28
* Corresponding author E-mail address: [email protected] M. Phil Scholar Received July 7, 2021 6745 Available online at http://scik.org J. Math. Comput. Sci. 11 (2021), No. 6, 6745-6772 https://doi.org/10.28919/jmcs/6473 ISSN: 1927-5307 OPERATIONS ON BIPOLAR INTERVAL VALUED ANTI INTUITIONISTIC FUZZY GRAPH P. SUNITHA * , P. SUNDARI PG Department of Mathematics, Arignar Anna Govt Arts College, Musiri, Tamil Nadu, India Copyright © 2021 the author(s). This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract: In this study we have made an attempt by introducing the notion of bipolar anti intuitionistic fuzzy graph and bipolar interval valued anti intuitionistic fuzzy graph. Some basic concepts such as composition, Cartesian product, union on bipolar anti intuitionistic fuzzy graph and bipolar interval valued anti intuitionistic fuzzy graph has been discussed. Keywords: bipolar anti intuitionistic fuzzy graph; interval valued; Cartesian product; union. 2010 AMS Subject Classification: 03F55, 03E72, 05C99. 1. INTRODUCTION Fuzzy set was introduced by Lofti Asker Zadeh in 1965. A Kaufmann’s initial definition of fuzzy graphs[5] was based on Zadeh’s fuzzy relations[11]. Attanassov [2] extended the idea of a fuzzy set and introduced the concept of an intuitionistic fuzzy set. Attanassov[3] also introduced the concept of intuitionistic fuzzy graphs and intuitionistic fuzzy relations. Shannon and Attanassov

OPERATIONS ON BIPOLAR INTERVAL VALUED ANTI …

  • Upload
    others

  • View
    6

  • Download
    0

Embed Size (px)

Citation preview

*Corresponding author

E-mail address: [email protected]

†M. Phil Scholar

Received July 7, 2021

6745

Available online at http://scik.org

J. Math. Comput. Sci. 11 (2021), No. 6, 6745-6772

https://doi.org/10.28919/jmcs/6473

ISSN: 1927-5307

OPERATIONS ON BIPOLAR INTERVAL VALUED ANTI INTUITIONISTIC

FUZZY GRAPH

P. SUNITHA*, P. SUNDARI†

PG Department of Mathematics, Arignar Anna Govt Arts College, Musiri, Tamil Nadu, India

Copyright © 2021 the author(s). This is an open access article distributed under the Creative Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract: In this study we have made an attempt by introducing the notion of bipolar anti intuitionistic fuzzy graph

and bipolar interval valued anti intuitionistic fuzzy graph. Some basic concepts such as composition, Cartesian product,

union on bipolar anti intuitionistic fuzzy graph and bipolar interval valued anti intuitionistic fuzzy graph has been

discussed.

Keywords: bipolar anti intuitionistic fuzzy graph; interval valued; Cartesian product; union.

2010 AMS Subject Classification: 03F55, 03E72, 05C99.

1. INTRODUCTION

Fuzzy set was introduced by Lofti Asker Zadeh in 1965. A Kaufmann’s initial definition of fuzzy

graphs[5] was based on Zadeh’s fuzzy relations[11]. Attanassov [2] extended the idea of a fuzzy

set and introduced the concept of an intuitionistic fuzzy set. Attanassov[3] also introduced the

concept of intuitionistic fuzzy graphs and intuitionistic fuzzy relations. Shannon and Attanassov

6746

P. SUNITHA, P. SUNDARI

[10] investigated the properties of intuitionistic fuzzy relations and intuitionistic fuzzy

graphs. Parvathi[7] also defined operations of intuitionistic fuzzy graphs. Mohammed Jabarulla

[6] has explained the concept of anti-intuitionistic fuzzy graph. Zhang [12,13] introduced the

concept of bipolar fuzzy set. Sunil Mathew [9] has discussed in detail about bipolar fuzzy graph

and interval valued fuzzy graph. Asad Alnaser [1] has explained the notions of intuitionistic

bipolar fuzzy graph and it’s matrices. Sonia Mandal has explained the concept of product of bipolar

anti intuitionistic fuzzy graph [8]. Using these notions we have tried to introduce the concept of

bipolar anti intuitionistic fuzzy graph and bipolar interval valued anti intuitionistic fuzzy graph.

2. PRELIMINARIES

Definition 2.1 [4]:

An intuitionistic fuzzy graph is of the form 𝐺 = < 𝑉, 𝐸 > where

(i) 𝑉 = {𝑣1, 𝑣2, … . , 𝑣𝑛} such that 𝜂1: 𝑉 → [0,1] and 𝜁1: 𝑉 → [0,1] denote the degree of

membership and non-membership of the element 𝑣𝑖 Є𝑉 , respectively, and 0 ≤ 𝜂1 (𝑣𝑖) +

𝜁1 (𝑣𝑖) ≤ 1 for every 𝑣𝑖 Є𝑉, (𝑖 = 1,2, … … . 𝑛),

(ii) 𝐸 ⊆ 𝑉 𝑋 𝑉 where 𝜂2: 𝑉 𝑋 𝑉 → [0,1] and 𝜁2: 𝑉 𝑋 𝑉 → [0,1] are such that

𝜂2(𝑣𝑖 , 𝑣𝑗) ≤ 𝑚𝑖𝑛 [𝜂1(𝑣𝑖), 𝜂1(𝑣𝑗)] 𝑎𝑛𝑑 𝜁2 (𝑣𝑖 , 𝑣𝑗) ≤ 𝑚𝑎𝑥 [𝜁1(𝑣𝑖), 𝜁1(𝑣𝑗) ]

and 0 ≤ 𝜂2 (𝑣𝑖, 𝑣𝑗) + 𝜁2 (𝑣𝑖, 𝑣𝑗) ≤ 1 for every (𝑣𝑖 , 𝑣𝑗) Є 𝐸, ( 𝑖, 𝑗 = 1,2, … … . 𝑛)

Definition 2.2 [6]:

An anti-intuitionistic fuzzy graph is of the form 𝐺 = < 𝑉, 𝐸 > where

(i) 𝑉 = {𝑣1, 𝑣2, … . , 𝑣𝑛} such that 𝜇1: 𝑉 → [0,1] and 𝛾1: 𝑉 → [0,1] denote the degree of

membership and non-membership of the element 𝑣𝑖 Є𝑉 , respectively, and 0 ≤ 𝜇1 (𝑣𝑖) +

𝛾1 (𝑣𝑖) ≤ 1 for every 𝑣𝑖 Є𝑉, (𝑖 = 1,2, … … . 𝑛),

(ii) 𝐸 ⊆ 𝑉 𝑋 𝑉 where 𝜇2: 𝑉 𝑋 𝑉 → [0,1] and 𝛾2: 𝑉 𝑋 𝑉 → [0,1] are such that

𝜇2(𝑣𝑖 , 𝑣𝑗) ≥ 𝑚𝑎𝑥 [𝜇1(𝑣𝑖), 𝜇1(𝑣𝑗)] 𝑎𝑛𝑑 𝛾2 (𝑣𝑖 , 𝑣𝑗) ≥ 𝑚𝑖𝑛 [𝛾1(𝑣𝑖), 𝛾1(𝑣𝑗) ]

and 0 ≤ 𝜇2 (𝑣𝑖, 𝑣𝑗) + 𝛾2 (𝑣𝑖, 𝑣𝑗) ≤ 1 for every (𝑣𝑖 , 𝑣𝑗) Є 𝐸, ( 𝑖, 𝑗 = 1,2, … … . 𝑛)

Definition 2.3[8]

6747

OPERATIONS ON BIPOLAR INTERVALVALUED ANTI INTUITIONISTIC FUZZY GRAPH

Let 𝑋 be a non-empty set. A bipolar fuzzy set 𝐵 in 𝑋 is a set of triples 𝐵 = {𝑥, 𝜂𝐵𝑃(𝑥), 𝜂𝐵

𝑁(𝑥))

/𝑥 ∈ 𝑋}, where 𝜂𝐵𝑃: 𝑋 → [0, 1] and 𝜂𝐵

𝑁 : 𝑋 → [−1, 0].

We often write 𝐵 = (𝜂𝐵𝑃, 𝜂𝐵

𝑁) for the bipolar fuzzy set 𝐵 = {(𝑥, 𝜂𝐵𝑃(𝑥), 𝜂𝐵

𝑁(𝑥))\𝑥 ∈ 𝑋}. We also

use the notation 𝐵 = {𝑥, 𝑚+(𝑥), 𝑚−(𝑥)\𝑥 ∈ 𝑋} or 𝐵 = 𝑚+, 𝑚− for a bipolar fuzzy set.

Definition 2.4 [8]

Let 𝐴 = (𝑚1+, 𝑚2

−) and 𝐵 = (𝑚2+, 𝑚2

−) be bipolar fuzzy sets in 𝑋. We define the bipolar fuzzy

sets 𝐴 ∩ 𝐵 and 𝐴 ∪ 𝐵 as follows: for all 𝑥 ∈ 𝑋,

(𝐴 ∩ 𝐵) = (𝜂𝐴𝑃(𝑥) ∧ 𝜂𝐵

𝑃(𝑥), 𝜂𝐴𝑁(𝑥) ∨ 𝜂𝐵

𝑁(𝑥)).

(𝐴 ∪ 𝐵) = (𝜂𝐴𝑃(𝑥) ∨ 𝜂𝐵

𝑃(𝑥), 𝜂𝐴𝑁(𝑥) ∧ 𝜂𝐵

𝑁(𝑥)).

Definition 2.5 [8]

A bipolar fuzzy graph with an underlying set 𝑉 is defined to be a pair 𝐺 = (𝐴, 𝐵) ,

where 𝐴 = (𝜂𝐴𝑃, 𝜂𝐴

𝑁) is a bipolar fuzzy set in 𝑉 and 𝐵 = (𝜂𝐵𝑃, 𝜂𝐵

𝑁) is a bipolar fuzzy set in E such

that

(𝜂𝐵𝑃)(𝑥𝑦) ≤ 𝜂𝐴

𝑝(𝑥) ∧ 𝜂𝐴𝑃(𝑦) 𝑎𝑛𝑑 (𝜂𝐵

𝑁)(𝑥𝑦) ≥ 𝜂𝐴𝑁(𝑥) ∨ 𝜂𝐴

𝑁(𝑦) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 𝑦 ∈ 𝐸 , 𝜂𝑃(𝑥𝑦) =

𝜂𝐵𝑁(𝑥𝑦) = 0 for all 𝑥𝑦 ∈ 𝜀\𝐸.

3. MAIN RESULTS

3.1 BIPOLAR ANTI INTUITIONISTIC FUZZY GRAPH

Definition 3.1.1

A bipolar anti intuitionistic fuzzy graph (BAIFG) with an underlying set 𝑉 is defined to be

a pair𝐺 = (𝐴, 𝐵) , where 𝐴 = (𝜂𝐴𝑃, 𝜂𝐴

𝑁 , 𝜁𝐴𝑃, 𝜁𝐴

𝑁) is a bipolar anti intuitionistic fuzzy set in 𝑉

and 𝐵 = (𝜂𝐵𝑃, 𝜂𝐵

𝑁 , 𝜁𝐵𝑃, 𝜁𝐵

𝑁) is a bipolar anti intuitionistic fuzzy set in E such that

(𝜂𝐵𝑃)(𝑥𝑦) ≥ 𝜂𝐴

𝑝(𝑥) ∨ 𝜂𝐴𝑃(𝑦) , (𝜁𝐵

𝑃)(𝑥𝑦) ≥ 𝜁𝐴𝑃(𝑥) ∧ 𝜁𝐴

𝑃(𝑦) 𝑎𝑛𝑑,

(𝜂𝐵𝑁)(𝑥𝑦) ≤ 𝜂𝐴

𝑁(𝑥) ∧ 𝜂𝐴𝑁(𝑦), (𝜁𝐵

𝑁)(𝑥𝑦) ≤ 𝜁𝐴𝑁(𝑥) ∨ 𝜁𝐴

𝑁(𝑦) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 𝑦 ∈ 𝐸

Example 3.1.2

Consider the BAIFG 𝐺 where 𝑉 = {𝑎, 𝑏, 𝑐} , 𝐸 = {𝑎𝑏, 𝑏𝑐, 𝑎𝑐} such that

6748

P. SUNITHA, P. SUNDARI

a

b c

Figure 1: Bipolar anti intuitionistic fuzzy graph (BAIFG)

Table 1: Bipolar anti intuitionistic fuzzy sets in 𝑉 and 𝐸 of 𝐺

Definition 3.1.3

A bipolar anti intuitionistic fuzzy graph (BAIFG) is said to be strong- bipolar anti intuitionistic

fuzzy graph if

(𝜂𝐵𝑃)(𝑥𝑦) = 𝜂𝐴

𝑝(𝑥) ∨ 𝜂𝐴𝑃(𝑦) , (𝜁𝐵

𝑃)(𝑥𝑦) = 𝜁𝐴𝑃(𝑥) ∧ 𝜁𝐴

𝑃(𝑦) 𝑎𝑛𝑑,

(𝜂𝐵𝑁)(𝑥𝑦) = 𝜂𝐴

𝑁(𝑥) ∨ 𝜂𝐴𝑁(𝑦), (𝜁𝐵

𝑁)(𝑥𝑦) = 𝜁𝐴𝑁(𝑥) ∧ 𝜁𝐴

𝑁(𝑦) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 𝑦 ∈ 𝐸

Definition 3.1.4

A bipolar anti intuitionistic fuzzy graph is said to be complete- bipolar anti intuitionistic fuzzy

graph if (𝜂𝐵𝑃)(𝑥𝑦) = 𝜂𝐴

𝑝(𝑥) ∨ 𝜂𝐴𝑃(𝑦) , (𝜁𝐵

𝑃)(𝑥𝑦) = 𝜁𝐴𝑃(𝑥) ∧ 𝜁𝐴

𝑃(𝑦) 𝑎𝑛𝑑

(𝜂𝐵𝑁)(𝑥𝑦) = 𝜂𝐴

𝑁(𝑥) ∨ 𝜂𝐴𝑁(𝑦), (𝜁𝐵

𝑁)(𝑥𝑦) = 𝜁𝐴𝑁(𝑥) ∧ 𝜁𝐴

𝑁(𝑦) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥, 𝑦 ∈ 𝑉

Definition 3.1.5

The degree of a vertex in a bipolar anti intuitionistic fuzzy graph is defined to be

𝑑(𝑥) = (𝑑𝜂𝑃(𝑥), 𝑑𝜂

𝑁(𝑥), 𝑑𝜁𝑃(𝑥), 𝑑𝜁

𝑃(𝑥)) where

𝒂𝒃 𝒃𝒄 𝒂𝒄

𝜼𝑩𝑷 0.6 0.7 0.7

𝜼𝑩𝑵 -0.5 -0.5 -0.5

𝜻𝑩𝑷 0.4 0.2 0.1

𝜻𝑩𝑵 -0.4 -0.4 -0.3

𝒂 b 𝒄

𝜼𝑨𝑷 0.4 0.5 0.6

𝜼𝑨𝑵 -0.3 -0.4 -0.5

𝜻𝑨𝑷 0.5 0.3 0.1

𝜻𝑨𝑵 -0.4 -0.3 -0.3

6749

OPERATIONS ON BIPOLAR INTERVALVALUED ANTI INTUITIONISTIC FUZZY GRAPH

𝑑𝜂𝑃(𝑥) = ∑ 𝜂𝑃(𝑥𝑦),

𝑥≠𝑦

𝑑𝜂𝑁(𝑥) = ∑ 𝜂𝑁(𝑥𝑦),

𝑥≠𝑦

𝑑𝜁𝑃(𝑥) = ∑ 𝜁𝑃(𝑥𝑦),

𝑥≠𝑦

𝑑𝜁𝑁(𝑥) = ∑ 𝜁𝑁(𝑥𝑦)

𝑥≠𝑦

Definition 3.1.6

Let 𝐴1 = (𝜂𝐴1𝑃 , 𝜂𝐴1

𝑁 , 𝜁𝐴1𝑃 , 𝜁𝐴1

𝑁 ) and 𝐴2 = (𝜂𝐴2𝑃 , 𝜂𝐴2

𝑁 , 𝜁𝐴2𝑃 , 𝜁𝐴2

𝑁 ) be bipolar anti intuitionistic

fuzzy subsets of 𝑉1 and 𝑉2 and 𝐵1 = (𝜂𝐵1𝑃 , 𝜂𝐵1

𝑁 , 𝜁𝐵1𝑃 , 𝜁𝐵1

𝑁 ) and 𝐵2 = (𝜂𝐵2𝑃 , 𝜂𝐵2

𝑁 , 𝜁𝐵2𝑃 , 𝜁𝐵2

𝑁 ) be bipolar

anti intuitionistic fuzzy subsets of 𝐸1 and 𝐸2 respectively. Then we denote the Cartesian product

of two bipolar anti intuitionistic fuzzy graphs 𝐺1 and 𝐺2 of the graphs 𝐺1∗ and 𝐺2

∗ by 𝐺1 ×

𝐺2=(𝐴1 × 𝐴2, 𝐵1 × 𝐵2) and defined by

(i) (𝜂𝐴1𝑃 × 𝜂𝐴2

𝑃 )(𝑥1, 𝑥2) = 𝜂𝐴1𝑃 (𝑥1) ∨ 𝜂𝐴2

𝑃 (𝑥2)

(𝜂𝐴1𝑁 × 𝜂𝐴2

𝑁 )(𝑥1, 𝑥2) = 𝜂𝐴1𝑁 (𝑥1) ∧ 𝜂𝐴2

𝑁 (𝑥2)

(𝜁𝐴1𝑃 × 𝜁𝐴2

𝑃 )(𝑥1, 𝑥2) = 𝜁𝐴1𝑃 (𝑥1) ∧ 𝜁𝐴2

𝑃 (𝑥2)

(𝜁𝐴1𝑁 × 𝜁𝐴2

𝑁 )(𝑥1, 𝑥2) = 𝜁𝐴1𝑁 (𝑥1) ∨ 𝜁𝐴2

𝑁 (𝑥2)for all (𝑥1, 𝑥2) ∈ 𝑉 × 𝑉.

(ii) (𝜂𝐵1𝑃 × 𝜂𝐵2

𝑃 )((𝑥, 𝑥2)(𝑥, 𝑦2)) = 𝜂𝐴1𝑃 (𝑥) ∨ 𝜂𝐵2

𝑃 (𝑥2𝑦2)

(𝜂𝐵1𝑁 × 𝜂𝐵2

𝑁 )((𝑥, 𝑥2)(𝑥, 𝑦2)) = 𝜂𝐴1𝑁 (𝑥) ∧ 𝜂𝐵2

𝑁 (𝑥2𝑦2)

(𝜁𝐵1𝑃 × 𝜁𝐵2

𝑃 )((𝑥, 𝑥2)(𝑥, 𝑦2)) = 𝜁𝐴1𝑃 (𝑥) ∧ 𝜁𝐵2

𝑃 (𝑥2𝑦2)

( 𝜁𝐵1𝑁 × 𝜁𝐵2

𝑁 )((𝑥, 𝑥2)(𝑥, 𝑦2)) = 𝜁𝐴1𝑁 (𝑥) ∨ 𝜁𝐵2

𝑁 (𝑥2𝑦2)

for all 𝑥 ∈ 𝑉1, for all 𝑥2𝑦2 ∈ 𝐸2.

(iii) (𝜂𝐵1𝑃 × 𝜂𝐵2

𝑃 )((𝑥1, 𝑧)(𝑦1, 𝑧)) = 𝜂𝐵1𝑃 (𝑥1𝑦1) ∨ 𝜂𝐴2

𝑃 (𝑧)

( 𝜂𝐵1×𝑁 𝜂𝐵2

𝑁 )((𝑥1, 𝑧)(𝑦1, 𝑧)) = 𝜂𝐵1𝑁 (𝑥1𝑦1) ∧ 𝜂𝐴2

𝑁 (𝑧)

(𝜁𝐵1𝑃 × 𝜁𝐵2

𝑃 )((𝑥1, 𝑧)(𝑦1, 𝑧)) = 𝜁𝐴2𝑃 (𝑧) ∧ 𝜁𝐵1

𝑃 (𝑥1𝑦1)

( 𝜁𝐵1𝑁 × 𝜁𝐵2

𝑁 )((𝑥1, 𝑧)(𝑦1, 𝑧)) = 𝜁𝐴2𝑁 (𝑧) ∨ 𝜁𝐵1

𝑁 (𝑥1𝑦1)

for all 𝑧 ∈ 𝑉2, for all 𝑥1𝑦1 ∈ 𝐸1.

Example 3.1.7: Let 𝐺1 and 𝐺2 be BAIFG where 𝑉1 = {𝑎, 𝑏} , 𝐸1 = {𝑎𝑏} and 𝑉2 =

{𝑐, 𝑑} , 𝐸2 = {𝑐𝑑} respectively. Then we denote the Cartesian product of two BAIFG as follows

6750

P. SUNITHA, P. SUNDARI

𝐺1 𝐺2 𝐺1 𝑋 𝐺2

Figure2. Cartesian product of two BAIFG

𝒂𝒃 𝒄𝒅 (a,c)(a,d) (b,c)(b,d) (a,c)(b,c) (a,d)(b,d)

𝜼𝑩𝑷 0.6 0.7 0.7 0.7 0.6 0.6

𝜼𝑩𝑵 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5

𝜻𝑩𝑷 0.4 0.2 0.2 0.2 0.1 0.4

𝜻𝑩𝑵 -0.4 -0.3 -0.3 -0.3 -0.3 -0.3

Table 2: Bipolar anti intuitionistic fuzzy sets in 𝑉 and 𝐸 of 𝐺1 , 𝐺2, 𝐺1 𝑋 𝐺2

Proposition 3.1.8

If 𝐺1 and 𝐺2 are bipolar anti intuitionistic fuzzy graphs, then 𝐺1 × 𝐺2 is a bipolar anti

intuitionistic fuzzy graph.

Proof:

Let 𝑥 ∈ 𝑉1 and 𝑥2𝑦2 ∈ 𝐸2 . Then

(𝜂𝐵1𝑃 × 𝜂𝐵2

𝑃 )((𝑥, 𝑥2)(𝑥, 𝑦2)) = 𝜂𝐴1𝑃 (𝑥) ∨ 𝜂𝐵2

𝑃 (𝑥2𝑦2)

𝒂 b c d (a,c) (a,d) (b,c) (b,d)

𝜼𝑨𝑷 0.4 0.5 0.6 0.3 0.6 0.4 0.6 0.5

𝜼𝑨𝑵 -0.3 -0.4 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5

𝜻𝑨𝑷 0.5 0.3 0.1 0.5 0.1 0.5 0.1 0.3

𝜻𝑨𝑵 -0.4 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3

6751

OPERATIONS ON BIPOLAR INTERVALVALUED ANTI INTUITIONISTIC FUZZY GRAPH

≥∨ {𝜂𝐴1𝑃 (𝑥), 𝜂𝐴2

𝑃 (𝑥2) ∨ 𝜂𝐴2𝑃 (𝑦2)}

=∨ {𝜂𝐴1𝑃 (𝑥) ∨ 𝜂𝐴2

𝑃 (𝑥2)), 𝜂𝐴1𝑃 (𝑥) ∨ 𝜂𝐴2

𝑃 (𝑦2)}

= (𝜂𝐴1𝑃 × 𝜂𝐴2

𝑃 )(𝑥, 𝑥2) ∨ (𝜂𝐴1𝑃 × 𝜂𝐴2

𝑃 )(𝑥, 𝑦2).

(𝜂𝐵1𝑁 × 𝜂𝐵2

𝑁 )((𝑥, 𝑥2)(𝑥, 𝑦2)) = 𝜂𝐴1𝑁 (𝑥) ∧ 𝜂𝐵2

𝑁 (𝑥2𝑦2)

≤∧ {𝜂𝐴1𝑁 (𝑥), (𝜂𝐴2

𝑁 (𝑥2) ∧ 𝜂𝐴2𝑁 (𝑦2)}

=∧ {𝜂𝐴1𝑁 (𝑥) ∧ 𝜂𝐴2

𝑁 (𝑥2), 𝜂𝐴1𝑁 (𝑥) ∧ 𝜂𝐴2

𝑁 (𝑦2)}

= (𝜂𝐴1𝑁 × 𝜂𝐴2

𝑁 )(𝑥, 𝑥2) ∧ (𝜂𝐴2𝑁 × 𝜂𝐴1

𝑁 )(𝑥, 𝑦2).

(𝜁𝐵1𝑃 × 𝜁𝐵2

𝑃 )((𝑥, 𝑥2)(𝑥, 𝑦2)) = 𝜁𝐴1𝑃 (𝑥) ∧ 𝜁𝐵2

𝑃 (𝑥2𝑦2)

≥∧ {𝜁𝐴1𝑃 (𝑥), 𝜁𝐴2

𝑃 (𝑥2) ∧ 𝜁𝐴2𝑃 (𝑦2)}

=∧ {𝜁𝐴1𝑃 (𝑥) ∧ 𝜁𝐴2

𝑃 (𝑥2)), 𝜁𝐴1𝑃 (𝑥) ∧ 𝜁𝐴2

𝑃 (𝑦2)}

= (𝜁𝐴1𝑃 × 𝜁𝐴2

𝑃 )(𝑥, 𝑥2) ∧ (𝜁𝐴1𝑃 × 𝜁𝐴2

𝑃 )(𝑥, 𝑦2).

(𝜁𝐵1𝑁 × 𝜁𝐵2

𝑁 )((𝑥, 𝑥2)(𝑥, 𝑦2)) = 𝜁𝐴1𝑁 (𝑥) ∨ 𝜁𝐵2

𝑁 (𝑥2𝑦2)

≤∨ {𝜁𝐴1𝑁 (𝑥), (𝜁𝐴2

𝑁 (𝑥2) ∨ 𝜁𝐴2𝑁 (𝑦2)}

=∨ {𝜁𝐴1𝑁 (𝑥) ∨ 𝜁𝐴2

𝑁 (𝑥2), 𝜁𝐴1𝑁 (𝑥) ∨ 𝜁𝐴2

𝑁 (𝑦2)}

= (𝜁𝐴1𝑁 × 𝜁𝐴2

𝑁 )(𝑥, 𝑥2) ∨ (𝜁𝐴2𝑁 × 𝜁𝐴1

𝑁 )(𝑥, 𝑦2).

Let 𝑧 ∈ 𝑉2,𝑎𝑛𝑑 𝑥1𝑦1 ∈ 𝐸1. Thus

(𝜂𝐵1𝑃 × 𝜂𝐵2

𝑃 )((𝑥1, 𝑧)(𝑦1, 𝑧) = 𝜂𝐵1𝑃 (𝑥1𝑦1) ∨ 𝜂𝐴2

𝑃 (𝑧)

≥ ∨ {(𝜂𝐴1𝑃 (𝑥1) ∨ 𝜂𝐴1

𝑃 (𝑦1)), 𝜂𝐴2𝑃 (𝑧)}

= ∨ {𝜂𝐴1𝑃 (𝑥1) ∨ 𝜂𝐴2

𝑃 (𝑧), 𝜂𝐴1𝑃 (𝑦1) ∨ 𝜂𝐴2

𝑃 (𝑧)}

= (𝜂𝐴1𝑃 × 𝜂𝐴2

𝑃 )(𝑥1, 𝑧) ∨ (𝜂𝐴1𝑃 × 𝜂𝐴2

𝑃 (𝑦1, 𝑧))

(𝜂𝐵1𝑁 × 𝜂𝐵2

𝑁 )((𝑥1, 𝑧)(𝑦1, 𝑧)) = 𝜂𝐵1𝑁 (𝑥1𝑦1) ∧ 𝜂𝐴2

𝑁 (𝑧)

≤∧ {𝜂𝐴1𝑁 (𝑥1) ∧ 𝜂𝐴1

𝑁 (𝑦1), 𝜂𝐴2𝑁 (𝑧)}

=∧ {𝜂𝐴1𝑁 (𝑥1) ∧ 𝜂𝐴2

𝑁 (𝑧), 𝜂𝐴1𝑁 (𝑦1) ∧ 𝜂𝐴2

𝑁 (𝑧)}

= (𝜂𝐴1𝑁 × 𝜂𝐴2

𝑁 )(𝑥1, 𝑧) ∧ (𝜂𝐴1𝑁 × 𝜂𝐴2

𝑁 )(𝑦1, 𝑧).

(𝜁𝐵1𝑃 × 𝜁𝐵2

𝑃 )((𝑥1, 𝑧)(𝑦1, 𝑧) = 𝜁𝐵1𝑃 (𝑥1𝑦1) ∧ 𝜁𝐴2

𝑃 (𝑧)

6752

P. SUNITHA, P. SUNDARI

≥ ∧ {(𝜁𝐴1𝑃 (𝑥1) ∧ 𝜁𝐴1

𝑃 (𝑦1)), 𝜁𝐴2𝑃 (𝑧)}

= ∧ {𝜁𝐴1𝑃 (𝑥1) ∧ 𝜁𝐴2

𝑃 (𝑧), 𝜁𝐴1𝑃 (𝑦1) ∧ 𝜁𝐴2

𝑃 (𝑧)}

= (𝜁𝐴1𝑃 × 𝜁𝐴2

𝑃 )(𝑥1, 𝑧) ∧ (𝜁𝐴1𝑃 × 𝜁𝐴2

𝑃 (𝑦1, 𝑧))

(𝜁𝐵1𝑁 × 𝜁𝐵2

𝑁 )((𝑥1, 𝑧)(𝑦1, 𝑧)) = 𝜁𝐵1𝑁 (𝑥1𝑦1) ∨ 𝜁𝐴2

𝑁 (𝑧)

≤∨ {𝜁𝐴1𝑁 (𝑥1) ∨ 𝜁𝐴1

𝑁 (𝑦1), 𝜁𝐴2𝑁 (𝑧)}

=∨ {𝜁𝐴1𝑁 (𝑥1) ∨ 𝜁𝐴2

𝑁 (𝑧), 𝜁𝐴1𝑁 (𝑦1) ∨ 𝜁𝐴2

𝑁 (𝑧)}

= (𝜁𝐴1𝑁 × 𝜁𝐴2

𝑁 )(𝑥1, 𝑧) ∨ (𝜁𝐴1𝑁 × 𝜁𝐴2

𝑁 )(𝑦1, 𝑧).

Let 𝐸 = {(𝑥, 𝑥2)(𝑥, 𝑦2)\𝑥 ∈ 𝑉1, 𝑥2𝑦2 ∈ 𝐸2} ∪ {(𝑥1, 𝑧)(𝑦1, 𝑧)\𝑧 ∈ 𝑉2, 𝑥1𝑦1 ∈ 𝐸1} and

Let 𝐸(0) = 𝐸 ∪ (𝑥1, 𝑥2)(𝑦1, 𝑦2)\𝑥1𝑦1 ∈ 𝐸1 and 𝑥2, 𝑦2 ∈ 𝑉2, 𝑥2 ≠ 𝑦2}.

Definition 3.1.9

Let 𝐴1 = (𝜂𝐴1𝑃 , 𝜂𝐴1

𝑁 , 𝜁𝐴1𝑃 , 𝜁𝐴1

𝑁 ) and 𝐴2 = (𝜂𝐴2𝑃 , 𝜂𝐴2

𝑁 , 𝜁𝐴2𝑃 , 𝜁𝐴2

𝑁 ) be bipolar anti intuitionistic

fuzzy subsets of 𝑉1 and 𝑉2 and 𝐵1 = (𝜂𝐵1𝑃 , 𝜂𝐵1

𝑁 , 𝜁𝐵1𝑃 , 𝜁𝐵1

𝑁 ) and 𝐵2 = (𝜂𝐵2𝑃 , 𝜂𝐵2

𝑁 , 𝜁𝐵2𝑃 , 𝜁𝐵2

𝑁 ) be bipolar

anti intuitionistic fuzzy subsets of 𝐸1 and 𝐸2 respectively. The composition of two bipolar anti

intuitionistic fuzzy graphs 𝐺1 and 𝐺2 of the graphs 𝐺1∗ and 𝐺2

∗ denoted by 𝐺1[𝐺2] = (𝐴1 ∘

𝐴2, 𝐵1 ∘ 𝐵2) is defined by

(i) (𝜂𝐴1𝑃 ∘ 𝜂𝐴2

𝑃 )(𝑥1, 𝑥2) = 𝜂𝐴1𝑃 (𝑥1) ∨ 𝜂𝐴2

𝑃 (𝑥2)

(𝜂𝐴1𝑁 ∘ 𝜂𝐴2

𝑁 )(𝑥1, 𝑥2) = 𝜂𝐴1𝑁 (𝑥1) ∧ 𝜂𝐴2

𝑁 (𝑥2)

(𝜁𝐴1𝑃 ∘ 𝜁𝐴2

𝑃 )(𝑥1, 𝑥2) = 𝜁𝐴1𝑃 (𝑥1) ∧ 𝜁𝐴2

𝑃 (𝑥2)

(𝜁𝐴1𝑁 ∘ 𝜁𝐴2

𝑁 )(𝑥1, 𝑥2) = 𝜁𝐴1𝑁 (𝑥1) ∨ 𝜁𝐴2

𝑁 (𝑥2)for all (𝑥1, 𝑥2) ∈ 𝑉 × 𝑉.

(ii) (𝜂𝐵1𝑃 ∘ 𝜂𝐵2

𝑃 )((𝑥, 𝑥2)(𝑥, 𝑦2)) = 𝜂𝐴1𝑃 (𝑥) ∨ 𝜂𝐵2

𝑃 (𝑥2𝑦2)

(𝜂𝐵1𝑁 ∘ 𝜂𝐵2

𝑁 )((𝑥, 𝑥2)(𝑥, 𝑦2)) = 𝜂𝐴1𝑁 (𝑥) ∧ 𝜂𝐵2

𝑁 (𝑥2𝑦2)

(𝜁𝐵1𝑃 ∘ 𝜁𝐵2

𝑃 )((𝑥, 𝑥2)(𝑥, 𝑦2)) = 𝜁𝐴1𝑃 (𝑥) ∧ 𝜁𝐵2

𝑃 (𝑥2𝑦2)

( 𝜁𝐵1𝑁 ∘ 𝜁𝐵2

𝑁 )((𝑥, 𝑥2)(𝑥, 𝑦2)) = 𝜁𝐴1𝑁 (𝑥) ∨ 𝜁𝐵2

𝑁 (𝑥2𝑦2)

for all 𝑥 ∈ 𝑉1, for all 𝑥2𝑦2 ∈ 𝐸2.

(iii) (𝜂𝐵1𝑃 ∘ 𝜂𝐵2

𝑃 )((𝑥1, 𝑧)(𝑦1, 𝑧)) = 𝜂𝐵1𝑃 (𝑥1𝑦1) ∨ 𝜂𝐴2

𝑃 (𝑧)

6753

OPERATIONS ON BIPOLAR INTERVALVALUED ANTI INTUITIONISTIC FUZZY GRAPH

( 𝜂𝐵1 𝑁 ∘ 𝜂𝐵2

𝑁 )((𝑥1, 𝑧)(𝑦1, 𝑧)) = 𝜂𝐵1𝑁 (𝑥1𝑦1) ∧ 𝜂𝐴2

𝑁 (𝑧)

(𝜁𝐵1𝑃 ∘ 𝜁𝐵2

𝑃 )((𝑥1, 𝑧)(𝑦1, 𝑧)) = 𝜁𝐴2𝑃 (𝑧) ∧ 𝜁𝐵1

𝑃 (𝑥1𝑦1)

( 𝜁𝐵1𝑁 ∘ 𝜁𝐵2

𝑁 )((𝑥1, 𝑧)(𝑦1, 𝑧)) = 𝜁𝐴2𝑁 (𝑧) ∨ 𝜁𝐵1

𝑁 (𝑥1𝑦1)

for all 𝑧 ∈ 𝑉2, for all 𝑥1𝑦1 ∈ 𝐸1.

(iv) (𝜂𝐵1𝑃 ∘ 𝜂𝐵2

𝑃 )((𝑥1, 𝑥2)(𝑦1𝑦2)) =∨ {𝜂𝐴2𝑃 (𝑥2), 𝜂𝐴2

𝑃 (𝑦2), 𝜂𝐵1𝑃 (𝑥1𝑦1)}

(𝜂𝐵1𝑁 ∘ 𝜂𝐵2

𝑁 )((𝑥1, 𝑥2)(𝑦1, 𝑦2)) =∧ {𝜂𝐴2𝑁 (𝑥2), 𝜂𝐴2

𝑁 (𝑦2), 𝜂𝐵1𝑁 (𝑥1𝑦1)}

(𝜁𝐵1𝑃 ∘ 𝜁𝐵2

𝑃 )((𝑥1, 𝑥2)(𝑦1𝑦2)) = ∧ {𝜁𝐴2𝑃 (𝑥2), 𝜁𝐴2

𝑃 (𝑦2), 𝜁𝐵1𝑃 (𝑥1𝑦1)}

(𝜁𝐵1𝑁 ∘ 𝜁𝐵2

𝑁 )((𝑥1, 𝑥2)(𝑦1, 𝑦2)) =∨ {𝜁𝐴2𝑁 (𝑥2), 𝜁𝐴2

𝑁 (𝑦2), 𝜁𝐵1𝑁 (𝑥1𝑦1)}

for all (𝑥1, 𝑥2)(𝑦1𝑦2) ∈ 𝐸0\𝐸.

Example 3.1.10: Let 𝐺1 and 𝐺2 be BAIFG where 𝑉1 = {𝑎, 𝑏} , 𝐸1 = {𝑎𝑏} and 𝑉2 =

{𝑐, 𝑑} , 𝐸2 = {𝑐𝑑} respectively. Then we denote the Composition of two BAIFG as follows

𝐺1 𝐺2 𝐺1[𝐺2]

Figure 3. Composition of two BAIFG

𝒂 𝒃 𝒄 𝒅 (a,c) (a,d) (b,c) (b,d)

𝜼𝑨𝑷 0.4 0.5 0.6 0.3 0.6 0.4 0.6 0.5

𝜼𝑨𝑵 -0.3 -0.4 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5

𝜻𝑨𝑷 0.5 0.3 0.1 0.5 0.1 0.5 0.1 0.3

𝜻𝑨𝑵 -0.4 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3

6754

P. SUNITHA, P. SUNDARI

𝒂𝒃 𝒄𝒅 (a,c)(a,d) (b,c)(b,d) (a,c)(b,c) (a,d)(b,d) (a,c)(b,d) (a,d)(b,c)

𝜼𝑩𝑷 0.6 0.7 0.7 0.7 0.6 0.6 0.6 0.6

𝜼𝑩𝑵 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5

𝜻𝑩𝑷 0.4 0.2 0.2 0.2 0.1 0.4 0.1 0.1

𝜻𝑩𝑵 -0.4 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3

Table 3: Bipolar anti intuitionistic fuzzy sets in 𝑉 and 𝐸 of 𝐺1 , 𝐺2, 𝐺1[𝐺2]

Proposition 3.1.11

If 𝐺1 and 𝐺2 are bipolar anti intuitionistic fuzzy graphs, then 𝐺1[𝐺2] is a bipolar anti

intuitionistic fuzzy graph.

Proof: Let 𝑥 ∈ 𝑉1 and 𝑥2𝑦2 ∈ 𝐸2. Then

(𝜂𝐵1𝑝 ∘ 𝜂𝐵2

𝑝 )(𝑥, 𝑥2)(𝑥, 𝑦2) = 𝜂𝐴1𝑃 (𝑥) ∨ 𝜂𝐵2

𝑃 (𝑥2𝑦2)

≥ ∨ {𝜂𝐴1𝑃 (𝑥), 𝜂𝐴2

𝑃 (𝑥2) ∨ 𝜂𝐴2𝑃 (𝑦2)}

= ∨ 𝜂𝐴1𝑃 (𝑥) ∨ 𝜂𝐴2

𝑃 (𝑥2), 𝜂𝐴1𝑃 (𝑥) ∨ 𝜂𝐴2

𝑃 (𝑦2)}

= (𝜂𝐴1𝑃 ∘ 𝜂𝐴2

𝑃 )(𝑥, 𝑥2) ∨ (𝜂𝐴1𝑃 ∘ 𝜂𝐴2

𝑃 (𝑥, 𝑦2)),

(𝜂𝐵1𝑁 ∘ 𝜂𝐵2

𝑁 )((𝑥, 𝑥2)(𝑥, 𝑦2)) = 𝜂𝐴1𝑁 (𝑥) ∧ 𝜂𝐵2

𝑁 (𝑥2𝑦2)

≤ ∧ {𝜂𝐴1𝑁 (𝑥), 𝜂𝐴2

𝑁 (𝑥2) ∧ 𝜂𝐴2𝑁 (𝑦2)}

= ∧ {𝜂𝐴1𝑁 (𝑥) ∧ 𝜂𝐴2

𝑁 (𝑥2), 𝜂𝐴1𝑁 (𝑥) ∧ 𝜂𝐴2

𝑁 (𝑦2)}

= (𝜂𝐴1𝑁 ∘ 𝜂𝐴2

𝑁 )(𝑥, 𝑥2) ∧ (𝜂𝐴1𝑁 ∘ 𝜂𝐴2

𝑁 )(𝑥, 𝑦2).

(𝜁𝐵1𝑃 ∘ 𝜁𝐵2

𝑃 )((𝑥, 𝑥2)(𝑥, 𝑦2)) = 𝜁𝐴1𝑃 (𝑥) ∧ 𝜁𝐵2

𝑃 (𝑥2𝑦2)

≥∧ {𝜁𝐴1𝑃 (𝑥), 𝜁𝐴2

𝑃 (𝑥2) ∧ 𝜁𝐴2𝑃 (𝑦2)}

=∧ {𝜁𝐴1𝑃 (𝑥) ∧ 𝜁𝐴2

𝑃 (𝑥2)), 𝜁𝐴1𝑃 (𝑥) ∧ 𝜁𝐴2

𝑃 (𝑦2)}

= (𝜁𝐴1𝑃 ∘ 𝜁𝐴2

𝑃 )(𝑥, 𝑥2) ∧ (𝜁𝐴1𝑃 ∘ 𝜁𝐴2

𝑃 )(𝑥, 𝑦2).

(𝜁𝐵1𝑁 ∘ 𝜁𝐵2

𝑁 )((𝑥, 𝑥2)(𝑥, 𝑦2)) = 𝜁𝐴1𝑁 (𝑥) ∨ 𝜁𝐵2

𝑁 (𝑥2𝑦2)

≤∨ {𝜁𝐴1𝑁 (𝑥), (𝜁𝐴2

𝑁 (𝑥2) ∨ 𝜁𝐴2𝑁 (𝑦2)}

=∨ {𝜁𝐴1𝑁 (𝑥) ∨ 𝜁𝐴2

𝑁 (𝑥2), 𝜁𝐴1𝑁 (𝑥) ∨ 𝜁𝐴2

𝑁 (𝑦2)}

= (𝜁𝐴1𝑁 ∘ 𝜁𝐴2

𝑁 )(𝑥, 𝑥2) ∨ (𝜁𝐴2𝑁 ∘ 𝜁𝐴1

𝑁 )(𝑥, 𝑦2).

6755

OPERATIONS ON BIPOLAR INTERVALVALUED ANTI INTUITIONISTIC FUZZY GRAPH

Let 𝑧 ∈ 𝑉2,𝑎𝑛𝑑 𝑥1𝑦1 ∈ 𝐸1. Thus

(𝜂𝐵1𝑃 ∘ 𝜂𝐵2

𝑃 )((𝑥1, 𝑧)(𝑦1, 𝑧) = 𝜂𝐵1𝑃 (𝑥1𝑦1) ∨ 𝜂𝐴2

𝑃 (𝑧)

≥ ∨ {(𝜂𝐴1𝑃 (𝑥1) ∨ 𝜂𝐴1

𝑃 (𝑦1)), 𝜂𝐴2𝑃 (𝑧)}

= ∨ {𝜂𝐴1𝑃 (𝑥1) ∨ 𝜂𝐴2

𝑃 (𝑧), 𝜂𝐴1𝑃 (𝑦1) ∨ 𝜂𝐴2

𝑃 (𝑧)}

= (𝜂𝐴1𝑃 ∘ 𝜂𝐴2

𝑃 )(𝑥1, 𝑧) ∨ (𝜂𝐴1𝑃 ∘ 𝜂𝐴2

𝑃 (𝑦1, 𝑧))

(𝜂𝐵1𝑁 ∘ 𝜂𝐵2

𝑁 )((𝑥1, 𝑧)(𝑦1, 𝑧)) = 𝜂𝐵1𝑁 (𝑥1𝑦1) ∧ 𝜂𝐴2

𝑁 (𝑧)

≤∧ {𝜂𝐴1𝑁 (𝑥1) ∧ 𝜂𝐴1

𝑁 (𝑦1), 𝜂𝐴2𝑁 (𝑧)}

=∧ {𝜂𝐴1𝑁 (𝑥1) ∧ 𝜂𝐴2

𝑁 (𝑧), 𝜂𝐴1𝑁 (𝑦1) ∧ 𝜂𝐴2

𝑁 (𝑧)}

= (𝜂𝐴1𝑁 ∘ 𝜂𝐴2

𝑁 )(𝑥1, 𝑧) ∧ (𝜂𝐴1𝑁 ∘ 𝜂𝐴2

𝑁 )(𝑦1, 𝑧).

(𝜁𝐵1𝑃 ∘ 𝜁𝐵2

𝑃 )((𝑥1, 𝑧)(𝑦1, 𝑧) = 𝜁𝐵1𝑃 (𝑥1𝑦1) ∧ 𝜁𝐴2

𝑃 (𝑧)

≥ ∧ {(𝜁𝐴1𝑃 (𝑥1) ∧ 𝜁𝐴1

𝑃 (𝑦1)), 𝜁𝐴2𝑃 (𝑧)}

= ∧ {𝜁𝐴1𝑃 (𝑥1) ∧ 𝜁𝐴2

𝑃 (𝑧), 𝜁𝐴1𝑃 (𝑦1) ∧ 𝜁𝐴2

𝑃 (𝑧)}

= (𝜁𝐴1𝑃 ∘ 𝜁𝐴2

𝑃 )(𝑥1, 𝑧) ∧ (𝜁𝐴1𝑃 ∘ 𝜁𝐴2

𝑃 (𝑦1, 𝑧))

(𝜁𝐵1𝑁 ∘ 𝜁𝐵2

𝑁 )((𝑥1, 𝑧)(𝑦1, 𝑧)) = 𝜁𝐵1𝑁 (𝑥1𝑦1) ∨ 𝜁𝐴2

𝑁 (𝑧)

≤∨ {𝜁𝐴1𝑁 (𝑥1) ∨ 𝜁𝐴1

𝑁 (𝑦1), 𝜁𝐴2𝑁 (𝑧)}

=∨ {𝜁𝐴1𝑁 (𝑥1) ∨ 𝜁𝐴2

𝑁 (𝑧), 𝜁𝐴1𝑁 (𝑦1) ∨ 𝜁𝐴2

𝑁 (𝑧)}

= (𝜁𝐴1𝑁 ∘ 𝜁𝐴2

𝑁 )(𝑥1, 𝑧) ∨ (𝜁𝐴1𝑁 ∘ 𝜁𝐴2

𝑁 )(𝑦1, 𝑧).

Let (𝑥1, 𝑥2)(𝑦1, 𝑦2) ∈ 𝐸(0)\𝐸. Then 𝑥1𝑦1 ∈ 𝐸1, 𝑥2 ≠ 𝑦2.Thus,

(𝜂𝐵1𝑝

∘ 𝜂𝐵2𝑝

)((𝑥1, 𝑥2)(𝑦1, 𝑦2)) =∨ {𝜂𝐴2𝑃 (𝑥2). 𝜂𝐴2

𝑃 (𝑦2), 𝜂𝐵2𝑃 (𝑥1𝑦1)}

≥ ∨ {𝜂𝐴2𝑃 (𝑥2), 𝜂𝐴2

𝑃 (𝑦2), 𝜂𝐴1𝑃 (𝑥1) ∨ 𝜂𝐴1

𝑃 (𝑦1)}

= ∨ {𝜂𝐴1𝑃 (𝑥1) ∨ 𝜂𝐴2

𝑃 (𝑥2), 𝜂𝐴1𝑃 (𝑦1) ∨ 𝜂𝐴2

𝑃 (𝑦2)}

= (𝜂𝐴1𝑃 ∘ 𝜂𝐴2

𝑃 )(𝑥1, 𝑥2) ∨ (𝜂𝐴1𝑃 ∘ 𝜂𝐴2

𝑃 )(𝑦1, 𝑦2)

(𝜂𝐵1𝑁 ∘ 𝜂𝐵2

𝑁 )((𝑥1, 𝑥2)(𝑦1, 𝑦2)) =∧ {𝜂𝐴2𝑁 (𝑥2). 𝜂𝐴2

𝑁 (𝑦2), 𝜂𝐵2𝑁 (𝑥1𝑦1)}

≤ ∧ {𝜂𝐴2𝑁 (𝑥2), 𝜂𝐴2

𝑁 (𝑦2), 𝜂𝐴1𝑁 (𝑥1) ∧ 𝜂𝐴1

𝑁 (𝑦1)}

= ∧ {𝜂𝐴1𝑁 (𝑥1) ∧ 𝜂𝐴2

𝑁 (𝑥2), 𝜂𝐴1𝑁 (𝑦1) ∧ 𝜂𝐴2

𝑁 (𝑦2)}

6756

P. SUNITHA, P. SUNDARI

= (𝜂𝐴1𝑁 ∘ 𝜂𝐴2

𝑁 )(𝑥1, 𝑥2) ∧ (𝜂𝐴1𝑁 ∘ 𝜂𝐴2

𝑁 )(𝑦1, 𝑦2)

(𝜁𝐵1𝑝 ∘ 𝜁𝐵2

𝑝 )((𝑥1, 𝑥2)(𝑦1, 𝑦2)) =∧ {𝜁𝐴2𝑃 (𝑥2). 𝜁𝐴2

𝑃 (𝑦2), 𝜁𝐵2𝑃 (𝑥1𝑦1)}

≥ ∧ {𝜁𝐴2𝑃 (𝑥2), 𝜁𝐴2

𝑃 (𝑦2), 𝜁𝐴1𝑃 (𝑥1) ∧ 𝜁𝐴1

𝑃 (𝑦1)}

= ∧ {𝜁𝐴1𝑃 (𝑥1) ∧ 𝜁𝐴2

𝑃 (𝑥2), 𝜁𝐴1𝑃 (𝑦1) ∧ 𝜁𝐴2

𝑃 (𝑦2)}

= (𝜁𝐴1𝑃 ∘ 𝜁𝐴2

𝑃 )(𝑥1, 𝑥2) ∧ (𝜁𝐴1𝑃 ∘ 𝜁𝐴2

𝑃 )(𝑦1, 𝑦2)

(𝜁𝐵1𝑁 ∘ 𝜁𝐵2

𝑁 )((𝑥1, 𝑥2)(𝑦1, 𝑦2)) =∨ {𝜁𝐴2𝑁 (𝑥2). 𝜁𝐴2

𝑁 (𝑦2), 𝜁𝐵2𝑁 (𝑥1𝑦1)}

≤ ∨ {𝜁𝐴2𝑁 (𝑥2), 𝜁𝐴2

𝑁 (𝑦2), 𝜁𝐴1𝑁 (𝑥1) ∨ 𝜁𝐴1

𝑁 (𝑦1)}

= ∨ {𝜁𝐴1𝑁 (𝑥1) ∨ 𝜁𝐴2

𝑁 (𝑥2), 𝜁𝐴1𝑁 (𝑦1) ∨ 𝜁𝐴2

𝑁 (𝑦2)}

= (𝜁𝐴1𝑁 ∘ 𝜁𝐴2

𝑁 )(𝑥1, 𝑥2) ∨ (𝜁𝐴1𝑁 ∘ 𝜁𝐴2

𝑁 )(𝑦1, 𝑦2)

Definition 3.1.12

Let 𝐴1 = (𝜂𝐴1𝑃 , 𝜂𝐴1

𝑁 , 𝜁𝐴1𝑃 , 𝜁𝐴1

𝑁 ) and 𝐴2 = (𝜂𝐴2𝑃 , 𝜂𝐴2

𝑁 , 𝜁𝐴2𝑃 , 𝜁𝐴2

𝑁 ) be bipolar anti intuitionistic

fuzzy subsets of 𝑉1 and 𝑉2 and 𝐵1 = (𝜂𝐵1𝑃 , 𝜂𝐵1

𝑁 , 𝜁𝐵1𝑃 , 𝜁𝐵1

𝑁 ) and 𝐵2 = (𝜂𝐵2𝑃 , 𝜂𝐵2

𝑁 , 𝜁𝐵2𝑃 , 𝜁𝐵2

𝑁 ) be bipolar

anti intuitionistic fuzzy subsets of 𝐸1 and 𝐸2 respectively. Then we denote the union of two

bipolar anti intuitionistic fuzzy graphs 𝐺1 and 𝐺2 of the graphs 𝐺1∗ and 𝐺2

∗ by 𝐺1 ∪ 𝐺2 = (𝐴1 ∪

𝐴2, 𝐵1 ∪ 𝐵2) and defined as follows:

(𝜂𝐴1𝑃 ∪ 𝜂𝐴2

𝑃 )(𝑥) = {

𝜂𝐴1𝑃 (𝑥) 𝑖𝑓 𝑥 ∈ 𝑉1 ∩ �̅�2

𝜂𝐴2𝑃 (𝑥) 𝑖𝑓 𝑥 ∈ 𝑉2 ∩ �̅�1

𝜂𝐴1𝑃 (𝑥) ∧ 𝜂𝐴2

𝑃 (𝑥) 𝑖𝑓 𝑥 ∈ 𝑉1 ∩ 𝑉2

(𝜂𝐴1𝑁 ∪ 𝜂𝐴2

𝑁 )(𝑥) = {

𝜂𝐴1𝑁 (𝑥) 𝑖𝑓 𝑥 ∈ 𝑉1 ∩ �̅�2

𝜂𝐴2𝑁 (𝑥) 𝑖𝑓 𝑥 ∈ 𝑉2 ∩ �̅�1

𝜂𝐴1𝑁 (𝑥) ∨ 𝜂𝐴2

𝑁 (𝑥) 𝑖𝑓 𝑥 ∈ 𝑉1 ∩ 𝑉2

(𝜁𝐴1𝑃 ∪ 𝜁𝐴2

𝑃 )(𝑥) = {

𝜁𝐴1𝑃 (𝑥) 𝑖𝑓 𝑥 ∈ 𝑉1 ∩ �̅�2

𝜁𝐴2𝑃 (𝑥) 𝑖𝑓 𝑥 ∈ 𝑉2 ∩ �̅�1

𝜁𝐴1𝑃 (𝑥) ∨ 𝜁𝐴2

𝑃 (𝑥) 𝑖𝑓 𝑥 ∈ 𝑉1 ∩ 𝑉2

(𝜁𝐴1𝑁 ∪ 𝜁𝐴2

𝑁 )(𝑥) = {

𝜁𝐴1𝑁 (𝑥) 𝑖𝑓 𝑥 ∈ 𝑉1 ∩ �̅�2

𝜁𝐴2𝑁 (𝑥) 𝑖𝑓 𝑥 ∈ 𝑉2 ∩ �̅�1

𝜁𝐴1𝑁 (𝑥) ∧ 𝜁𝐴2

𝑁 (𝑥) 𝑖𝑓 𝑥 ∈ 𝑉1 ∩ 𝑉2

6757

OPERATIONS ON BIPOLAR INTERVALVALUED ANTI INTUITIONISTIC FUZZY GRAPH

(𝜂𝐵1𝑃 ∪ 𝜂𝐵2

𝑃 )(𝑥𝑦) = {

𝜂𝐵1𝑃 (𝑥𝑦) 𝑖𝑓 𝑥𝑦 ∈ 𝐸1 ∩ �̅�2

𝜂𝐵2𝑃 (𝑥𝑦) 𝑖𝑓 𝑥𝑦 ∈ 𝐸2 ∩ �̅�1

𝜂𝐵1𝑃 (𝑥𝑦) ∧ 𝜂𝐵2

𝑃 (𝑥𝑦) 𝑖𝑓 𝑥𝑦 ∈ 𝐸1 ∩ 𝐸2

(𝜂𝐵1𝑁 ∪ 𝜂𝐵2

𝑁 )(𝑥𝑦) = {

𝜂𝐵1𝑁 (𝑥𝑦) 𝑖𝑓 𝑥𝑦 ∈ 𝐸1 ∩ �̅�2

𝜂𝐵2𝑁 (𝑥𝑦) 𝑖𝑓 𝑥𝑦 ∈ 𝐸2 ∩ �̅�1

𝜂𝐵1𝑁 (𝑥𝑦) ∨ 𝜂𝐵2

𝑁 (𝑥𝑦) 𝑖𝑓 𝑥𝑦 ∈ 𝐸1 ∩ 𝐸2

(𝜁𝐵1𝑃 ∪ 𝜁𝐵2

𝑃 )(𝑥𝑦) = {

𝜁𝐵1𝑃 (𝑥𝑦) 𝑖𝑓 𝑥𝑦 ∈ 𝐸1 ∩ �̅�2

𝜁𝐵2𝑃 (𝑥𝑦) 𝑖𝑓 𝑥𝑦 ∈ 𝐸2 ∩ �̅�1

𝜁𝐵1𝑃 (𝑥𝑦) ∨ 𝜁𝐵2

𝑃 (𝑥𝑦) 𝑖𝑓 𝑥𝑦 ∈ 𝐸1 ∩ 𝐸2

(𝜁𝐵1𝑁 ∪ 𝜁𝐵2

𝑁 )(𝑥𝑦) = {

𝜁𝐵1𝑁 (𝑥𝑦) 𝑖𝑓 𝑥𝑦 ∈ 𝐸1 ∩ �̅�2

𝜁𝐵2𝑁 (𝑥𝑦) 𝑖𝑓 𝑥𝑦 ∈ 𝐸2 ∩ �̅�1

𝜁𝐵1𝑁 (𝑥𝑦) ∧ 𝜁𝐵2

𝑁 (𝑥𝑦) 𝑖𝑓 𝑥𝑦 ∈ 𝐸1 ∩ 𝐸2

Example 3.1.13:

Let 𝐺1 and 𝐺2 be BAIFG where 𝑉1 = {𝑎, 𝑏, 𝑐, 𝑑} , 𝐸1 = {𝑎𝑏, 𝑏𝑐, 𝑎𝑐, 𝑐𝑑} and 𝑉2 =

{𝑐, 𝑑, 𝑒} , 𝐸2 = {𝑐𝑑, 𝑑𝑒} respectively. Then we denote the union of two BAIFG as follows

Table 3: Bipolar anti intuitionistic fuzzy sets in 𝑉 and 𝐸 of 𝐺1

𝒂 b 𝒄 d 𝒂𝒃 𝒃𝒄 𝒂𝒄 𝒄𝒅

𝜼𝑨𝑷 0.4 0.5 0.6 0.3 𝜼𝑩

𝑷 0.6 0.7 0.7 0.7

𝜼𝑨𝑵 -0.3 -0.4 -0.5 -0.5 𝜼𝑩

𝑵 -0.5 -0.5 -0.5 -0.5

𝜻𝑨𝑷 0.5 0.3 0.1 0.5 𝜻𝑩

𝑷 0.4 0.2 0.1 0.2

𝜻𝑨𝑵 -0.4 -0.3 -0.3 -0.3 𝜻𝑩

𝑵 -0.4 -0.4 -0.3 -0.3

6758

P. SUNITHA, P. SUNDARI

Table 4: Bipolar anti intuitionistic fuzzy sets in 𝑉 and 𝐸 of 𝐺2

Table 5 Bipolar anti intuitionistic fuzzy sets in 𝑉 of 𝐺1 ∪ 𝐺2

Table 6 Bipolar anti intuitionistic fuzzy sets in 𝐸 of 𝐺1 ∪ 𝐺2

Proposition 3.1.14

If 𝐺1 and 𝐺2 are bipolar anti intuitionistic fuzzy graphs, then 𝐺1 ∪ 𝐺2 is a bipolar anti

intuitionistic fuzzy graph.

Proof:

Let 𝑥𝑦 ∈ 𝐸1 ∩ 𝐸2. Then

(𝜂𝐵1𝑃 ∪ 𝜂𝐵2

𝑃 )(𝑥𝑦) = 𝜂𝐵1𝑃 (𝑥𝑦) ∧ 𝜂𝐵2

𝑃 (𝑥𝑦)

≥ ∧ {𝜂𝐴1𝑃 (𝑥) ∨ 𝜂𝐴1

𝑃 (𝑦), 𝜂𝐴2𝑃 (𝑥) ∨ 𝜂𝐴2

𝑃 (𝑦)}

= ∨ {𝜂𝐴1𝑃 (𝑥) ∧ 𝜂𝐴2

𝑃 (𝑥), 𝜂𝐴2𝑃 (𝑦) ∧ 𝜂𝐴2

𝑃 (𝑦)}

𝒄 𝒅 𝒆 𝒄𝒅 de

𝜼𝑨𝑷 0.4 0.7 0.2 𝜼𝑩

𝑷 0.7 0.8

𝜼𝑨𝑵 -0.4 -0.2 -0.3 𝜼𝑩

𝑵 -0.4 -0.3

𝜻𝑨𝑷 0.3 0.1 0.6 𝜻𝑩

𝑷 0.2 0.1

𝜻𝑨𝑵 -0.2 -0.5 -0.4 𝜻𝑩

𝑵 -0.3 -0.5

a b c d e

𝜼𝑨𝑷 0.4 0.5 0.4 0.3 0.4

𝜼𝑨𝑵 -0.3 -0.4 -0.4 -0.2 -0.4

𝜻𝑨𝑷 0.5 0.3 0.3 0.5 0.3

𝜻𝑨𝑵 -0.4 -0.3 -0.3 -0.5 -0.2

ab bc 𝒂𝒄 de 𝒄𝒅

𝜼𝑩𝑷 0.6 0.7 0.7 0.8 0.7

𝜼𝑩𝑵 -0.5 -0.5 -0.5 -0.3 -0.4

𝜻𝑩𝑷 0.4 0.2 0.1 0.1 0.2

𝜻𝑩𝑵 -0.4 -0.4 -0.3 -0.5 -0.3

6759

OPERATIONS ON BIPOLAR INTERVALVALUED ANTI INTUITIONISTIC FUZZY GRAPH

= (𝜂𝐴1𝑃 ∪ 𝜂𝐴2

𝑃 (𝑥) ∨ (𝜂𝐴1𝑃 ∪ 𝜂𝐴2

𝑃 )(𝑦).

(𝜂𝐵1𝑁 ∪ 𝜂𝐵2

𝑁 )(𝑥𝑦) = (𝜂𝐵1𝑁 )(𝑥𝑦) ∨ 𝜂𝐵2

𝑁 (𝑥𝑦)

≤ ∨ {𝜂𝐴1𝑁 (𝑥) ∧ 𝜂𝐴1

𝑁 (𝑦), 𝜂𝐴2𝑁 (𝑥) ∧ 𝜂𝐴2

𝑁 (𝑦)}

= ∧ {𝜂𝐴1𝑁 (𝑥) ∨ 𝜂𝐴2

𝑁 (𝑥), 𝜂𝐴1𝑁 (𝑦) ∨ 𝜂𝐴2

𝑁 (𝑦)}

= (𝜂𝐴1𝑁 ∪ 𝜂𝐴2

𝑁 )(𝑥) ∧ (𝜂𝐴1𝑁 ∪ 𝜂𝐴2

𝑁 )(𝑦).

(𝜁𝐵1𝑃 ∪ 𝜁𝐵2

𝑃 )(𝑥𝑦) = (𝜁𝐵1𝑃 )(𝑥𝑦) ∨ 𝜁𝐵2

𝑃 (𝑥𝑦)

≤ ∨ {𝜁𝐴1𝑃 (𝑥) ∧ 𝜁𝐴1

𝑃 (𝑦), 𝜁𝐴2𝑃 (𝑥) ∧ 𝜁𝐴2

𝑃 (𝑦)}

= ∧ {𝜁𝐴1𝑃 (𝑥) ∨ 𝜁𝐴2

𝑃 (𝑥), 𝜁𝐴1𝑁 (𝑦) ∨ 𝜁𝐴2

𝑃 (𝑦)}

= (𝜁𝐴1𝑃 ∪ 𝜁𝐴2

𝑃 )(𝑥) ∧ (𝜁𝐴1𝑃 ∪ 𝜁𝐴2

𝑁 )(𝑦).

(𝜁𝐵1𝑁 ∪ 𝜁𝐵2

𝑁 )(𝑥𝑦) = (𝜁𝐵1𝑁 )(𝑥𝑦) ∧ 𝜁𝐵2

𝑁 (𝑥𝑦)

≥ ∧ {𝜁𝐴1𝑁 (𝑥) ∨ 𝜁𝐴1

𝑁 (𝑦), 𝜁𝐴2𝑁 (𝑥) ∨ 𝜁𝐴2

𝑁 (𝑦)}

= ∨ {𝜁𝐴1𝑁 (𝑥) ∧ 𝜁𝐴2

𝑁 (𝑥), 𝜁𝐴1𝑁 (𝑦) ∧ 𝜁𝐴2

𝑁 (𝑦)}

= (𝜁𝐴1𝑁 ∪ 𝜁𝐴2

𝑁 )(𝑥) ∧ (𝜁𝐴1𝑁 ∪ 𝜁𝐴2

𝑁 )(𝑦).

If 𝑥𝑦 ∈ 𝐸1 ∩ �̅�2,

(𝜂𝐵1𝑃 ∪ 𝜂𝐵2

𝑃 )(𝑥𝑦) = 𝜂𝐵1𝑃 (𝑥𝑦) ≥ 𝜂𝐴1

𝑃 (𝑥) ∨ 𝜂𝐴1𝑃 (𝑦)

= (𝜂𝐴1𝑃 ∪ (𝜂𝐴2

𝑃 )(𝑥)) ∨ (𝜂𝐴1𝑃 ∪ 𝜂𝐴2

𝑃 )(𝑦)

Similarly, for 𝑥𝑦 ∈ 𝐸1 ∩ �̅�2, we have

(𝜂𝐵1𝑁 ∪ 𝜂𝐵2

𝑁 )(𝑥𝑦) ≤ (𝜂𝐴1𝑁 ∪ 𝜂𝐴2

𝑁 (𝑥) ∧ (𝜂𝐴1𝑁 ∪ 𝜂𝐴2

𝑁 )(𝑦)

(𝜁𝐵1𝑃 ∪ 𝜁𝐵2

𝑃 )(𝑥𝑦) ≥ (𝜁𝐴1𝑃 ∪ 𝜁𝐴2

𝑃 )(𝑥) ∧ (𝜁𝐴1𝑃 ∪ 𝜁𝐴2

𝑁 )(𝑦)

(𝜁𝐵1𝑁 ∪ 𝜁𝐵2

𝑁 )(𝑥𝑦) ≤ (𝜁𝐴1𝑁 ∪ 𝜁𝐴2

𝑁 )(𝑥) ∨ (𝜁𝐴1𝑁 ∪ 𝜁𝐴2

𝑁 )(𝑦)

If 𝑥𝑦 ∈ 𝐸2 ∩ �̅�1, then

(𝜂𝐵1𝑃 ∪ 𝜂𝐵2

𝑃 )(𝑥𝑦) ≤ (𝜂𝐴1𝑃 ∪ 𝜂𝐴2

𝑃 )(𝑥) ∧ (𝜂𝐴1𝑃 ∪ 𝜂𝐴2

𝑃 )(𝑦)

(𝜂𝐵1𝑁 ∪ 𝜂𝐵2

𝑁 )(𝑥𝑦) ≥ (𝜂𝐴1𝑁 ∪ 𝜂𝐴2

𝑁 )(𝑥) ∨ (𝜂𝐴1𝑁 ∪ 𝜂𝐴2

𝑁 )(𝑦).

(𝜁𝐵1𝑃 ∪ 𝜁𝐵2

𝑃 )(𝑥𝑦) ≤ (𝜁𝐴1𝑃 ∪ 𝜁𝐴2

𝑃 )(𝑥) ∨ (𝜁𝐴1𝑃 ∪ 𝜁𝐴2

𝑃 )(𝑦)

(𝜁𝐵1𝑁 ∪ 𝜁𝐵2

𝑁 )(𝑥𝑦) ≥ (𝜁𝐴1𝑁 ∪ 𝜁𝐴2

𝑁 )(𝑥) ∧ (𝜁𝐴1𝑁 ∪ 𝜁𝐴2

𝑁 )(𝑦)

Thus 𝐺1 ∪ 𝐺2 is a bipolar anti intuitionistic fuzzy graph.

6760

P. SUNITHA, P. SUNDARI

3.2 BIPOLAR INTERVAL VALUED ANTI INTUITIONISTIC FUZZY GRAPH

Definition 3.2.1

A bipolar interval valued anti intuitionistic fuzzy graph (BIVAIFG) with an underlying set

𝑉 is defined to be a pair 𝐺 = (𝐴, 𝐵) , where 𝐴 = (𝜂𝐴𝐿

𝑃 , 𝜂𝐴𝑈

𝑃 , 𝜁𝐴𝐿

𝑃 , 𝜁𝐴𝑈

𝑃 , 𝜂𝐴𝐿

𝑁 , 𝜂𝐴𝑈

𝑁 , 𝜁𝐴𝐿

𝑁 , 𝜁𝐴𝑈

𝑁 ) is a

bipolar interval valued anti intuitionistic fuzzy set (BIVAIFS) in 𝑉 and 𝐵 = (𝜂𝐵𝐿

𝑃 , 𝜂𝐵𝑈

𝑃 ,

𝜁𝐵𝐿

𝑃 , 𝜁𝐵𝑈

𝑃 , 𝜂𝐵𝐿

𝑁 , 𝜂𝐵𝑈

𝑁 , 𝜁𝐵𝐿

𝑁 , 𝜁𝐵𝑈

𝑁 ) is a bipolar interval valued anti intuitionistic fuzzy set in E such that

(𝜂𝐵𝐿

𝑃 )(𝑥𝑦) ≥ 𝜂𝐴𝐿

𝑝 (𝑥) ∨ 𝜂𝐴𝐿

𝑃 (𝑦) , (𝜁𝐵𝐿

𝑃 )(𝑥𝑦) ≥ 𝜁𝐴𝐿

𝑃 (𝑥) ∧ 𝜁𝐴𝐿

𝑃 (𝑦) ,

(𝜂𝐵𝑈

𝑃 )(𝑥𝑦) ≥ 𝜂𝐴𝑈

𝑝 (𝑥) ∨ 𝜂𝐴𝑈

𝑃 (𝑦) , (𝜁𝐵𝑈

𝑃 )(𝑥𝑦) ≥ 𝜁𝐴𝑈

𝑃 (𝑥) ∧ 𝜁𝐴𝑈

𝑃 (𝑦),

(𝜂𝐵𝐿

𝑁 )(𝑥𝑦) ≤ 𝜂𝐴𝐿

𝑁 (𝑥) ∧ 𝜂𝐴𝐿

𝑁 (𝑦), (𝜁𝐵𝐿

𝑁 )(𝑥𝑦) ≤ 𝜁𝐴𝐿

𝑁 (𝑥) ∨ 𝜁𝐴𝐿

𝑁 (𝑦) ,

(𝜂𝐵𝑈

𝑁 )(𝑥𝑦) ≤ 𝜂𝐴𝑈

𝑁 (𝑥) ∧ 𝜂𝐴𝑈

𝑁 (𝑦), (𝜁𝐵𝑈

𝑁 )(𝑥𝑦) ≤ 𝜁𝐴𝑈

𝑁 (𝑥) ∨ 𝜁𝐴𝑈

𝑁 (𝑦) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥𝑦 ∈ 𝐸

Example 3.2.2: Consider the graph shown in figure 1 where

𝑎 = (0.1,0.5, −0.5, −0.1,0.3,0.5, −0.5, −0.3); 𝑏 = (0.2,0.5, −0.6, −0.2,0.1,0.4, −0.4, −0.1)

𝑐 = (0.3,0.6, −0.6, −0.4,0.1,0.4, −0.4, −0.2) we get the values of the edges as

𝑎𝑏 = (0.3,0.6, −0.7, −0.3,0.2,0.4, −0.4, −0.2)

𝑏𝑐 = (0.4,0.7, −0.6, −0.5,0.2,0.4, −0.4, −0.1)

𝑎𝑐 = (0.4,0.6, −0.6, −0.4,0.2,0.4, −0.4, −0.3)

Definition 3.2.3

Let 𝐴1 = (𝜂𝐴1𝐿

𝑃 , 𝜂𝐴1𝑈

𝑃 , 𝜁𝐴1𝐿

𝑃 , 𝜁𝐴1𝑈

𝑃 , 𝜂𝐴1𝐿

𝑁 , 𝜂𝐴1𝑈

𝑁 , 𝜁𝐴1𝐿

𝑁 , 𝜁𝐴1𝑈

𝑁 ) and

𝐴2 = (𝜂𝐴2𝐿

𝑃 , 𝜂𝐴2𝑈

𝑃 , 𝜁𝐴2𝐿

𝑃 , 𝜁𝐴2𝑈

𝑃 , 𝜂𝐴2𝐿

𝑁 , 𝜂𝐴2𝑈

𝑁 , 𝜁𝐴2𝐿

𝑁 , 𝜁𝐴2𝑈

𝑁 )

be BIVAIF subset of 𝑉1 and 𝑉2 and 𝐵1 = (𝜂𝐵1𝐿

𝑃 , 𝜂𝐵1𝑈

𝑃 , 𝜁𝐵1𝐿

𝑃 , 𝜁𝐵1𝑈

𝑃 , 𝜂𝐵1𝐿

𝑁 , 𝜂𝐵1𝑈

𝑁 , 𝜁𝐵1𝐿

𝑁 , 𝜁𝐵1𝑈

𝑁 ) and

𝐵2 = (𝜂𝐵2𝐿

𝑃 , 𝜂𝐵2𝑈

𝑃 , 𝜁𝐵2𝐿

𝑃 , 𝜁𝐵2𝑈

𝑃 , 𝜂𝐵2𝐿

𝑁 , 𝜂𝐵2𝑈

𝑁 , 𝜁𝐵2𝐿

𝑁 , 𝜁𝐵2𝑈

𝑁 ) be BIVAIF subsets of 𝐸1 and 𝐸2

respectively. Then we denote the Cartesian product of two bipolar interval valued anti intuitionistic

fuzzy graphs 𝐺1 and 𝐺2 of the graphs 𝐺1∗ and 𝐺2

∗ by 𝐺1 × 𝐺2=(𝐴1 × 𝐴2, 𝐵1 × 𝐵2) and defined

by

6761

OPERATIONS ON BIPOLAR INTERVALVALUED ANTI INTUITIONISTIC FUZZY GRAPH

(i) (𝜂𝐴1𝐿

𝑃 × 𝜂𝐴2𝐿

𝑃 )(𝑥1, 𝑥2) = 𝜂𝐴1𝐿

𝑃 (𝑥1) ∨ 𝜂𝐴2𝐿

𝑃 (𝑥2)

(𝜂𝐴1𝑈

𝑃 × 𝜂𝐴2𝑈

𝑃 )(𝑥1, 𝑥2) = 𝜂𝐴1𝑈

𝑃 (𝑥1) ∨ 𝜂𝐴2𝑈

𝑃 (𝑥2)

(𝜂𝐴1𝐿

𝑁 × 𝜂𝐴2𝐿

𝑁 )(𝑥1, 𝑥2) = 𝜂𝐴1𝐿

𝑁 (𝑥1) ∧ 𝜂𝐴2𝐿

𝑁 (𝑥2)

(𝜂𝐴1𝑈

𝑁 × 𝜂𝐴2𝑈

𝑁 )(𝑥1, 𝑥2) = 𝜂𝐴1𝑈

𝑁 (𝑥1) ∧ 𝜂𝐴2𝑈

𝑁 (𝑥2)

(𝜁𝐴1𝐿

𝑃 × 𝜁𝐴2𝐿

𝑃 )(𝑥1, 𝑥2) = 𝜁𝐴1𝐿

𝑃 (𝑥1) ∧ 𝜁𝐴2𝐿

𝑃 (𝑥2)

(𝜁𝐴1𝑈

𝑃 × 𝜁𝐴2𝑈

𝑃 )(𝑥1, 𝑥2) = 𝜁𝐴1𝑈

𝑃 (𝑥1) ∧ 𝜁𝐴2𝑈

𝑃 (𝑥2)

(𝜁𝐴1 𝐿

𝑁 × 𝜁𝐴2𝐿

𝑁 )(𝑥1, 𝑥2) = 𝜁𝐴1𝐿

𝑁 (𝑥1) ∨ 𝜁𝐴2𝐿

𝑁 (𝑥2)

(𝜁𝐴1𝑈

𝑁 × 𝜁𝐴2𝑈

𝑁 )(𝑥1, 𝑥2) = 𝜁𝐴1𝑈

𝑁 (𝑥1) ∨ 𝜁𝐴2𝑈

𝑁 (𝑥2)for all (𝑥1, 𝑥2) ∈ 𝑉 × 𝑉.

(ii) (𝜂𝐵1𝐿

𝑃 × 𝜂𝐵2𝐿

𝑃 )((𝑥, 𝑥2)(𝑥, 𝑦2)) = 𝜂𝐴1𝐿

𝑃 (𝑥) ∨ 𝜂𝐵2𝐿

𝑃 (𝑥2𝑦2)

(𝜂𝐵1𝑈

𝑃 × 𝜂𝐵2𝑈

𝑃 )((𝑥, 𝑥2)(𝑥, 𝑦2)) = 𝜂𝐴1𝑈

𝑃 (𝑥) ∨ 𝜂𝐵2𝑈

𝑃 (𝑥2𝑦2)

(𝜂𝐵1𝐿

𝑁 × 𝜂𝐵2𝐿

𝑁 )((𝑥, 𝑥2)(𝑥, 𝑦2)) = 𝜂𝐴1𝐿

𝑁 (𝑥) ∧ 𝜂𝐵2𝐿

𝑁 (𝑥2𝑦2)

(𝜂𝐵1𝑈

𝑁 × 𝜂𝐵2𝑈

𝑁 )((𝑥, 𝑥2)(𝑥, 𝑦2)) = 𝜂𝐴1𝑈

𝑁 (𝑥) ∧ 𝜂𝐵2𝑈

𝑁 (𝑥2𝑦2)

(𝜁𝐵1𝐿

𝑃 × 𝜁𝐵2𝐿

𝑃 )((𝑥, 𝑥2)(𝑥, 𝑦2)) = 𝜁𝐴1𝐿

𝑃 (𝑥) ∧ 𝜁𝐵2𝐿

𝑃 (𝑥2𝑦2)

(𝜁𝐵1𝑈

𝑃 × 𝜁𝐵2𝑈

𝑃 )((𝑥, 𝑥2)(𝑥, 𝑦2)) = 𝜁𝐴1𝑈

𝑃 (𝑥) ∧ 𝜁𝐵2𝑈

𝑃 (𝑥2𝑦2)

( 𝜁𝐵1𝐿

𝑁 × 𝜁𝐵2𝐿

𝑁 )((𝑥, 𝑥2)(𝑥, 𝑦2)) = 𝜁𝐴1𝐿

𝑁 (𝑥) ∨ 𝜁𝐵2𝐿

𝑁 (𝑥2𝑦2)

( 𝜁𝐵1𝑈

𝑁 × 𝜁𝐵2𝑈

𝑁 )((𝑥, 𝑥2)(𝑥, 𝑦2)) = 𝜁𝐴1𝑈

𝑁 (𝑥) ∨ 𝜁𝐵2𝑈

𝑁 (𝑥2𝑦2)

for all 𝑥 ∈ 𝑉1, for all 𝑥2𝑦2 ∈ 𝐸2.

(iii) (𝜂𝐵1𝐿

𝑃 × 𝜂𝐵2𝐿

𝑃 )((𝑥1, 𝑧)(𝑦1, 𝑧)) = 𝜂𝐵1𝐿

𝑃 (𝑥1𝑦1) ∨ 𝜂𝐴2𝐿

𝑃 (𝑧)

(𝜂𝐵1𝑈

𝑃 × 𝜂𝐵2𝑈

𝑃 )((𝑥1, 𝑧)(𝑦1, 𝑧)) = 𝜂𝐵1𝑈

𝑃 (𝑥1𝑦1) ∨ 𝜂𝐴2𝑈

𝑃 (𝑧)

( 𝜂𝐵1𝐿

𝑁 × 𝜂𝐵2𝐿

𝑁 )((𝑥1, 𝑧)(𝑦1, 𝑧)) = 𝜂𝐵1𝐿

𝑁 (𝑥1𝑦1) ∧ 𝜂𝐴2𝐿

𝑁 (𝑧)

( 𝜂𝐵1𝑈

𝑁 × 𝜂𝐵2𝑈

𝑁 )((𝑥1, 𝑧)(𝑦1, 𝑧)) = 𝜂𝐵1𝑈

𝑁 (𝑥1𝑦1) ∧ 𝜂𝐴2𝑈

𝑁 (𝑧)

6762

P. SUNITHA, P. SUNDARI

(𝜁𝐵1𝐿

𝑃 × 𝜁𝐵2𝐿

𝑃 )((𝑥1, 𝑧)(𝑦1, 𝑧)) = 𝜁𝐴2𝐿

𝑃 (𝑧) ∧ 𝜁𝐵1𝐿

𝑃 (𝑥1𝑦1)

(𝜁𝐵1𝑈

𝑃 × 𝜁𝐵2𝑈

𝑃 )((𝑥1, 𝑧)(𝑦1, 𝑧)) = 𝜁𝐴2𝑈

𝑃 (𝑧) ∧ 𝜁𝐵1𝑈

𝑃 (𝑥1𝑦1)

( 𝜁𝐵1𝐿

𝑁 × 𝜁𝐵2𝐿

𝑁 )((𝑥1, 𝑧)(𝑦1, 𝑧)) = 𝜁𝐴2𝐿

𝑁 (𝑧) ∨ 𝜁𝐵1𝐿

𝑁 (𝑥1𝑦1)

( 𝜁𝐵1𝑈

𝑁 × 𝜁𝐵2𝑈

𝑁 )((𝑥1, 𝑧)(𝑦1, 𝑧)) = 𝜁𝐴2𝑈

𝑁 (𝑧) ∨ 𝜁𝐵1𝑈

𝑁 (𝑥1𝑦1)

for all 𝑧 ∈ 𝑉2, for all 𝑥1𝑦1 ∈ 𝐸1.

Example 3.2.4: Consider the graph shown in figure 2 where

𝑎 = (0.1,0.5, −0.5, −0.1,0.3,0.5, −0.5, −0.3); 𝑏 = (0.2,0.5, −0.6, −0.2,0.1,0.4, −0.4, −0.1)

𝑐 = (0.3,0.6, −0.6, −0.4,0.1,0.4, −0.4, −0.2); 𝑑 = (0.2,0.5, −0.6, −0.3,0.3,0.6, −0.4, −0.2)

we get the values of the vertices in 𝐺1 × 𝐺2 as

(𝑎, 𝑐) = (0.3,0.6, −0.6, −0.4,0.1,0.4, −0.4, −0.2)

(𝑎, 𝑑) = (0.2,0.5, −0.6, −0.3,0.3,0.5, −0.4, −0.2)

(𝑏, 𝑐) = (0.3,0.6, −0.6, −0.4,0.1,0.4, −0.4, −0.1)

(𝑏, 𝑑) = (0.2,0.5, −0.6, −0.2,0.1,0.4, −0.4, −0.1)

and edges in 𝐺1 × 𝐺2 as

(𝑎, 𝑐)(𝑎, 𝑑) = (0.4,0.6, −0.6, −0.5,0.2,0.5, −0.4, −0.3)

(𝑏, 𝑐)(𝑏, 𝑑) = (0.4,0.6, −0.6, −0.5,0. ,0.4, −0.4, −0.1)

(𝑎, 𝑐)(𝑏, 𝑐) = (0.3,0.6, −0.7, −0.4,0.1,0.4, −0.4, −0.2)

(𝑎, 𝑑)(𝑏, 𝑑) = (0.3,0.6, −0.7, −0.3,0.2,0.4, −0.4, −0.2)

Proposition 3.2.5

If 𝐺1 and 𝐺2 are BIVAIF graphs, then 𝐺1 × 𝐺2 is a BIVAIF graph.

Proof:

Let 𝑥 ∈ 𝑉1 and 𝑥2𝑦2 ∈ 𝐸2 . Then

(𝜂𝐵1𝐿

𝑃 × 𝜂𝐵2𝐿

𝑃 )((𝑥, 𝑥2)(𝑥, 𝑦2)) = 𝜂𝐴1𝐿

𝑃 (𝑥) ∨ 𝜂𝐵2𝐿

𝑃 (𝑥2𝑦2)

≥∨ {𝜂𝐴1𝐿

𝑃 (𝑥), 𝜂𝐴2𝐿

𝑃 (𝑥2) ∨ 𝜂𝐴2𝐿

𝑃 (𝑦2)}

=∨ {𝜂𝐴1𝐿

𝑃 (𝑥) ∨ 𝜂𝐴2𝐿

𝑃 (𝑥2)) , 𝜂𝐴1𝐿

𝑃 (𝑥) ∨ 𝜂𝐴2𝐿

𝑃 (𝑦2)}

6763

OPERATIONS ON BIPOLAR INTERVALVALUED ANTI INTUITIONISTIC FUZZY GRAPH

= (𝜂𝐴1𝐿

𝑃 × 𝜂𝐴2𝐿

𝑃 )(𝑥, 𝑥2) ∨ (𝜂𝐴1𝐿

𝑃 × 𝜂𝐴2𝐿

𝑃 )(𝑥, 𝑦2).

(𝜂𝐵1𝑈

𝑃 × 𝜂𝐵2𝑈

𝑃 )((𝑥, 𝑥2)(𝑥, 𝑦2)) = 𝜂𝐴1𝑈

𝑃 (𝑥) ∨ 𝜂𝐵2𝑈

𝑃 (𝑥2𝑦2)

≥∨ {𝜂𝐴1𝑈

𝑃 (𝑥), 𝜂𝐴2𝑈

𝑃 (𝑥2) ∨ 𝜂𝐴2𝑈

𝑃 (𝑦2)}

=∨ {𝜂𝐴1𝑈

𝑃 (𝑥) ∨ 𝜂𝐴2𝑈

𝑃 (𝑥2)) , 𝜂𝐴1𝑈

𝑃 (𝑥) ∨ 𝜂𝐴2𝑈

𝑃 (𝑦2)}

= (𝜂𝐴1𝑈

𝑃 × 𝜂𝐴2𝑈

𝑃 )(𝑥, 𝑥2) ∨ (𝜂𝐴1𝑈

𝑃 × 𝜂𝐴2𝑈

𝑃 )(𝑥, 𝑦2).

(𝜂𝐵1𝐿

𝑁 × 𝜂𝐵2𝐿

𝑁 )((𝑥, 𝑥2)(𝑥, 𝑦2)) = 𝜂𝐴1𝐿

𝑁 (𝑥) ∧ 𝜂𝐵2𝐿

𝑁 (𝑥2𝑦2)

≤∧ {𝜂𝐴1𝐿

𝑁 (𝑥), (𝜂𝐴2𝐿

𝑁 (𝑥2) ∧ 𝜂𝐴2𝐿

𝑁 (𝑦2)}

=∧ {𝜂𝐴1𝐿

𝑁 (𝑥) ∧ 𝜂𝐴2𝐿

𝑁 (𝑥2), 𝜂𝐴1𝐿

𝑁 (𝑥) ∧ 𝜂𝐴2𝐿

𝑁 (𝑦2)}

= (𝜂𝐴1𝐿

𝑁 × 𝜂𝐴2𝐿

𝑁 )(𝑥, 𝑥2) ∧ (𝜂𝐴1𝐿

𝑁 × 𝜂𝐴2𝐿

𝑁 )(𝑥, 𝑦2).

(𝜂𝐵1𝑈

𝑁 × 𝜂𝐵2𝑈

𝑁 )((𝑥, 𝑥2)(𝑥, 𝑦2)) = 𝜂𝐴1𝑈

𝑁 (𝑥) ∧ 𝜂𝐵2𝑈

𝑁 (𝑥2𝑦2)

≤∧ {𝜂𝐴1𝑈

𝑁 (𝑥), (𝜂𝐴2𝑈

𝑁 (𝑥2) ∧ 𝜂𝐴2𝑈

𝑁 (𝑦2)}

=∧ {𝜂𝐴1𝑈

𝑁 (𝑥) ∧ 𝜂𝐴2𝑈

𝑁 (𝑥2), 𝜂𝐴1𝑈

𝑁 (𝑥) ∧ 𝜂𝐴2𝑈

𝑁 (𝑦2)}

= (𝜂𝐴1𝑈

𝑁 × 𝜂𝐴2𝑈

𝑁 )(𝑥, 𝑥2) ∧ (𝜂𝐴1𝑈

𝑁 × 𝜂𝐴2𝑈

𝑁 )(𝑥, 𝑦2).

(𝜁𝐵1𝐿

𝑃 × 𝜁𝐵2𝐿

𝑃 )((𝑥, 𝑥2)(𝑥, 𝑦2)) = 𝜁𝐴1𝐿

𝑃 (𝑥) ∧ 𝜁𝐵2𝐿

𝑃 (𝑥2𝑦2)

≥∧ {𝜁𝐴1𝐿

𝑃 (𝑥), 𝜁𝐴2𝐿

𝑃 (𝑥2) ∧ 𝜁𝐴2𝐿

𝑃 (𝑦2)}

=∧ {𝜁𝐴1𝐿

𝑃 (𝑥) ∧ 𝜁𝐴2𝐿

𝑃 (𝑥2)) , 𝜁𝐴1𝐿

𝑃 (𝑥) ∧ 𝜁𝐴2𝐿

𝑃 (𝑦2)}

= (𝜁𝐴1𝐿

𝑃 × 𝜁𝐴2𝐿

𝑃 )(𝑥, 𝑥2) ∧ (𝜁𝐴1𝐿

𝑃 × 𝜁𝐴2𝐿

𝑃 )(𝑥, 𝑦2).

(𝜁𝐵1𝑈

𝑃 × 𝜁𝐵2𝑈

𝑃 )((𝑥, 𝑥2)(𝑥, 𝑦2)) = 𝜁𝐴1𝑈

𝑃 (𝑥) ∧ 𝜁𝐵2𝑈

𝑃 (𝑥2𝑦2)

≥∧ {𝜁𝐴1𝑈

𝑃 (𝑥), 𝜁𝐴2𝑈

𝑃 (𝑥2) ∧ 𝜁𝐴2𝑈

𝑃 (𝑦2)}

=∧ {𝜁𝐴1𝑈

𝑃 (𝑥) ∧ 𝜁𝐴2𝑈

𝑃 (𝑥2)) , 𝜁𝐴1𝑈

𝑃 (𝑥) ∧ 𝜁𝐴2𝑈

𝑃 (𝑦2)}

= (𝜁𝐴1𝑈

𝑃 × 𝜁𝐴2𝑈

𝑃 )(𝑥, 𝑥2) ∧ (𝜁𝐴1𝑈

𝑃 × 𝜁𝐴2𝑈

𝑃 )(𝑥, 𝑦2).

6764

P. SUNITHA, P. SUNDARI

( 𝜁𝐵1𝐿

𝑁 × 𝜁𝐵2𝐿

𝑁 )((𝑥, 𝑥2)(𝑥, 𝑦2)) = 𝜁𝐴1𝐿

𝑁 (𝑥) ∨ 𝜁𝐵2𝐿

𝑁 (𝑥2𝑦2)

≤∨ {𝜁𝐴1𝐿

𝑁 (𝑥), (𝜁𝐴2𝐿

𝑁 (𝑥2) ∨ 𝜁𝐴2𝐿

𝑁 (𝑦2)}

=∨ {𝜁𝐴1𝐿

𝑁 (𝑥) ∨ 𝜁𝐴2𝐿

𝑁 (𝑥2), 𝜁𝐴1𝐿

𝑁 (𝑥) ∨ 𝜁𝐴2𝐿

𝑁 (𝑦2)}

= (𝜁𝐴1𝐿

𝑁 × 𝜁𝐴2𝐿

𝑁 )(𝑥, 𝑥2) ∨ (𝜁𝐴1𝐿

𝑁 × 𝜁𝐴2𝐿

𝑁 )(𝑥, 𝑦2).

( 𝜁𝐵1𝑈

𝑁 × 𝜁𝐵2𝑈

𝑁 )((𝑥, 𝑥2)(𝑥, 𝑦2)) = 𝜁𝐴1𝑈

𝑁 (𝑥) ∨ 𝜁𝐵2𝑈

𝑁 (𝑥2𝑦2)

≤∨ {𝜁𝐴1𝑈

𝑁 (𝑥), (𝜁𝐴2𝑈

𝑁 (𝑥2) ∨ 𝜁𝐴2𝑈

𝑁 (𝑦2)}

=∨ {𝜁𝐴1𝑈

𝑁 (𝑥) ∨ 𝜁𝐴2𝑈

𝑁 (𝑥2), 𝜁𝐴1𝑈

𝑁 (𝑥) ∨ 𝜁𝐴2𝑈

𝑁 (𝑦2)}

= (𝜁𝐴1𝑈

𝑁 × 𝜁𝐴2𝑈

𝑁 )(𝑥, 𝑥2) ∨ (𝜁𝐴1𝑈

𝑁 × 𝜁𝐴2𝑈

𝑁 )(𝑥, 𝑦2).

Let 𝑧 ∈ 𝑉2,𝑎𝑛𝑑 𝑥1𝑦1 ∈ 𝐸1. Thus

(𝜂𝐵1𝐿

𝑃 × 𝜂𝐵2𝐿

𝑃 )((𝑥1, 𝑧)(𝑦1, 𝑧)) = 𝜂𝐵1𝐿

𝑃 (𝑥1𝑦1) ∨ 𝜂𝐴2𝐿

𝑃 (𝑧)

≥ ∨ {(𝜂𝐴1𝐿

𝑃 (𝑥1) ∨ 𝜂𝐴1𝐿

𝑃 (𝑦1)) , 𝜂𝐴2𝐿

𝑃 (𝑧)}

= ∨ {𝜂𝐴1𝐿

𝑃 (𝑥1) ∨ 𝜂𝐴2𝐿

𝑃 (𝑧), 𝜂𝐴1𝐿

𝑃 (𝑦1) ∨ 𝜂𝐴2𝐿

𝑃 (𝑧)}

= (𝜂𝐴1𝐿

𝑃 × 𝜂𝐴2𝐿

𝑃 )(𝑥1, 𝑧) ∨ (𝜂𝐴1𝐿

𝑃 × 𝜂𝐴2𝐿

𝑃 (𝑦1, 𝑧))

(𝜂𝐵1𝑈

𝑃 × 𝜂𝐵2𝑈

𝑃 )((𝑥1, 𝑧)(𝑦1, 𝑧)) = 𝜂𝐵1𝑈

𝑃 (𝑥1𝑦1) ∨ 𝜂𝐴2𝑈

𝑃 (𝑧)

≥ ∨ {(𝜂𝐴1𝑈

𝑃 (𝑥1) ∨ 𝜂𝐴1𝑈

𝑃 (𝑦1)) , 𝜂𝐴2𝑈

𝑃 (𝑧)}

= ∨ {𝜂𝐴1𝑈

𝑃 (𝑥1) ∨ 𝜂𝐴2𝑈

𝑃 (𝑧), 𝜂𝐴1𝑈

𝑃 (𝑦1) ∨ 𝜂𝐴2𝑈

𝑃 (𝑧)}

= (𝜂𝐴1𝑈

𝑃 × 𝜂𝐴2𝑈

𝑃 )(𝑥1, 𝑧) ∨ (𝜂𝐴1𝑈

𝑃 × 𝜂𝐴2𝑈

𝑃 (𝑦1, 𝑧))

(𝜂𝐵1𝐿

𝑁 × 𝜂𝐵2𝐿

𝑁 )((𝑥1, 𝑧)(𝑦1, 𝑧)) = 𝜂𝐵1𝐿

𝑁 (𝑥1𝑦1) ∧ 𝜂𝐴2𝐿

𝑁 (𝑧)

≤∧ {𝜂𝐴1𝐿

𝑁 (𝑥1) ∧ 𝜂𝐴1𝐿

𝑁 (𝑦1), 𝜂𝐴2𝐿

𝑁 (𝑧)}

=∧ {𝜂𝐴1𝐿

𝑁 (𝑥1) ∧ 𝜂𝐴2𝐿

𝑁 (𝑧), 𝜂𝐴1𝐿

𝑁 (𝑦1) ∧ 𝜂𝐴2𝐿

𝑁 (𝑧)}

= (𝜂𝐴1𝐿

𝑁 × 𝜂𝐴2𝐿

𝑁 )(𝑥1, 𝑧) ∧ (𝜂𝐴1𝐿

𝑁 × 𝜂𝐴2𝐿

𝑁 )(𝑦1, 𝑧).

6765

OPERATIONS ON BIPOLAR INTERVALVALUED ANTI INTUITIONISTIC FUZZY GRAPH

(𝜂𝐵1𝑈

𝑁 × 𝜂𝐵2𝑈

𝑁 )((𝑥1, 𝑧)(𝑦1, 𝑧)) = 𝜂𝐵1𝑈

𝑁 (𝑥1𝑦1) ∧ 𝜂𝐴2𝑈

𝑁 (𝑧)

≤∧ {𝜂𝐴1𝑈

𝑁 (𝑥1) ∧ 𝜂𝐴1𝑈

𝑁 (𝑦1), 𝜂𝐴2𝑈

𝑁 (𝑧)}

=∧ {𝜂𝐴1𝑈

𝑁 (𝑥1) ∧ 𝜂𝐴2𝑈

𝑁 (𝑧), 𝜂𝐴1𝑈

𝑁 (𝑦1) ∧ 𝜂𝐴2𝑈

𝑁 (𝑧)}

= (𝜂𝐴1𝑈

𝑁 × 𝜂𝐴2𝑈

𝑁 )(𝑥1, 𝑧) ∧ (𝜂𝐴1𝑈

𝑁 × 𝜂𝐴2𝑈

𝑁 )(𝑦1, 𝑧).

(𝜁𝐵1𝐿

𝑃 × 𝜁𝐵2𝐿

𝑃 )((𝑥1, 𝑧)(𝑦1, 𝑧)) = 𝜁𝐴2𝐿

𝑃 (𝑧) ∧ 𝜁𝐵1𝐿

𝑃 (𝑥1𝑦1)

≥ ∧ {(𝜁𝐴1𝐿

𝑃 (𝑥1) ∧ 𝜁𝐴1𝐿

𝑃 (𝑦1)) , 𝜁𝐴2𝐿

𝑃 (𝑧)}

= ∧ {𝜁𝐴1𝐿

𝑃 (𝑥1) ∧ 𝜁𝐴2𝐿

𝑃 (𝑧), 𝜁𝐴1𝐿

𝑃 (𝑦1) ∧ 𝜁𝐴2𝐿

𝑃 (𝑧)}

= (𝜁𝐴1𝐿

𝑃 × 𝜁𝐴2𝐿

𝑃 )(𝑥1, 𝑧) ∧ (𝜁𝐴1𝐿

𝑃 × 𝜁𝐴2𝐿

𝑃 (𝑦1, 𝑧))

(𝜁𝐵1𝑈

𝑃 × 𝜁𝐵2𝑈

𝑃 )((𝑥1, 𝑧)(𝑦1, 𝑧)) = 𝜁𝐴2𝑈

𝑃 (𝑧) ∧ 𝜁𝐵1𝑈

𝑃 (𝑥1𝑦1)

≥ ∧ {(𝜁𝐴1𝑈

𝑃 (𝑥1) ∧ 𝜁𝐴1𝑈

𝑃 (𝑦1)) , 𝜁𝐴2𝑈

𝑃 (𝑧)}

= ∧ {𝜁𝐴1𝑈

𝑃 (𝑥1) ∧ 𝜁𝐴2𝑈

𝑃 (𝑧), 𝜁𝐴1𝑈

𝑃 (𝑦1) ∧ 𝜁𝐴2𝑈

𝑃 (𝑧)}

= (𝜁𝐴1𝑈

𝑃 × 𝜁𝐴2𝑈

𝑃 )(𝑥1, 𝑧) ∧ (𝜁𝐴1𝑈

𝑃 × 𝜁𝐴2𝑈

𝑃 (𝑦1, 𝑧))

( 𝜁𝐵1𝐿

𝑁 × 𝜁𝐵2𝐿

𝑁 )((𝑥1, 𝑧)(𝑦1, 𝑧)) = 𝜁𝐴2𝐿

𝑁 (𝑧) ∨ 𝜁𝐵1𝐿

𝑁 (𝑥1𝑦1)

≤∨ {𝜁𝐴1𝐿

𝑁 (𝑥1) ∨ 𝜁𝐴1𝐿

𝑁 (𝑦1), 𝜁𝐴2𝐿

𝑁 (𝑧)}

=∨ {𝜁𝐴1𝐿

𝑁 (𝑥1) ∨ 𝜁𝐴2𝐿

𝑁 (𝑧), 𝜁𝐴1𝐿

𝑁 (𝑦1) ∨ 𝜁𝐴2𝐿

𝑁 (𝑧)}

= (𝜁𝐴1𝐿

𝑁 × 𝜁𝐴2𝐿

𝑁 )(𝑥1, 𝑧) ∨ (𝜁𝐴1𝐿

𝑁 × 𝜁𝐴2𝐿

𝑁 )(𝑦1, 𝑧).

( 𝜁𝐵1𝑈

𝑁 × 𝜁𝐵2𝑈

𝑁 )((𝑥1, 𝑧)(𝑦1, 𝑧)) = 𝜁𝐴2𝑈

𝑁 (𝑧) ∨ 𝜁𝐵1𝑈

𝑁 (𝑥1𝑦1)

≤∨ {𝜁𝐴1𝑈

𝑁 (𝑥1) ∨ 𝜁𝐴1𝑈

𝑁 (𝑦1), 𝜁𝐴2𝑈

𝑁 (𝑧)}

=∨ {𝜁𝐴1𝑈

𝑁 (𝑥1) ∨ 𝜁𝐴2𝑈

𝑁 (𝑧), 𝜁𝐴1𝑈

𝑁 (𝑦1) ∨ 𝜁𝐴2𝑈

𝑁 (𝑧)}

= (𝜁𝐴1𝑈

𝑁 × 𝜁𝐴2𝑈

𝑁 )(𝑥1, 𝑧) ∨ (𝜁𝐴1𝑈

𝑁 × 𝜁𝐴2𝑈

𝑁 )(𝑦1, 𝑧).

Definition 3.2.6

6766

P. SUNITHA, P. SUNDARI

Let 𝐴1 = (𝜂𝐴1𝐿

𝑃 , 𝜂𝐴1𝑈

𝑃 , 𝜁𝐴1𝐿

𝑃 , 𝜁𝐴1𝑈

𝑃 , 𝜂𝐴1𝐿

𝑁 , 𝜂𝐴1𝑈

𝑁 , 𝜁𝐴1𝐿

𝑁 , 𝜁𝐴1𝑈

𝑁 ) and

𝐴2 = (𝜂𝐴2𝐿

𝑃 , 𝜂𝐴2𝑈

𝑃 , 𝜁𝐴2𝐿

𝑃 , 𝜁𝐴2𝑈

𝑃 , 𝜂𝐴2𝐿

𝑁 , 𝜂𝐴2𝑈

𝑁 , 𝜁𝐴2𝐿

𝑁 , 𝜁𝐴2𝑈

𝑁 )

be BIVAIF subset of 𝑉1 and 𝑉2 and 𝐵1 = (𝜂𝐵1𝐿

𝑃 , 𝜂𝐵1𝑈

𝑃 , 𝜁𝐵1𝐿

𝑃 , 𝜁𝐵1𝑈

𝑃 , 𝜂𝐵1𝐿

𝑁 , 𝜂𝐵1𝑈

𝑁 , 𝜁𝐵1𝐿

𝑁 , 𝜁𝐵1𝑈

𝑁 ) and 𝐵2 =

(𝜂𝐵2𝐿

𝑃 , 𝜂𝐵2𝑈

𝑃 , 𝜁𝐵2𝐿

𝑃 , 𝜁𝐵2𝑈

𝑃 , 𝜂𝐵2𝐿

𝑁 , 𝜂𝐵2𝑈

𝑁 , 𝜁𝐵2𝐿

𝑁 , 𝜁𝐵2𝑈

𝑁 ) be BIVAIF subsets of 𝐸1 and 𝐸2 respectively.

The composition of two BIVAIF graphs 𝐺1 and 𝐺2 of the graphs 𝐺1∗ and 𝐺2

∗ denoted

by 𝐺1[𝐺2] = (𝐴1 ∘ 𝐴2, 𝐵1 ∘ 𝐵2) is defined by

(i) (𝜂𝐴1𝐿

𝑃 ∘ 𝜂𝐴2𝐿

𝑃 )(𝑥1, 𝑥2) = 𝜂𝐴1𝐿

𝑃 (𝑥1) ∨ 𝜂𝐴2𝐿

𝑃 (𝑥2)

(𝜂𝐴1𝑈

𝑃 ∘ 𝜂𝐴2𝑈

𝑃 )(𝑥1, 𝑥2) = 𝜂𝐴1𝑈

𝑃 (𝑥1) ∨ 𝜂𝐴2𝑈

𝑃 (𝑥2)

(𝜂𝐴1𝐿

𝑁 ∘ 𝜂𝐴2𝐿

𝑁 )(𝑥1, 𝑥2) = 𝜂𝐴1𝐿

𝑁 (𝑥1) ∧ 𝜂𝐴2𝐿

𝑁 (𝑥2)

(𝜂𝐴1𝑈

𝑁 ∘ 𝜂𝐴2𝑈

𝑁 )(𝑥1, 𝑥2) = 𝜂𝐴1𝑈

𝑁 (𝑥1) ∧ 𝜂𝐴2𝑈

𝑁 (𝑥2)

(𝜁𝐴1𝐿

𝑃 ∘ 𝜁𝐴2𝐿

𝑃 )(𝑥1, 𝑥2) = 𝜁𝐴1𝐿

𝑃 (𝑥1) ∧ 𝜁𝐴2𝐿

𝑃 (𝑥2)

(𝜁𝐴1𝑈

𝑃 ∘ 𝜁𝐴2𝑈

𝑃 )(𝑥1, 𝑥2) = 𝜁𝐴1𝑈

𝑃 (𝑥1) ∧ 𝜁𝐴2𝑈

𝑃 (𝑥2)

(𝜁𝐴1𝐿

𝑁 ∘ 𝜁𝐴2𝐿

𝑁 )(𝑥1, 𝑥2) = 𝜁𝐴1𝐿

𝑁 (𝑥1) ∨ 𝜁𝐴2𝐿

𝑁 (𝑥2)

(𝜁𝐴1𝑈

𝑁 ∘ 𝜁𝐴2𝑈

𝑁 )(𝑥1, 𝑥2) = 𝜁𝐴1𝑈

𝑁 (𝑥1) ∨ 𝜁𝐴2𝑈

𝑁 (𝑥2)

for all (𝑥1, 𝑥2) ∈ 𝑉 × 𝑉.

(ii) (𝜂𝐵1𝐿

𝑃 ∘ 𝜂𝐵2𝐿

𝑃 )((𝑥, 𝑥2)(𝑥, 𝑦2)) = 𝜂𝐴1𝐿

𝑃 (𝑥) ∨ 𝜂𝐵2𝐿

𝑃 (𝑥2𝑦2)

(𝜂𝐵1𝑈

𝑃 ∘ 𝜂𝐵2𝑈

𝑃 )((𝑥, 𝑥2)(𝑥, 𝑦2)) = 𝜂𝐴1𝑈

𝑃 (𝑥) ∨ 𝜂𝐵2𝑈

𝑃 (𝑥2𝑦2)

(𝜂𝐵1𝐿

𝑁 ∘ 𝜂𝐵2𝐿

𝑁 )((𝑥, 𝑥2)(𝑥, 𝑦2)) = 𝜂𝐴1𝐿

𝑁 (𝑥) ∧ 𝜂𝐵2𝐿

𝑁 (𝑥2𝑦2)

(𝜂𝐵1𝑈

𝑁 ∘ 𝜂𝐵2𝑈

𝑁 )((𝑥, 𝑥2)(𝑥, 𝑦2)) = 𝜂𝐴1𝑈

𝑁 (𝑥) ∧ 𝜂𝐵2𝑈

𝑁 (𝑥2𝑦2)

(𝜁𝐵1𝐿

𝑃 ∘ 𝜁𝐵2𝐿

𝑃 )((𝑥, 𝑥2)(𝑥, 𝑦2)) = 𝜁𝐴1𝐿

𝑃 (𝑥) ∧ 𝜁𝐵2𝐿

𝑃 (𝑥2𝑦2)

(𝜁𝐵1𝑈

𝑃 ∘ 𝜁𝐵2𝑈

𝑃 )((𝑥, 𝑥2)(𝑥, 𝑦2)) = 𝜁𝐴1𝑈

𝑃 (𝑥) ∧ 𝜁𝐵2𝑈

𝑃 (𝑥2𝑦2)

6767

OPERATIONS ON BIPOLAR INTERVALVALUED ANTI INTUITIONISTIC FUZZY GRAPH

( 𝜁𝐵1𝐿

𝑁 ∘ 𝜁𝐵2𝐿

𝑁 )((𝑥, 𝑥2)(𝑥, 𝑦2)) = 𝜁𝐴1𝐿

𝑁 (𝑥) ∨ 𝜁𝐵2𝐿

𝑁 (𝑥2𝑦2)

( 𝜁𝐵1𝑈

𝑁 ∘ 𝜁𝐵2𝑈

𝑁 )((𝑥, 𝑥2)(𝑥, 𝑦2)) = 𝜁𝐴1𝑈

𝑁 (𝑥) ∨ 𝜁𝐵2𝑈

𝑁 (𝑥2𝑦2)

for all 𝑥 ∈ 𝑉1, for all 𝑥2𝑦2 ∈ 𝐸2.

(iii) (𝜂𝐵1𝐿

𝑃 ∘ 𝜂𝐵2𝐿

𝑃 )((𝑥1, 𝑧)(𝑦1, 𝑧)) = 𝜂𝐵1𝐿

𝑃 (𝑥1𝑦1) ∨ 𝜂𝐴2𝐿

𝑃 (𝑧)

(𝜂𝐵1𝑈

𝑃 ∘ 𝜂𝐵2𝑈

𝑃 )((𝑥1, 𝑧)(𝑦1, 𝑧)) = 𝜂𝐵1𝑈

𝑃 (𝑥1𝑦1) ∨ 𝜂𝐴2𝑈

𝑃 (𝑧)

( 𝜂𝐵1𝐿 𝑁 ∘ 𝜂𝐵2𝐿

𝑁 )((𝑥1, 𝑧)(𝑦1, 𝑧)) = 𝜂𝐵1𝐿

𝑁 (𝑥1𝑦1) ∧ 𝜂𝐴2𝐿

𝑁 (𝑧)

( 𝜂𝐵1𝑈 𝑁 ∘ 𝜂𝐵2𝑈

𝑁 )((𝑥1, 𝑧)(𝑦1, 𝑧)) = 𝜂𝐵1𝑈

𝑁 (𝑥1𝑦1) ∧ 𝜂𝐴2𝑈

𝑁 (𝑧)

(𝜁𝐵1𝐿

𝑃 ∘ 𝜁𝐵2𝐿

𝑃 )((𝑥1, 𝑧)(𝑦1, 𝑧)) = 𝜁𝐴2𝐿

𝑃 (𝑧) ∧ 𝜁𝐵1𝐿

𝑃 (𝑥1𝑦1)

(𝜁𝐵1𝑈

𝑃 ∘ 𝜁𝐵2𝑈

𝑃 )((𝑥1, 𝑧)(𝑦1, 𝑧)) = 𝜁𝐴2𝑈

𝑃 (𝑧) ∧ 𝜁𝐵1𝑈

𝑃 (𝑥1𝑦1)

( 𝜁𝐵1𝐿

𝑁 ∘ 𝜁𝐵2𝐿

𝑁 )((𝑥1, 𝑧)(𝑦1, 𝑧)) = 𝜁𝐴2𝐿

𝑁 (𝑧) ∨ 𝜁𝐵1𝐿

𝑁 (𝑥1𝑦1)

( 𝜁𝐵1𝑈

𝑁 ∘ 𝜁𝐵2𝑈

𝑁 )((𝑥1, 𝑧)(𝑦1, 𝑧)) = 𝜁𝐴2𝑈

𝑁 (𝑧) ∨ 𝜁𝐵1𝑈

𝑁 (𝑥1𝑦1)

for all 𝑧 ∈ 𝑉2, for all 𝑥1𝑦1 ∈ 𝐸1.

(v) (𝜂𝐵1𝐿

𝑃 ∘ 𝜂𝐵2𝐿

𝑃 )((𝑥1, 𝑥2)(𝑦1𝑦2)) =∨ {𝜂𝐴2𝐿

𝑃 (𝑥2), 𝜂𝐴2𝐿

𝑃 (𝑦2), 𝜂𝐵1𝐿

𝑃 (𝑥1𝑦1)}

(𝜂𝐵1𝑈

𝑃 ∘ 𝜂𝐵2𝑈

𝑃 )((𝑥1, 𝑥2)(𝑦1𝑦2)) =∨ {𝜂𝐴2𝑈

𝑃 (𝑥2), 𝜂𝐴2𝑈

𝑃 (𝑦2), 𝜂𝐵1𝑈

𝑃 (𝑥1𝑦1)}

(𝜂𝐵1𝐿

𝑁 ∘ 𝜂𝐵2𝐿

𝑁 )((𝑥1, 𝑥2)(𝑦1, 𝑦2)) =∧ {𝜂𝐴2𝐿

𝑁 (𝑥2), 𝜂𝐴2𝐿

𝑁 (𝑦2), 𝜂𝐵1𝐿

𝑁 (𝑥1𝑦1)}

(𝜂𝐵1𝑈

𝑁 ∘ 𝜂𝐵2𝑈

𝑁 )((𝑥1, 𝑥2)(𝑦1, 𝑦2)) =∧ {𝜂𝐴2𝑈

𝑁 (𝑥2), 𝜂𝐴2𝑈

𝑁 (𝑦2), 𝜂𝐵1𝑈

𝑁 (𝑥1𝑦1)}

(𝜁𝐵1𝐿

𝑃 ∘ 𝜁𝐵2𝐿

𝑃 )((𝑥1, 𝑥2)(𝑦1𝑦2)) = ∧ {𝜁𝐴2𝐿

𝑃 (𝑥2), 𝜁𝐴2𝐿

𝑃 (𝑦2), 𝜁𝐵1𝐿

𝑃 (𝑥1𝑦1)}

(𝜁𝐵1𝑈

𝑃 ∘ 𝜁𝐵2𝑈

𝑃 )((𝑥1, 𝑥2)(𝑦1𝑦2)) = ∧ {𝜁𝐴2𝑈

𝑃 (𝑥2), 𝜁𝐴2𝑈

𝑃 (𝑦2), 𝜁𝐵1𝑈

𝑃 (𝑥1𝑦1)}

(𝜁𝐵1𝐿

𝑁 ∘ 𝜁𝐵2𝐿

𝑁 )((𝑥1, 𝑥2)(𝑦1, 𝑦2)) =∨ {𝜁𝐴2𝐿

𝑁 (𝑥2), 𝜁𝐴2𝐿

𝑁 (𝑦2), 𝜁𝐵1𝐿

𝑁 (𝑥1𝑦1)}

(𝜁𝐵1𝑈

𝑁 ∘ 𝜁𝐵2𝑈

𝑁 )((𝑥1, 𝑥2)(𝑦1, 𝑦2)) =∨ {𝜁𝐴2𝑈

𝑁 (𝑥2), 𝜁𝐴2𝑈

𝑁 (𝑦2), 𝜁𝐵1𝑈

𝑁 (𝑥1𝑦1)}

for all (𝑥1, 𝑥2)(𝑦1𝑦2) ∈ 𝐸0\𝐸.

6768

P. SUNITHA, P. SUNDARI

Example 3.2.7: Consider the graph shown in figure 3 where

𝑎 = (0.1,0.5, −0.5, −0.1,0.3,0.5, −0.5, −0.3); 𝑏 = (0.2,0.5, −0.6, −0.2,0.1,0.4, −0.4, −0.1)

𝑐 = (0.3,0.6, −0.6, −0.4,0.1,0.4, −0.4, −0.2); 𝑑 = (0.2,0.5, −0.6, −0.3,0.3,0.6, −0.4, −0.2)

we get the values of the vertices in 𝐺1 × 𝐺2 as

(𝑎, 𝑐) = (0.3,0.6, −0.6, −0.4,0.1,0.4, −0.4, −0.2)

(𝑎, 𝑑) = (0.2,0.5, −0.6, −0.3,0.3,0.5, −0.4, −0.2)

(𝑏, 𝑐) = (0.3,0.6, −0.6, −0.4,0.1,0.4, −0.4, −0.1)

(𝑏, 𝑑) = (0.2,0.5, −0.6, −0.2,0.1,0.4, −0.4, −0.1)

and edges in 𝐺1 × 𝐺2 as

(𝑎, 𝑐)(𝑎, 𝑑) = (0.4,0.6, −0.6, −0.5,0.2,0.5, −0.4, −0.3)

(𝑏, 𝑐)(𝑏, 𝑑) = (0.4,0.6, −0.6, −0.5,0. ,0.4, −0.4, −0.1)

(𝑎, 𝑐)(𝑏, 𝑐) = (0.3,0.6, −0.7, −0.4,0.1,0.4, −0.4, −0.2)

(𝑎, 𝑑)(𝑏, 𝑑) = (0.3,0.6, −0.7, −0.3,0.2,0.4, −0.4, −0.2)

(𝑎, 𝑐)(𝑏, 𝑑) = (0.3,0.6, −0.7, −0.4,0.1,0.4, −0.4, −0.4)

(𝑎, 𝑑)(𝑏, 𝑐) = (0.3,0.6, −0.7, −0.3,0.2,0.4, −0.4, −0.4)

Proposition 3.2.8

If 𝐺1 and 𝐺2are BIVAIF graphs, then 𝐺1[𝐺2] is a BIVAIF graph.

Proof:

Let 𝑥 ∈ 𝑉1 and 𝑥2𝑦2 ∈ 𝐸2. Then

(𝜂𝐵1𝐿

𝑝 ∘ 𝜂𝐵2𝐿

𝑝 )(𝑥, 𝑥2)(𝑥, 𝑦2) = 𝜂𝐴1𝐿

𝑃 (𝑥) ∨ 𝜂𝐵2𝐿

𝑃 (𝑥2𝑦2)

≥ ∨ {𝜂𝐴1𝐿

𝑃 (𝑥), 𝜂𝐴2𝐿

𝑃 (𝑥2) ∨ 𝜂𝐴2𝐿

𝑃 (𝑦2)}

= ∨ 𝜂𝐴1𝐿

𝑃 (𝑥) ∨ 𝜂𝐴2𝐿

𝑃 (𝑥2), 𝜂𝐴1𝐿

𝑃 (𝑥) ∨ 𝜂𝐴2𝐿

𝑃 (𝑦2)}

= (𝜂𝐴1𝐿

𝑃 ∘ 𝜂𝐴2𝐿

𝑃 )(𝑥, 𝑥2) ∨ (𝜂𝐴1𝐿

𝑃 ∘ 𝜂𝐴2𝐿

𝑃 (𝑥, 𝑦2))

Similarly (𝜂𝐵1𝑈

𝑝 ∘ 𝜂𝐵2𝑈

𝑝 )(𝑥, 𝑥2)(𝑥, 𝑦2) ≥ (𝜂𝐴1𝑈

𝑃 ∘ 𝜂𝐴2𝑈

𝑃 )(𝑥, 𝑥2) ∨ (𝜂𝐴1𝑈

𝑃 ∘ 𝜂𝐴2𝑈

𝑃 (𝑥, 𝑦2))

(𝜂𝐵1𝐿

𝑁 ∘ 𝜂𝐵2𝐿

𝑁 )((𝑥, 𝑥2)(𝑥, 𝑦2)) = 𝜂𝐴1𝐿

𝑁 (𝑥) ∧ 𝜂𝐵2𝐿

𝑁 (𝑥2𝑦2)

6769

OPERATIONS ON BIPOLAR INTERVALVALUED ANTI INTUITIONISTIC FUZZY GRAPH

≤ ∧ {𝜂𝐴1𝐿

𝑁 (𝑥), 𝜂𝐴2𝐿

𝑁 (𝑥2) ∧ 𝜂𝐴2𝐿

𝑁 (𝑦2)}

= ∧ {𝜂𝐴1𝐿

𝑁 (𝑥) ∧ 𝜂𝐴2𝐿

𝑁 (𝑥2), 𝜂𝐴1𝐿

𝑁 (𝑥) ∧ 𝜂𝐴2𝐿

𝑁 (𝑦2)}

= (𝜂𝐴1𝐿

𝑁 ∘ 𝜂𝐴2𝐿

𝑁 )(𝑥, 𝑥2) ∧ (𝜂𝐴1𝐿

𝑁 ∘ 𝜂𝐴2𝐿

𝑁 )(𝑥, 𝑦2).

(𝜁𝐵1𝐿

𝑃 ∘ 𝜁𝐵2𝐿

𝑃 )((𝑥, 𝑥2)(𝑥, 𝑦2)) = 𝜁𝐴1𝐿

𝑃 (𝑥) ∧ 𝜁𝐵2𝐿

𝑃 (𝑥2𝑦2)

≥∧ {𝜁𝐴1𝐿

𝑃 (𝑥), 𝜁𝐴2𝐿

𝑃 (𝑥2) ∧ 𝜁𝐴2𝐿

𝑃 (𝑦2)}

=∧ {𝜁𝐴1𝐿

𝑃 (𝑥) ∧ 𝜁𝐴2𝐿

𝑃 (𝑥2)) , 𝜁𝐴1𝐿

𝑃 (𝑥) ∧ 𝜁𝐴2𝐿

𝑃 (𝑦2)}

= (𝜁𝐴1𝐿

𝑃 ∘ 𝜁𝐴2𝐿

𝑃 )(𝑥, 𝑥2) ∧ (𝜁𝐴1𝐿

𝑃 ∘ 𝜁𝐴2𝐿

𝑃 )(𝑥, 𝑦2).

(𝜁𝐵1𝐿

𝑁 ∘ 𝜁𝐵2𝐿

𝑁 )((𝑥, 𝑥2)(𝑥, 𝑦2)) = 𝜁𝐴1𝐿

𝑁 (𝑥) ∨ 𝜁𝐵2𝐿

𝑁 (𝑥2𝑦2)

≤∨ {𝜁𝐴1𝐿

𝑁 (𝑥), (𝜁𝐴2𝐿

𝑁 (𝑥2) ∨ 𝜁𝐴2𝐿

𝑁 (𝑦2)}

=∨ {𝜁𝐴1𝐿

𝑁 (𝑥) ∨ 𝜁𝐴2𝐿

𝑁 (𝑥2), 𝜁𝐴1𝐿

𝑁 (𝑥) ∨ 𝜁𝐴2𝐿

𝑁 (𝑦2)}

= (𝜁𝐴1𝐿

𝑁 ∘ 𝜁𝐴2𝐿

𝑁 )(𝑥, 𝑥2) ∨ (𝜁𝐴2𝐿

𝑁 ∘ 𝜁𝐴1𝐿

𝑁 )(𝑥, 𝑦2).

Similarly the other results can be derived.

Let 𝑧 ∈ 𝑉2,𝑎𝑛𝑑 𝑥1𝑦1 ∈ 𝐸1. Thus

(𝜂𝐵1𝐿

𝑃 ∘ 𝜂𝐵2𝐿

𝑃 )((𝑥1, 𝑧)(𝑦1, 𝑧) = 𝜂𝐵1𝐿

𝑃 (𝑥1𝑦1) ∨ 𝜂𝐴2𝐿

𝑃 (𝑧)

≥ ∨ {(𝜂𝐴1𝐿

𝑃 (𝑥1) ∨ 𝜂𝐴1𝐿

𝑃 (𝑦1)) , 𝜂𝐴2𝐿

𝑃 (𝑧)}

= ∨ {𝜂𝐴1𝐿

𝑃 (𝑥1) ∨ 𝜂𝐴2𝐿

𝑃 (𝑧), 𝜂𝐴1𝐿

𝑃 (𝑦1) ∨ 𝜂𝐴2𝐿

𝑃 (𝑧)}

= (𝜂𝐴1𝐿

𝑃 ∘ 𝜂𝐴2𝐿

𝑃 )(𝑥1, 𝑧) ∨ (𝜂𝐴1𝐿

𝑃 ∘ 𝜂𝐴2𝐿

𝑃 (𝑦1, 𝑧))

(𝜂𝐵1𝐿

𝑁 ∘ 𝜂𝐵2𝑁 )((𝑥1, 𝑧)(𝑦1, 𝑧)) = 𝜂𝐵1𝐿

𝑁 (𝑥1𝑦1) ∧ 𝜂𝐴2𝐿

𝑁 (𝑧)

≤∧ {𝜂𝐴1𝐿

𝑁 (𝑥1) ∧ 𝜂𝐴1𝐿

𝑁 (𝑦1), 𝜂𝐴2𝐿

𝑁 (𝑧)}

=∧ {𝜂𝐴1𝐿

𝑁 (𝑥1) ∧ 𝜂𝐴2𝐿

𝑁 (𝑧), 𝜂𝐴1𝐿

𝑁 (𝑦1) ∧ 𝜂𝐴2𝐿

𝑁 (𝑧)}

= (𝜂𝐴1𝐿

𝑁 ∘ 𝜂𝐴2𝐿

𝑁 )(𝑥1, 𝑧) ∧ (𝜂𝐴1𝐿

𝑁 ∘ 𝜂𝐴2𝐿

𝑁 )(𝑦1, 𝑧).

6770

P. SUNITHA, P. SUNDARI

(𝜁𝐵1𝐿

𝑃 ∘ 𝜁𝐵2𝐿

𝑃 )((𝑥1, 𝑧)(𝑦1, 𝑧) = 𝜁𝐵1𝐿

𝑃 (𝑥1𝑦1) ∧ 𝜁𝐴2𝐿

𝑃 (𝑧)

≥ ∧ {(𝜁𝐴1𝐿

𝑃 (𝑥1) ∧ 𝜁𝐴1𝐿

𝑃 (𝑦1)) , 𝜁𝐴2𝐿

𝑃 (𝑧)}

= ∧ {𝜁𝐴1𝐿

𝑃 (𝑥1) ∧ 𝜁𝐴2𝐿

𝑃 (𝑧), 𝜁𝐴1𝐿

𝑃 (𝑦1) ∧ 𝜁𝐴2𝐿

𝑃 (𝑧)}

= (𝜁𝐴1𝐿

𝑃 ∘ 𝜁𝐴2𝐿

𝑃 )(𝑥1, 𝑧) ∧ (𝜁𝐴1𝐿

𝑃 ∘ 𝜁𝐴2𝐿

𝑃 (𝑦1, 𝑧))

(𝜁𝐵1𝐿

𝑁 ∘ 𝜁𝐵2𝐿

𝑁 )((𝑥1, 𝑧)(𝑦1, 𝑧)) = 𝜁𝐵1𝐿

𝑁 (𝑥1𝑦1) ∨ 𝜁𝐴2𝐿

𝑁 (𝑧)

≤∨ {𝜁𝐴1𝐿

𝑁 (𝑥1) ∨ 𝜁𝐴1𝐿

𝑁 (𝑦1), 𝜁𝐴2𝐿

𝑁 (𝑧)}

=∨ {𝜁𝐴1𝐿

𝑁 (𝑥1) ∨ 𝜁𝐴2𝐿

𝑁 (𝑧), 𝜁𝐴1𝐿

𝑁 (𝑦1) ∨ 𝜁𝐴2𝐿

𝑁 (𝑧)}

= (𝜁𝐴1𝐿

𝑁 ∘ 𝜁𝐴2𝐿

𝑁 )(𝑥1, 𝑧) ∨ (𝜁𝐴1𝐿

𝑁 ∘ 𝜁𝐴2𝐿

𝑁 )(𝑦1, 𝑧).

Let (𝑥1, 𝑥2)(𝑦1, 𝑦2) ∈ 𝐸(0)\𝐸. Then 𝑥1𝑦1 ∈ 𝐸1, 𝑥2 ≠ 𝑦2.Thus,

(𝜂𝐵1𝐿

𝑝 ∘ 𝜂𝐵2𝐿

𝑝 )((𝑥1, 𝑥2)(𝑦1, 𝑦2)) =∨ {𝜂𝐴2𝐿

𝑃 (𝑥2). 𝜂𝐴2𝐿

𝑃 (𝑦2), 𝜂𝐵2𝑃 (𝑥1𝑦1)}

≥ ∨ {𝜂𝐴2𝐿

𝑃 (𝑥2), 𝜂𝐴2𝐿

𝑃 (𝑦2), 𝜂𝐴1𝐿

𝑃 (𝑥1) ∨ 𝜂𝐴1𝐿

𝑃 (𝑦1)}

= ∨ {𝜂𝐴1𝐿

𝑃 (𝑥1) ∨ 𝜂𝐴2𝐿

𝑃 (𝑥2), 𝜂𝐴1𝐿

𝑃 (𝑦1) ∨ 𝜂𝐴2𝐿

𝑃 (𝑦2)}

= (𝜂𝐴1𝐿

𝑃 ∘ 𝜂𝐴2𝐿

𝑃 )(𝑥1, 𝑥2) ∨ (𝜂𝐴1𝐿

𝑃 ∘ 𝜂𝐴2𝐿

𝑃 )(𝑦1, 𝑦2)

(𝜂𝐵1𝐿

𝑁 ∘ 𝜂𝐵2𝐿

𝑁 )((𝑥1, 𝑥2)(𝑦1, 𝑦2)) =∧ {𝜂𝐴2𝐿

𝑁 (𝑥2). 𝜂𝐴2𝐿

𝑁 (𝑦2), 𝜂𝐵2𝐿

𝑁 (𝑥1𝑦1)}

≤ ∧ {𝜂𝐴2𝐿

𝑁 (𝑥2), 𝜂𝐴2𝐿

𝑁 (𝑦2), 𝜂𝐴1𝐿

𝑁 (𝑥1) ∧ 𝜂𝐴1𝐿

𝑁 (𝑦1)}

= ∧ {𝜂𝐴1𝐿

𝑁 (𝑥1) ∧ 𝜂𝐴2𝐿

𝑁 (𝑥2), 𝜂𝐴1𝐿

𝑁 (𝑦1) ∧ 𝜂𝐴2𝐿

𝑁 (𝑦2)}

= (𝜂𝐴1𝐿

𝑁 ∘ 𝜂𝐴2𝐿

𝑁 )(𝑥1, 𝑥2) ∧ (𝜂𝐴1𝐿

𝑁 ∘ 𝜂𝐴2𝐿

𝑁 )(𝑦1, 𝑦2)

(𝜁𝐵1𝐿

𝑝 ∘ 𝜁𝐵2𝐿

𝑝 )((𝑥1, 𝑥2)(𝑦1, 𝑦2)) =∧ {𝜁𝐴2𝐿

𝑃 (𝑥2). 𝜁𝐴2𝐿

𝑃 (𝑦2), 𝜁𝐵2𝐿

𝑃 (𝑥1𝑦1)}

≥ ∧ {𝜁𝐴2𝐿

𝑃 (𝑥2), 𝜁𝐴2𝐿

𝑃 (𝑦2), 𝜁𝐴1𝐿

𝑃 (𝑥1) ∧ 𝜁𝐴1𝐿

𝑃 (𝑦1)}

= ∧ {𝜁𝐴1𝐿

𝑃 (𝑥1) ∧ 𝜁𝐴2𝐿

𝑃 (𝑥2), 𝜁𝐴1𝐿

𝑃 (𝑦1) ∧ 𝜁𝐴2𝐿

𝑃 (𝑦2)}

= (𝜁𝐴1𝐿

𝑃 ∘ 𝜁𝐴2𝐿

𝑃 )(𝑥1, 𝑥2) ∧ (𝜁𝐴1𝐿

𝑃 ∘ 𝜁𝐴2𝐿

𝑃 )(𝑦1, 𝑦2)

6771

OPERATIONS ON BIPOLAR INTERVALVALUED ANTI INTUITIONISTIC FUZZY GRAPH

(𝜁𝐵1𝐿

𝑁 ∘ 𝜁𝐵2𝐿

𝑁 )((𝑥1, 𝑥2)(𝑦1, 𝑦2)) =∨ {𝜁𝐴2𝐿

𝑁 (𝑥2). 𝜁𝐴2𝐿

𝑁 (𝑦2), 𝜁𝐵2𝐿

𝑁 (𝑥1𝑦1)}

≤ ∨ {𝜁𝐴2𝐿

𝑁 (𝑥2), 𝜁𝐴2𝐿

𝑁 (𝑦2), 𝜁𝐴1𝐿

𝑁 (𝑥1) ∨ 𝜁𝐴1𝐿

𝑁 (𝑦1)}

= ∨ {𝜁𝐴1𝐿

𝑁 (𝑥1) ∨ 𝜁𝐴2𝐿

𝑁 (𝑥2), 𝜁𝐴1𝐿

𝑁 (𝑦1) ∨ 𝜁𝐴2𝐿

𝑁 (𝑦2)}

= (𝜁𝐴1𝐿

𝑁 ∘ 𝜁𝐴2𝐿

𝑁 )(𝑥1, 𝑥2) ∨ (𝜁𝐴1𝐿

𝑁 ∘ 𝜁𝐴2𝐿

𝑁 )(𝑦1, 𝑦2)

Similarly all other cases can be derived.

CONCLUSION

In this paper we introduce the notion of bipolar anti intuitionistic fuzzy graph and discuss the

various operations such as composition, Cartesian product and their union of two bipolar anti

intuitionistic fuzzy graph. Also we have introduced the notion of bipolar interval valued anti

intuitionistic fuzzy graph and the various operations such as composition, Cartesian product of two

bipolar interval valued anti intuitionistic fuzzy graph.

CONFLICT OF INTERESTS

The authors declare that there is no conflict of interests.

REFERENCES

[1] A.M.A. Alnaser, W.A. AlZoubi, M.O. Massadeh, Bipolar intuitionistic fuzzy graph and it’s matrices, Appl. Math.

Inform. Sci. 14 (2020), 205-214.

[2] K.T. Atanassov, Intuitionistic fuzzy sets, Physica-Verlag, Heidelberg, (2012).

[3] K. T. Atanassov, Intuitionistic fuzzy sets VII ITKR's session, Sofia, June 1983(Deposed in Central Sci-Techn.

Library of Bulg. Acad. of. Sci., 1967/84) (in Bulgarian).

[4] Atanassov, G. Pasi, R. Yager, V. Atanassova, Intuitionistic fuzzy graph interpretations of multi-person multi-

criteria decision making, Eusflat Conf., 177-182, (2003).

[5] A. Kauffmann, Introduction to the theory of fuzzy sets, Vol. 1, Academic Press, Inc., Orlando, Florida, (1973).

[6] M.M. Jabarulla, K.A. Banu, Anti intuitionistic fuzzy graph, Adv. Appl. Math. Sci. 20 (2021), 597-604.

6772

P. SUNITHA, P. SUNDARI

[7] R. Parvathi, M.G. Karunambigai, K.T. Atanassov, Operations on intuitionistic fuzzy graphs, in: 2009 IEEE

International Conference on Fuzzy Systems, IEEE, Jeju Island, 2009: pp. 1396–1401.

[8] S. Mandal, M. Pal, Product of bipolar intuitionistic fuzzy graphs and their degree. TWMS J. Appl. Eng. Math.

9(2) (2019), 327-338.

[9] S. Mathew, J.N. Mordeson, D.S. Malik, Fuzzy graph theory. Springer, Berlin (2018).

[10] A. Shannon, K.T. Atanassov, A first step to a theory of the intuitionistic fuzzy graphs. In: Proceeding of the First

Workshop on Fuzzy Based Expert Systems pp.59-61, 1994.

[11] L.A. Zadeh, Fuzzy sets, Inform and Control 8 (1965) 338–353.

[12] W.R. Zhang, Bipolar fuzzy sets, Proceedings of FUZZ-IEEE, 835–840, (1998).

[13] W.R. Zhang, Bipolar fuzzy sets and relations: a computational framework for cognitive modeling and multiagent

decision analysis, Proceedings of IEEE Conf., pp. 305–309, (1994).