

  • View
    8

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Optical bias selector based on a multilayer a-SiC:H ... · A-C HMS) 0 5 0 5 0 5 0 5 d 0 d 3 d 5 d 7 d 9 d 11 d 13 d 15 m m RGB V V O nm 0 1 0 001 1 0 010 1 0 011 1 0 100 1 0 101 1

Optical bias selector based on

a multilayer a-SiC:H optical

filter

1 Lisbon

•We demonstrate an integrated VIS-NIR optical

filter based on SiC technology.

•The concept is extended to implement a 1 x 5

WDM in the VIS-NIR range.

• FCT – ref. UID/EEA/00066/2013

ACKNOWLEDGEMENTS

Page 2: Optical bias selector based on a multilayer a-SiC:H ... · A-C HMS) 0 5 0 5 0 5 0 5 d 0 d 3 d 5 d 7 d 9 d 11 d 13 d 15 m m RGB V V O nm 0 1 0 001 1 0 010 1 0 011 1 0 100 1 0 101 1

p-i’-n p-i-n

• Light-to-dark sensitivity

depends on the carbon

concentration

• Color recognition

depends on the applied

bias

400 450 500 550 600 650 700 750 8000,00

0,02

0,04

0,06

0,08

0,10

0,12

0,14

0,16

0,18

0,20

#M007192 (2mWcm-2)

#M007192(L=0)

#M006301(L=0)

#M006291(2mWcm-2)

#M006301(2mWcm-2)

#M006291(L=0)

Sen

siti

vit

y (

A/W

)

Wavelength (nm)-6 -5 -4 -3 -2 -1 0 1 2

-8x10-8

-6x10-8

-4x10-8

-2x10-8

0

a)

S=650 nm

NC#5 (pin/pin)

whithout

optical bias

L=550 nm

L=650 nm

L=450 nm

Photo

curr

ent (A

)

Voltage (V)

a-S

i/S

iC P

ho

tod

iod

es

• Light filtering depends on

the bias wavelength and

side

• WDM device

RGB channels; 6000bps

• Coder/decoder device

IR/RGBV/UV channels;

30kbps

1

0

1

1

1

0

1

1

0

0

0

1

1

0

1

1

1

0

1

1

1

1

0

1

1

0

1

1

1

0

1

1

0

0

0

1

0

0

1

1

1

0

1

1

0

0

0

1

0

1

1

0

Page 3: Optical bias selector based on a multilayer a-SiC:H ... · A-C HMS) 0 5 0 5 0 5 0 5 d 0 d 3 d 5 d 7 d 9 d 11 d 13 d 15 m m RGB V V O nm 0 1 0 001 1 0 010 1 0 011 1 0 100 1 0 101 1

Devic

e c

on

fig

ura

tio

n

an

d o

pe

rati

on

c

•Produced by PECVD

•The thickness of the front

photodiode are optimized for blue

collection and red transmittance

•The thickness of the back

photodiode was adjusted to

achieve high collection in the red

spectral range

Op

tic

al

bia

s O

ptic

al

bia

s

GL

AS

S

200 nm

((a-SiC:H)

V=-8V

Input

channels

B TC

O

i

1000 nm

(a-Si:H)

p p n n TC

O

Front diode Back diode

G

i’

R, IR

B

Both front and back diodes act as optical filters confining,

respectively, the blue and the red optical carriers, while the green

ones are absorbed across both.

400 450 500 550 600 650 7000

20

40

60

80

100

120

140

No

rma

lize

d P

ho

tocu

rre

nt

No background

Red background

Green background

Blue background

Violet background

V=-8V

500 Hz

Ph

oto

cu

rre

nt (n

A)

Wavelength (nm)

N3500

R3500

G3500

B3500

Violtet 3500

0

1

p-i'-n diode

p-i-n diode

B

C

400 450 500 550 600 650 7000

5

10

15

20

25

30

35

40

45

50Back optical bias

Norm

aliz

ed P

hoto

curr

ent

V=-8V

500 Hz

Photo

curr

ent (n

A)

Wavelength (nm)

no bias 500 Hz

R10mA

G10mA

B10mA

V10mA

0

1

2

p-i'-n diodep-i-n diode

B

C

I

Page 4: Optical bias selector based on a multilayer a-SiC:H ... · A-C HMS) 0 5 0 5 0 5 0 5 d 0 d 3 d 5 d 7 d 9 d 11 d 13 d 15 m m RGB V V O nm 0 1 0 001 1 0 010 1 0 011 1 0 100 1 0 101 1

ITO

Gla

ss p

i’(a-S

iC:H

)

i (a

-Si:H

)

n p nIT

O

ITO

Gla

ss p

i’(a-S

iC:H

)

i (a

-Si:H

)

n p nIT

O

400 450 500 550 600 650 7000

1

2

3

4

5

6

7

8

9

10

11

12

Back Front

2300 Wcm-2

360 Wcm-2

16Wcm-2

Violet background

Gain

(

V)

Wavelength (nm)

R3500Hz

V3500

D

E

G

H

The device acts as an active long-pass filter under front

irradiation and a low-pass filter under back irradiation.

Back Front

Optical bia

s filt

eri

ng

effects

•By switching the irradiation side the short-, and long- spectral

region can be sequentially tuned.

•The medium region (475 nm-530 nm) can only be tuned by using

both active filters.

Page 5: Optical bias selector based on a multilayer a-SiC:H ... · A-C HMS) 0 5 0 5 0 5 0 5 d 0 d 3 d 5 d 7 d 9 d 11 d 13 d 15 m m RGB V V O nm 0 1 0 001 1 0 010 1 0 011 1 0 100 1 0 101 1

GL

AS

S

200 nm

(a-SiC:H)

Applied Voltage

Channels

B

TC

O

i

1000 nm

(a-Si:H)

p p n

n

TC

O

Front diode Back diode

G

i’

G

Wavelength

Division

Multiplexing

Wavelength

Division

Demultiplexing

MU

X/D

EM

UX

Devic

e

Op

tica

l

bia

s

V

R

G

B

V

0,0 0,5 1,0 1,5 2,0 2,50,0

0,5

1,0

1,5

2,0

2,5

Dark

Red Channel

Photo

curr

ent (

A)

Time (ms)

RdarkFront

Rfron

Back

Rback

0,0 0,5 1,0 1,5 2,0 2,50,0

0,5

1,0

Dark

Violet Channel

Photo

curr

ent (

A)

Time (ms)

VdarkBack

Vback

Front

Vfront

Op

tic

al

bia

s

The input signals exhibits a nonlinear dependence on the wavelength.

Gains (αV R,G.B,V) at the input red, green, blue and violet channels.

Page 6: Optical bias selector based on a multilayer a-SiC:H ... · A-C HMS) 0 5 0 5 0 5 0 5 d 0 d 3 d 5 d 7 d 9 d 11 d 13 d 15 m m RGB V V O nm 0 1 0 001 1 0 010 1 0 011 1 0 100 1 0 101 1

0,0 0,5 1,0 1,5 2,0 2,5 3,00,0

0,5

1,0

1,5BGR

MU

X s

ignal (

A)

Time (ms)

V

I

•The output presents 23 ordered

levels each one related with RGB

bit sequences

•The output presents 24

ordered levels each one

related with RGBV bit

sequences

•The output presents 25 ordered

levels each one related with

RGBVI bit sequences

0,0 0,5 1,0 1,5 2,0 2,5 3,00,0

0,5

1,0

1,5BGR

MU

X s

ignal (

A)

Time (ms)

V

I

Lo

ok-u

p T

able

Page 7: Optical bias selector based on a multilayer a-SiC:H ... · A-C HMS) 0 5 0 5 0 5 0 5 d 0 d 3 d 5 d 7 d 9 d 11 d 13 d 15 m m RGB V V O nm 0 1 0 001 1 0 010 1 0 011 1 0 100 1 0 101 1

Co

der/

deco

der

devic

e

0,0 0,5 1,0 1,5 2,0 2,5

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

4,5

Back

Front

RGBV

V=1 V=0V=0 V=1

Violet backgroundViolet

0001

0

0011

0

0101

0

0111

0

1001

0

1011

0

1101

0

Red

Green

Blue

1111

0

Photo

curr

ent (

A)

Time (ms)

Red

Green

Blue

Violet

VFront

Vback

•The output presents 24 ordered levels each one related with RGBV bit

sequences •The signal magnitude under irradiation is balanced by the amplification

factors

V

αVR >>1 αVG >1 αVB ~ 1 αVV <<1

αVV >>1

Page 8: Optical bias selector based on a multilayer a-SiC:H ... · A-C HMS) 0 5 0 5 0 5 0 5 d 0 d 3 d 5 d 7 d 9 d 11 d 13 d 15 m m RGB V V O nm 0 1 0 001 1 0 010 1 0 011 1 0 100 1 0 101 1

ER

RO

R C

ON

TR

OL

BA

SE

D O

N A

-SIC

TE

CH

NO

LO

GY

( D

EC

OD

ING

AL

GO

RIT

HM

S)

0.0 0.5 1.0 1.5

0.0

0.5

1.0

1.5

d0

d3

d5

d7

d9

d11

d13

d15

400 nm

470 nm

RGBV

V

=390 nm

0001

0

0011

0

0101

0

0111

0

1001

0

1011

0

1101

0

626 nm

524 nm

1111

0

MU

X s

ignal

Time (ms)

0,0 0,5 1,0 1,5 2,0 2,5 3,00,0

0,5

1,0

1,5

2,0

00000

11110

11111

RGBVI

=390 nm

d31

d15

d0

Front

700 nm400 nm470 nm524 nm626 nm

MU

X s

igna

l (

A)

Time (ms)

Four channels transmission.

• The background acts as selector that chooses one or more of the 2n

sublevels, with n the number of transmitted channels, and their n-bit

binary code .

Five channels transmission

• 2n ordered levels pondered by their optical gains are

detected and correspond to all the possible combinations of

the on/off states

• By assigning each output level to a n digit binary code the signal can

be decoded. A maximum transmission rate capability of 60 Kbps

was achieved in a five channel transmission

Page 9: Optical bias selector based on a multilayer a-SiC:H ... · A-C HMS) 0 5 0 5 0 5 0 5 d 0 d 3 d 5 d 7 d 9 d 11 d 13 d 15 m m RGB V V O nm 0 1 0 001 1 0 010 1 0 011 1 0 100 1 0 101 1

PA

RIT

Y C

HE

CK

BIT

S

Transmitted data[RGBV PRPGPB ]

p

Glass

i’

200 nm

a-SiC:H

p

i

1000 nm

a-Si:H

n nTCO

TCO

V

Op

ticalBias

B

G

R

Inputchannels

Front diodes Back diodes

V=-8VTCO

p n p n

TCO

G

R

i’

B

i

V=-8V

Op

ticalBias

MU

X C

OD

E M

UX

PAR

ITY

• The proximity of consecutive levels causes occasional errors in the

decoded information that should be corrected.

• For parity check, and in a four or five channel transmission, three or

four synchronous channels, red, green, blue and violet were read in

simultaneous with the data code.

As an application, data was sent through one detector while error detection

and correction bits were sent through the other.

Page 10: Optical bias selector based on a multilayer a-SiC:H ... · A-C HMS) 0 5 0 5 0 5 0 5 d 0 d 3 d 5 d 7 d 9 d 11 d 13 d 15 m m RGB V V O nm 0 1 0 001 1 0 010 1 0 011 1 0 100 1 0 101 1

0.0 0.5 1.0 1.50.0

0.2

0.4

0.6

0.8

1.0

1.1

1.3

pR p

G p

B

0 0 0

0 0 1

0 1 00 1 1

1 0 0

1 0 1

1 1 01 1 1p

7

p6

p5

p4

p3

p2

p1

p0

Code w

ord

d15

d0

d3

d4

d7

d8

d11

d12

PB

PG

PR

VB

GR

MU

X s

ignals

Time (ms)

0.0 0.5 1.0 1.5 2.0 2.5 3.00.0

0.3

0.5

0.8

1.0

1.3

1.5

1.8

1 1 0 0

1 1 1 1

pR p

G p

B p

V

d27

d4

d8

PVPBPG

PRI

VBGR

d17

p0

p15

Code w

ord

d0

d15

d31

MU

X s

ignals

Time (ms)

B

C

D

E

F

H

J

K

L

M

O

G

PR-(VRB) = V + R +B

PG-(VRG) = V + R +G

PB-(VGB) = V + G +B

PV-(I) = I

Five channels transmission

The parity bits are SUM bits of the three-

bit additions of violet pulsed signal with

two additional bits of RGB

Four channels transmission

one-bit extra

Th

e p

arity

bits

• The parity of the word is checked after reading the word.

• The word is accepted if the parity of the bits read out is correct. If the parity

of the bits is incorrect, an error is detected and should be corrected.

Page 11: Optical bias selector based on a multilayer a-SiC:H ... · A-C HMS) 0 5 0 5 0 5 0 5 d 0 d 3 d 5 d 7 d 9 d 11 d 13 d 15 m m RGB V V O nm 0 1 0 001 1 0 010 1 0 011 1 0 100 1 0 101 1

0.0 0.3 0.5 0.8 1.0 1.3

0.0

0.3

0.6

0.9

1.2

1.5

1.8

R G

B V

P

RP

GP

B

d13

d9

d7

d3

d14

d4

d10

d12

d1

d6

d8

d2

d15

d0

p0

p1

p2

p3

p5

p6

p7

d5

p4

d11

MU

X s

ignal

Time (ms)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

Parity levels

Word levels

PV

PBPGPRI

VBGR

Photo

curr

ent [

A]

Time [ms]

B

C

D

E

F

H

J

K

L

M

O

The decoding algorithm is based

on a proximity search after each

time slot is translated to a vector

in multidimensional space.

The vector components are

determined by I1 and I2, where

I1 (d levels) and I2 (p levels) are

the currents measured.

We have tested the algorithm with different random sequences of the

channels and we have recovered the original color bits Cod

e a

nd p

arity

MU

X/D

EM

UX

sig

nals

The result is then compared with

all vectors obtained from a

calibration sequence where to

each code level, d(0-31), is

assigned the correspondent

parity level, p(0-15).

Page 12: Optical bias selector based on a multilayer a-SiC:H ... · A-C HMS) 0 5 0 5 0 5 0 5 d 0 d 3 d 5 d 7 d 9 d 11 d 13 d 15 m m RGB V V O nm 0 1 0 001 1 0 010 1 0 011 1 0 100 1 0 101 1

0.0 0.5 1.0 1.5 2.0 2.5 3.00.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Back

Front

Back=390 nm

R=626nm

G=524nm

B=470nm

I=700nm

v=400nm

Photo

curr

ent (

A)

Time (ms)

B

C

D

E

F

W

X

1 x

5

WD

M in

th

e

VIS

-NIR

range

400 500 600 700 800

0

2

4

6

8

10

12

Back Front

Back

=390 nm

F

,B

Wavelenght (nm)

B

C

0.0 0.5 1.0 1.5 2.0 2.5 3.00.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Back

R=626nm

G=524nm

B=470nm

I=700nm

v=400nm

Front

MU

X s

ign

al (

A)

Time (ms)

B

C

D

E

F

W

X

0.0 0.5 1.0 1.5 2.0 2.5 3.00.0

0.5

1.0

1.5

2.0

Front

V=626 nm

G=524 nm

B=470 nm

I=700 nm

V=400 nm

Back

Ph

oto

cu

rre

nt

(A

)

Time (ms)

B

C

D

E

F

W

X

•The output presents 25 ordered

levels each one related with

RGBVI bit sequences

Page 13: Optical bias selector based on a multilayer a-SiC:H ... · A-C HMS) 0 5 0 5 0 5 0 5 d 0 d 3 d 5 d 7 d 9 d 11 d 13 d 15 m m RGB V V O nm 0 1 0 001 1 0 010 1 0 011 1 0 100 1 0 101 1

Op

toele

ctr

on

ic m

od

el

V 1/C1

2/C2

i1(t)

i2(t)

-1/R1C1

1/R1C2

1/R1C1

dt

dt

-1/R1C2 -1/R2C2

1/R2

i (t)B

G

R

v1

+

+ +

++

+

v2

v1

v2

.

.

)(111

11

)( 2,1

222121

11112,1

2

,2

1

,,1

2,1tv

CRCRCR

CRCRti

C

C

dt

dv

GR

GBV

tvR

ti 2,1

2

10

;

tvR

ti 2,1

2

10

n n

i p i´ p

n p

IV ,IB,IG

IR,IG

Q2

Q1

R1 ( V)

αG IGb αR IR R2 C2

Q1

C1

αG IGf

αV IV

αB IB

Q2

MATLAB as a

programming

environment and the

four order Runge-

Kutta method to

solve the state

equations

Op

tical

bia

s (α

1 )

Op

tical

bia

s (α

2)

0,0 0,3 0,5 0,8 1,0 1,3 1,50,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

V

R =7.3

V

G =3.2

V

B =1.5

V

V =0.6

ExperimentalPhoto

curr

ent (

A)

Time (ms)

G

Simulated

C

Page 14: Optical bias selector based on a multilayer a-SiC:H ... · A-C HMS) 0 5 0 5 0 5 0 5 d 0 d 3 d 5 d 7 d 9 d 11 d 13 d 15 m m RGB V V O nm 0 1 0 001 1 0 010 1 0 011 1 0 100 1 0 101 1

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.3

0.6

0.9

1.2

1.5

1.8

Experimental

400 nm

700 nm

470 nm

524 nm

626 nmFront

MU

X s

ign

al

Time (ms)

B2

B3

C

D

E

F

G Simulation

Back C

D

Pre

dic

tio

n o

ver

rela

tional

multip

lexed s

igna

ls

14

0,0 0,5 1,0 1,5 2,0 2,50

1

2

3

4

5

6

7 697 nm

470 nm

850 nm

400 nm Back Experimental

Front

MU

X s

ign

al (

A)

Time (ms)

B

C1

C2

C3

C9

C14 Simulation

F

I

0.0 0.5 1.0 1.5 2.0 2.50.0

0.2

0.4

0.6

0.8

1.0

1.2 697nm

524nm

850nm

400nm

Back

Experimental Front

MU

X s

ign

al (A

)

Time (ms)

400

850

524

697

back

front

Simulation

F

I

0,0 0,5 1,0 1,5 2,0 2,5 3,0-0,2

0,0

0,2

0,4

0,6

0,8

1,0

1,2

1,4

1,6

1,8

Experimental

400 nm

700 nm

470 nm

524 nm

626 nmFront

MU

X s

ign

al

Time (ms)

B2

B3

C

D

E

F

G Simulation

Back

C

D

Page 15: Optical bias selector based on a multilayer a-SiC:H ... · A-C HMS) 0 5 0 5 0 5 0 5 d 0 d 3 d 5 d 7 d 9 d 11 d 13 d 15 m m RGB V V O nm 0 1 0 001 1 0 010 1 0 011 1 0 100 1 0 101 1

CO

NC

LU

SIO

NS

• A a-SiC 1x5 WDM device, with channel separation in the visible range, was presented and its operation as wavelength selector explained.

• Encoding and decoding data was analyzed and the codewords generated using the MUX signals due to the data transmitted together with the check parity bits tested.

• An algorithm to decode the transmitted information was presented. A transmitter capability of 60 kbps using the generated codeword was achieved.

A a-SiC 1x5 WDM device, with channel

separation in the visible range, was

presented and its operation as

wavelength selector explained.

Encoding and decoding data was

analyzed and the codewords generated

using the MUX signals due to the data

transmitted together with the check

parity bits tested.

An algorithm to decode the transmitted

information was presented. A transmitter

capability of 60 kbps using the

generated codeword was achieved.

Transmitted data[RGBV PRPGPB ]

p

Glass

i’

200 nm

a-SiC:H

p

i

1000 nm

a-Si:H

n nTCO

TCO

V

Op

ticalBias

B

G

R

Inputchannels

Front diodes Back diodes

V=-8VTCO

p n p n

TCO

G

R

i’

B

i

V=-8V

Op

ticalBias

MU

X C

OD

E M

UX

PAR

ITY

0.0 0.3 0.5 0.8 1.0 1.3

0.0

0.3

0.6

0.9

1.2

1.5

1.8

R G

B V

P

RP

GP

B

d13

d9

d7

d3

d14

d4

d10

d12

d1

d6

d8

d2

d15

d0

p0

p1

p2

p3

p5

p6

p7

d5

p4

d11

MU

X s

ignal

Time (ms)

Page 16: Optical bias selector based on a multilayer a-SiC:H ... · A-C HMS) 0 5 0 5 0 5 0 5 d 0 d 3 d 5 d 7 d 9 d 11 d 13 d 15 m m RGB V V O nm 0 1 0 001 1 0 010 1 0 011 1 0 100 1 0 101 1

Indoor positioning system using a-

SiC:H a WDM device

16

• The nonlinear property of SiC multilayer devices under UV irradiation is

used to design an optical processor for indoor positioning.

Lisbon

Page 17: Optical bias selector based on a multilayer a-SiC:H ... · A-C HMS) 0 5 0 5 0 5 0 5 d 0 d 3 d 5 d 7 d 9 d 11 d 13 d 15 m m RGB V V O nm 0 1 0 001 1 0 010 1 0 011 1 0 100 1 0 101 1

MO

TIV

AT

ION

VLC – Visible Light Communication

Indoor use:

• atmospheric absorption

• shadows

• light dispersion

• influence of other light sources

• Internet service distribution

• Navigation techniques

3 Gbps

Page 18: Optical bias selector based on a multilayer a-SiC:H ... · A-C HMS) 0 5 0 5 0 5 0 5 d 0 d 3 d 5 d 7 d 9 d 11 d 13 d 15 m m RGB V V O nm 0 1 0 001 1 0 010 1 0 011 1 0 100 1 0 101 1

WH

ITE

LE

Ds

Red, Green and Blue LED

Blue LED with phosphor layer

350 450 550 650 750 (nm)

Page 19: Optical bias selector based on a multilayer a-SiC:H ... · A-C HMS) 0 5 0 5 0 5 0 5 d 0 d 3 d 5 d 7 d 9 d 11 d 13 d 15 m m RGB V V O nm 0 1 0 001 1 0 010 1 0 011 1 0 100 1 0 101 1

LE

Ds E

MIS

SIO

N S

PE

CT

RU

M

400 500 600 700 8000,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

Optical in

tensity (

a. u.)

Wavelength (nm)

400 500 600 700 8000,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

Op

tica

l in

ten

sity (

a.

u.)

Wavelength (nm)

Phospor LED

RGB LED

635 nm

532 nm

463 nm

452 nm

• The magnitude and width of each

RGB peaks are optimized for the

white.

• The green component is lowest

because the human eye has a

maximum sensitivity at 530 nm.

0 5 10 15 200,0

0,2

0,4

0,6

Inte

nsity (

a.u

.)

Driving current (mA)

470 nm

626 nm

Page 20: Optical bias selector based on a multilayer a-SiC:H ... · A-C HMS) 0 5 0 5 0 5 0 5 d 0 d 3 d 5 d 7 d 9 d 11 d 13 d 15 m m RGB V V O nm 0 1 0 001 1 0 010 1 0 011 1 0 100 1 0 101 1

SY

ST

EM

DE

SIG

N

• The system is a self-positioning system in which the

measuring unit is mobile.

• This unit receives the signals from several transmitters

in known locations, and has the capability to compute

its location based on the measured signals.

• p-i'(a-SiC:H)-n/p-i(a-

Si:H)-n heterostructure

produced by PECVD.

Receiver

p

Glass

i’

200 nm

a-SiC:H

p

i

1000 nm

a-Si:H

n nTCO

TCO

V

Op

ticalBiasO

pti

calB

ias

B

G

R

Inputchannels

Front diode Back diode

V=-8V

• Red, Green and Blue

white LED

Transmitter

Page 21: Optical bias selector based on a multilayer a-SiC:H ... · A-C HMS) 0 5 0 5 0 5 0 5 d 0 d 3 d 5 d 7 d 9 d 11 d 13 d 15 m m RGB V V O nm 0 1 0 001 1 0 010 1 0 011 1 0 100 1 0 101 1

• The grid size was chosen to avoid data

overlap in the receiver from adjacent

grid points.

• The LEDs can be switched on and off

individually for a desired bit sequence.

Tra

ns

mit

ter

400 500 600 700 8000.0

0.2

0.4

0.6

0.8

1.0

B

G

R

Inte

nsity (

a.u

.)

Wavelength (nm)

Nearest regions 1 2 3 4 5 6 7 8 9

Overlap RGBV RGB GB GBV BV RBV RV RGV RG

• The magnitude and width of

each RGB peaks are

optimized for the white.

• The green component is

lowest because the human

eye has a maximum

sensitivity at 530 nm.

RGB WHITE LED

Page 22: Optical bias selector based on a multilayer a-SiC:H ... · A-C HMS) 0 5 0 5 0 5 0 5 d 0 d 3 d 5 d 7 d 9 d 11 d 13 d 15 m m RGB V V O nm 0 1 0 001 1 0 010 1 0 011 1 0 100 1 0 101 1

PO

SIT

ION

ING

MU

X/D

EM

UX

SIG

NA

LS

Four channels transmission

0.0 0.5 1.0 1.50.0

0.5

1.0

1.5

0000

0111

1111RGBV

Position 1

d15

d0

Back

Front

V

R

B

G

MU

X s

ignal (

A)

Time (ms)

• Looking to the different levels, we have ascribed a binary

code of 4 bits (RGBV) to each position, where 1 means that

the channel is received and 0 that is absent .

• 24 ordered levels

pondered by their

optical gains are

detected and

correspond to all

the possible

combinations of

the on/off states.

Page 23: Optical bias selector based on a multilayer a-SiC:H ... · A-C HMS) 0 5 0 5 0 5 0 5 d 0 d 3 d 5 d 7 d 9 d 11 d 13 d 15 m m RGB V V O nm 0 1 0 001 1 0 010 1 0 011 1 0 100 1 0 101 1

0.0 0.5 1.0 1.50.0

0.4

0.8

1.2Position 2

d7

d0

Back

Front

R

B

G

MU

X s

ignal (

A)

Time (ms)

0.0 0.5 1.0 1.50.0

0.5

1.0

1.5

Position 3

d4

d0

Back

Front

B

G

MU

X s

ignal (

A)

Time (ms)

Nearest regions 1 2 3 4 5 6 7 8 9

Code position 1111 1110 0110 0111 0011 1011 1001 1101 1100

Parity position 111 000 110 001 010 100 001 010 101

PO

SIT

ION

ING

MU

X/D

EM

UX

SIG

NA

LS

• A node requires only information about

the locations of its neighbors, but not the

other nodes in the network to make an

initial estimate of its own location.

Page 24: Optical bias selector based on a multilayer a-SiC:H ... · A-C HMS) 0 5 0 5 0 5 0 5 d 0 d 3 d 5 d 7 d 9 d 11 d 13 d 15 m m RGB V V O nm 0 1 0 001 1 0 010 1 0 011 1 0 100 1 0 101 1

NA

VIG

AT

ION

DA

TA

BIT

S

0.0 0.5 1.0 1.50.0

0.5

1.0

1.5

d7

1 RGBV

3 GB

4 GBV

5 BV

d15

d0

Front

V

R

B

G

MU

X s

ignal (

A)

Time (ms)

• For each transition between an initial location and a final one,

two code words are generated, the initial (i) and the final (f). If

the receiver stays under the same region they should be the

same, if it moves away they are different.

North

South

EastWest

NE

SE

NW

SW

1

2

3

4

CompassNeedle

5

6

North

South

EastWest

NE

SE

NW

SW

1

2

3

4

CompassNeedle

5

7

8

9

Page 25: Optical bias selector based on a multilayer a-SiC:H ... · A-C HMS) 0 5 0 5 0 5 0 5 d 0 d 3 d 5 d 7 d 9 d 11 d 13 d 15 m m RGB V V O nm 0 1 0 001 1 0 010 1 0 011 1 0 100 1 0 101 1

0.0 0.5 1.0 1.50.0

0.5

1.0

1.5

2.0

Position ID

t1 RGBV

t3 GB

t4 GBV

t5 BV

R

G

B

V

RGBV

GB

GBV

BV

d15

d0

Front

V

R

B

G

Photo

curr

ent (

A)

Time (ms)

0.0 0.5 1.0 1.5 2.00.0

0.5

1.0

1.5

2.0 V

R

B

G

Position ID

Front lighting t1 RGBV

t3 GB

t4 GBV

t5 BV

Photo

curr

ent (

A)

Time (ms)

G

G

G

G

B

C

D

E

• The device’s position (ID position) during the

receiving process will be given by the

highest detected level (vertical dot line in the

figures), i. e, the level where all the n (n=1,

2, 3, 4) channels are simultaneously on.

• At each regions the MUX signals present

different pattern that after decoding give

information about the mobile navigation and

received information along the time.

North

South

EastWest

NE

SE

NW

SW

1

2

3

4

CompassNeedle

5

6

North

South

EastWest

NE

SE

NW

SW

1

2

3

4

CompassNeedle

5

7

8

9T

RA

NS

MIS

SIO

N D

ATA

BIT

S

Page 26: Optical bias selector based on a multilayer a-SiC:H ... · A-C HMS) 0 5 0 5 0 5 0 5 d 0 d 3 d 5 d 7 d 9 d 11 d 13 d 15 m m RGB V V O nm 0 1 0 001 1 0 010 1 0 011 1 0 100 1 0 101 1

CO

NC

LU

SIO

NS

• A a-SiC 1x5 WDM device, with channel separation in the visible range, was presented and its operation as wavelength selector explained.

• Encoding and decoding data was analyzed and the codewords generated using the MUX signals due to the data transmitted together with the check parity bits tested.

• An algorithm to decode the transmitted information was presented. A transmitter capability of 60 kbps using the generated codeword was achieved.

VLC system characteristics for positioning on its

different components such as the transmitter and the

receiver, the multiplexing techniques, the visible light

sensing and lastly, indoor localization and motion

recognition were analized.

The results showed that by using a pinpin double

photodiode based on a a-SiC:H heterostucture as

receiver and RBG-LED as transmitters it is possible

not only to determine the position of a mobile target

but also to infer the travel direction along the time.

Future work will consider to improve the transmission

rate through parallelizing communication by using

multiple emitters and receivers.

Page 28: Optical bias selector based on a multilayer a-SiC:H ... · A-C HMS) 0 5 0 5 0 5 0 5 d 0 d 3 d 5 d 7 d 9 d 11 d 13 d 15 m m RGB V V O nm 0 1 0 001 1 0 010 1 0 011 1 0 100 1 0 101 1

SY

ST

EM

DE

SIG

N

• The system is a self-positioning system in which the measuring

unit is mobile.

• This unit receives the signals from several transmitters in known

locations, and has the capability to compute its location based on

the measured signals.

• p-i'(a-SiC:H)-n/p-i(a-

Si:H)-n heterostructure

produced by PECVD.

Receiver

p

Glass

i’

200 nm

a-SiC:H

p

i

1000 nm

a-Si:H

n nTCO

TCO

V

Op

ticalBiasO

pti

calB

ias

B

G

R

Inputchannels

Front diode Back diode

V=-8V

• Red, Green and Blue

white LED

Transmitter

0.0 0.5 1.0 1.5 2.0

[0101 0011]

V

B

G

R

Code w

ord

(R

GB

V)

Time (ms)

400 500 600 700 8000.0

0.2

0.4

0.6

0.8

1.0

B

G

R

Inte

nsity (

a.u

.)

Wavelength (nm)

Page 29: Optical bias selector based on a multilayer a-SiC:H ... · A-C HMS) 0 5 0 5 0 5 0 5 d 0 d 3 d 5 d 7 d 9 d 11 d 13 d 15 m m RGB V V O nm 0 1 0 001 1 0 010 1 0 011 1 0 100 1 0 101 1

TO

PO

LO

GY

Region 1 2 3 4 5 6 7 8 9 10 11 12 13

Overlap RGBV RGB GB GBV BV RBV RV RGV RG G B V R

Region 1 2 3 4 5 6 7 8 9 10

Overlap RGBV RGV GBV RBV RV GV RB R G B

R G

B V

1

2

3

4

5

6

7

8

9 10

11 12

13 Square

R

G B

V

Triangular

1 2

3

4

5

6 7

8

9 10

• Four modulated LEDs

(RGBV), three of them

(RGB-LED) are located at

the vertices of an equilateral

triangle and a fourth one (V)

is located at its centroid.

• Four modulated LEDs

(RGBV) located at the

corners of a square grid.

1,1 1,3

2,1

1,2

2,32,2

3,23,1 3,3

Page 30: Optical bias selector based on a multilayer a-SiC:H ... · A-C HMS) 0 5 0 5 0 5 0 5 d 0 d 3 d 5 d 7 d 9 d 11 d 13 d 15 m m RGB V V O nm 0 1 0 001 1 0 010 1 0 011 1 0 100 1 0 101 1

Rece

iver

co

nfi

gu

rati

on

an

d o

pe

rati

on

c

•Produced by PECVD

•The thickness of the front

photodiode are optimized for

blue collection and red

transmittance

•The thickness of the back

photodiode was adjusted to

achieve high collection in the

red spectral range

Op

tic

al

bia

s O

ptic

al

bia

s

GL

AS

S

200 nm

((a-SiC:H)

V=-8V

Input

channels

B TC

O

i

1000 nm

(a-Si:H)

p p n n TC

O

Front diode Back diode

G

i’

R, IR

B

Both front and back diodes act as optical filters confining, respectively, the

blue and the red optical carriers, while the green ones are absorbed across

both.

I

0.0 0.5 1.0 1.5 2.00.00

0.05

0.10

0.15

Dark Back

Front

Ph

oto

cu

rre

nt

(A

)

Time (ms)

0.0 0.5 1.0 1.5 2.00.00

0.02

0.04

0.06

0.08

0.10

V=400 nm

Dark

Back

Front

Ph

oto

cu

rre

nt

(A

)

Time (ms)

Page 31: Optical bias selector based on a multilayer a-SiC:H ... · A-C HMS) 0 5 0 5 0 5 0 5 d 0 d 3 d 5 d 7 d 9 d 11 d 13 d 15 m m RGB V V O nm 0 1 0 001 1 0 010 1 0 011 1 0 100 1 0 101 1

GL

AS

S

200 nm

(a-SiC:H)

Applied Voltage

Channels

B

TC

O

i

1000 nm

(a-Si:H)

p p n

n

TC

O

Front diode Back diode

G

i’

G

Wavelength

Division

Multiplexing

Wavelength

Division

Demultiplexing

SY

ST

EM

OP

ER

AT

ION

Op

tica

l

bia

s

V

R

G

B

V

Op

tic

al

bia

s

The input signals exhibits a nonlinear dependence on the wavelength.

Gains (αV R,G.B,V) at the input red, green, blue and violet channels.

10011001 11011101 10001001

Bit decode LED ID data transmit with fast

blinking

Coder/decoder device

Transmitter / Receiver of VLC

0.0 0.5 1.0 1.5 2.00.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

R=626 nm

B=470 nm

G=530 nm

V=400 nm V

B

G

R

Front

Back

Dark

Photo

curr

ent (

A)

Time (ms)

Page 32: Optical bias selector based on a multilayer a-SiC:H ... · A-C HMS) 0 5 0 5 0 5 0 5 d 0 d 3 d 5 d 7 d 9 d 11 d 13 d 15 m m RGB V V O nm 0 1 0 001 1 0 010 1 0 011 1 0 100 1 0 101 1

0,0 0,5 1,0 1,5 2,0 2,5 3,00,0

0,5

1,0

1,5BGR

MU

X s

ignal (

A)

Time (ms)

V

I

•The output presents 23 ordered

levels each one related with RGB

bit sequences

•The output presents 24

ordered levels each one

related with RGBV bit

sequences

•The output presents 25 ordered

levels each one related with

RGBVI bit sequences

0,0 0,5 1,0 1,5 2,0 2,5 3,00,0

0,5

1,0

1,5BGR

MU

X s

ignal (

A)

Time (ms)

V

I

Lo

ok-u

p T

able

Page 33: Optical bias selector based on a multilayer a-SiC:H ... · A-C HMS) 0 5 0 5 0 5 0 5 d 0 d 3 d 5 d 7 d 9 d 11 d 13 d 15 m m RGB V V O nm 0 1 0 001 1 0 010 1 0 011 1 0 100 1 0 101 1

0.0 0.5 1.0 1.5 2.00.0

0.1

0.2

0.3

0.4

0.5

0.6

d11

(1011)

d0 (0000)

d4 (0100)

d8 (1000)

d15

(1111)

d (RGBV)

Back

Front

V

B

G

R

MU

X s

ign

al (a

.u.)

Time (ms)

0.0 0.5 1.0 1.5 2.00.0

0.1

0.2

0.3

d0 (0000)

d4 (0100)

d8 (1000)

d12

(1100)

d15

(1111)

d (RGBV)

V

B

G

R

Back

Front

MU

X s

ign

al (a

.u.)

Time (ms)

Square topology Triangular topology.

• The background acts as selector that chooses one or more of the 2n

sublevels, with n the number of transmitted channels, and their n-bit

binary code .

• 2n ordered levels pondered by their optical gains are

detected and correspond to all the possible combinations of

the on/off states.

• By assigning each output level to a n digit binary code the signal can

be decoded. A maximum transmission rate capability of 30 Kbps

was achieved. De

codin

g a

lgori

thm

Page 34: Optical bias selector based on a multilayer a-SiC:H ... · A-C HMS) 0 5 0 5 0 5 0 5 d 0 d 3 d 5 d 7 d 9 d 11 d 13 d 15 m m RGB V V O nm 0 1 0 001 1 0 010 1 0 011 1 0 100 1 0 101 1

PO

SIT

ION

ING

MU

X/D

EM

UX

SIG

NA

LS

0.0 0.5 1.0 1.50.0

0.5

1.0

1.5

0000

0111

1111RGBV

Position 1

d15

d0

Back

Front

V

R

B

G

MU

X s

ignal (

A)

Time (ms)

• Looking to the different levels, we have ascribed a binary code of 4 bits

(RGBV) to each position, where 1 means that the channel is received and

0 that is absent .

0.0 0.5 1.0 1.50.0

0.4

0.8

1.2Position 2

d7

d0

Back

Front

R

B

G

MU

X s

ignal (

A)

Time (ms)

0.0 0.5 1.0 1.50.0

0.5

1.0

1.5

Position 3

d4

d0

Back

Front

B

G

MU

X s

ignal (

A)

Time (ms)

[1110]

[1111]

[0110]

Page 35: Optical bias selector based on a multilayer a-SiC:H ... · A-C HMS) 0 5 0 5 0 5 0 5 d 0 d 3 d 5 d 7 d 9 d 11 d 13 d 15 m m RGB V V O nm 0 1 0 001 1 0 010 1 0 011 1 0 100 1 0 101 1

PO

SIT

ION

ING

0.0 0.5 1.0 1.5 2.00.0

0.5

1.0

1.5

2.0

2.5

0000

0010

01000110

1000

1010

11001110RGBV

Position 3

Position 2

B

G

R

MU

X s

ignal (a

.u.)

Time (ms)

0.0 0.5 1.0 1.5 2.00.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

00000001

0100010110001001

11001101RGBV

Position 6

Position 2

V

G

R

MU

X s

ign

al (a

.u.)

Time (ms)

Nearest regions 1 2 3 4 5 6 7 8 9 10 11 12 13

Code position

(Square topology)

1111 1110 0110 0111 0011 1011 1001 1101 1100 0100 0010 0001 1000

Code position

(Triangular topology)

1111 1101 0111 1011 1001 0101 1010 1000 0100 0010 - - -

Square topology

Triangular topology

[1110]

[0110]

[1101]

[0101]

Page 36: Optical bias selector based on a multilayer a-SiC:H ... · A-C HMS) 0 5 0 5 0 5 0 5 d 0 d 3 d 5 d 7 d 9 d 11 d 13 d 15 m m RGB V V O nm 0 1 0 001 1 0 010 1 0 011 1 0 100 1 0 101 1

NA

VIG

AT

ION

DA

TA

BIT

S

0.0 0.5 1.0 1.50.0

0.5

1.0

1.5

d7

1 RGBV

3 GB

4 GBV

5 BV

d15

d0

Front

V

R

B

G

MU

X s

ignal (

A)

Time (ms)

• For each transition between an initial location and a final one,

two code words are generated, the initial (i) and the final (f). If

the receiver stays under the same region they should be the

same, if it moves away they are different.

North

South

EastWest

NE

SE

NW

SW

1

2

3

4

CompassNeedle

5

6

North

South

EastWest

NE

SE

NW

SW

1

2

3

4

CompassNeedle

5

7

8

9

Page 37: Optical bias selector based on a multilayer a-SiC:H ... · A-C HMS) 0 5 0 5 0 5 0 5 d 0 d 3 d 5 d 7 d 9 d 11 d 13 d 15 m m RGB V V O nm 0 1 0 001 1 0 010 1 0 011 1 0 100 1 0 101 1

0.0 0.5 1.0 1.50.0

0.5

1.0

1.5

2.0

Position ID

t1 RGBV

t3 GB

t4 GBV

t5 BV

R

G

B

V

RGBV

GB

GBV

BV

d15

d0

Front

V

R

B

G

Photo

curr

ent (

A)

Time (ms)

0.0 0.5 1.0 1.5 2.00.0

0.5

1.0

1.5

2.0 V

R

B

G

Position ID

Front lighting t1 RGBV

t3 GB

t4 GBV

t5 BV

Photo

curr

ent (

A)

Time (ms)

G

G

G

G

B

C

D

E

• The device’s position (ID position) during the

receiving process will be given by the

highest detected level (vertical dot line in the

figures), i. e, the level where all the n (n=1,

2, 3, 4) channels are simultaneously on.

• At each regions the MUX signals present

different pattern that after decoding give

information about the mobile navigation and

received information along the time.

North

South

EastWest

NE

SE

NW

SW

1

2

3

4

CompassNeedle

5

6

North

South

EastWest

NE

SE

NW

SW

1

2

3

4

CompassNeedle

5

7

8

9N

AV

IGA

TIO

N D

ATA

BIT

S

Page 38: Optical bias selector based on a multilayer a-SiC:H ... · A-C HMS) 0 5 0 5 0 5 0 5 d 0 d 3 d 5 d 7 d 9 d 11 d 13 d 15 m m RGB V V O nm 0 1 0 001 1 0 010 1 0 011 1 0 100 1 0 101 1

0.0 0.5 1.0 1.5 2.00.0

0.3

0.5

0.8

1.0

1.3

1.5

Position ID

t3

t4

t2

t1

d3

d7

d9

d11

0111

0011

1001

R

G

B

V

VR

BVR

BV

GBV

1011

RGBV

V

B

G

R

MU

X s

ignal (a

.u.)

Time (ms)

0.0 0.5 1.0 1.5 2.00.0

0.1

0.3

0.4

0.5

0.7

0.8

0.9

1.1

1.2 Position IDV

B

G

R

5- t1

RV

4- t2

RBV

7- t3

BV

3- t4

GBVd

11 1011

d7 0111

d9 1001

d3 0011

RGBV

MU

X s

ignal (a

.u.)

Time (ms)

B

C

D

E

VR

BVR

BV

GBV

[1001]

[1011]

[0111]

[0011]

NA

VIG

AT

ION

DA

TA

BIT

S

Page 39: Optical bias selector based on a multilayer a-SiC:H ... · A-C HMS) 0 5 0 5 0 5 0 5 d 0 d 3 d 5 d 7 d 9 d 11 d 13 d 15 m m RGB V V O nm 0 1 0 001 1 0 010 1 0 011 1 0 100 1 0 101 1

0.0 0.5 1.0 1.5 2.00.0

0.2

0.4

0.6

0.8

1.0 R

G

V

VRG

GV

[0010 0110]

00000001

0100

0101

11001101

RGBV

Position 6

Position 2

V

G

R

MU

X s

ign

al (a

.u.)

Time (ms)

0.0 0.5 1.0 1.5 2.00.0

0.2

0.4

0.6

0.8

1.0

[0101 0101]

00000001

01000101

10001001

11001101RGBV

Position 6

Position 2

V

G

R

MU

X s

ignal (a

.u.)

Time (ms)

the 8-bit positioning ID decoded from the

violet channel is: [0010 0110], which

corresponds to line 2, column 6 of the

network.

The 8-bit positioning ID decoded from the

violet channel is: [0101 0101], which

corresponds to line 5, column 5 of the

network.

• The 4-bit code that corresponds to the ID position inside the unit cell is the

same: Position 2 [1101] and Position 6 [0101] but the unit cell is different.

Fin

e-g

rain

ed

in

do

or

lo

ca

liza

tion

• The eight first bits of the violet packet give the 8-bit address of the unit cell

Page 40: Optical bias selector based on a multilayer a-SiC:H ... · A-C HMS) 0 5 0 5 0 5 0 5 d 0 d 3 d 5 d 7 d 9 d 11 d 13 d 15 m m RGB V V O nm 0 1 0 001 1 0 010 1 0 011 1 0 100 1 0 101 1

CO

NC

LU

SIO

NS

• A a-SiC 1x5 WDM device, with channel separation in the visible range, was presented and its operation as wavelength selector explained.

• Encoding and decoding data was analyzed and the codewords generated using the MUX signals due to the data transmitted together with the check parity bits tested.

• An algorithm to decode the transmitted information was presented. A transmitter capability of 60 kbps using the generated codeword was achieved.

A coupled data transmission and indoor positioning was

presented. To transmit the data, an On-Off Keying code was

used. A square and a triangular topology were considered for the

unit cell.

Fine-grained indoor localization was tested. A 2D localization

design, demonstrated by a prototype implementation was

developed.

A detailed analysis of the characteristics of various components

within the VLC system were discussed.

Results showed t is possible not only to determine the position of

a mobile target inside the unit cell but also in the network and

concomitantly to infer the travel direction along the time.

For future work, by using multiple emitters and receivers, the

transmission data rate through parallelized spatial multiplexing

can be improved.