42
Stanford University Center for Integrated Systems 2004.10.05 Department of Electrical Engineering Silicon Devices at the “End of Scaling” – Opportunities and Challenges H.-S. Philip Wong Professor of Electrical Engineering Stanford University, Stanford, California, U.S.A. [email protected] http://www.stanford.edu/~hspwong

Opportunities and Challenges - Stanford Universityweb.stanford.edu/~hspwong/2004 10 05 - EE 310 - Sem… ·  · 2004-10-06Opportunities and Challenges H.-S. Philip Wong ... storage!

  • Upload
    phamdan

  • View
    217

  • Download
    3

Embed Size (px)

Citation preview

Stanford University

Center for Integrated Systems 2004.10.05 Department of Electrical Engineering

Silicon Devices at the “End of Scaling” –Opportunities and Challenges

H.-S. Philip WongProfessor of Electrical Engineering Stanford University, Stanford, California, [email protected]

http://www.stanford.edu/~hspwong

Stanford University

Department of Electrical Engineering2 H-.S. Philip Wong 2004.10.05

Elements of an Electronic System

! Logic– execution units, bus, drivers, glue logic

! Memory– memory hierarchy - cache, data bank, NVRAM,

storage! Communication

– on-chip, chip-to-chip, board-to-board...! User Interface

– sensors, input devices, output devices

Stanford University

Department of Electrical Engineering3 H-.S. Philip Wong 2004.10.05

What is Classical Scaling?! Scaling is the synchronous reduction, year on year, of technology dimensions

governing the performance of silicon technology. Scaling;– Improves device performance at ever lower power per function.– Enables increased chip functionality through added density.– Improves business financials through die size reduction.

! Why would the end of classical scaling be a highly disruptive event?– Scaling and progress in silicon technology have been synonymous for decades.

p substrate, doping αααα*N A

Scaled Device

L/αααα xd/αααα

GATEn+ source

n+ drain

W IRINGVoltage, V / αααα

W /ααααtox/αααα

SCALING:Voltage: V/αOxide: tox /αWire width: W/αGate width: L/αDiffusion: xd /αSubstrate: α * NA

RESULTS:Higher Density: ~α2

Higher Speed: ~αPower/ckt: ~1/α2

Power Density: ~Constant

Source: IBM

Stanford University

Department of Electrical Engineering4 H-.S. Philip Wong 2004.10.05

SCALING:Voltage: V/αOxide: tox /αWire width: W/αGate width: L/αDiffusion: xd /αSubstrate: α * NA

RESULTS:Higher Density: ~α2

Higher Speed: ~αPower/ckt: ~1/α2

Power Density: ~Constant

"Why deviate from "ideal" scaling"unacceptable gate leakage/reliability"additional performance at higher voltages

"What is the consequence of this deviation?"a dramatic rise in power density

p substrate, doping αααα*NA

Scaled Device

L/αααα xd/αααα

GATEn+ source

n+ drain

WIRINGVoltage, V / αααα

W/ααααtox/αααα

0.01 0.1 1Gate Length, Lgate (um)

0.1

1

10

100

1000

classic scaling

Tox (C)

Vdd (V)

Vt (V)

Some Things do not Scale Exactly…

Source: IBM

Stanford University

Department of Electrical Engineering5 H-.S. Philip Wong 2004.10.05

Active vs. Passive Power

0.010.110.001

0.01

0.1

1

10

100

1000

Gate Length (microns)

Active Power

Passive Power

1994 2004

Pow

er D

ensi

ty (W

/cm

2 )

! Power components:– Active power

– Passive power• Gate leakage• Sub-threshold

leakage (source-drain leakage)

10S Tox=11AGate Stack

Gate dielectric approaching a fundamental limit (a few atomic layers)

Source: IBM

Stanford University

Department of Electrical Engineering6 H-.S. Philip Wong 2004.10.05

Power is Limiting Microprocessor Frequencies

! Moore’s law is continuing with respect to transistor density, although at a reduced pace

! Workload demands are highly variable

! New methods to utilize silicon density scaling will be developed to accommodate diverse workloads while managing power constraints

Server microprocessors cannot simultaneously utilize all their transistors due to power limitations

Shippable PartsWith Leakage

Minimum Ship Frequency

Leff SlowFast

Nominal

Pow

er

Cooling/Power Limit

Max Freq(No Leakage)

Max Freq(With Leakage)

Power w/Leakage

Num

ber o

f Par

ts

Source: IBM

Stanford University

Department of Electrical Engineering7 H-.S. Philip Wong 2004.10.05

Key Challenges

! Power / performance improvement and optimization

! Variability

! Integration– Device, circuit, system

Stanford University

Department of Electrical Engineering8 H-.S. Philip Wong 2004.10.05

Let’s start with logic devices

Stanford University

Department of Electrical Engineering9 H-.S. Philip Wong 2004.10.05

Improvement OpportunitiesTh

resh

old

Volta

ge (V

T)

Gate Length (LG)

Thin gate dielectric

Doping: sharp halo & junction profiles

Thin silicon body

Innovations:

! materials

! device structure

well doping depletion layer

isolationburied oxide

halo

Silicon Substrate

raised source/drain channel

Gate length scaling

Stanford University

Department of Electrical Engineering10 H-.S. Philip Wong 2004.10.05

Improvement Opportunities

Drain Voltage (VDS)

Dra

in C

urre

nt (I

D)

Contact & series resistance

Mobility

MobilitySaturation velocityBallistic transport

Charge density: subthreshold slope

Innovations:

! materials

! device structure

Dra

in C

urre

nt (l

og(I D

))

Gate Voltage (VGS)

Dra

in C

urre

nt (I

D)

Stanford University

Department of Electrical Engineering11 H-.S. Philip Wong 2004.10.05

Device Transport-enhanced Devices

Ultra-thin Body Source/Drain Engineered Devices

Concept Strained Si, Ge, SiGe, SiCGe or still other semiconductor; on bulk or SOI

Fully depleted SOI with body thinner than 10 nm

Ultra-thin channel and localized ultra-thin BOX

Schottky source/drain

Non-overlapped SD extensions on bulk, SOI, or DG devices

Application/Driver

HP CMOS

HP, LOP, and LSTP

CMOS

HP, LOP, and LSTP CMOS

HP CMOS

HP, LOP, and LSTP

CMOS

Strained Si, Ge, SiGe

isolation

buried oxide

Silicon Substrate

BOX

Bulk wafer BOX (<20nm)

S D GroundPlane

FD Si film Gate

Schottky barrierisolation

Silicon

silicideGate

{{ {{

nFET

{{ {{

pFET

Bias

Non-overlapped region S D

Single Gate Non-classical CMOS

Source: ITRS, J. Hutchby

Stanford University

Department of Electrical Engineering12 H-.S. Philip Wong 2004.10.05

Device Multiple Gate FET

N-Gate (N>2) FET

Double-gate FET

Concept Tied gates (number of channels >2)

Tied gates, side-wall conduction

Tied gates planar conduction

Independently switched gates, planar conduction

Vertical conduction

Application/Driver HP, LOP, and LSTP CMOS

HP, LOP, and LSTP CMOS

HP, LOP, and LSTP CMOS

LOP and LSTP CMOS

HP, LOP, and LSTP CMOS

Source Drain

Gate

Source Drain

Gate

Source Drain

Gate

STI

n+

Si-substrate

SOURCE

GATE

DRAIN

n+

STI

n+

Si-substrate

SOURCE

GATE

DRAIN

n+

Multiple Gate Non-classical CMOS

Source: ITRS, J. Hutchby

Stanford University

Department of Electrical Engineering13 H-.S. Philip Wong 2004.10.05

Transport Enhanced Devices

# Wafer-scale strained Si# Strained Si on relaxed SiGe buffer on bulk Si# Strained Si on relaxed SiGe buffer on insulator# Strained Si directly on insulator

# Local strain# Dielectric films# Isolation (STI), device size dependent structures# SiGe in recessed source/drain

# Crystal orientation and current flow direction# Other materials

# Bulk Ge# Ge on insulator# Strained Ge

Stanford University

Department of Electrical Engineering14 H-.S. Philip Wong 2004.10.05

Strained Silicon

Strained Si/SiGeBulk MOSFET

Strained SiStrained SiStrained SiStrained Si

Relaxed SiGeRelaxed SiGeRelaxed SiGeRelaxed SiGe

SGOI (SiGe-on-Insulator) MOSFET

Strained SiStrained SiStrained SiStrained Si

Buried OxideBuried OxideBuried OxideBuried Oxide

Relaxed SiGeRelaxed SiGeRelaxed SiGeRelaxed SiGe

SSDOI MOSFET

Strained SiStrained SiStrained SiStrained Si

Buried OxideBuried OxideBuried OxideBuried Oxide

Buried Oxide

SSDOI 16 nm

Silicide onselective epi

K. Rim et al., IEDM, 2003.K. Rim et al., Symp. VLSI Tech., p. 59, 2001.

Relaxed SiGe

Strained SiChannel

Co salicideformed onraised S/D

K. Rim et al., Symp. VLSI Tech., p. 98, 2002.

60nm

Buried oxide

Strained silicon

SiGe

CoSi2 on RSD

B. Lee et al., IEDM 2002

Stanford University

Department of Electrical Engineering15 H-.S. Philip Wong 2004.10.05

Strain-Dependence of Mobility

! Mobility enhancements consistent with amount of strain even for strained silicon on insulator

0 10 20 30 40 50

1.0

1.5

2.0

2.50.0 0.5 1.0 1.5 2.0

Ninv = 1e13 cm-2

Chan.Dop.= 2e17 cm-3

Equivalent [Ge] in Fully Relaxed SiGe (%)

Mob

ility

Enha

ncem

ent F

acto

r

Strain = (aStr.Si-aSi)/aSi (%)

Electron

Hole

SS bulkSSDOI

0 10 20 30 40 50

1.0

1.5

2.0

2.50.0 0.5 1.0 1.5 2.0

Ninv = 1e13 cm-2

Chan.Dop.= 2e17 cm-3

Equivalent [Ge] in Fully Relaxed SiGe (%)

Mob

ility

Enha

ncem

ent F

acto

r

Strain = (aStr.Si-aSi)/aSi (%)

Electron

Hole

0 10 20 30 40 50

1.0

1.5

2.0

2.50.0 0.5 1.0 1.5 2.0

Ninv = 1e13 cm-2

Chan.Dop.= 2e17 cm-3

Equivalent [Ge] in Fully Relaxed SiGe (%)

Mob

ility

Enha

ncem

ent F

acto

r

Strain = (aStr.Si-aSi)/aSi (%)

0 10 20 30 40 50

1.0

1.5

2.0

2.50.0 0.5 1.0 1.5 2.0

Ninv = 1e13 cm-2

Chan.Dop.= 2e17 cm-3

Equivalent [Ge] in Fully Relaxed SiGe (%)

Mob

ility

Enha

ncem

ent F

acto

r

Strain = (aStr.Si-aSi)/aSi (%)

Electron

Hole

SS bulkSSDOI

K. Rim et al., IEDM, 2003.

Stanford University

Department of Electrical Engineering16 H-.S. Philip Wong 2004.10.05

Short Channel Strained Silicon FETs

-1.0 -0.5 0.00.0

0.2

0.4

0.6

0.8

1.0

1.2 VGS

=-1.2, -1.0, -0.8... V

I D (m

A/µ

m)

VDS (V)0.0 0.5 1.0

VGS= 1.2, 1.0, 0.8... V

VDS (V)

400.0µ 600.0µ 800.0µ1E-11

1E-10

1E-9

1E-8

1E-7

1E-6

I off (

A/µm

)

Ion (A/µm)

Str. Si/SiGe (13% [Ge]) Control

200.0µ 400.0µ 600.0µ1E-10

1E-9

1E-8

1E-7

1E-6

I off (

A/µm

)

Ion (A/µm)

Str. Si/SiGe (28% [Ge]) Control

! Key challenges:– maintain performance

enhancement at short channels under high field transport

– material defect reduction

K. Rim et al., IEDM, 2003.

K. Rim et al., Symp. VLSI Tech., p. 98, 2002.

Stanford University

Department of Electrical Engineering17 H-.S. Philip Wong 2004.10.05

Uniaxial Strain vs Biaxial Strain

Source: Intel

Stanford University

Department of Electrical Engineering18 H-.S. Philip Wong 2004.10.05

Uniaxial Strain

S. Thompson et al., IEEE EDL, p. 191, 2004.

Stanford University

Department of Electrical Engineering19 H-.S. Philip Wong 2004.10.05

Strained Si + High-k

K. Rim et al., Symp. VLSI Tech., p. 12, 2002.HfO2/SS

218HfO2/CZ

134HfO2

SiO2/SS271

SiO2/CZ173

SiO2

Strained SiCZ Si

Substrate

HfO2/SS218

HfO2/CZ134

HfO2

SiO2/SS271

SiO2/CZ173

SiO2

Strained SiCZ Si

Substrate

Gat

e D

iele

c.

Mobility at Eeff = 1.4 MV/cm

Relaxed SiGe

Graded SiGe Buffer

Si substrate

Strained SiChannel

HfO2 or SiO2

~1.

5 µm ~10 nm

PolyGate

poly gate spacer

Relaxed Si0.85Ge0.15

Strained Si channel

HfO2

poly gate spacer

Relaxed Si0.85Ge0.15

Strained Si channel

HfO2Relaxed SiGe

Graded SiGe Buffer

Si substrate

Strained SiChannel

HfO2 or SiO2

~1.

5 µm ~10 nm

PolyGate

poly gate spacer

Relaxed Si0.85Ge0.15

Strained Si channel

HfO2

poly gate spacer

Relaxed Si0.85Ge0.15

Strained Si channel

HfO2

0.0 500.0k 1.0M 1.5M0

100

200

300

400

500

600

700

HfO2/CZ ([1])

HfO2/SS

HfO2/CZ

SiO2/CZ

SiO2/SS

Universal Mobility [7]

Effe

ctiv

e El

ectro

n M

obilit

y (c

m2 /V

*s)

Effective Field (V/cm)

Stanford University

Department of Electrical Engineering20 H-.S. Philip Wong 2004.10.05

Surface Orientation & Current Flow Direction

0.0 5.0x1012 1.0x1013 1.5x1013

50

100

150

(111)/<112>

(110)/<110>

(100)/<110>

Hol

e M

obili

ty (c

m2 V-1

S-1)

Ninv (cm-2)0.0 5.0x1012 1.0x1013 1.5x1013

100

200

300

(111)/<112>

(100)/<110>

(110)/<110>

Elec

tron

Mob

ility

(cm

2 V-1S-1

)

Ninv (cm-2)

S D

G

<010><011>

<011>

(100) surface

<110>

<001>

(110) surfaceM. Yang et al., IEDM 2003

Stanford University

Department of Electrical Engineering21 H-.S. Philip Wong 2004.10.05

Hybrid Orientation Technology (HOT)nFET on

(100) epi-SinFET on (100) SOI

(110) SOIOxide STI STI

(100) Silicon handle wafer

pFET on (110) SOI

pFET on (110) epi-Si

Oxide STI STI

(110) Silicon handle wafer

(100) SOI

BOX

epi-SiSOI

200nm

(100) handle wafer

(100) epitaxial Si

80nmBOX

SOI

M. Yang et al., IEDM 2003

Stanford University

Department of Electrical Engineering22 H-.S. Philip Wong 2004.10.05

pFET Performance Enhancement for HOT

Ioff=10nA/µmIoff=100nA/µm +45%+33%

+58%+44%

IdlinIon

Lpoly=80nm

0.0 -0.2 -0.4 -0.6 -0.8 -1.010-9

10-7

10-5

10-3 W=5µm

Vds=-50mV

Vds=-1.0V

Dra

in C

urre

nt (A

)

Vgs (V)

(100) (110)

200 300 400 500 60010-9

10-8

10-7

10-6 Vdd=-1.0V

I off (

A/ µµ µµ

m)

Ion (µµµµA/µµµµm)

M. Yang et al., IEDM 2003

0.0 -0.2 -0.4 -0.6 -0.8 -1.00.0

0.2

0.4

0.6

0.8

1.0

1.2Vgs=-1.0V, -0.8V, -0.6V ..W=5µµµµm

Dra

in C

urre

nt (m

A)

Vds (V)

Lpoly=80nm (100) (110)

Stanford University

Department of Electrical Engineering23 H-.S. Philip Wong 2004.10.05

Germanium FETH. Shang et al., IEDM, p. 441, 2002.

-1.0 -0.8 -0.6 -0.4 -0.2 0.00

100

200

300

400

500

600

IS (u

A)

VD (V)

VG=0.0V VG=-0.5V VG=-1.0V VG=-1.5V VG=-2.0V VG=-2.5V

0.00 0.05 0.10 0.15 0.20 0.250

50

100

150

200

250

300

350

µµ µµ eff (c

m2 /V

-s)

Eeff (MV/cm)

extracted on Ge PFET extracted on Si control Si hole universal mobility

-2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.510-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

-1.5V

-0.8V

VDS=-0.1V

Si control Ge PFET

Sour

ce C

urre

nt IS

(A/s

quar

e)

Gate Bias VGS (V)-3 -2 -1 0 1

0

1x10-7

2x10-7

3x10-7

4x10-7

5x10-7

Measured QSCV Measured Cinv

Cap

acita

nce

(F/c

m2 )

Gate Bias (V)

H. Shang et al., IEEE EDL, p. 135, 2004.

Stanford University

Department of Electrical Engineering24 H-.S. Philip Wong 2004.10.05

Chui, Kim, McIntyre, Saraswat, IEDM 2002

1.5mV

Bi-directionalC-V sweep at

400kHz

• 1st demo of metal gate and hi-κκκκ on Ge MOSFETs• EOT upto 0.5 nm demonstrated• 3×××× mobility vs. Hi-k Si p-MOSFETs• 400°C maximum temperature process• Work on VLSI CMOS structures in progress

Ge p-MOSFET(< 400�C) processing

temp

Si Universal Mobility

HfO2 Si p-MOSFET (VLSI Õ01)

Pt

ZrO2

Ge30Å

HRHR--XTEMXTEM

High Mobility Ge PMOSFETs with ZrO2 Gate Dielectric

Stanford University

Department of Electrical Engineering25 H-.S. Philip Wong 2004.10.05

Nanoscale Si FET (Gate Length = 6 – 8 nm)

TSi=7nmLgate=6nm

Source Drain

Gate

B. Doris et al., IEDM, p. 267, 2002.

B. Doris et al., IEDM, 2003.

Gate

DrainDrainSourceSource

TSi=7nm

Poly-SiOffsetSpacer

Drain

GateSelectiveEpitaxial Si

Lgate=8nmSource

OffsetSpacer

Drain

GateSelectiveEpitaxial Si

Lgate=8nmSource

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.51E-111E-10

1E-91E-81E-71E-61E-51E-41E-3

1E-111E-101E-91E-81E-71E-61E-51E-41E-3

I d(A/ µµ µµ

m)

Vg(V)-1.5 -1.0 -0.5 0.0 0.5 1.0 1.50

50100150200250300350

050100150200250300350

I d (µµ µµA

/ µµ µµm

)Vd (V)

Vg=-1.5 VStep 0.3V

Vd=0.05V

SS=90mV/dec.DIBL = 140mV/VVd=1.2V

Vd=-0.05V

SS=80mV/dec.DIBL = 100mV/VVd=-1.2V

Vdd=1.5V Idsatn=340µµµµA/µµµµm Idsatp=320µµµµA/µµµµm

Stanford University

Department of Electrical Engineering26 H-.S. Philip Wong 2004.10.05

Key Issues for Ultra-Thin Body FETs

Gate

DrainSource

TSi=7nm

Poly-Si

• Uniform, thin (< 10 nm) channel thickness

• Minimize surface roughness

• Thin gate dielectric• Raised source/drain

• Carrier mobility in thin channels

• External resistance in extremely thin Si

Stanford University

Department of Electrical Engineering27 H-.S. Philip Wong 2004.10.05

From Bulk to Double-Gate FET

Well doping

channel

Depletion layer

isolation

Halo doping

Gate

Source doping Drain dopingCox

CS

Bulk FET

back-gate

channel

isolation

buried oxide

channel

top-gate

Source doping Drain dopingCox

COX

Double-Gate FET

• M. Ieong et al., MRS Spring Meeting, 2003.• M. Ieong et al., IEDM, p. 441, 2001. • M. Ieong, H.-S. P. Wong et al., SISPAD, p. 147, 2000.• H.-S. P. Wong, D. Frank, P. Solomon, IEDM, p. 407, 1998.

channeldepletion layer

isolation

buried oxide

raised source/drain

Ultra-thin body SOI FET

FGDG

BG

Bulk NFET w/Na=2x1018 cm-3

Lg = 50 nmImproves:! Short-channel control! Subthreshold slope! Mobility

3 4 5 6 7 8 9 20 305

10

50

100

Fie lday sim ulations

T ox=0.7 nm

T ox=0.7 nmD G -FD SO I

SG -FD SO I

Gat

e Le

ngth

, Lga

te (n

m)

Channel Thickness, T si (nm )

Stanford University

Department of Electrical Engineering28 H-.S. Philip Wong 2004.10.05

Double-Gate FET Fabrication

S D

X

Y

Z

Bottom Gate

Current-CarryingPlane

currentdirection

Silicon Wafer

Top Gate

X

YZ

Bottom Gate

Silicon Wafer

currentdirection

D

S

TopGateCurrent-

CarryingPlane

X

Y

Z

Bottom Gate

Cur

rent

-Car

ryin

gPl

ane

curr

ent

dire

ctio

n

Silicon Wafer

S

DTop Gate

Horizontal channel:

! Bury back-gate under single crystal channel

– wafer bonding

– selective epitaxial Si growth

! Back-gate not easily accessible

Vertical channel:

! Lithography and patterning 3-4x more stringent (5-10 nm required)

– e-beam litho

– sidewall techniques

! Gates accessible from the sideH.-S. P. Wong, D. Frank, Y. Taur, J. Stork, IEDM, p. 747, 1994.

H.-S. P. Wong, D. Frank, P. Solomon, C. Wann, J. Welser, IEEE Proceedings, p. 537, April, 1999.

! Self-aligned gates required

Stanford University

Department of Electrical Engineering29 H-.S. Philip Wong 2004.10.05

Poly-Si Tsi=20nm Tox=1.6nm H=65nm

BOX

TEOS

H

Tsi

TEM

SEM

FinFET Fabrication<100>

<110>

Source Pad

Drain Pad

Tox = 1.6nm

Poly-Si

Si

TEM

GateSource Pad

Drain PadPoly-Si

Fin

Crystalline-SiJ. Kedzierski et al., IEDM, p. 437, 2001.

Conventional FET

FinFET

Stanford University

Department of Electrical Engineering30 H-.S. Philip Wong 2004.10.05

FinFET Double-Gate FET

J. Kedzierski et al., IEDM, p. 437, 2001.

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.51E-9

1E-8

1E-7

1E-6

1E-5

1E-4

1E-3

0.01 No RSD RSD

Tsi=20nmLeff=30nm

pFET nFET

Vd = 1.5V

Vd = 0.1V

|I d| (A

/ µµ µµm

)

Vg (V)

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.50

200

400

600

800

1000

1200

1400

|VgON|=1.0V

No RSD RSD nFET

pFET

Vg steps of 0.25V|(Vg ON-Vt sat)| = 1.35V

|I d| (µµ µµA

/ µµ µµm

)

Vd (V)

active area poly gate Fin Trim

FinFET P/N=9/6=1.5

Planar P/N=1.5

a

b

y

active area poly gate Fin Trimactive area poly gate Fin Trim

FinFET P/N=9/6=1.5

Planar P/N=1.5

a

b

y

0K10K1

TD1TD1

TD3TD3

TD4TD4

TD2TD2

LSM

LSMICEICE

0C10C1

0C10C1

I. Aller et al., IEEE SOI Conf., paper 3.2, 2003.

Stanford University

Department of Electrical Engineering31 H-.S. Philip Wong 2004.10.05

• Undoped Body• Epitaxy RSD• No body doping• Metal gates

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.51E-8

1E-7

1E-6

1E-5

1E-4

1E-3

0.01

TSi= 25nm

Vg= -0.05V

NMOS

Lg=100nm FinFET NiSi Gate

PMOS

Vd=1.5V

Vd=0.1V

|I d| (A

/ µµ µµm

)

Vg (V)

NiSi Gated Double-Gate FinFET

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.50

200

400

600

800

1000

1200

1400

NMOS|Vg|=1.25V

|Vg|=1.5V

PMOS

Lg=100nm FinFETNiSi Gate

|Vg|=1.25V

|Vg|=1.5V

|I d| ( µµ µµ

A/µµ µµ m

)

Vd (V)• W=2Hfin

• nFET 1.3mA/um (at Vdd=1.5V)• pFET 0.8mA/um (at Vdd=1.5V)

• nFET Vt= 0.1V• pFET Vt= -0.23V• S = 70mV/dec

J. Kedzierski et al., IEDM, p. 247, 2002.

NiSi Gate

Si Fin

BOX

Tox = 1.6nm

NiSi

Si

Tsi = 25nm

Stanford University

Department of Electrical Engineering32 H-.S. Philip Wong 2004.10.05

2-Gates, 3-Gates, 4-Gates ...Multi-Gate FETs

Buried oxide

Silicon substrate

source

drain

gate

gate

! Put gates closer to channel

! Control short-channel effects better

E. Leobandung et al., J. Vac. Sci. Tech., B 15(6), p. 2791, 1997.

R. Chau et al., SSDM, 2002.

Stanford University

Department of Electrical Engineering33 H-.S. Philip Wong 2004.10.05

Triple-Gate FETR. Chau et al., SSDM, 2002.

Stanford University

Department of Electrical Engineering34 H-.S. Philip Wong 2004.10.05

Multiple Fins

Y. Choi et al., IEDM, p. 421, 2001.

Stanford University

Department of Electrical Engineering35 H-.S. Philip Wong 2004.10.05

Multiple Fins: Triple-gateR. Chau et al., SSDM, 2002.

Stanford University

Department of Electrical Engineering36 H-.S. Philip Wong 2004.10.05

Multiple Channels

channelgate

source drain

channelgate

channelgate

channelgate

gate

gatechannelsource draingate

! Can be vertical and horizontal

Stanford University

Department of Electrical Engineering37 H-.S. Philip Wong 2004.10.05

! Threshold voltage setting– Gate workfunction? Doped silicon channel?

! Multiple threshold voltage on-chip– Variable gate workfunction? Doped silicon channel?

! Transport of carriers in thin silicon channels! Layout design tools

– automatic design migration from conventional CMOS

! FinFET– fin thickness tolerance– device width quantization

! Planar double-gate– self-aligned integration scheme

! Yet to be demonstrated– CMOS, SRAM and ring oscillator - optimized parasitic capacitances– device density

! Back-gate FET (4th terminal device) may be key to solving standby power problem -needs circuit level study

Double-Gate FET – Outstanding IssuesFully silicided gates with tunable workfunction (IEDM 2003)

Spacer lithography

IEDM 2003

IEDM 2003, SSDM 2003SOI Conf. 2003

Stanford University

Department of Electrical Engineering38 H-.S. Philip Wong 2004.10.05

Technology Features Should be Additive

Lgate

Tsi

Lgate= 40nmTsi= 10nm

NiSi

Si

Relaxed SiGe

Graded SiGe Buffer

Si substrate

Strained SiChannel

HfO2 or SiO2

~1.

5 µm ~10 nm

PolyGate

poly gate spacer

Relaxed Si0.85Ge0.15

Strained Si channel

HfO2

poly gate spacer

Relaxed Si0.85Ge0.15

Strained Si channel

HfO2Relaxed SiGe

Graded SiGe Buffer

Si substrate

Strained SiChannel

HfO2 or SiO2

~1.

5 µm ~10 nm

PolyGate

poly gate spacer

Relaxed Si0.85Ge0.15

Strained Si channel

HfO2

poly gate spacer

Relaxed Si0.85Ge0.15

Strained Si channel

HfO2

NiSi Gate

Si Fin

BOX

Tox = 1.6nm

NiSi

Si

Tsi = 25nm

J. Kedzierski et al., IEDM, paper 18.4, 2003. K. Rim et al., Symp. VLSI Tech., p. 12, 2002.J. Kedzierski et al., IEDM, p. 247, 2002.

! New materials and new device structures– (a) Ultra-thin body FET

– (b) Double- (or Multi-) gate FET

– (c) Strained Si (bulk, on insulator)

– (d) Ge (bulk, on insulator)

– (e) High-k gate dielectrics

– (f) Metal gates

– (g) Crystal orientation

Demonstrated:(a)+(c), (a)+(d), (a)+(e), (a)+(f)(b)+(a) (b)+(f), (b)+(g),(c)+(e), (c)+(d)(d)+(e), (d)+(f), (d)+(e)+(f)(e)+(f)(g)

Stanford University

Department of Electrical Engineering39 H-.S. Philip Wong 2004.10.05

Time Horizon

2004 2007 2010 2013 2016 2020

37 nm 25 nm 18 nm 13 nm 9 nm 6 nm Physical Gate

back-gate

channel

isolation

buried oxide

channel

top-gate

Double-Gate CMOS

Source Drain

Gate

depletion layer

isolation

buried oxidehalo

raised source/drain

Silicon Substrate

doped channel

High k gate dielectric

Strained Si, Ge, SiGe

FinFET

Strained Si, Ge, SiGe

isolation

buried oxide

Silicon Substrate

Ultrathin SOI

Evolutionary Revolutionary

Stanford University

Department of Electrical Engineering40 H-.S. Philip Wong 2004.10.05

Nanowire

A Possible Path

3D, heterogeneous integration Nanotube

Molecular devices

Dra

in C

urre

nt (l

og(I D

))

Gate Voltage (VGS)

S < kT/q

Time

back-gate

channel

isolation

buried oxide

channel

top-gate

Double-Gate / FinFET

Source Drain

Gate

Spintronics

Embedded memory

Quantum cascade

Fine-grain FLA / PLA

Stanford University

Department of Electrical Engineering41 H-.S. Philip Wong 2004.10.05

Research Directions! Red Zone topics

– Transport enhanced FETs: fundamental physics (Ge, III-V)– Novel memory technologies – device and fabrication

! Between Red Zone and Blue Sky– S < kT/q device– Carbon nanotubes, semiconductor nanowires: FET and other device

applications– Nano, Now!

• Nanotechnology for manufacturing of devices already known today• Device application of templated assembly (e.g. di-block co-polymer)

– 3D integration, large area electronics, focusing on devices! Blue Sky

– Nanodevice array logic, functional logic array– Re-configurable logic – circuits, devices, fabrication– Bio-scaffolding, bio-assembly

Stanford University

Center for Integrated Systems 2004.10.05 Department of Electrical Engineering

Questions? Please contact:

H.-S. Philip WongProfessor of Electrical Engineering Stanford University, Stanford, California, [email protected]

http://www.stanford.edu/~hspwong