Op-Amp Design Overview

Embed Size (px)

Citation preview

  • 8/10/2019 Op-Amp Design Overview

    1/44

    Op-Amp Design Overview

    Operational Amplifier

    Stability Compensation

    Miller Effect

    Phase Margin

    Unity Gain Frequency

    Slew Rate Limiting

    Reading:

    Solomon, The Monolithic IC Op Amp: ATutorial Study

  • 8/10/2019 Op-Amp Design Overview

    2/44

  • 8/10/2019 Op-Amp Design Overview

    3/44

    Analysis Strategy

    Recognize sub-blocks

    Represent as cascade of simple stages

  • 8/10/2019 Op-Amp Design Overview

    4/44

    Total op-amp model

    Input differential pair Common source stage

  • 8/10/2019 Op-Amp Design Overview

    5/44

    DC operating point

    MOSFET ID[A] Veff

    M1 25 0.235

    M2 25 0.235

    M3 25 0.247

    M4 25 0.247M5 50 0.350

    M6 50 0.332

    M7 50 0.332

    M8 50 0.332

  • 8/10/2019 Op-Amp Design Overview

    6/44

    Small signal parameters

    MOSFET ID[A] Veff gm[A/V] rds

    M1 25 0.235 208

    M2 25 0.235 800k!

    M3 25 0.247

    M4 25 0.247 1.43M!M5 50 0.350 285 715k!

    M6 50 0.332

    M7 50 0.332

    M8 50 0.332 400k!

    Note: Channel length modulation parameters

    n= 0.050 V-1; p= 0.028 V

    -1

  • 8/10/2019 Op-Amp Design Overview

    7/44

    Total op-amp model: Low frequency gain

    Input differential pair Common source stage

    av1 = g

    m1 r

    ds2 r

    ds4

    av1 = 208A V( ) 800k!1.43M!( )

    av1 =106

    av2 =g

    m2 r

    ds5 r

    ds8

    ( )av2 = 285A V( ) 400k! 715k!( )

    av2 = 73

  • 8/10/2019 Op-Amp Design Overview

    8/44

    Total op-amp model with capacitances

    Gate of M5 Load: scope probe "10pF

    Cg = (900m)(10m) 4.17E! 4

    F

    m2

    "

    #$

    %

    Cg = 3.74pF

  • 8/10/2019 Op-Amp Design Overview

    9/44

    Total op-amp model with capacitances

    First stage pole Second stage pole

    fp1 =1

    2! rds2 rds4( )Cg5

    fp1 =1

    2! 800k"1.43M"( ) 3.74pF( )

    fp1 = 82kHz

    fp1 =1

    2! rds5 rds8( )CL

    fp1 =1

    2! 400k" 715k"( ) 10pF( )

    fp1 = 61kHz

  • 8/10/2019 Op-Amp Design Overview

    10/44

    Open loop transfer function

    Product of individual stage transfer functions

    A(j!) =gm1 rds2 rds4 gm5 rds5 rds8( )

    1+j!2" rds2 rds4( )Cg5[ ] 1+j!2" rds5 rds8( )CL[ ]

  • 8/10/2019 Op-Amp Design Overview

    11/44

    Two-stage op-amp: Simulation Schematic

  • 8/10/2019 Op-Amp Design Overview

    12/44

    DC Operating Point Simulation

  • 8/10/2019 Op-Amp Design Overview

    13/44

    Bode plot (single-pole term)

    Magnitude, phase on log scales

    Pole: Root of denominator polynomial

  • 8/10/2019 Op-Amp Design Overview

    14/44

    Open loop Bode plot

    Product of terms : Sum on log-log plot

  • 8/10/2019 Op-Amp Design Overview

    15/44

  • 8/10/2019 Op-Amp Design Overview

    16/44

    Stability example: Closed loop follower

    Negative feedback:

    Output connected to inverting input

  • 8/10/2019 Op-Amp Design Overview

    17/44

    Unity gain: Why bother?

    With buffer:

    No current required

    from source

    vout =RL

    RL + RS

    !

    "# $

    %&vin vout = vin

    No buffer:

    Voltage divider

    Signal reduced due to

    voltage drop across RS

  • 8/10/2019 Op-Amp Design Overview

    18/44

    Problem: Instability

    Oscillation superimposed on desired output

    Output for zero input Why? Need...

  • 8/10/2019 Op-Amp Design Overview

    19/44

    Controls: ES3011 in 20 minutes

    General framework

    A: Forward Gain: Feedback Factor

    fraction of output

    fed back to input

  • 8/10/2019 Op-Amp Design Overview

    20/44

    Example: Op-amp, Noninverting Gain

    A: Forward Gain

    Op-amp open loop gainVout=A(V+-V-)

    Transfer function A(j#)

    : Feedback Factor

    ! =R1

    R1 + R2

  • 8/10/2019 Op-Amp Design Overview

    21/44

    Closed Loop Gain

    Output

    Solve for vout/vin

    vout = A vin !"vout( )v+! v!

    1 24 34

    vout = Avin ! A"vout

    1 + A"( )vout = Avinvout

    vin

    =A

    1 + A"

  • 8/10/2019 Op-Amp Design Overview

    22/44

    Op-amp with negative feedback

    If A >> 1

    Closed loop gain determined only by

    Advantage of negative feedback:

    Open loop gain A can be ugly (nonlinear,poorly controlled) as long as it's large!

    voutvin

    =

    A

    1+ A!" A

    A!#

    voutvin

    " 1

    !

  • 8/10/2019 Op-Amp Design Overview

    23/44

    Example: Op-amp, Noninverting Gain

    : Feedback Factor

    Closed loop gain

    ! =R1

    R1 + R2

    vout

    vin=

    R1+ R2

    R1=

    1

    !

  • 8/10/2019 Op-Amp Design Overview

    24/44

    Reexamine closed loop transfer function

    Output with no input:

    infinite gain

    Infinite when 1+A = 0

    Condition for oscillation:

    1+A = 0

    In general A, functions of#

    If there's a frequency #at which 1+A = 0:

    Oscillation at that frequency!

    vout

    vin

    =

    A

    1+ A!

  • 8/10/2019 Op-Amp Design Overview

    25/44

    Example: follower

    Use A(j#),

    solve for 1+A = 0

    No thanks!

    ! = 1 " vout

    vin

    =

    A

    1 + A

    A(j!) =gm1 rds2 rds4 gm5 rds5 rds8( )

    1 +j!2" rds2 rds4( )Cg5[ ] 1 +j!2" rds5 rds8( )CL[ ]

  • 8/10/2019 Op-Amp Design Overview

    26/44

    Reexamine condition for oscillation

    1+A = 0$A = -1

    Magnitude and phase condition:|A| = 1 AND %A = -180

    Easier to get from Bode plot

  • 8/10/2019 Op-Amp Design Overview

    27/44

    Look at original A for 2 stage op-amp

    Find #at which |A| = 1; Check %A -180 ?

    Trouble!

  • 8/10/2019 Op-Amp Design Overview

    28/44

    Simulation A for 2 stage op-amp

  • 8/10/2019 Op-Amp Design Overview

    29/44

    Compensation: Dominant Pole

    Move one pole to

    lower frequency How?

  • 8/10/2019 Op-Amp Design Overview

    30/44

    Compensation: Dominant Pole

    Need to increase

    capacitanceby "1000X:

    BAD! Die area cost

  • 8/10/2019 Op-Amp Design Overview

    31/44

    Miller Effect

    Impedance across inverting gain stage G

    Reduced by factor equal to (1+G)

  • 8/10/2019 Op-Amp Design Overview

    32/44

    Math for Miller effect

    Impedance across inverting gain stage G

    Reduced by factor equal to (1+G)

    ixvx (Gvx )

    Z

    ixvx 1 G

    Z

    vx

    ix

    ZinZ

    1 G

  • 8/10/2019 Op-Amp Design Overview

    33/44

    Example: Impedance is capacitive

    Capacitance multiplied by (1+G)

    Equivalent capacitance higher by factor 1+G

    Problem for high bandwidth amplifiers

    Opportunity for compensation ...

    Zin =Z

    1+G( )

    Z=1

    sC! Zin =

    1

    s 1 +G( )C

    Ceq1 24 34

  • 8/10/2019 Op-Amp Design Overview

    34/44

    Miller Compensation

    Need effect of large capacitance

    Use Miller effect to multiply small on-chipcapacitance to higher effective value

    Effect of large capacitance

    without die area cost of large capacitance

  • 8/10/2019 Op-Amp Design Overview

    35/44

    New schematic

    Add CCacross 2nd stage

  • 8/10/2019 Op-Amp Design Overview

    36/44

    New transfer function

  • 8/10/2019 Op-Amp Design Overview

    37/44

    New step response

    No oscillation!

  • 8/10/2019 Op-Amp Design Overview

    38/44

    "Phase margin"

    How stable is new

    transfer function?

    Phase margin =

    Phase lag at |A| = 1

    minus (-180)

  • 8/10/2019 Op-Amp Design Overview

    39/44

    Dominant pole op-amp model

    Simpler model with dominant pole from CC

  • 8/10/2019 Op-Amp Design Overview

    40/44

    Approximate dominant pole transfer function

    A(j! ) "gm1 rds2 rds4( )A2

    1+ j! rds2 rds4( )A2CC[ ]

    A2 = gm5 rds5 rds8( )

  • 8/10/2019 Op-Amp Design Overview

    41/44

    Unity gain frequency

    Depends only on

    Input stagetransconductance gm

    Compensation

    capacitor CC

    A(j! ) "gm1 rds2 rds4( )A2! rds2 rds4( )A2CC[ ]

    A(j! ) =1 at !T

    !T "gm1

    CC

  • 8/10/2019 Op-Amp Design Overview

    42/44

    Slew rate

    I= C dV/dt

    Only limited current IBIASavailable to charge,discharge CC

  • 8/10/2019 Op-Amp Design Overview

    43/44

    Slew rate

    I= C dV/dt & =

    CC

    IBIASdV

    dt

  • 8/10/2019 Op-Amp Design Overview

    44/44

    Summary Op-amp:

    Stability

    Compensation Miller effect

    Phase Margin

    Unity gain frequency

    Slew Rate Limiting