49
On the ABET Program Criteria for Civil and Similarly Named Programs Effective for 20162017 Accreditation Cycle October 16, 2015 Commentary World Headquarters 1801 Alexander Bell Drive Reston, VA 20191-4400 (703) 295-6000 phone (703) 295-6333 fax 1-800-548-2723 toll free Web: http//www.asce.org

On!the!ABET!! ProgramCriteriafor ......On!the!ABET!! ProgramCriteriafor! CivilandSimilarlyNamedPrograms! Effective!for2016@2017!Accreditation!Cycle!!!! October16,!2015! Commentary!

  • Upload
    others

  • View
    10

  • Download
    0

Embed Size (px)

Citation preview

Page 1: On!the!ABET!! ProgramCriteriafor ......On!the!ABET!! ProgramCriteriafor! CivilandSimilarlyNamedPrograms! Effective!for2016@2017!Accreditation!Cycle!!!! October16,!2015! Commentary!

 

   

On  the  ABET    Program  Criteria  for    

Civil  and  Similarly  Named  Programs  Effective  for  2016-­‐2017  Accreditation  Cycle    

   

October  16,  2015  

Commentary  

World Headquarters 1801 Alexander Bell Drive

Reston, VA 20191-4400 (703) 295-6000 phone

(703) 295-6333 fax 1-800-548-2723 toll free

Web: http//www.asce.org

 

Page 2: On!the!ABET!! ProgramCriteriafor ......On!the!ABET!! ProgramCriteriafor! CivilandSimilarlyNamedPrograms! Effective!for2016@2017!Accreditation!Cycle!!!! October16,!2015! Commentary!

Civil  Engineering  Program  Criteria  Commentary   i  

     

Table  of  Contents    

         

Part  A. Purpose  of  the  Commentary   1  

Part  B. The  Civil  Engineering  Body  of  Knowledge  (BOK)   2  

Part  C. ABET  Engineering  Accreditation  Criteria   3  

Part  D. Understanding  the  CE  Program  Criteria   6  

D-­‐1. Math  and  Science   7  

D-­‐2. Probability  and  Statistics   9  

D-­‐3. Breadth  in  Civil  Engineering   11  

D-­‐4. Civil  Engineering  Experiments   14  

D-­‐5. Civil  Engineering  Design   17  

D-­‐6. Sustainability  in  Design   20  

D-­‐7. Project  Management,  Business,  Public  Policy,  and  Leadership   22  

D-­‐8. Professional  Ethics   24  

D-­‐9. Professional  Licensure   26  

D-­‐10. Faculty  Requirements     27  

Appendix  I:   Bloom’s  Taxonomy   30  

Appendix  II:   BOK  Outcomes  Rubric  (Second  Edition)     37  

 

 

Page 3: On!the!ABET!! ProgramCriteriafor ......On!the!ABET!! ProgramCriteriafor! CivilandSimilarlyNamedPrograms! Effective!for2016@2017!Accreditation!Cycle!!!! October16,!2015! Commentary!

Civil  Engineering  Program  Criteria  Commentary   1  

A.  Purpose  of  the  Commentary    

         

This   document   was   prepared   by   the   Civil   Engineering   Program   Criteria   Task   Committee   as  charged  by   the  ASCE  Committee  on  Accreditation.     This   document   provides   guidance   to   civil  engineering   program   evaluators   and   to   civil   engineering   program   faculty   by   clarifying   and  amplifying  the  Civil  Engineering  Program  Criteria  to  be  utilized   in  association  with  the  Criteria  for   Accrediting   Engineering   Programs   of   the   Engineering   Accreditation   Commission   of   ABET  (EAC/ABET).    Nothing   in   this  Commentary   is   intended   to   add   to,   detract   from,  or  modify   the  EAC/ABET   General   Criteria   for   Baccalaureate   Level   Programs   and   the   General   Criteria   for  Masters  Level  Programs  (hereafter  referred  to  collectively  as  the  “EAC/ABET  General  Criteria”).    In  the  spirit  of  the  EAC/ABET  General  Criteria,  this  Commentary  does  not  attempt  to  prescribe  a  single   approach   to   satisfying   the   criteria;   rather,   it   emphasizes   the   educational   institution’s  freedom  to  innovate  within  the  framework  of  an  outcomes-­‐based  assessment  process.    

Program   evaluation   is   an   inherently   subjective   process.     This   Commentary   should   help  evaluators   make   subjective   judgments   in   a   manner   that   is   consistent   with   the   Criteria   for  Accrediting   Engineering   Programs   of   the   EAC/ABET.     Evaluators   are   encouraged   to   use   this  document   as   a   resource   to   aid   the  decision-­‐making  process,   not   as   a   set   of   rigid   rules   to   be  followed  without  some  flexibility.    Ultimately,  decisions  about  compliance  with  the  criteria  must  be  based  principally  on  the  evaluator’s  professional  judgment  with  input  from  and  concurrence  of  the  visit  team,  and  appropriate  program  documentation.  

This  Commentary  should  assist  civil  engineering  program  faculty  in  better  understanding  of  the  Civil  Engineering  Program  Criteria  and  what  must  be  included  in  the  curriculum  relative  to  the  Program  Criteria  to  achieve  EAC/ABET  accreditation.    Additionally,  qualifications  required  of  the  faculty  are  included.  

There  is  no  ABET  policy  requiring  the  measurement  and  assessment  of  learning  achievement  by  the  graduate  of  any  of  the  Civil  Engineering  Program  Criteria.    However,  program  faculty  must  demonstrate  each  item  in  the  Civil  Engineering  Program  Criteria  is  taught  within  the  curriculum  to   the   intended   levels   of   achievement,   which   can   be   shown   or   described   in   course   syllabi,  assignments,  and  student  work.  

Throughout  this  commentary  references  are  made  to  Bloom’s  Taxonomy.      Bloom’s  Taxonomy  is  not  a  part  of  the  Civil  Engineering  Program  Criteria.      However,  the  authors  of  the  criteria  and  this   commentary  utilized  Bloom’s  Taxonomy   in   selecting   the  verbs  used   to  describe   intended  levels   of   achievement.   Consequently,   references   to   the   taxonomy   are   made   to   provide  guidance   in   interpreting   the   language   used.     A   brief   discussion   of   the   taxonomy   included   in  Appendix  I  of  this  commentary.  

The   information   presented   in   this   Commentary   reflects   the   best   collective   judgment   of   its  authors   and   reviewers.     It   is   subject   to   continual   review   and   revision,   to   reflect   input   from  constituencies  and  lessons  learned  from  accreditation  practice.    

Page 4: On!the!ABET!! ProgramCriteriafor ......On!the!ABET!! ProgramCriteriafor! CivilandSimilarlyNamedPrograms! Effective!for2016@2017!Accreditation!Cycle!!!! October16,!2015! Commentary!

Civil  Engineering  Program  Criteria  Commentary   2  

B.  The  Civil  Engineering                Body  of  Knowledge  (BOK)  

 

               For  almost  two  decades,  ASCE  has  been  involved  in  an  ambitious  effort  to  better  prepare  civil  engineering   professionals   to   meet   the   technological,   environmental,   economic,   social,   and  political   challenges   of   the   future.     This   “Raise   the   Bar”   initiative   attained   an   important  milestone   in   October   1998,   when   the   ASCE   Board   of   Direction   formally   adopted   Policy  Statement  465.    The  most  recent  version  of  this  policy  states  in  part:  

The  ASCE  supports  the  attainment  of  an  engineering  body  of  knowledge  for  entry  into  the  practice  of  civil  engineering  at  the  professional  level,  .  .  .    

In   conjunction   with   the   implementation   of   Policy   Statement   465,   ASCE   initiated   a  comprehensive  project  to  define  the  profession’s  body  of  knowledge  (BOK).    In  2004  this  effort  came   to   fruition  with   ASCE’s   publication   of   the   first   edition   of   the  Civil   Engineering   Body   of  Knowledge   for   the   21st   Century   —a   report   describing   the   knowledge,   skills,   and   attitudes  necessary  for  entry  into  the  practice  of  civil  engineering  at  the  professional  level.    The  second  edition   of   this   report,   published   in   2008   and   referred   to   as   “BOK2”   (download   from  www.asce.org/civil_engineering_body_of_knowledge/),  proved  enormously  valuable  in  guiding  the  subsequent  implementation  of  Policy  Statement  465.    The  conceptual  framework  includes  three  key  characteristics:  (1)  the  civil  engineering  BOK  is  defined  in  terms  of  24  outcomes,  (2)  the   outcomes   have   clearly   defined   levels   of   achievement,   and   (3)   expected   levels   of  achievement   are   separately   specified   for   baccalaureate-­‐level   education,   master’s-­‐level  education,   and   pre-­‐licensure   experience.     This   conceptual   framework   is   depicted   by   the  “outcome   rubric”   extracted   from   Appendix   I   of   BOK2   and   included   in   Appendix   II   of   this  document.    Having   published   its   BOK,  ASCE  determined   changes   to   the   accreditation   criteria  constitute  the  most  viable  instrument  for  affecting  the  broad-­‐based  curriculum  reform  required  for  BOK  implementation.      

In  conjunction  with  the  development  of  the  BOK  and  related  Civil  Engineering  Program  Criteria,  ASCE  identified  the  need  to  clearly  establish  the  expected  level  of  achievement  associated  with  each   BOK   outcome.     This   distinction   is   particularly   important   to   ASCE   because   the   civil  engineering  BOK  differentiates   the   knowledge,   skills,   and  attitudes   gained   through  education  from  those  gained  through  experience.    Given  that  both  education  and  experience  contribute  to  the  attainment  of  most  outcomes,   it   is  critical   to  define  the  different   level  of  achievement  expected  from  each  source.    ASCE  addressed  this   issue  by  adopting  Bloom’s  Taxonomy  as  the  basis  for  defining  levels  of  achievement.    Bloom’s  Taxonomy  is  a  well-­‐established  framework  for  defining   educational   objectives   in   terms   of   the   desired   level   of   cognitive   development.     It   is  further  described  and  explained  in  Appendix  I  of  this  document,  extracted  from  Appendix  F  of  BOK2.    

Page 5: On!the!ABET!! ProgramCriteriafor ......On!the!ABET!! ProgramCriteriafor! CivilandSimilarlyNamedPrograms! Effective!for2016@2017!Accreditation!Cycle!!!! October16,!2015! Commentary!

Civil  Engineering  Program  Criteria  Commentary   3  

C.  ABET  Engineering        Accreditation  Criteria  

 

               

The  ABET  criteria  for  accrediting  engineering  programs  are  published  each  year  for  evaluations  during  the  upcoming  accreditation  cycle.    The  criteria  are  divided  into  three  sections:    General  Criteria   for   Baccalaureate   Level   Programs,   General   Criteria   for   Masters   Level   Programs,   and  Program   Criteria.     The   ABET   “Program   Criteria   for   Civil   and   Similarly   Named   Engineering  Programs”   is   provided   below.     In   addition   to   the   Civil   Engineering   Program   Criteria,   the  EAC/ABET   General   Criterion   3   Student   Outcomes   and   General   Criterion   5   Curriculum   are  provided   in  this  section  for  reference  and  because  of  the  relationship  between  these  parts  of  the  EAC/ABET  General  Criteria  and  the  Civil  Engineering  Program  Criteria.    

 

Program  Criteria  for  Civil  and  Similarly  Named  Engineering  Programs  

These   program   criteria   apply   to   engineering   programs   that   include   "civil"   or   similar  modifiers  in  their  titles.  

1.  Curriculum    

The   curriculum  must   prepare   graduates   to   apply   knowledge   of  mathematics   through  differential   equations,   calculus-­‐based   physics,   chemistry,   and   at   least   one   additional  area  of  basic  science;  apply  probability  and  statistics  to  address  uncertainty;  analyze  and  solve  problems  in  at  least  four  technical  areas  appropriate  to  civil  engineering;  conduct  experiments   in   at   least   two   technical   areas   of   civil   engineering,   and   analyze   and  interpret  the  resulting  data;  design  a  system,  component,  or  process  in  at  least  two  civil  engineering   contexts;   include   principles   of   sustainability   in   design;   explain   basic  concepts  in  project  management,  business,  public  policy,  and  leadership;  analyze  issues  in  professional  ethics;  and  explain  the  importance  of  professional  licensure.    

2.  Faculty    

The  program  must  demonstrate  that  faculty  teaching  courses  that  are  primarily  design  in  content  are  qualified  to  teach  the  subject  matter  by  virtue  of  professional  licensure,  or   by   education   and  design   experience.   The  program  must   demonstrate   that   it   is   not  critically  dependent  on  one  individual.  

 

 

 

Page 6: On!the!ABET!! ProgramCriteriafor ......On!the!ABET!! ProgramCriteriafor! CivilandSimilarlyNamedPrograms! Effective!for2016@2017!Accreditation!Cycle!!!! October16,!2015! Commentary!

Civil  Engineering  Program  Criteria  Commentary   4  

Extracts  for  the  EAC/ABET  General  Criteria  for  Baccalaureate  Level  Programs  

The  EAC/ABET  General  Criteria  for  Baccalaureate  Level  Programs  include  the  following:                  

1. Students    2. Program  Educational  Objectives  3. Student  Outcomes  4. Continuous  Improvement  5. Curriculum  6. Faculty  7. Facilities  8. Institutional  Support  

The  Civil  Engineering  Program  Criteria  have  both  explicit  and  implicit  relationships  with  many  aspects  of  Criterion  3  Student  Outcomes  and  Criterion  5  Curriculum.    These  two  criteria  are  provided  here  for  ease  of  reference.  

Criterion  3.    Student  Outcomes  

The   program   must   have   documented   student   outcomes   that   prepare   graduates   to  attain  the  program  educational  objectives.    

Student  outcomes  are  outcomes  (a)  through  (k)  plus  any  additional  outcomes  that  may  be  articulated  by  the  program.    

(a)    an  ability  to  apply  knowledge  of  mathematics,  science,  and  engineering    

(b)    an   ability   to   design   and   conduct   experiments,   as  well   as   to   analyze   and   interpret  data    

(c)    an  ability  to  design  a  system,  component,  or  process  to  meet  desired  needs  within  realistic  constraints  such  as  economic,  environmental,  social,  political,  ethical,  health  and  safety,  manufacturability,  and  sustainability    

(d)    an  ability  to  function  on  multidisciplinary  teams  

(e)    an  ability  to  identify,  formulate,  and  solve  engineering  problems    

(f)     an  understanding  of  professional  and  ethical  responsibility    

(g)    an  ability  to  communicate  effectively    

(h)    the  broad  education  necessary  to  understand  the  impact  of  engineering  solutions  in  a  global,  economic,  environmental,  and  societal  context    

(i)     a  recognition  of  the  need  for,  and  an  ability  to  engage  in  life-­‐long  learning    

(j)     a  knowledge  of  contemporary  issues    

(k)    an  ability  to  use  the  techniques,  skills,  and  modern  engineering  tools  necessary  for  engineering  practice.    

Page 7: On!the!ABET!! ProgramCriteriafor ......On!the!ABET!! ProgramCriteriafor! CivilandSimilarlyNamedPrograms! Effective!for2016@2017!Accreditation!Cycle!!!! October16,!2015! Commentary!

Civil  Engineering  Program  Criteria  Commentary   5  

Criterion  5.    Curriculum    

The   curriculum   requirements   specify   subject   areas   appropriate   to   engineering   but   do  not   prescribe   specific   courses.   The   faculty   must   ensure   that   the   program   curriculum  devotes  adequate  attention  and  time  to  each  component,  consistent  with  the  outcomes  and   objectives   of   the   program   and   institution.   The   professional   component   must  include:    

(a)    one   year   of   a   combination   of   college   level  mathematics   and   basic   sciences   (some  with   experimental   experience)   appropriate   to   the   discipline.   Basic   sciences   are  defined  as  biological,  chemical,  and  physical  sciences    

(b)    one  and  one-­‐half  years  of  engineering  topics,  consisting  of  engineering  sciences  and  engineering   design   appropriate   to   the   student's   field   of   study.   The   engineering  sciences   have   their   roots   in  mathematics   and   basic   sciences   but   carry   knowledge  further   toward   creative   application.   These   studies   provide   a   bridge   between  mathematics   and  basic   sciences  on   the  one  hand  and  engineering  practice  on   the  other.  Engineering  design  is  the  process  of  devising  a  system,  component,  or  process  to  meet  desired  needs.  It  is  a  decision-­‐making  process  (often  iterative),  in  which  the  basic   sciences,   mathematics,   and   the   engineering   sciences   are   applied   to   convert  resources  optimally  to  meet  these  stated  needs    

(c)    a   general   education   component   that   complements   the   technical   content   of   the  curriculum  and  is  consistent  with  the  program  and  institution  objectives.    

Students  must  be  prepared  for  engineering  practice  through  a  curriculum  culminating  in  a  major  design  experience  based  on  the  knowledge  and  skills  acquired  in  earlier  course  work   and   incorporating   appropriate   engineering   standards   and   multiple   realistic  constraints.    

One  year   is   the   lesser  of  32   semester  hours   (or  equivalent)  or  one-­‐fourth  of   the   total  credits  required  for  graduation.      

Page 8: On!the!ABET!! ProgramCriteriafor ......On!the!ABET!! ProgramCriteriafor! CivilandSimilarlyNamedPrograms! Effective!for2016@2017!Accreditation!Cycle!!!! October16,!2015! Commentary!

Civil  Engineering  Program  Criteria  Commentary   6  

D.  Understanding  the  CE  Program  Criteria  

 

               

Program   evaluation   is   an   inherently   subjective   process.     A   common   statement   in   the  accreditation   criteria   is   "the   program   must   demonstrate…”,   which   indicates   the   burden   for  demonstrating  compliance  with  the  criteria  belongs  to  the  program,  not  the  program  evaluator.    There  are   innumerable  methods  available   to  demonstrate   facets  of   the  General  and  Program  Criteria.     The   program   evaluator   judges   whether   the   submitted   material   adequately  demonstrates  what  is  claimed.  

With   this   consideration,   the   following   sections   should   assist   both   civil   engineering   program  faculty  and  program  evaluators  to  better  understand  the  Civil  Engineering  Program  Criteria.    In  addition,   for   each   provision   or   part   of   the   Program   Criteria,   a   brief   background   on   each  criterion   is   provided.   That   is,   the   following   sections   provide   both   faculty   and   program  evaluators  with  an  understanding  of  both  “what”  is   intended  by  each  criterion  and  “why”  the  provision  is  included  in  the  Program  Criteria.  

It   is   important   to  note   the  Program  Criteria   include  only   curricular   and   faculty   requirements.    There   is  no   requirement   for  programs  to  assess  student  achievement  of   the  Civil  Engineering  Program  Criteria.    The  program,  however,  must  clearly  demonstrate  each  curricular  item  in  the  Civil   Engineering   Program   Criteria   is   included   within   the   curriculum,   and   that   the   faculty  experience   and   composition   meet   the   faculty   requirement   of   the   Civil   Engineering   Program  Criteria.    

While   Bloom’s   Taxonomy   is   not   an   explicit   part   of   the   accreditation   criteria,   the   Civil  Engineering   Program   Criteria   utilizes   Bloom’s   verbs   to   describe   the   intended   levels   of  achievement.    Accordingly,  references  to  Bloom’s  Taxonomy  are  made  to  provide  guidance   in  interpreting  the  criteria.    A  brief  discussion  of  the  Bloom’s  Taxonomy  is  included  in  Appendix  I.  

 

     

Page 9: On!the!ABET!! ProgramCriteriafor ......On!the!ABET!! ProgramCriteriafor! CivilandSimilarlyNamedPrograms! Effective!for2016@2017!Accreditation!Cycle!!!! October16,!2015! Commentary!

Civil  Engineering  Program  Criteria  Commentary   7  

D-­‐1.  Math  and  Science    

         

The   curriculum   must   prepare   graduates   to   apply   knowledge   of  mathematics  through  differential  equations,  calculus-­‐based  physics,  chemistry,  and  at  least  one  additional  area  of  basic  science    

Changes  from  the  Previous  Edition  of  the  Civil  Engineering  Program  Criteria  The  curriculum  program  must  prepare  graduates   to  apply  knowledge  of  mathematics   through  differential   equations,   calculus-­‐based   physics,   chemistry,   and   at   least   one   additional   area   of  basic  science,  consistent  with  the  program  educational  objectives  

   Understanding  the  Criterion  

To   comply   with   this   provision   of   the   Civil   Engineering   Program   Criteria,   the   program  must   demonstrate   its   curriculum   content   is   sufficient   to   prepare   graduates   to   apply  concepts   and   principles   from   mathematics   and   science   to   solve   relatively  straightforward   problems.     This   must   include   mathematics   through   differential  equations,  calculus-­‐based  physics,  chemistry,  and  one  additional  area  of  basic  science.    The   program   should   present   sufficient   information   and   document   that   these   subject  areas  are  adequately  covered  within  the  curriculum  and  that  all  students  must  take  the  necessary   courses   in   order   to   graduate.     Additionally,   while   the   EAC/ABET   General  Criterion  5(a)   requires  one  year  of  a  combination  of  mathematics  and  science,   it  does  not  have   separate   requirements   for   a  minimum  number  of   credit   hours  or   courses   in  any  of  these  subject  areas.      

For   the   additional   area  of   basic   science,   programs  may   include   areas   such   as   biology,  ecology,   geology   or   meteorology,   all   areas   of   significant   interest   and   increasing  importance   for   civil   engineers.     This   list   is   not   all-­‐inclusive,   and   it   is   not   necessary   all  students   within   a   particular   program’s   curriculum   take   the   same   additional   area   of  science.     However,   for   topics   other   than   those   listed   above,   it   is   the   program’s  responsibility   to  demonstrate   the  selected  area(s)  of  science  provides  breadth  beyond  physics  and  chemistry.     In  general,   an  advanced  course   in  physics  or   chemistry   (i.e.,   a  physics  or  chemistry  course  that  is  part  of  a  physics  or  chemistry  sequence  for  which  a  basic-­‐level   physics   or   chemistry   course   serves   as   a   prerequisite)   would   not   fulfill   this  requirement   because   such   a   course   would   provide   additional   depth   rather   than  additional  breadth.    Still,  programs  should  have  a  degree  of  flexibility  in  choosing  basic  science   courses   that   meet   this   breath   requirement.     Courses   such   as   geo-­‐physics,  seismology,  organic  or  bio-­‐chemistry  that  are  not  part  of  a  standard  physics  or  chemistry  sequence  might  be  appropriate,  especially  if  they  can  be  tied  to  student  outcomes  and  program’s   curricular   emphasis.     Likewise,   a   course   primarily   engineering   science   in  

Page 10: On!the!ABET!! ProgramCriteriafor ......On!the!ABET!! ProgramCriteriafor! CivilandSimilarlyNamedPrograms! Effective!for2016@2017!Accreditation!Cycle!!!! October16,!2015! Commentary!

Civil  Engineering  Program  Criteria  Commentary   8  

content  would   not   fulfill   this   requirement.     It   has   been   long   established   that   courses  such   as   thermodynamics,   computer   science   or   materials   science   do   not   meet   this  requirement.  

 

Background/Rationale    

The   EAC/ABET   General   Criterion   3(a)   requires   “an   ability   to   apply   knowledge   of  mathematics,  science,  and  engineering.”    Additionally,   the  EAC/ABET  General  Criterion  5(a)  requires  “one  year  of  a  combination  of  college  level  mathematics  and  basic  sciences  (some  with   experimental   experience)   appropriate   to   the   discipline.   Basic   sciences   are  defined  as  biological,  chemical,  and  physical  sciences.”    ABET  defines  one  year  as  “the  lesser  of  32  semester  hours   (or  equivalent)  or  one-­‐fourth  of   the   total  credits   required  for  graduation.”    Refer  to  Appendix  I  or  www.abet.org  for  addition  information  on  the  EAC/ABET  General  Criteria.  

The  Second  Edition  of  the  Civil  Engineering  Body  of  Knowledge  includes  two  outcomes  related   to   this   provision   of   the   Civil   Engineering   Program   Criteria:     Outcome   1   –  Mathematics   and   Outcome   2   –   Natural   Sciences   (see   Appendix   II).     Mathematics  through   differential   equations,   calculus-­‐based   physics,   and   chemistry   are   considered  part  of   the   technical   core  of   civil   engineering   and,   thus,   are  explicitly   required  by   the  Civil  Engineering  Program  Criteria.      

The   requirement   for   “one   additional   area   of   basic   science”   comes   from   the   Second  Edition  of  the  Civil  Engineering  Body  of  Knowledge  and  reflects  an  increasing  emphasis  on  biological  systems,  ecology,  sustainability,  and  nanotechnology  within  the  practice  of  civil   engineering.     The   intent   is   for   civil   engineering   graduates   to   develop   greater  breadth   in   the   basic   sciences   beyond   the   technical   core   subjects   of   physics   and  chemistry.    While  the  BOK2  defines  the  additional  area  of  science  as  a  “natural  science,”  ABET   defines   “basic   science”   as   biological,   chemical,   and   physical   sciences.     This  definition  of  a  basic  science   is  consistent  with  the  goals  of  the  BOK2  and  is,  therefore,  adopted  for  use  in  the  Civil  Engineering  Program  Criterion.      

The   phrase   “consistent   with   the   program   objectives”   was   removed   from   the   criteria  because  the  words  do  not  add  anything  meaningful  to  the  criteria.    Program  objectives  are   very   broad,   describing   graduates’   abilities   three   to   five   years   after   graduation.     It  would  be  difficult  to  envision  an  example  of  a  basic  science  that  would  be  inconsistent  with  program  objectives.    

According  to  Bloom’s  Taxonomy  (see  Appendix  I),  the  verb  “apply,”  which  is  used  in  the  EAC/ABET  General  Criterion  3(a)  and   in  this  provision  of   the  Civil  Engineering  Program  Criteria,  denotes  the  expected   level  of  achievement   is  Bloom’s  Level  3,  or  “application  level.”     Both   the  Civil   Engineering  BOK2  Outcome  1   –  Mathematics   and  Outcome  2   –  Natural  Sciences  are  also  at  Bloom’s  Level  3  of  achievement.    Therefore,  this  provision  of  the  Civil  Engineering  Program  Criteria  agrees  with  the  targeted  level  of  achievement  for  math   and   science   as   conveyed   in   the   Second   Edition   of   the   Civil   Engineering   Body   of  Knowledge.        

Page 11: On!the!ABET!! ProgramCriteriafor ......On!the!ABET!! ProgramCriteriafor! CivilandSimilarlyNamedPrograms! Effective!for2016@2017!Accreditation!Cycle!!!! October16,!2015! Commentary!

Civil  Engineering  Program  Criteria  Commentary   9  

D-­‐2.  Probability  and  Statistics    

           

The   curriculum   must   prepare   graduates   to   apply   probability   and  statistics  to  address  uncertainty    

Changes  from  the  Previous  Edition  of  the  Civil  Engineering  Program  Criteria  The  curriculum  program  must  prepare  graduates   to  apply  probability  and  statistics   to  address  uncertainty  

   Understanding  the  Criterion  

Probability  and  statistics  are  related  but  separate  areas  of  study.    Probability  is  used  to  quantify  the  likelihood,  or  uncertainty,  an  event  will  occur,  whereas  statistics  models  or  characterizes   the  dispersion  of   data  or   relationships   between  data   sets.   The   intent   of  this  provision  of  the  Civil  Engineering  Program  Criteria  is  not  to  require  a  specific  course  or   set   of   courses   a   curriculum  must   include,   nor   is   it   to   define   specific   topics   within  probability  or  statistics  that  must  be  included.    Rather,  the  provision  is  meant  to  prepare  graduates   to   deal   with   real-­‐world   uncertainties   in   design   and   planning.     That   is,   the  intent   is  to  provide  students  with  a  foundation  on  which  they,  as  future  professionals,  can  manage  risk  and  uncertainty.      

To   comply   with   this   provision   of   the   Civil   Engineering   Program   Criteria,   the   program  must   demonstrate   its   curriculum   content   is   sufficient   to   prepare   graduates   to   apply  concepts   and  principles   from  probability   and   statistics   to   address   uncertainty   in   data,  measurements,   or   calculations.   This   may   include   a   specific   course   in   probability   and  statistics,   but   such   a   course   is   not   required   to   meet   this   provision   of   the   program  criteria.     The   relevant   concepts   from  probability   and   statistics  may  be   integrated   into  one  or  more  engineering  courses.    The  key  element  is  for  the  curriculum  to  include  the  opportunity  for  students  to  apply  these  concepts  to  address  uncertainties.      

One   possible   way   to   integrate   probability   and   statistics   concepts   into   an   engineering  course  and  address  uncertainties   is   to   include  them   in   laboratory  courses   that   require  students  to  analyze  and  interpret  the  resulting  data  (see  Section  D-­‐4  on  Civil  Engineering  Experiments).    That  is,  this  provision  of  the  program  criteria  may  be  met  if  the  analysis  and  interpretation  of  the  data  explicitly  addresses  uncertainty  by,  for  example,  defining  potential   sources   of   experimental   errors   and   estimating   the   cumulative   effect   of   the  errors  in  characterizing  the  resulting  data.      

 

 

Page 12: On!the!ABET!! ProgramCriteriafor ......On!the!ABET!! ProgramCriteriafor! CivilandSimilarlyNamedPrograms! Effective!for2016@2017!Accreditation!Cycle!!!! October16,!2015! Commentary!

Civil  Engineering  Program  Criteria  Commentary   10  

Background/Rationale    

This   is   a   new   provision   to   the   Civil   Engineering   Program   Criteria,   and   there   is   not   a  specific   corresponding   provision   in   the   EAC/ABET   General   Criteria.   Probability   and  statistics,  however,  may  be  considered  part  of  the  mathematics  requirement  included  in  the  EAC/ABET  General  Criterion  5(a).    Refer  to  Section  B  or  www.abet.org  for  addition  information  on  the  EAC/ABET  General  Criteria.  

While  the  probability  and  statistics  provision  is  referred  to  new  to  the  Civil  Engineering  Program  Criteria,   it  was  actually  part  of   the  program  criteria  until  2006-­‐2007.    At   that  time,   the   provision   required   “graduates   have:   proficiency   in   …   probability   and  statistics…”  The  provision  was  removed  primarily  for  two  reasons.    First,  probability  and  statistics  was  not  included  explicitly   in  the  first  edition  of  the  Civil  Engineering  Body  of  Knowledge.    Second,  while  still  recognizing  the  importance  of  subject  matter,  there  was  a   belief   that   even   without   the   provision   most   programs   would   continue   to   include  probability  and  statistics.      

As  the  Second  Edition  of  the  Civil  Engineering  Body  of  Knowledge  was  being  prepared,  there   was   broad   support   for   including   an   outcome   related   to   risk   and   uncertainty.    Based   on   that   input,   the   BOK   now   contains   Outcome   12   –   Risk   and  Uncertainty   (see  Appendix   II),   which   includes   the   following   outcome   statement   at   the   baccalaureate  level:   “apply   principles   of   probability   and   statistics   to   solve   problems   containing  uncertainties.”    While   the   BOK   Outcome   12   is   titled   Risk   and   Uncertainty,   risk   is   not  explicitly   included   in   outcome   statements   at   the   undergraduate   level.     Adding   risk   in  addition  to  uncertainty  would  be  exceeding  the  requirements  stated  in  the  BOK2.  

Since  probability  and  statistics   concepts  are   integral   to  most  civil  engineering  subjects  and  since  they  are  included  in  the  BOK2,  the  subject  matter  was  reintroduced  into  the  Civil   Engineering   Program   Criteria.   Moreover,   graduates   are   required   to   be   able   to  analyze   and   interpret   data   from   experiments,   which   implies   some   background   in  probability   and   statistics.   It   is   entirely   feasible   for   appropriate   coverage  of   probability  and  statistics  to  occur   in  the  associated  engineering  courses,  rather  than  in  a  separate  course  in  probability  and  statistics.    

According   to   Bloom’s   Taxonomy   (see   Appendix   I),   the   verb   “apply”   denotes   the  expected   level   of   achievement   is   Bloom’s   Level   3,   or   “application   level.”     Both   this  provision  of   the  Civil  Engineering  Program  Criteria  and   the   related  BOK2  outcome  use  the  same  verb  “apply,”  therefore  this  program  criterion  is  consistent  with  the  BOK2.    

         

Page 13: On!the!ABET!! ProgramCriteriafor ......On!the!ABET!! ProgramCriteriafor! CivilandSimilarlyNamedPrograms! Effective!for2016@2017!Accreditation!Cycle!!!! October16,!2015! Commentary!

Civil  Engineering  Program  Criteria  Commentary   11  

D-­‐3.  Breadth  in  Civil  Engineering  

 

             

The   curriculum   must   prepare   graduates   to   analyze   and   solve  problems   in   at   least   four   technical   areas   appropriate   to   civil  engineering    

Changes  from  the  Previous  Edition  of  the  Civil  Engineering  Program  Criteria  The   curriculum   program   must   prepare   graduates   to   apply   knowledge   of   analyze   and   solve  problems  in  at  least  four  technical  areas  appropriate  to  civil  engineering  

   Understanding  the  Criterion  

The  field  of  civil  engineering  involves  many  traditional  technical  areas  of  specialization.  Seven  generally  recognized  civil  engineering  technical  areas  include:  

• Construction  engineering  • Environmental/sanitary  engineering  • Geotechnical  engineering  • Hydraulics/hydrology/water  resources  engineering  • Structural  engineering  • Surveying/measurements  • Transportation  engineering  

The   field   of   civil   engineering   continues   to   evolve,   and   new   specialty   areas   will  continually  emerge.     It   is   important   the  enforcement  of   this  provision  of   the  program  criteria   not   stifle   curricular   innovation   and   a   program’s   ability   to   respond   to   future  opportunities  or  needs.    If  a  curriculum’s  four  technical  areas  include  one  or  more  areas  not   listed  above,  the  program  (not  the  evaluator)   is  responsible  for  demonstrating  the  technical   area   or   areas   are   “appropriate   to   civil   engineering.”     The   program   must  provide   information  on  which  a  well-­‐reasoned   judgment  can  be  made  by  the  program  evaluator.    This  judgment  must  balance  the  desirability  of  curricular  innovation  against  the  need  for  relevant  technical  breadth  in  all  civil  engineering  graduates.    The  judgment  may  not  be  based  on  the  evaluator’s  personal  view  of  what  civil  engineering  should  or  should  not  be.  

Some   possible   justifications   for   a   non-­‐standard   technical   area   to   be   included   as  appropriate  to  civil  engineering  might  include  the  following:  

Page 14: On!the!ABET!! ProgramCriteriafor ......On!the!ABET!! ProgramCriteriafor! CivilandSimilarlyNamedPrograms! Effective!for2016@2017!Accreditation!Cycle!!!! October16,!2015! Commentary!

Civil  Engineering  Program  Criteria  Commentary   12  

• ASCE  has  an  institute  or  technical  division  in  the  technical  area.  • ASCE  publishes  a  journal  in  the  technical  area.  • ASCE  sponsors  specialty  conferences  in  the  technical  area.  • There  are  civil  engineering  consulting  firms  that  specialize  in  the  technical  area.  

Again,   this   list   is   not   all-­‐inclusive   since   many   other   legitimate,   well-­‐reasoned  justifications  are  possible.    

Note  there  is  no  requirement  for  a  minimum  number  of  credit  hours  or  courses  in  each  of   the   four   technical   areas,   and   there   is   no   requirement   that   all   graduates  of   a   given  program  take  courses  in  the  same  four  areas.    

 

Background/Rationale    

This  is  a  long-­‐standing  provision  of  the  Civil  Engineering  Program  Criteria.    The  intent  of  this   provision   is   to   ensure   every   civil   engineering   graduate   has   sufficient   relevant  technical  breadth.    This  provision  of   the  Program  Criteria  may  be  used   to   support   the  EAC/ABET  General   Criterion   3   Student  Outcomes   (a)   an   ability   to   apply   knowledge   of  mathematics,   science,   and   engineering,   and   3(e)   an   ability   to   identify,   formulate,   and  solve  engineering  problems.  

The   areas   of   civil   engineering   a   program   chooses   to   include   in   its   curriculum   are  intentionally  not  specified  in  this  provision.    The  field  of  civil  engineering  is  evolving,  and  new  specialty  areas  continually  emerge.    It  is  critically  important  the  enforcement  of  this  criterion  not  stifle  curricular  innovation.    There  are,  of  course,  many  traditional  areas  of  civil   engineering   programs   can   include,   such   as   construction,   environmental,  geotechnical,  structural,  surveying,  transportation,  and  water  resources.    

Again,  this  provision  of  the  program  criteria  is  not  intended  to  specifically  mandate  any  particular   areas   of   civil   engineering   because   many   traditional   and   legitimate   non-­‐traditional  or  emerging  areas  are  possible.  For  any  non-­‐traditional  or  emerging  area,  the  program  must  provide  a  well-­‐reasoned  justification  for  including  the  area  as  one  of  the  four  technical  areas  in  fulfilling  this  provision.    

In   addition   to   intentionally   not   specifying   the   areas   of   civil   engineering   required   in   a  curriculum,  the  provisions  do  not  require  a  minimum  number  of  credit  hours  or  number  of   courses   in   each   of   the   four   technical   areas.     Also,   there   is   no   requirement   that   all  graduates  of  a  given  program  take  courses  in  the  same  four  areas.    A  curriculum  may  be  designed   to   allow   students   to   select   a   number   of   areas   from   a   list   as   defined   by   the  program.  

The   primary   change   from   previous   editions   of   the   breadth   provision   of   the   Civil  Engineering  Program  Criteria  is  replacing  “apply  knowledge  of”  with  “analyze  and  solve  problems”   to  make   this   provision   of   the   program   criteria   consistent  with   the   Second  Edition  of  the  Civil  Engineering  Body  of  Knowledge.    Following  Bloom’s  Taxonomy  (see  Appendix   I),   the   verb   “apply”   used   in   previous   editions   of   this   provision   expected  

Page 15: On!the!ABET!! ProgramCriteriafor ......On!the!ABET!! ProgramCriteriafor! CivilandSimilarlyNamedPrograms! Effective!for2016@2017!Accreditation!Cycle!!!! October16,!2015! Commentary!

Civil  Engineering  Program  Criteria  Commentary   13  

Bloom’s   Level   3,   Application.     The   current   provision   uses   “analyze   and   solve.”    While  “solve”   is   a   Bloom’s   Level   3   verb,   “analyze”   is   a   Bloom’s   Level   4,   Analysis   verb.  Therefore,   the   level   of   achievement   to   be   included   in   a   curriculum   is   raised.     The  requirement   to   “apply”   knowledge   is   the   ability   to   use   learned   material   in   new   and  tangible  situations.    This  may   include  the  application  of  such  things  as  rules,  methods,  concepts,  principles,   laws,  and  theories.    “Analysis”  refers  to  the  ability  to  break  down  material   into  its  component  parts  to  understand  its  organizational  structure.    This  may  include   identifications   of   parts,   analysis   of   the   relationship   between   parts,   and  recognition  of  the  organizational  principles  involved.    Analysis  is  a  higher  cognitive  level  than   application   because   it   requires   an   understanding   of   both   the   content   and   the  organizational   form   of   the   material.     Considering   this,   most   curricula   in   meeting   the  previous   edition   of   this   provision   likely  meet   the   new,   higher   level   provision   and   the  BOK2  breadth  outcome.      

     

Page 16: On!the!ABET!! ProgramCriteriafor ......On!the!ABET!! ProgramCriteriafor! CivilandSimilarlyNamedPrograms! Effective!for2016@2017!Accreditation!Cycle!!!! October16,!2015! Commentary!

Civil  Engineering  Program  Criteria  Commentary   14  

D-­‐4.  Civil  Engineering  Experiments  

 

             

The  curriculum  must  prepare  graduates  to  conduct  experiments  in  at  least   two   technical   areas   of   civil   engineering,   and   analyze   and  interpret  the  resulting  data    

Changes  from  the  Previous  Edition  of  the  Civil  Engineering  Program  Criteria  The  curriculum  program  must  prepare  graduates  to  conduct  civil  engineering  experiments  in  at  least  two  technical  areas  of  civil  engineering,  and  analyze  and  interpret  the  resulting  data  

   Understanding  the  Criterion  

The   EAC/ABET   General   Criterion   3(b)   requires   “an   ability   to   design   and   conduct  experiments,  as  well  as  to  analyze  and  interpret  data.”    The  emphasis  of  this  provision  of  the  Civil  Engineering  Program  Criteria  is  on  conducting   laboratory  experiments  or  tests  in  at   least   two  technical  areas  of  civil  engineering  and  then  analyzing  and   interpreting  the   resulting   data.     Compliance   can   be   demonstrated   by   showing   graduates   have  sufficient  exposure  to  laboratory  experiences  within  the  curriculum  and  that  all  students  must  obtain  that  level  of  exposure  in  order  to  graduate.      

The   criterion   requires   the   program   include   experimental   experience   in   at   least   two  technical  areas  of   civil  engineering.      As  noted  with   the  provision   requiring  breadth   in  civil  engineering,  there  are  at  least  seven  generally  recognized  civil  engineering  technical  areas.    In  addition,  the  field  of  civil  engineering  is  evolving,  and  new  specialty  areas  will  emerge.     The   program  may   consider   providing   experimental   experiences   in   generally  recognized  civil  engineering  technical  areas  as  well  as  new  or  emerging  technical  areas  of   civil   engineering   practice.     Regardless   of   the   specific   technical   areas,   the   program  must  provide  experimental  experiences  in  at  least  two  different  areas.  

To  comply  with  this  provision,  the  experimental  experiences  should  include,  but  are  not  limited  to  the  following:  

• Understanding  of  the  objectives  and  procedures  associated  with  an  experiment  • The   conduct   of   an   experiment,   including   setup,   measurement   and   data  

collection  • Observation   and   documentation   of   error   and   uncertainties   in   data   collection  

procedures  • Critical  analysis  of  data  

Page 17: On!the!ABET!! ProgramCriteriafor ......On!the!ABET!! ProgramCriteriafor! CivilandSimilarlyNamedPrograms! Effective!for2016@2017!Accreditation!Cycle!!!! October16,!2015! Commentary!

Civil  Engineering  Program  Criteria  Commentary   15  

• Interpretation   of   the   experimental   results,   with   appropriate   conclusions   and  recommendations  

• Application  of  experimental  procedures  and  analysis  of  results  consistent  with  a  real-­‐world  civil  engineering  problems  or  situations    

A   growing   trend   in   engineering   curriculum   development   involves   the   use   of   “virtual  laboratories.”     These   computer   simulations   attempt   to   replicate   the   hands-­‐on  experiences   of   conventional   physical   labs.     In   general,   such   curricular   innovations   are  encouraged,   and   the   program   evaluator   must   keep   an   open   mind   when   considering  their   effectiveness.     An   evaluation   of   a   virtual   laboratory   experience   should   consider  such  factors  as:  

• The  extent  to  which  the  subject  matter  lends  itself  to  accurate  simulation.  • The  extent  to  which  the  simulation  replicates  the  actual  physical  experiences  of  

setup,  measurement,  errors,  and  data  collection.            • The  nature  of  student  interaction  with  the  simulation.  • The  students’  abilities  acquired  through  the  simulation.  • Students’  satisfaction  with  their  abilities  gained  through  the  simulation.  

 

Background/Rationale    

The   EAC/ABET   General   Criterion   3(b)   requires   “an   ability   to   design   and   conduct  experiments,  as  well  as   to  analyze  and   interpret  data.”    The  Civil  Engineering  Program  Criteria  differs  from  EAC/ABET  General  Criterion  3(b)   in  that  there  is  no  mention  of  an  ability   to   “design   experiments,”   but   there   is   an   additional   requirement   of   student  exposure  to  experiments  “in  at  least  two  technical  areas  of  civil  engineering.”      

The   design   of   experiments   is   not   emphasized   in   the   Program   Criteria   because   civil  engineers   generally   do   not   develop   experimental   procedures;   rather,   they   select   and  conduct  experiments  according  to  published  standards,  such  as  the  American  Society  for  Testing   and   Materials   (ASTM)   specifications   and   the   Standard   Methods   for   the  Examination  of  Water  and  Wastewater.    Nonetheless,   it   is   important   to   recognize   the  absence   of   any   reference   to   experimental   design   in   the   Civil   Engineering   Program  Criteria   does   not   relieve   a   program   of   responsibility   for   compliance  with   the   “design  experiments”  provision  of  EAC/ABET  General  Criterion  3(b).    

Prior   editions   of   the   program   criteria   required   programs   to   “prepare   graduates   to  conduct  civil  engineering  experiments.”    The  requirement  of  including  an  experimental  experience  in  “at  least  two  technical  areas  of  civil  engineering”  is  new  and  stems  from  a  perceived  reduction  in  the  practical  hands-­‐on  skills  of  students  entering  civil  engineering  curricula   and   an   apparent   trend   towards   a   reduction   in   laboratory   courses   from  engineering  curricula.    Additionally,  this  new  breadth  of  experiments  supports  and  aligns  with  the  BOK2  experiments  outcome.  

Consistent  with  Bloom’s  Taxonomy  (see  Appendix  I),  the  verb  “conduct”  in  this  provision  of  the  Program  Criteria  implies  the  level  of  achievement  for  such  tasks  as  experimental  

Page 18: On!the!ABET!! ProgramCriteriafor ......On!the!ABET!! ProgramCriteriafor! CivilandSimilarlyNamedPrograms! Effective!for2016@2017!Accreditation!Cycle!!!! October16,!2015! Commentary!

Civil  Engineering  Program  Criteria  Commentary   16  

setup,  measurement,   and  data   collection   is   Level   3,   Application.     The   verbs   “analyze”  and  “interpret”  imply  the  level  of  achievement  for  processing  experimental  data  is  Level  4,  Analysis.      

With   respect   to   the   General   Criteria,   the   verb   “design”   implies   the   expected   level   of  achievement   is   Level   5,   Synthesis.     Thus   the   design   of   experiments   must   reflect   the  putting  together  of  parts  to  form  a  new  whole.    However,  because  the  requirement  for  experiment   design   occurs   only   in   the   General   Criteria,   there   is   no   requirement   for  students  to  design  experiments  in  a  civil  engineering  context.    Thus  the  program  would  be   in   full   compliance   if   students’   ability   to   design   experiments   were   acquired,   for  example,  in  a  physics,  chemistry,  or  engineering  mechanics  course.  

         

Page 19: On!the!ABET!! ProgramCriteriafor ......On!the!ABET!! ProgramCriteriafor! CivilandSimilarlyNamedPrograms! Effective!for2016@2017!Accreditation!Cycle!!!! October16,!2015! Commentary!

Civil  Engineering  Program  Criteria  Commentary   17  

D-­‐5.  Civil  Engineering  Design    

         

The   curriculum   must   prepare   graduates   to   design   a   system,  component,  or  process  in  at  least  two  civil  engineering  contexts    

Changes  from  the  Previous  Edition  of  the  Civil  Engineering  Program  Criteria  The  curriculum  program  must  prepare  graduates  to  design  a  system,  component,  or  process  in  at  least  two  more  than  one  civil  engineering  contexts  

   Understanding  the  Criterion  

The  EAC/ABET  General  Criterion  3(c)  requires  “an  ability  to  design  a  system,  component,  or   process   to   meet   desired   needs   within   realistic   constraints   such   as   economic,  environmental,   social,   political,   ethical,   health   and   safety,   manufacturability,   and  sustainability.”    The  Civil  Engineering  Program  Criteria  further  requires  a  breadth  of  the  design  experience  in  at  least  two  civil  engineering  contexts.    Therefore,  to  comply  with  this  provision  of  the  Civil  Engineering  Program  Criteria  the  program  must  demonstrate  its  curriculum  content  is  sufficient  to  prepare  graduates  to  perform  engineering  design  in  at  least  two  areas  of  civil  engineering.      

ABET   provides   the   following   definition   of   engineering   design   in   EAC/ABET   General  Criterion   5   for   Curriculum:   “Engineering   design   is   the   process   of   devising   a   system,  component,  or  process  to  meet  desired  needs.   It   is  a  decision-­‐making  process  (often  iterative),  in  which  the  basic  sciences,  mathematics,  and  the  engineering  sciences  are  applied  to  convert  resources  optimally  to  meet  these  stated  needs.”  

This  definition  should   form  the  basis   for  evaluation  of   the  design-­‐related  provisions  of  the  Civil  Engineering  Program  Criteria.  Elements  to  look  for  in  evaluating  students  design  experience  include,  but  are  not  limited  to:  

• The   engineering   design   process   typically   includes   both   analysis   and   synthesis.    Analysis   involves   the   application   of   engineering   tools   and   principles   to   predict  the   performance   of   a   system,   component,   or   process;   synthesis   involves   the  creation   of   a   new   system,   component   or   process   to   meet   desired   needs.    Analysis  without  synthesis  is  not  engineering  design.  

• Normally,   analysis   and   synthesis   are   performed   in   an   iterative   cycle.     Thus,  students   should   experience   some   iterative   design   in   the   curriculum.     It   is   not,  however,   necessary   for   all   design   experiences   to   be   iterative.     Such   a  requirement   would   place   an   unrealistically   heavy   burden   on   both   faculty   and  students.  

Page 20: On!the!ABET!! ProgramCriteriafor ......On!the!ABET!! ProgramCriteriafor! CivilandSimilarlyNamedPrograms! Effective!for2016@2017!Accreditation!Cycle!!!! October16,!2015! Commentary!

Civil  Engineering  Program  Criteria  Commentary   18  

• Engineering   design   problems   are   generally   ill-­‐defined.     As   part   of   their   design  experience,  students  should  have  an  opportunity  to  define  a  problem,  to  include  determining  the  problem  scope  and  design  objectives.  

• Engineering   design   problems   are   generally   open-­‐ended.     They   have   no   single  correct  answer,  rather  a  range  of  possible  solutions.    Nonetheless,  the  evaluator  must  recognize,  in  an  academic  setting,  there  are  significant  practical  constraints  on  a  program’s  ability  to   implement  open-­‐ended  design  experiences  across  the  curriculum.     The   program   must   strike   an   appropriate   balance   between   the  desirability   of   open-­‐ended   design   problems,   the   limitations   of   students’  knowledge  and  experience,  and  the  need  to  provide  students  with  high-­‐quality  feedback  on  their  design  computations.     It   is  both  typical  and  appropriate  for  a  design   problem   to   have   a   relatively   narrow   range   of   “correct”   solutions.    Similarly,   the   term   optimal   (or   optimally)   should   be   interpreted   with   caution.    While   some   engineering   design   problems   may   have   optimal   solutions,   others  (such  as  ill-­‐defined  systems  problems)  may  not  have  an  optimal  solution  per  se.    Some  engineers  might  even  argue  no  problems  other  than  the  most  trivial  have  true  optimal  solutions.  

• Engineering   design   does   not   necessarily   involve   devising   a   complete   system.      The  design  of  a  component  (e.g.,  a  beam  or  column)  or  subsystem  (e.g.,  a  roof  truss)   may   constitute   an   acceptable   design   experience.     Students’   design  experience   is  enhanced,  however,   if   they  can  also  gain  an  appreciation   for   the  design  of  large-­‐scale  systems.  

• Engineering   standards   and   realistic   constraints   are   critical   in   civil   engineering  design.      The  program  must  clearly  demonstrate  where  standards  and  constraints  are   taught   and   how   they   are   integrated   into   the   design   component   of   the  curriculum.       In   civil   engineering,   the   most   common   types   of   standards   are  consensus   standards,   codes   and   regulations.     Constraints   explicitly   cited   in  EAC/ABET  General   Criterion   3(c)   are   economic,   environmental,   social,   political,  ethical,  health  and  safety,  manufacturability,  and  sustainability  considerations.  In  a   civil   engineering   context,   manufacturability   is   generally   interpreted   as  constructability.  

• Engineering   design   is   increasingly   interdisciplinary,   and   requires   students   to  function   on   multidisciplinary   teams.     For   civil   engineering   design,   a   team  consisting   of   (1)   representatives   from   the   established   sub-­‐disciplines   of   civil  engineering,  (2)  a  more  broadly  comprised  team  with  representatives  from  civil  engineering,  other  engineering  disciplines,  architecture,  law,  finance,  etc.,  or  (3)  some  combination  of  the  two  would  be  considered  multidisciplinary  teams.    

The   program  must   also   demonstrate   students   have   adequate   exposure   to   design,   as  defined,   in  at   least   two  civil  engineering  contexts.    The   intent  of   this   is   for   these  “civil  engineering  contexts”  to  be  significantly  different  from  one  another.      

Page 21: On!the!ABET!! ProgramCriteriafor ......On!the!ABET!! ProgramCriteriafor! CivilandSimilarlyNamedPrograms! Effective!for2016@2017!Accreditation!Cycle!!!! October16,!2015! Commentary!

Civil  Engineering  Program  Criteria  Commentary   19  

One  unambiguous  way  to  satisfy  the  criterion  for  at  least  two  civil  engineering  contexts  is   for   the   program   to   require   its   students   to   experience   design   in   more   than   one  technical   area   of   civil   engineering   as   defined   for   the   Breadth   in   Civil   Engineering  criterion   (see  Section  D-­‐3).       For  example,   a  program   that   requires   students   to  design  both  a  reinforced  concrete  building  frame  (a  structural  engineering  context)  and  a  deep  foundation  (a  geotechnical  engineering  context)  is  probably  in  compliance.    Conversely,  a  program  that  requires  students  to  design  a  reinforced  concrete  structure  and  a  steel  structure  may  not  be  in  compliance,  because  the  design  process  for  steel  and  concrete  structures  is  so  similar.  

Background/Rationale    

This   provision   of   the   Civil   Engineering   Program   Criteria   is   basically   unchanged   from  previous  editions  of  the  criteria.    It  is  intended  to  assure  a  breadth  of  design  experiences  is  included  in  the  curriculum.    Consistent  with  Bloom’s  Taxonomy  (see  Appendix  I),  the  verb   “design”   implies   the  expected   level   of   achievement   is   Level   5,   Synthesis.     This   is  also  consistent  with  the  ABET  definition  for  engineering  design.      

Requiring  design  experiences  in  at  least  two  civil  engineering  contexts  also  builds  on  the  Breadth  in  Civil  Engineering  provision  (see  Section  D-­‐3)  of  the  Civil  Engineering  Program  Criteria.    The  Breadth  in  Civil  Engineering  provision  requires  the  curriculum  to  “prepare  graduates  to  analyze  and  solve  problems  in  at  least  four  technical  areas  appropriate  to  civil  engineering,”  which  implies  the  expected  level  of  achievement  for  the  four  or  more  areas  is  Bloom’s  Level  4,  Analysis.    Therefore,  it  can  be  inferred  for  at  least  two  technical  areas   of   civil   engineering   that   the   expected   level   of   achievement   is   raised   to   Level   5,  Synthesis.      

                   

Page 22: On!the!ABET!! ProgramCriteriafor ......On!the!ABET!! ProgramCriteriafor! CivilandSimilarlyNamedPrograms! Effective!for2016@2017!Accreditation!Cycle!!!! October16,!2015! Commentary!

Civil  Engineering  Program  Criteria  Commentary   20  

D-­‐6.  Sustainability  in  Design    

         

The   curriculum   must   prepare   graduates   to   include   principles   of  sustainability  in  design    

Changes  from  the  Previous  Edition  of  the  Civil  Engineering  Program  Criteria  The  curriculum  program  must  prepare  graduates  to  include  principles  of  sustainability  in  design  

   Understanding  the  Criterion  

This   is   a   new   provision   to   the   Civil   Engineering   Program   Criteria.     Sustainability   is  included,   but   not   mandated,   as   one   of   several   possible   constraints   in   the   EAC/ABET  General   Criterion   3(c),   which   requires   “an   ability   to   design   a   system,   component,   or  process   to   meet   desired   needs   within   realistic   constraints   such   as   economic,  environmental,   social,   political,   ethical,   health   and   safety,   manufacturability,   and  sustainability.”     The   Civil   Engineering   Program   Criteria   reflects   the   importance   of  including  sustainability  and  identifies   it  as  necessary  to  the  design  process.    Therefore,  to  comply  with  this  provision  of  the  Civil  Engineering  Program  Criteria  the  program  must  demonstrate   its   curriculum   content   prepares   graduates   to   include   principles   of  sustainability  in  design.      

There  are  many  definitions  of  sustainability,  and  there   is  not  a  consensus  definition  of  what  constitutes  sustainability.    This  is  specifically  recognized  in  the  provision’s  wording  of   “…   include   principles   of   sustainability”   versus   “…   include   the   principles   of  sustainability.”    This  recognizes  there   is  not  a  specific  set  of  principles  of  sustainability  that  must  be  included.    Rather,  the  program  is  allowed  the  latitude  to  include  principles  of  sustainability  in  a  context  most  appropriate  for  its  curriculum.      

ASCE  defines  sustainability  as   follows:     “A   set   of   environmental,   economic   and   social  conditions   in  which   all   of   society   has   the   capacity   and  opportunity   to  maintain   and  improve   its   quality   of   life   indefinitely   without   degrading   the   quantity,   quality   or  availability   of   natural,   economic,   and   social   resources.”     This   definition   is  comprehensive  and   recognizes   the  “triple  bottom   line”  of  environmental   stewardship,  economic  growth,  and  social  progress.      

The  criterion  does  not  require  a  program  to   include  sustainability   in  all  student  design  experiences   or   that   it   be   included   in   more   than   one   context.     The   criterion   simply  requires   coverage   of   sustainability   in   the   curriculum   be   sufficient   so   graduates   can  include  key  concepts  of  sustainability  in  an  engineering  design,  in  at  least  one  context.  

 

Page 23: On!the!ABET!! ProgramCriteriafor ......On!the!ABET!! ProgramCriteriafor! CivilandSimilarlyNamedPrograms! Effective!for2016@2017!Accreditation!Cycle!!!! October16,!2015! Commentary!

Civil  Engineering  Program  Criteria  Commentary   21  

Background/Rationale    

The   importance   of   sustainability   is   communicated   in   many   ways,   and   ASCE   is   a  recognized  leader  in  this  advancing  area.    The  Civil  Engineering  Code  of  Ethics  includes  as   one   of   the   Fundamental   Cannons   that   “Engineers   shall…strive   to   comply   with   the  principles   of   sustainable   development…”     The   BOK2   also   has   an   outcome   specific   to  sustainability,   which   states   baccalaureate-­‐level   students   should   be   able   to   “apply   the  principles   of   sustainability   to   the   design   of   traditional   and   emergent   engineering  systems.”    The  verb  “apply”  indicates  a  level  of  attainment  for  sustainability  at  Bloom’s  Level  3  –  Application.      

While  Criterion  3(c)  of  the  EAC/ABET  General  Criteria  lists  “sustainability”  as  one  of  eight  constraints  that  should  be  considered  in  a  design,  these  eight  constraints  are  preceded  by  the  words  “such  as,”  which  is  commonly  interpreted  by  ABET  evaluators  as  meaning  the  program  complies  if  it  demonstrates  students  can  design  within  “at  least  one”  of  the  listed   constraints.     Criterion   5   states   the   culminating   design   experience  must   include  “multiple  realistic  constraints.”    Therefore,  considering  both  EAC/ABET  General  Criterion  3  and  Criterion  5,  a  program  lacking  coverage  of  sustainability  complies  with  the  present  criteria.    However,  requiring  an  additional  curricular  topic  that  fully  addresses  the  BOK2  outcome   statement   was   deemed   too   far-­‐reaching   and   potentially   too   difficult   for  programs  to  attain  without  creating  a  separate  course  in  sustainability.    The  provision  as  stated,   “to   include   principles   of   sustainability   in   design,”   allows   a   more   qualitative  approach   and   lowers   the   cognitive   level   of   achievement   required,   yet   ensures  sustainability  is  not  neglected  by  simply  being  part  of  a  larger  list  of  requirements.    

               

Page 24: On!the!ABET!! ProgramCriteriafor ......On!the!ABET!! ProgramCriteriafor! CivilandSimilarlyNamedPrograms! Effective!for2016@2017!Accreditation!Cycle!!!! October16,!2015! Commentary!

Civil  Engineering  Program  Criteria  Commentary   22  

D-­‐7.  Project  Management,  Business,  Public  Policy,  and  Leadership  

                   

The  curriculum  must  prepare  graduates  to  explain  basic  concepts  in  project  management,  business,  public  policy  and  leadership    

Changes  from  the  Previous  Edition  of  the  Civil  Engineering  Program  Criteria  The   curriculum   program   must   prepare   graduates   to   explain   basic   concepts   in   project  management,  business,  public  policy,  and  leadership  

   Understanding  the  Criterion  

This  provision  of  the  Civil  Engineering  Criteria  includes  four  components:    basic  concepts  in   project   management,   business,   public   policy,   and   leadership.     Previously,   this  provision  did  not  specifically  state  project  management  and  implied  a  broader  exposure  to  management,   including   project  management,   construction  management,   and   asset  management.    

Examples   of   basic   concepts   in   project   management   include   project   manager  responsibilities,   defining   and   meeting   client   requirements,   risk   assessment   and  management,  stakeholder  identification  and  involvement,  contract  negotiation,  project  work  plans,   scope  and  deliverables,  budget  and  schedule  preparation  and  monitoring,  interaction   among   engineering   and   other   disciplines,   quality   assurance   and   quality  control,  and  dispute  resolution  processes.  

Examples   of   basic   business   concepts   typically   applied   in   the   private,   government   and  non-­‐profit  sectors  include  legal  forms  of  ownership,  organizational  structure  and  design,  income   statements,   balance   sheets,   decision   (engineering)   economics,   finance,  marketing  and  sales,  billable  time,  overhead,  and  profit.  

Examples   of   basic   public   policy   concepts   include   the   political   process,   formulation   of  public   policy,   laws   and   regulations,   funding   mechanisms,   public   education   and  involvement,   government-­‐business   interaction,   and   the  public   service   responsibility  of  professionals.  

Leadership,  which  differs  from  and  complements  the  other  components  of  this  criterion,  requires  broad  motivation,  direction,  and  communication  skills.    Examples  of  desirable  behaviors  of   leaders,  which   can  be   taught   and   learned,   include  earning   trust,   trusting  

Page 25: On!the!ABET!! ProgramCriteriafor ......On!the!ABET!! ProgramCriteriafor! CivilandSimilarlyNamedPrograms! Effective!for2016@2017!Accreditation!Cycle!!!! October16,!2015! Commentary!

Civil  Engineering  Program  Criteria  Commentary   23  

others,  formulating  and  articulating  vision,  communication,  rational  thinking,  openness,  consistency,   commitment   to   organizational   values,   and   discretion   with   sensitive  information.  

Consistent   with   Bloom’s   Taxonomy,   the   verb   “explain”   in   this   criterion   implies   the  expected   level   of   achievement   is   Level   2   –   Comprehension.     Graduates  must   explain  some  (but  not  all)  of  the  key  concepts  in  the  four  areas  listed  in  the  provision.      It  is  not  necessary   for   the   program   to   offer   one   or  more   courses   explicitly   devoted   to   project  management,   business,   public   policy,   or   leadership.     Rather,   these   topics   may   be  integrated  into  other  courses  or  curricular  experiences.    Additionally,  graduates’  ability  to   explain   generic,   business-­‐oriented   project  management,   business,   public   policy,   or  leadership   concepts   such   as   those   acquired   from   a   course   or   courses   offered   outside  engineering  could  also  represent  full  compliance  with  this  criterion.  

   

Background/Rationale    

Narrowing   the   focus   on   management   in   the   previous   program   criteria   to   project  management  in  the  current  program  criteria  recognizes  civil  engineering  work  is  largely  project   based.     Additionally,   to   be   effectively   productive   on   a   project,   civil   engineers  need  to  know  how  their  work   fits   into   the  overall   team  effort   to  produce   the  project.    This  focus  is  not  intended  to  diminish  any  involvement  of  civil  engineers  in  construction  or  asset  management.  

To   the   extent   construction   management   involves   managing   a   project   and   not,   for  example,   managing   a   construction   firm   or   managing   construction   financing,   it   could  meet   the   intent   of   the   focus   on   project  management.     Similarly,   to   the   extent   asset  management  involves  managing  a  project  and  not,  as  examples,  managing  inventory  or  managing  facilities,  it  could  meet  the  intent  of  the  focus  on  project  management.  

                 

Page 26: On!the!ABET!! ProgramCriteriafor ......On!the!ABET!! ProgramCriteriafor! CivilandSimilarlyNamedPrograms! Effective!for2016@2017!Accreditation!Cycle!!!! October16,!2015! Commentary!

Civil  Engineering  Program  Criteria  Commentary   24  

D-­‐8.  Professional  Ethics    

         

The   curriculum   must   prepare   graduates   to   analyze   issues   in  professional  ethics    

Changes  from  the  Previous  Edition  of  the  Civil  Engineering  Program  Criteria  The  curriculum  program  must  prepare  graduates  to  analyze  issues  in  professional  ethics  

   Understanding  the  Criterion  

The  EAC/ABET  General  Criterion  3(f)  requires  that  graduates  have  “an  understanding  of  professional   and   ethical   responsibility.”     Programs   could   have   students   achieve   an  “understanding”  of  professional  and  ethical  responsibility  as  required  by  the  EAC/ABET  General  Criterion  3(f)  through  seminars  or  lectures.      

However,  the  provision  in  the  Civil  Engineering  Program  Criteria  that  graduates  “analyze  issues  in  professional  ethics”  reflects  an  expectation  for  a  higher  level  of  achievement  in  professional  ethics  than  required  by  EAC/ABET  General  Criterion  3(f).    This  provision  of  the   Civil   Engineering   Program   Criteria   reflects   a   greater   importance   of   professional  ethics  by  requiring  a  curriculum  to  include  an  opportunity  for  students  to  go  beyond  a  simple   understanding   of   ethical   responsibility   and   have   students   analyze   issues   in  professional  ethics.      

Consistent  with  Bloom’s  Taxonomy,  the  verb  “analyze”  used  in  this  criterion  implies  the  expected   level   of   achievement   is   Level   4   –   Analysis.     In   this   context,   for   example,  analysis  implies  the  ability  to  determine  the  fundamental  elements  of  an  ethical  issue  to  allow   for   a   close   examination   and   potential   resolution.     This  may   be   done   through   a  number  of  mechanisms,   such   as   a   compare-­‐and-­‐contrast   approach   to   an  ethical   issue  using  case  studies,  analyzing  video  scenarios,  or  first-­‐hand  debate  of  ethical  dilemmas.    

While  there  are  a  wide  variety  of  ways  a  program  may  meet  this  criterion,  one  possible  way   to   encourage   students’   ethical   development   is   to   provide   developmentally  appropriate   curricular   experiences   in  multiple   contexts   at  multiple   times   through   the  curriculum.     It   is   not   necessary   to   have   a   separate   course   in   ethics   to   satisfy   this  criterion.     Students,   early   in   curriculum,  may   list   and   explain   ethical   and   professional  responsibilities.     This   could   then   evolve   into   having   students   apply   ethical   codes   and  standards   to   determine   an   appropriate   course   of   action   for   a   specific   circumstance.      Analysis  of  ethical  situations  could  be  woven  into  upper  division  design  problems  or  into  a  senior  project  culminating  design.  

Page 27: On!the!ABET!! ProgramCriteriafor ......On!the!ABET!! ProgramCriteriafor! CivilandSimilarlyNamedPrograms! Effective!for2016@2017!Accreditation!Cycle!!!! October16,!2015! Commentary!

Civil  Engineering  Program  Criteria  Commentary   25  

Another   possible   way   to   address   this   criterion   is   to   include   ethical   development   in  selected   co-­‐   and   extra-­‐curricular   activities.     Having   students   participate   in   community  service,  professional  societies,  or  having  co-­‐op  or  internship  opportunities  reinforce  the  in-­‐class   learning   and   may   provide   “real-­‐world”   experiences   for   students   to   analyze  issues  in  professional  ethics.    The  recognized  difficulty  in  this  approach  is  documenting  that  every  student  participates  in  a  relevant  co-­‐  or  extra-­‐curricular  experience.  

It   is  critically   important  to  recognize  programs  may  prepare  their  graduates  to  analyze  issues  in  professional  ethics  in  any  number  of  ways.    The  examples  provided  here  serve  only   to   assist   with   understanding   this   new   criterion,   not   prescribe   how   any   program  should   meet   the   criterion.     Regardless   of   the   program’s   specific   approach,   the  curriculum   only   needs   show   how   it   prepares   its   graduates   to   analyze   issues   in  professional  ethics.    

 

Background/Rationale    

The  Civil  Engineering  BOK2  Outcome  24  –  Professional  and  Ethical  Responsibility  states  baccalaureate-­‐level   civil   engineering   graduates   should   be   able   to   “analyze   a   situation  involving   multiple   conflicting   professional   and   ethical   interests   to   determine   an  appropriate  course  of  action.”    The  Civil  Engineering  Program  Criteria  requirement  that  graduates   “analyze   issues   in  professional   ethics”   includes  most,   but  not   all,   of  BOK2’s  Outcome   24   requirement.     Specifically,   the   BOK2   requirement   to   include   “multiple  professional   and   ethical   conflicting   interests   to   determine   an   appropriate   course   of  action”  is  a  worthy  goal  for  a  baccalaureate-­‐level  program,  but  not  specifically  required  by  the  Civil  Engineering  Program  Criteria.  

Seminars  or  lectures  may  be  ineffective  in  addressing  ethical  decision-­‐making  and,  more  importantly,   influencing   ethical   and   professional   behavior.     In   fact,   professional  engineers  themselves  have  reported  their  ethics  education  as  undergraduates  did  little  to  prepare  them  for  the  ethical  realities  they  face  in  their  profession.    While  graduating  professionals   who   behave   ethically   throughout   their   careers   is   ultimately   what  undergraduate  programs  and  the  profession  want  to  achieve,  it  is  unrealistic  to  place  a  statement  to  that  effect  in  the  Civil  Engineering  Program  Criteria.  

         

Page 28: On!the!ABET!! ProgramCriteriafor ......On!the!ABET!! ProgramCriteriafor! CivilandSimilarlyNamedPrograms! Effective!for2016@2017!Accreditation!Cycle!!!! October16,!2015! Commentary!

Civil  Engineering  Program  Criteria  Commentary   26  

D-­‐9.  Professional  Licensure      

         

The  curriculum  must  prepare  graduates  to  explain  the  importance  of  professional  licensure    

Changes  from  the  Previous  Edition  of  the  Civil  Engineering  Program  Criteria  The   curriculum   program   must   prepare   graduates   to   explain   the   importance   of   professional  licensure    

   Understanding  the  Criterion  

To  comply  with  this  provision  of  the  Program  Criteria  sufficient  curricular  content  must  be  present  to  address  the  importance  of  licensure  so  all  graduates  are  exposed  to  and  could  explain  the  concept.    While  professional  licensure  is  not  explicitly  addressed  in  the  EAC/ABET  General  Criteria,  this  long-­‐standing  provision  in  the  Civil  Engineering  Program  Criteria   is   related   to   and   supportive   of   General   Criterion   3   Student   Outcome   (f)   an  understanding  of  professional  and  ethical  responsibility.      

Consistent   with   Bloom’s   Taxonomy,   the   verb   “explain”   in   this   criterion   implies   the  expected  level  of  achievement  is  Level  2  –  Comprehension.    Graduates  should  be  able  to  explain  the  unique  nature  of  civil  engineers’  responsibility  to  the  general  public  and  the  consequent  emphasis  on  professional  licensure  in  civil  engineering  professional  practice.    

   

Background/Rationale    

Civil   engineers   comprise   the   majority   of   licensed   professional   engineers   and   have  responsible  charge  over  projects  with  direct  impact  on  the  everyday  lives  of  the  public.    ASCE  has   long  recognized  this  and  has  actively  supported  professional   licensure,  along  with  life-­‐long  learning,  as  the  best  assurance  the  civil  engineer  is  capable  of  assuring  the  safety  and  welfare  of   the  public.     In   fact,   the  No.  1  Canon  of  ASCE’s  Code  of  Ethics   is  “Engineers  shall  hold  paramount  the  safety,  health  and  welfare  of  the  public  and  shall  strive  to  comply  with  the  principles  of  sustainable  development   in  the  performance  of  their  professional  duties.“    

The  first  engineering  licensure  law  was  enacted  in  1907  in  Wyoming  in  order  to  protect  the   public   health,   safety,   and   welfare.     Licensure   tells   the   public   an   engineer   has  mastered   the   critical   elements   of   the   profession,   a   symbol   of   achievement   and  assurance  of  quality.    

Page 29: On!the!ABET!! ProgramCriteriafor ......On!the!ABET!! ProgramCriteriafor! CivilandSimilarlyNamedPrograms! Effective!for2016@2017!Accreditation!Cycle!!!! October16,!2015! Commentary!

Civil  Engineering  Program  Criteria  Commentary   27  

D-­‐10.  Faculty  Requirements    

         

The   program  must   demonstrate   that   faculty   teaching   courses   that  are   primarily   design   in   content   are   qualified   to   teach   the   subject  matter   by   virtue   of   professional   licensure,   or   by   education   and  design   experience.   The   program   must   demonstrate   that   it   is   not  critically  dependent  on  one  individual.    

Changes  from  the  Previous  Edition  of  the  Civil  Engineering  Program  Criteria  No   changes;   faculty   requirements   remain   the   same   as   in   the   previous   edition   of   the   Civil  Engineering  Program  Criteria  

   Understanding  the  Criterion  

The   phrase   "courses   that   are   primarily   design   in   content"   is   intended   to   apply   to   the  differentiation  between  engineering  science  and  engineering  design  courses.  Courses  in  this  category  would  be  those,  typically   in  the  third  and  fourth  years,  where  design  is  a  majority  percentage  of  the  course.    Often,  these  courses  are  used  to  satisfy  the  General  Criteria   3c   design   outcome   and   the   civil   engineering   design   provision   of   the   Civil  Engineering   Program   Criteria.     As   an   aid   to   the   Program   Evaluator   in   differentiating  classes  and  faculty  covered  by  this  criterion,  the  program  may  elect  to  include  a  listing  of   all   courses   primarily   design   in   content   or   a   tabulation   indicating   the   design  component  of  each  class,  and  the  faculty  members  who  teach  the  respective  courses.  

The   next   phrase,   "qualified   to   teach   the   subject   matter   by   virtue   of   professional  licensure,   or   by   education   and   design   experience,”   describes   the   minimal   EAC/ABET  qualifications  necessary  to  teach  the  design  courses.      Professional  licensure,  usually  as  a  Professional   Engineer   (P.E.),   is   considered   satisfactory   evidence   of   necessary  qualifications  to  teach  engineering  design.    The  second  half  of  the  requirement,  "or  by  education   and   design   experience,"   provides   an   alternative   to   the   demonstration   by  licensure   that   a   faculty   member   is   qualified   to   teach   design   in   a   specific   area.   It   is  recognized  by  inclusion  of  this  phrase  that  the  appropriate  qualifications  to  teach  design  in  a  civil  engineering  program  may  not  be  solely  defined  by  professional  licensure.    The  program  must  demonstrate  to  the  reasonable  satisfaction  of  the  program  evaluator  that  faculty   members   who   teach   design   courses   meet   at   least   one   or   the   other   of   these  qualifications.  

Relevant   professional   licensure   may   be   in   a   major   civil   engineering   discipline   (e.g.,  structural  or  environmental  engineering).    Licensure  in  a  discipline  closely  related  to  the  

Page 30: On!the!ABET!! ProgramCriteriafor ......On!the!ABET!! ProgramCriteriafor! CivilandSimilarlyNamedPrograms! Effective!for2016@2017!Accreditation!Cycle!!!! October16,!2015! Commentary!

Civil  Engineering  Program  Criteria  Commentary   28  

field  the   faculty  member   is   teaching  design  may  constitute  relevant   licensure  but  may  not  be  sufficient  for  satisfying  this  requirement.  For  example,  licensure  as  a  professional  geologist   along   with   appropriate   design   experience   may   be   sufficient   to   satisfy   the  overall  requirement  to  teach  certain  design  courses,  even  if  not  sufficient  to  satisfy  the  licensure  requirement.  

Certifications   are   available   in   many   disciplines   and   specialties.   These   are   not  professional   licensure  and  cannot  be  used   to   fully   satisfy   this   requirement.    However,  certification   can   indicate   proficiency/expertise   in   a   particular   field.     Thus,   certification  may  be  helpful  in  demonstrating  experience  in  a  specific  discipline  or  specialty.  

Faculty  members  claiming  qualifications  to  teach  design  by  virtue  of  the  education  and  experience   provision   should   be   educated   in   a   field   closely   related   to   that   in   which  he/she  is  teaching  design.  For  instance,  the  related  field  may  be  chemical  or  mechanical  engineering  for  environmental  engineering  faculty.    Of  equal  or  greater  importance  than  the   specifics   of   his/her   education   is   what   the   individual   has   accomplished   since  obtaining   the   related   education.     In   the   case   of   an   unlicensed   faculty   member,   a  relevant  question  might  be  whether  the  person  appears  to  have  enough  experience  to  be  eligible  to  be  licensed.    Design  experience  can  come  in  many  forms  and  from  many  types  of  employment.    The  most  common  may  be  industrial  experience  working  for  the  private  sector.  Design  experience  may  come  in  a  sustained  period  of  employment,  or  it  may  come  incrementally  over  several  years.    Generally,  design  experience  repetitious  in  nature,   such   as   repeatedly   designing   the   same   component   or   type   of   facility,   usually  does  not  provide  credit  toward  licensure  beyond  the  initial  performance.    The  claimant  and  the  program  should  concisely  document  the  specifics  of  the  claimed  experience  in  design.   The   specific  method   for   documenting   the   claimed  design   experience   is   left   to  the  program.  Simply  stated,  there   is  no  one  correct  approach  or  method  to  document  design  experience.  

The  demonstration  by  the  program  that  relevant  faculty  members  are  qualified  by  virtue  of  professional   licensure  can  be  as  simple  as  a  table  with  the  appropriate   information.  Information   in   the   table   could   include   the   jurisdiction   of   licensure,   discipline   (if  appropriate),  date  of  initial  licensure,  and  the  expiration  date  of  the  license.  

The  program  evaluator  must  also   review  the  class  materials   to  assist   in  determining   if  the  instructor  is  qualified  to  teach  the  subject  matter.      

Some   jurisdictions   explicitly   consider   the   teaching   of   design   courses,   or   advanced  engineering  courses   in  general,  as  the  practice  of  engineering.    Therefore,  engineering  faculty   in   those   jurisdictions   may   have   a   legal   obligation   for   professional   licensure,  which  is  beyond  the  scope  of  the  EAC/ABET  accreditation  evaluation.    Additionally,  the  legal   ramifications   of   inappropriate   or   non-­‐existent   licensure   (practicing   engineering  without   a   license)   are   similarly   beyond   the   scope   of   the   program   criteria   and   this  commentary.     Those   teaching   courses   with   a   minority   percentage   of   design   in   the  overall  course  are  not  addressed  in  the  program  criteria.  

 

Page 31: On!the!ABET!! ProgramCriteriafor ......On!the!ABET!! ProgramCriteriafor! CivilandSimilarlyNamedPrograms! Effective!for2016@2017!Accreditation!Cycle!!!! October16,!2015! Commentary!

Civil  Engineering  Program  Criteria  Commentary   29  

A  program  cannot  be  critically  dependent  on  a  single  individual.     If  a  program  has  only  one   full-­‐time   faculty   member   able   to   teach   a   specific   course,   it   is   not   necessarily  critically  dependent  on  that  individual.    If  a  part-­‐time  faculty  member  is  able  to  assist  or  other   reasonable   accommodations   can   be   met   for   an   absence   or   a   sabbatical,   the  criterion  is  met.    A  program  may  be  critically  dependent  on  a  faculty  member  if  an  entire  portion   of   the   program   is   eliminated   or   seriously   degraded   if   this   faculty   member  departs.  

 

 

Background/Rationale    

These  requirements  for  faculty  are  a  long-­‐standing  part  of  the  Civil  Engineering  Program  Criteria.     General   Engineering   Criterion   6   for   Faculty   includes   two   requirements,   one  related  to  the  size  of  the  faculty  and  one  related  to  the  qualifications  and  authority  of  the  faculty  to  ensure  the  proper  oversight  and  guidance  of  the  program.  

First,   the   “program   must   demonstrate   that   the   faculty   members   are   of   sufficient  number  and  that  have  the  competencies  to  cover  all  curricular  areas  of  the  program.”    The   program   criterion   adds   the   requirement   that   the   program   not   be   critically  dependent   on   any   one   individual.     That   is,   in   addition   to   general   criterion   assuring  adequate  levels  of  student-­‐faculty  interactions,  advising,  mentoring,  and  other  activities,  the  program  criterion  assures  broader  engagement  by   the  program’s   faculty.     In  part,  this  is  also  related  to  the  Breadth  in  Civil  Engineering  criterion  (see  section  D-­‐3).    

Second,   the   “program   faculty   must   have   appropriate   qualifications,”   which   may   be  “judged  by  such  factors  as  education,  diversity  of  backgrounds,  engineering  experience,  …   and   licensure   as   Professional   Engineers.”     The   program   criteria   adds   the   specific  requirement   that   faculty  who   teach   design   courses   be   qualified   to   do   so   by   virtue   of  professional  licensure  or  by  education  and  experience.        

Page 32: On!the!ABET!! ProgramCriteriafor ......On!the!ABET!! ProgramCriteriafor! CivilandSimilarlyNamedPrograms! Effective!for2016@2017!Accreditation!Cycle!!!! October16,!2015! Commentary!

Civil  Engineering  Program  Criteria  Commentary   30  

Appendix  I:  Bloom’s  Taxonomy    

       The  second  edition  of  the  Civil  Engineering  Body  of  Knowledge  for  the  21st  Century  (a.k.a.,  BOK2,  downloadable  from  www.asce.org/civil_engineering_body_of_knowledge/),  explicitly  included  the  use  of  Bloom’s  Taxonomy  to  define  the  level  of  achievement  for  each  outcome.    Appendix  F  of  the  BOK2  provides  an  overview  of  Bloom’s  Taxonomy,  six  Bloom’s  levels  in  the  cognitive  domain  (also  referred  to  as  levels  of  achievement),  and  a  sampling  of  common  Bloom’s  verbs  associated  with  each  level.    Appendix  F  of  the  BOK2  is  reprinted  here  for  quick  reference.    

Page 33: On!the!ABET!! ProgramCriteriafor ......On!the!ABET!! ProgramCriteriafor! CivilandSimilarlyNamedPrograms! Effective!for2016@2017!Accreditation!Cycle!!!! October16,!2015! Commentary!

81CIVIL ENGINEERING BODY OF KNOWLEDGE FOR THE 21ST CENTURY

APPENDIX F

Bloom’s Taxonomy

The articulation of BOK learning outcomesand related levels of achievement comes, inpart, from the desire to clarify what shouldbe taught and learned. Clarification can beachieved through the use of Bloom’sTaxonomy of Educational Objectivesa forthe cognitive domain, which systematicallydifferentiates outcome characteristics andpromotes common understanding for allusers of the BOK. The cognitive domainrefers to educational objectives that involvethe recall and recognition of knowledgeand the development of intellectual abilitiesand skills.

Bloom’s Taxonomy was originally conceivedas a technique to reduce the labor ofpreparing comprehensive examinationsthrough the exchange of test items amongfaculty at various universities.a The goal wasto create banks of test items in which eachbank attended to the same educationalobjective. A team of measurementspecialists began meeting in 1949 to createthe taxonomy of objectives and their firstdraft was published in 1956. Bloombelieved, however, that the originaltaxonomy went beyond measurement.Among his many ideas was his belief thatthe taxonomy could serve as a commonlanguage for expressing and understandinglearning goals or objectives.b

Bloom’s emphasis on the use of measurable,action-oriented verbs facilitates the creationof outcome statements that lend themselvesto more consistent and more effective

assessment. Bloom’s Taxonomy consists ofsix levels in the cognitive domain, whichherein are called levels of achievement.These achievement levels for cognitivedevelopment will occur as a result of formaleducation and experience.

The Levels of Achievement SubcommitteeReportc details the recommendation to useBloom’s Taxonomy as the levels ofachievement for the BOK. The purpose ofthis appendix is to define the achievementlevels and provide definitions of the activeverbs used in the BOK for each level. Thesedefinitions are helpful because some of theactive verbs can be used at different levels.Moreover, for some outcomes, Bloom’sTaxonomy was not directly applicable andverbs were chosen with specific definitionsto convey the progression through thelevels of achievement. These specialinstances are noted in the definitions ateach level. The definitions of the verbswere taken from Webster's Third NewInternational Dictionary, Unabridged.d Thedefinition of the levels of achievement weresummarized from Bloom’s Taxonomy ofEducational Objectives,a Stating Objectivesfor Classroom Instruction, 2nd Editione andfrom the Levels of AchievementSubcommittee Report.c

Level 1—Knowledge

Knowledge is defined as the rememberingof previously learned material. This may

Page 34: On!the!ABET!! ProgramCriteriafor ......On!the!ABET!! ProgramCriteriafor! CivilandSimilarlyNamedPrograms! Effective!for2016@2017!Accreditation!Cycle!!!! October16,!2015! Commentary!

82 CIVIL ENGINEERING BODY OF KNOWLEDGE FOR THE 21ST CENTURY

involve the recall of a wide range ofmaterial, from specific facts to completetheories, but all that is required is thebringing to mind of the appropriateinformation. Knowledge represents thelowest level of learning outcomes in thecognitive domain.e

Define: to discover and set forth the meaning of.

Describe: to present distinctly by means of properties and qualities.

Identify: to select; to choose something for a number or group.

List: to declare to be.

Recognize: to perceive clearly.

Other illustrative verbs at the knowledgelevel include: enumerate, label, match,name, reproduce, select, and state.

Level 2—Comprehension

Comprehension is defined as the ability tograsp the meaning of material. This maybe shown by translating material from oneform to another (words to numbers), byinterpreting material (explaining orsummarizing), and by estimating futuretrends (predicting consequences oreffects). These learning outcomes go onestep beyond the simple remembering ofmaterial, and represent the lowest level ofunderstanding.e

Explain: to make plain or understandable.

Describe: to present distinctly by means of properties and qualities.

Distinguish: to perceive as being sepa-rate or different.

Discuss: to present in detail.

Other illustrative verbs at the comprehensionlevel include: classify, cite, convert, estimate,generalize, give examples, paraphrase,restate (in own words), and summarize.

Level 3—Application

Application refers to the ability to uselearned material in new and concretesituations. This may include theapplication of such things as rules,methods, concepts, principles, laws, andtheories. Learning outcomes in this arearequire a higher level of understandingthan those under comprehension.e

Solve: to find an answer, solution, explanation, or remedy for.

Apply: to use for a particular purpose or in a particular case.

Use: to carry out a purpose or action by means of.

Formulate: to plan out in orderly fashion.

Develop: to make clear, plain, or under-standable. Develop is similar to “explain” but at a greater level of detail.

Conduct: the act, manner, or process of carrying out (as a task) or carrying forward.

Report: to give an account of; to give a for-mal or official account or statement of.

Organize: to put in a state of order.

Function: to carry on in a certain capacity.

Demonstrate: to illustrate or explain in an orderly and detailed way especially with many examples, specimens, and particulars.

Explain: to give the reason for or cause of. Although commonly a level 2 or

Page 35: On!the!ABET!! ProgramCriteriafor ......On!the!ABET!! ProgramCriteriafor! CivilandSimilarlyNamedPrograms! Effective!for2016@2017!Accreditation!Cycle!!!! October16,!2015! Commentary!

83CIVIL ENGINEERING BODY OF KNOWLEDGE FOR THE 21ST CENTURY

level 5 verb when used in the context of outcome 11, contemporary issues and historical perspectives, the verb “explain” conveys the application of broad education to the identification, formulation, and solution of engineer-ing problems.

Other illustrative verbs at the applicationlevel include: administer, articulate,calculate, chart, compute, contribute,establish, implement, prepare, provide,and relate.

Level 4— Analysis

Analysis refers to the ability to break downmaterial into its component parts so that itsorganizational structure may beunderstood. This may include theidentification of parts, analysis of therelationship between parts, and recognitionof the organizational principles involved.Learning outcomes here represent a higherintellectual level than comprehension andapplication because they require anunderstanding of both the content and thestructural form of the material.e

Analyze: to ascertain the components of or separate into component parts; determine carefully the fundamental elements of (as by separation or isola-tion) for close scrutiny and examination of constituents or for accurate resolu-tion of an overall structure or nature.

Select: to choose something from a number or group.

Organize: to arrange by systematic planning and coordination; to unify into a coordinated functioning whole. Although “organize” is not typically a level 4 verb, it is appropriate for out-comes 8 (problem recognition and solving), 16 (communication), and 20 (leadership). For each of these out-

comes, the verb “organize” conveys the appropriate educational objective progression.

Compare: to examine the character or qualities of, especially for the purpose of discovering resemblances or differences.

Contrast: to compare in respect of dif-ferences; to examine like objects by means of which dissimilar qualities are made prominent.

Illustrate: to make clear by giving exam-ples or instances.

Formulate: to put into a systematized statement or expression.

Deliver: give forth in words; to make known to another. Although the verb “deliver” is not typically a level 4 verb, it is appropriate for outcome 16 (commu-nication) because it conveys the appro-priate educational objective progression.

Function: to carry on in a certain capac-ity. For level 4, the verb “function” is only used for outcome 21 (teamwork) and it has the same definition at level 4 as it does at level 3. In this case, the verb does not convey the educational pro-gression between levels 3 and 4. Rather, the progression is delineated by the movement from an intradisciplinary to a multidisciplinary team.

Direct: to carry out the organizing, ener-gizing, and supervising of, especially in an authoritative capacity; to regulate the activities or course of; to guide and supervise; to assist by giving advice, instruction, and supervision. The verb “direct” may not be considered a typical level 4 verb; however, within the context of outcome 20 (leadership), the verb “direct” conveys the logical educational progression in the outcome.

Page 36: On!the!ABET!! ProgramCriteriafor ......On!the!ABET!! ProgramCriteriafor! CivilandSimilarlyNamedPrograms! Effective!for2016@2017!Accreditation!Cycle!!!! October16,!2015! Commentary!

84 CIVIL ENGINEERING BODY OF KNOWLEDGE FOR THE 21ST CENTURY

Identify: to establish the distinguishing characteristic of; to select; to choose something from a number or group. The verb “identify” is also a level 1 verb; however, within the context of outcome 23 (lifelong learning), the verb “iden-tify” conveys the ability to determine the additional knowledge, skills, and attitudes appropriate for professional practice, which is a level 4 task.

Other illustrative verbs at the analysis levelinclude: break down, correlate, differentiate,discriminate, infer, and outline.

Level 5—Synthesis

Synthesis refers to the ability to puttogether to form a new whole. This mayinvolve the production of a uniquecommunication, a plan of operation(research proposal), or a set of abstractrelations (scheme for classifyinginformation). Learning outcomes in thisarea stress creative behaviors and placemajor emphasis on the formulation ofnew patterns or structure.e

Create: to produce (as a work of art or of dramatic interpretation) along new or unconventional lines; to make or bring into existence something new.

Design: to conceive and plan out in the mind; to create, fashion, execute, or construct according to plan; to origi-nate, draft, and work out, set up, or set forth.

Specify: to tell or state precisely or in detail. Although not usually considered a level 5 verb, when used with outcome 7 (experiments), the verb “specify” refers to the ability to determine which experiment or experiments are required. Drawing from a wide range of possibilities and then specifying the appropriate one(s) is a level 5 task.

Explain: to show the logical develop-ment or relationships of. “Explain” is also a level 2 verb when it simply means to make plain or understandable. Showing a logical development or rela-tionships are level 5 tasks.

Synthesize: combine or put together by the composition or combination of parts or elements so as to form a whole; the combining of often varied and diverse ideas, forces, or factors into one coherent or consistent complex.

Relate: to show or establish a logical or causal connection between.

Develop: to open up; to cause to become more completely unfolded so as to reveal hidden or unexpected qualities or potentialities; to lay out (as a represen-tation) into a clear, full, and explicit pre-sentation. “Develop” is also a level 3 verb when—much like the verb “explain”—it means to make clear, plain, or understandable. For outcomes 10 (sustainability), 12 (risk and uncer-tainty), 17 (public policy), and 19 (glo-balization) develop requires synthesis.

Plan: to devise or project the realization or achievement of; to arrange the parts of.

Compose: to form by putting together two or more things, elements, or parts; to put together; to arrange in a fitting, proper, or orderly way.

Integrate: to make complete; to form into a more complete, harmonious, or coordinated entity, often by the addi-tion or arrangement of parts or ele-ments; to combine to form a more complete, harmonious, or coordinated entity; to incorporate (as an individual or group) into a larger unit or group.

Construct: to form, make, or create by combining parts or elements; to create by organizing ideas or concepts

Page 37: On!the!ABET!! ProgramCriteriafor ......On!the!ABET!! ProgramCriteriafor! CivilandSimilarlyNamedPrograms! Effective!for2016@2017!Accreditation!Cycle!!!! October16,!2015! Commentary!

85CIVIL ENGINEERING BODY OF KNOWLEDGE FOR THE 21ST CENTURY

logically, coherently, or palpably; to draw with suitable instruments so as to fulfill certain specified conditions; to assemble separate and often disparate elements.

Adapt: to make suitable (for a new or different use or situation) by means of changes or modifications.

Organize: to arrange or constitute into a coherent unity in which each part has a special function or relation; to arrange by systematic planning and coordina-tion of individual effort; to arrange ele-ments into a whole of interdependent parts.

Execute: to put into effect; to carry out fully and completely.

Other illustrative verbs at the synthesis levelinclude: anticipate, collaborate, combine,compile, devise, facilitate, generate,incorporate, modify, reconstruct, reorganize,revise, and structure.

Level 6—Evaluation

Evaluation concerns the ability to judgethe value of material for a given purpose.The judgments are to be based on definitecriteria. These may be internal criteria(organization) or external criteria(relevance to the purpose) and theindividual may determine the criteria orbe given them. Learning outcomes in thisarea are highest in the cognitive hierarchybecause they contain elements of all theother categories as well as conscious valuejudgments based on clearly definedcriteria.e

Evaluate: to examine and judge con-cerning the worth, quality, significance, amount, degree, or condition of.

Compare: to examine the character or qualities of, especially for the purpose

of discovering resemblances or differ-ences. This definition is the same as for level 4; however, when used in context with the verb “evaluate” for outcome 8 (problem recognition and solving), the combined action requires evaluation and is a level 6 task.

Appraise: to judge and analyze the worth, significance or status of; especially to give a definitive expert judgment of the merit, rank, or importance of.

Justify: to prove or show to be just, desirable, warranted, or useful.

Assess: to analyze critically and judge definitively the nature, significance, sta-tus, or merit of; to determine the importance, size, or value of.

Self-assess: to personally or internally analyze critically and judge definitively the nature, significance, status, or merit of a personal trait. Outcome 23 (life-long learning) uses the verb “self-assess” to convey the concept of intro-spective reflection.

Other illustrative verbs at the evaluationlevel include: compare and contrast,conclude, criticize, decide, defend, judge,and recommend.

Cited Sources

a) Bloom, B. S., M. D. Englehart, E. J.Furst, W. H. Hill, and D. Krathwohl.1956. Taxonomy of Educational Objec-tives, the Classification of EducationalGoals, Handbook I: Cognitive Domain.David McKay, New York, NY.

b) Anderson, L., D. R. Krathwohl, P. W.Airasian, K. A. Cruikshank, R. E.Mayer, P. R. Pintrich, J. Raths, and M.C. Wittrock. 2001. A Taxonomy ofLearning, Teaching, and Assessment: A

Page 38: On!the!ABET!! ProgramCriteriafor ......On!the!ABET!! ProgramCriteriafor! CivilandSimilarlyNamedPrograms! Effective!for2016@2017!Accreditation!Cycle!!!! October16,!2015! Commentary!

86 CIVIL ENGINEERING BODY OF KNOWLEDGE FOR THE 21ST CENTURY

Revision of Bloom’s Taxonomy. AddisonWesley Longman, Inc. New York, NY.

c) ASCE Levels of Achievement Subcom-mittee. 2005. Levels of AchievementApplicable to the Body of KnowledgeRequired for Entry Into the Practice ofCivil Engineering at the ProfessionalLevel, Reston, VA, September. (http://www.asce.org/raisethebar)

d) Webster's Third New International Dic-tionary, Unabridged. Merriam-Webster,2002. Available at http://unabridged.merriam-webster.com.

e) Gronlund, N. E. 1978. Stating Objec-tives for Classroom Instruction, 2nd

Edition, Macmillan, New York, NY.

Page 39: On!the!ABET!! ProgramCriteriafor ......On!the!ABET!! ProgramCriteriafor! CivilandSimilarlyNamedPrograms! Effective!for2016@2017!Accreditation!Cycle!!!! October16,!2015! Commentary!

Civil  Engineering  Program  Criteria  Commentary   37  

Appendix  II:    BOK  Outcomes      Rubric  (Second  Edition)  

                 One  of  the  key  sections  of  the  second  edition  of  the  Civil  Engineering  Body  of  Knowledge  for  the  21st   Century   (downloadable   from   www.asce.org/civil_engineering_body_of_knowledge/),   is  the  full  outcomes  rubric,  which   includes  outcome  statements  for  all  six   levels  of  achievement  for   each   and   every   outcome.     Included   in   rubric   are   the   outcomes   envisioned   as   part   of   the  baccalaureate  degree   (B),   the  post-­‐baccalaureate   formal   education   (M/30),   and  pre-­‐licensure  experience  (E).    The  outcomes  rubric  is  included  in  Appendix  I  of  the  BOK2  and  is  reprinted  here  for  quick  reference.      

Page 40: On!the!ABET!! ProgramCriteriafor ......On!the!ABET!! ProgramCriteriafor! CivilandSimilarlyNamedPrograms! Effective!for2016@2017!Accreditation!Cycle!!!! October16,!2015! Commentary!

103CIVIL ENGINEERING BODY OF KNOWLEDGE FOR THE 21ST CENTURY

APPENDIX I

Body of Knowledge Outcome Rubric

Building on the recommendations of the Levels of Achievement Subcommittee,9 the BOK2Committee developed the outcome rubric.14 The rubric communicates the following BOKcharacteristics:

■ The 24 outcomes, categorized as foundational, technical, and professional and, withineach category, organized in approximate pedagogical order

■ The level of achievement that an individual must demonstrate for each outcome to enterthe practice of civil engineering at the professional level

■ For each outcome the portion to be fulfilled through the bachelor’s degree, the portionto be fulfilled through the master’s degree or equivalent (approximately 30 semestercredits of acceptable graduate-level or upper-level undergraduate courses in a special-ized technical area and/or professional practice area related to civil engineering), andthe portion to be fulfilled through prelicensure experience

Key:

B Portion of the BOK fulfilled through the bachelor’s degree

M/30 Portion of the BOK fulfilled through the master’s degree or the equivalent

E Portion of the BOK fulfilled through prelicensure experience

Achievement levels beyond minimums needed to enter professional practice

Page 41: On!the!ABET!! ProgramCriteriafor ......On!the!ABET!! ProgramCriteriafor! CivilandSimilarlyNamedPrograms! Effective!for2016@2017!Accreditation!Cycle!!!! October16,!2015! Commentary!

104 CIVIL ENGINEERING BODY OF KNOWLEDGE FOR THE 21ST CENTURY

Out

com

eti

tle

Leve

l of c

ogni

tive

ach

ieve

men

t

1 K

now

ledg

e2

Com

preh

ensi

on3

App

licat

ion

4A

naly

sis

5 Sy

nthe

sis

6 Ev

alua

tion

To

ente

r th

e pr

acti

ce o

f civ

il en

gine

erin

g at

the

prof

essi

onal

leve

l, an

indi

vidu

al m

ust b

e ab

le to

dem

onst

rate

this

leve

l of a

chie

vem

ent

Fo

un

da

tio

na

l O

utco

me

s

1M

ath

emat

ics

Def

ine

key

fact

ual

in

form

atio

n r

elat

ed

to m

ath

emat

ics

thro

ugh

dif

fere

nti

al

equ

atio

ns.

Exp

lain

key

con

cept

s an

d pr

oble

m-s

olvi

ng

proc

esse

s in

mat

hem

atic

s th

rou

gh

diff

eren

tial

equ

atio

ns.

Solv

e pr

oble

ms

in

mat

hem

atic

s th

rou

gh

diff

eren

tial

equ

atio

ns

and

app

ly t

his

kn

owle

dge

to t

he

solu

tion

of e

ngi

nee

rin

g pr

oble

ms.

An

alyz

e a

com

plex

pr

oble

m t

o de

term

ine

the

rele

van

t m

athe

mat

ical

pr

inci

ples

an

d th

en

appl

y th

at k

now

ledg

e to

sol

ve t

he

prob

lem

.

Cre

ate

new

kn

owle

dge

in

mat

hem

atic

s.

Eval

uat

e th

e va

lidit

y of

new

ly

crea

ted

know

ledg

e in

m

athe

mat

ics.

(B)

(B)

(B)

2N

atu

ral s

cien

ces

Def

ine

key

fact

ual

in

form

atio

n r

elat

ed

to c

alcu

lus-

base

d ph

ysic

s, c

hem

istr

y,

and

one

addi

tion

al

area

of n

atu

ral

scie

nce

.

Exp

lain

key

con

cept

s an

d pr

oble

m-s

olvi

ng

proc

esse

s in

cal

culu

s-ba

sed

phy

sics

, ch

emis

try,

an

d o

ne

addi

tion

al a

rea

of n

atu

ral

scie

nce

.

Solv

e pr

oble

ms

in

calc

ulu

s-ba

sed

phys

ics,

ch

emis

try,

an

d on

e ad

diti

onal

are

a of

n

atu

ral s

cien

ce a

nd

appl

y th

is k

now

ledg

e to

the

sol

uti

on o

f en

gin

eeri

ng

prob

lem

s.

An

alyz

e co

mpl

ex

prob

lem

s to

det

erm

ine

the

rele

van

t ph

ysic

s,

chem

istr

y, a

nd/

or o

ther

ar

eas

of n

atu

ral s

cien

ce

prin

cipl

es a

nd

then

ap

ply

that

kn

owle

dge

to s

olve

th

e pr

oble

m.

Cre

ate

new

kn

owle

dge

in p

hysi

cs,

chem

istr

y, a

nd/

or

oth

ers

area

s of

nat

ura

l sc

ien

ce.

Eval

uat

e th

e va

lidit

y of

new

ly

crea

ted

know

ledg

e in

ph

ysic

s, c

hem

istr

y,

and/

or o

ther

s ar

eas

of n

atu

ral s

cien

ce.

(B)

(B)

(B)

3H

um

anit

ies

Def

ine

key

fact

ual

in

form

atio

n fr

om

mor

e th

an o

ne

area

of

the

hum

anit

ies.

Exp

lain

key

con

cept

s fr

om a

t le

ast

one

area

of

the

hum

anit

ies

and

thei

r re

lati

onsh

ip to

civ

il en

gin

eeri

ng

prob

lem

s an

d so

luti

ons.

Dem

onst

rate

the

impo

rtan

ce o

f th

e hu

man

itie

s in

th

e pr

ofes

sion

al p

ract

ice

of

engi

nee

rin

g

An

alyz

e a

com

plex

pr

oble

m in

form

ed b

y is

sues

rai

sed

in t

he

hum

anit

ies

and

app

ly

thes

e co

nsi

dera

tion

s in

th

e de

velo

pmen

t of

a

solu

tion

to

the

prob

lem

.

Cre

ate

new

kn

owle

dge

in

hum

anit

ies.

Eval

uat

e th

e va

lidit

y of

new

ly

crea

ted

know

ledg

e in

hu

man

itie

s.

(B)

(B)

(B)

Page 42: On!the!ABET!! ProgramCriteriafor ......On!the!ABET!! ProgramCriteriafor! CivilandSimilarlyNamedPrograms! Effective!for2016@2017!Accreditation!Cycle!!!! October16,!2015! Commentary!

105CIVIL ENGINEERING BODY OF KNOWLEDGE FOR THE 21ST CENTURY

4So

cial

sci

ence

s

Def

ine

key

fact

ual

in

form

atio

n fr

om

mor

e th

an o

ne

area

of

soci

al s

cien

ces.

Exp

lain

key

con

cept

s fr

om a

t le

ast

one

area

of

the

soci

al s

cien

ces

and

thei

r re

lati

onsh

ip to

civ

il en

gin

eeri

ng

prob

lem

s an

d so

luti

ons.

Dem

onst

rate

the

in

corp

orat

ion

of s

ocia

l sc

ien

ces

know

ledg

e in

to t

he

prof

essi

onal

pr

acti

ce o

f en

gin

eeri

ng.

An

alyz

e a

com

plex

pr

oble

m in

corp

orat

ing

soci

al s

cien

ce

know

ledg

e an

d th

en

appl

y th

at k

now

ledg

e in

the

deve

lopm

ent o

f a

solu

tion

to

the

prob

lem

.

Cre

ate

new

kn

owle

dge

in s

ocia

l sc

ien

ces.

Eval

uat

e th

e va

lidit

y of

new

ly

crea

ted

know

ledg

e in

so

cial

sci

ence

s.

(B)

(B)

(B)

Te

ch

nica

l O

utco

me

s

5M

ater

ials

sci

ence

Def

ine

key

fact

ual

in

form

atio

n r

elat

ed

to m

ater

ials

sci

ence

w

ith

in t

he

con

text

of

civi

l en

gin

eeri

ng.

Exp

lain

key

con

cept

s an

d pr

oble

m-s

olvi

ng

proc

esse

s in

mat

eria

ls s

cien

ce w

ith

in

the

con

text

of c

ivil

engi

nee

rin

g.

Use

kn

owle

dge

of

mat

eria

ls s

cien

ce to

so

lve

prob

lem

s ap

prop

riat

e to

civ

il en

gin

eeri

ng.

An

alyz

e a

com

plex

pr

oble

m t

o de

term

ine

the

rele

van

t m

ater

ials

sc

ien

ce p

rin

cipl

es, a

nd

then

app

ly t

hat

kn

owle

dge

to s

olve

th

e pr

oble

m.

Cre

ate

new

kn

owle

dge

in m

ater

ials

sc

ien

ce.

Eval

uat

e th

e va

lidit

y of

new

ly

crea

ted

know

ledg

e in

m

ater

ials

sci

ence

.

(B)

(B)

(B)

6M

ech

anic

s

Def

ine

key

fact

ual

in

form

atio

n r

elat

ed

to s

olid

an

d fl

uid

m

ech

anic

s.

Exp

lain

key

con

cept

s an

d pr

oble

m-s

olvi

ng

proc

esse

s in

sol

id a

nd

flu

id

mec

han

ics.

Solv

e pr

oble

ms

in

solid

an

d fl

uid

m

ech

anic

s.

An

alyz

e an

d s

olve

pr

oble

ms

in s

olid

an

d fl

uid

mec

han

ics.

Cre

ate

new

kn

owle

dge

in

mec

han

ics.

Eval

uat

e th

e va

lidit

y of

new

ly

crea

ted

know

ledg

e in

m

ech

anic

s.

(B)

(B)

(B)

(B)

Out

com

eti

tle

Leve

l of c

ogni

tive

ach

ieve

men

t

1 K

now

ledg

e2

Com

preh

ensi

on3

App

licat

ion

4A

naly

sis

5 Sy

nthe

sis

6 Ev

alua

tion

Page 43: On!the!ABET!! ProgramCriteriafor ......On!the!ABET!! ProgramCriteriafor! CivilandSimilarlyNamedPrograms! Effective!for2016@2017!Accreditation!Cycle!!!! October16,!2015! Commentary!

106 CIVIL ENGINEERING BODY OF KNOWLEDGE FOR THE 21ST CENTURY

7E

xper

imen

ts

Iden

tify

th

e pr

oced

ure

s an

d eq

uip

men

t nec

essa

ry

to c

ondu

ct c

ivil

engi

nee

rin

g ex

per

imen

ts in

mor

e th

an o

ne

of t

he

tech

nic

al a

reas

of c

ivil

engi

nee

rin

g.

Exp

lain

th

e pu

rpos

e,

proc

edu

res,

equ

ipm

ent,

an

d pr

acti

cal a

pplic

atio

ns

of e

xper

imen

ts s

pan

nin

g m

ore

than

on

e of

the

te

chn

ical

are

as o

f civ

il en

gin

eeri

ng.

Con

duct

exp

erim

ents

in

on

e or

acr

oss

mor

e th

an o

ne

of t

he

tech

nic

al a

reas

of c

ivil

engi

nee

rin

g ac

cord

ing

to e

stab

lish

ed

proc

edu

res

and

repo

rt t

he

resu

lts.

An

alyz

e th

e re

sult

s of

ex

per

imen

ts a

nd

eval

uat

e th

e ac

cura

cy o

f th

e re

sult

s w

ith

in t

he

know

n b

oun

dari

es o

f th

e te

sts

and

mat

eria

ls

in o

r ac

ross

mor

e th

an

one

of t

he

tech

nic

al

area

s of

civ

il en

gin

eeri

ng.

Spec

ify

an e

xper

imen

t to

mee

t a

nee

d,

con

duct

th

e ex

per

imen

t, a

nd

anal

yze

and

expl

ain

the

resu

ltin

g da

ta.

Eval

uat

e th

e ef

fect

iven

ess

of a

de

sign

ed e

xper

imen

t in

mee

tin

g an

ill-

defi

ned

rea

l-w

orld

n

eed.

(B)

(B)

(B)

(B)

(M/3

0)

8P

robl

em

reco

gnit

ion

an

d so

lvin

g

Iden

tify

key

fact

ual

in

form

atio

n r

elat

ed

to e

ngi

nee

rin

g pr

oble

m r

ecog

nit

ion

, pr

oble

m s

olvi

ng,

an

d ap

plic

able

en

gin

eeri

ng

tech

niq

ues

an

d to

ols.

Exp

lain

key

con

cept

s re

late

d to

pro

blem

re

cogn

itio

n, p

robl

em

arti

cula

tion

, an

d pr

oble

m-

solv

ing

proc

esse

s, a

nd

how

en

gin

eeri

ng

tech

niq

ues

an

d to

ols

are

appl

ied

to

solv

e pr

oble

ms.

Dev

elop

pro

blem

st

atem

ents

an

d so

lve

wel

l-de

fin

ed

fun

dam

enta

l civ

il en

gin

eeri

ng

prob

lem

s by

app

lyin

g ap

prop

riat

e te

chn

iqu

es

and

tool

s.

Form

ula

te a

nd

solv

e an

ill-

defi

ned

en

gin

eeri

ng

prob

lem

ap

prop

riat

e to

civ

il en

gin

eeri

ng

by

sele

ctin

g an

d ap

plyi

ng

appr

opri

ate

tech

niq

ues

an

d to

ols.

Syn

thes

ize

the

solu

tion

to a

n il

l-de

fin

ed e

ngi

nee

rin

g pr

oble

m in

to a

br

oade

r co

nte

xt t

hat

may

incl

ude

pu

blic

p

olic

y, s

ocia

l im

pact

, or

bu

sin

ess

obje

ctiv

es.

Com

pare

the

init

ial

and

fin

al p

robl

em

stat

emen

ts, t

he

effe

ctiv

enes

s of

al

tern

ativ

e te

chn

iqu

es a

nd

tool

s,

and

eval

uat

e th

e ef

fect

iven

ess

of t

he

solu

tion

.

(B)

(B)

(B)

(M/3

0)

Out

com

eti

tle

Leve

l of c

ogni

tive

ach

ieve

men

t

1 K

now

ledg

e2

Com

preh

ensi

on3

App

licat

ion

4A

naly

sis

5 Sy

nthe

sis

6 Ev

alua

tion

Page 44: On!the!ABET!! ProgramCriteriafor ......On!the!ABET!! ProgramCriteriafor! CivilandSimilarlyNamedPrograms! Effective!for2016@2017!Accreditation!Cycle!!!! October16,!2015! Commentary!

107CIVIL ENGINEERING BODY OF KNOWLEDGE FOR THE 21ST CENTURY

9D

esig

n

Def

ine

engi

nee

rin

g de

sign

; lis

t th

e m

ajor

st

eps

in t

he

engi

nee

rin

g de

sign

pr

oces

s; a

nd

list

co

nst

rain

ts th

at a

ffec

t th

e pr

oces

s an

d pr

odu

cts

of

engi

nee

rin

g de

sign

.

Des

crib

e th

e en

gin

eeri

ng

desi

gn p

roce

ss; e

xpla

in

how

rea

l-w

orld

con

stra

ints

af

fect

the

pro

cess

an

d pr

odu

cts

of e

ngi

nee

rin

g de

sign

.

App

ly t

he

desi

gn

proc

ess

to m

eet

a w

ell-

defi

ned

set

of

requ

irem

ents

an

d co

nst

rain

ts.

An

alyz

e a

syst

em o

r pr

oces

s to

det

erm

ine

requ

irem

ents

an

d co

nst

rain

ts.

Des

ign

a sy

stem

or

proc

ess

to m

eet

desi

red

nee

ds w

ith

in

such

rea

listi

c co

nst

rain

ts a

s ec

onom

ic,

envi

ron

men

tal,

soci

al,

polit

ical

, eth

ical

, h

ealt

h a

nd

safe

ty,

con

stru

ctab

ility

, an

d su

stai

nab

ility

.

Eval

uat

e th

e de

sign

of

a c

ompl

ex s

yste

m,

com

pon

ent,

or

proc

ess

and

asse

ss

com

plia

nce

wit

h

cust

omar

y st

anda

rds

of p

ract

ice,

use

r’s a

nd

proj

ect’s

nee

ds, a

nd

rele

van

t co

nst

rain

ts.

(B)

(B)

(B)

(B)

(B)

(E)

10Su

stai

nab

ility

Def

ine

key

asp

ects

of

su

stai

nab

ility

re

lati

ve to

en

gin

eeri

ng

phen

omen

a, s

ocie

ty

at la

rge,

an

d it

s de

pen

den

ce o

n

nat

ura

l res

ourc

es; a

nd

rela

tive

to t

he

eth

ical

ob

ligat

ion

of t

he

prof

essi

onal

en

gin

eer.

Exp

lain

key

pro

per

ties

of

sust

ain

abili

ty, a

nd

thei

r sc

ien

tifi

c ba

ses,

as

they

p

erta

in to

en

gin

eere

d w

orks

an

d se

rvic

es.

App

ly t

he

prin

cipl

es

of s

ust

ain

abili

ty to

th

e de

sign

of t

radi

tion

al

and

em

erge

nt

engi

nee

rin

g sy

stem

s.

An

alyz

e sy

stem

s of

en

gin

eere

d w

orks

, w

het

her

tra

diti

onal

or

emer

gen

t, fo

r su

stai

nab

le

per

form

ance

.

Des

ign

a co

mp

lex

syst

em, p

roce

ss, o

r pr

ojec

t to

per

form

su

stai

nab

ly. D

evel

op

new

, mor

e su

stai

nab

le

tech

nol

ogy.

Cre

ate

new

kn

owle

dge

or

form

s of

an

alys

is in

ar

eas

in w

hic

h

scie

nti

fic

know

ledg

e lim

its

sust

ain

able

de

sign

.

Eval

uat

e th

e su

stai

nab

ility

of

com

plex

sys

tem

s,

wh

eth

er p

ropo

sed

or

exis

tin

g.

(B)

(B)

(B)

(E)

Out

com

eti

tle

Leve

l of c

ogni

tive

ach

ieve

men

t

1 K

now

ledg

e2

Com

preh

ensi

on3

App

licat

ion

4A

naly

sis

5 Sy

nthe

sis

6 Ev

alua

tion

Page 45: On!the!ABET!! ProgramCriteriafor ......On!the!ABET!! ProgramCriteriafor! CivilandSimilarlyNamedPrograms! Effective!for2016@2017!Accreditation!Cycle!!!! October16,!2015! Commentary!

108 CIVIL ENGINEERING BODY OF KNOWLEDGE FOR THE 21ST CENTURY

11C

onte

mp

orar

y is

sues

an

d h

isto

rica

l pe

rsp

ecti

ves

Iden

tify

eco

nom

ic,

envi

ron

men

tal,

polit

ical

, soc

ieta

l, an

d h

isto

rica

l asp

ects

in

engi

nee

rin

g.

Des

crib

e th

e in

flu

ence

of

his

tori

cal a

nd

con

tem

por

ary

issu

es o

n

the

iden

tifi

cati

on,

form

ula

tion

, an

d so

luti

on

of e

ngi

nee

rin

g pr

oble

ms

and

desc

ribe

th

e in

flu

ence

of e

ngi

nee

rin

g so

luti

ons

on t

he e

con

omy,

en

viro

nm

ent,

pol

itic

al

lan

dsca

pe,

an

d so

ciet

y.

Dra

win

g u

pon

a b

road

ed

uca

tion

, exp

lain

th

e im

pact

of h

isto

rica

l an

d c

onte

mp

orar

y is

sues

on

th

e id

enti

fica

tion

, fo

rmu

lati

on, a

nd

solu

tion

of e

ngi

nee

rin

g pr

oble

ms a

nd

expl

ain

th

e im

pact

of

engi

nee

rin

g so

luti

ons

on t

he

econ

omy,

en

viro

nm

ent,

pol

itic

al

lan

dsca

pe,

an

d so

ciet

y.

An

alyz

e th

e im

pact

of

his

tori

cal a

nd

con

tem

por

ary

issu

es o

n

the

iden

tifi

cati

on,

form

ula

tion

, an

d so

luti

on o

f en

gin

eeri

ng

prob

lem

s an

d an

alyz

e th

e im

pact

of

engi

nee

rin

g so

luti

ons

on t

he e

con

omy,

en

viro

nm

ent,

pol

itic

al

lan

dsca

pe,

an

d so

ciet

y.

Syn

thes

ize

the

impa

cts

and

rela

tion

ship

s am

ong

engi

nee

rin

g an

d ec

onom

ic,

envi

ron

men

tal,

polit

ical

, soc

ieta

l, an

d h

isto

rica

l iss

ues

.

Eval

uat

e th

e im

pact

s an

d re

lati

onsh

ips

amon

g en

gin

eeri

ng

and

his

tori

cal,

con

tem

por

ary,

an

d em

ergi

ng

issu

es.

(B)

(B)

(B)

(E)

12R

isk

and

un

cert

ain

ty

Rec

ogni

ze

un

cert

ain

ties

in d

ata

and

know

ledg

e an

d li

st t

hos

e re

leva

nt

to

engi

nee

rin

g de

sign

.

Dis

tin

guis

h be

twee

n

un

cert

ain

ties

th

at a

re d

ata-

base

d an

d th

ose

that

are

kn

owle

dge-

base

d an

d ex

plai

n t

he

sign

ific

ance

of

tho

se u

nce

rtai

nti

es o

n

the

per

form

ance

an

d sa

fety

of

an

en

gin

eeri

ng

syst

em.

App

ly t

he

prin

cipl

es

of p

roba

bilit

y an

d st

atis

tics

to so

lve

prob

lem

s co

nta

inin

g u

nce

rtai

nti

es.

An

alyz

e th

e lo

adin

g an

d ca

pac

ity,

an

d th

e ef

fect

s of

th

eir

resp

ecti

ve

un

cert

ain

ties

, for

a

wel

l-de

fin

ed d

esig

n a

nd

illu

stra

te t

he

un

derl

yin

g pr

obab

ility

of

failu

re (

or

non

perf

orm

ance

) fo

r a

spec

ifie

d fa

ilure

mod

e.

Dev

elop

cri

teri

a (s

uch

as

requ

ired

sa

fety

fact

ors)

for

the

ill-d

efin

ed d

esig

n o

f an

en

gin

eere

d sy

stem

w

ith

in a

n a

ccep

tabl

e ri

sk m

easu

re.

App

rais

e a

mu

ltic

ompo

nen

t sy

stem

an

d ev

alu

ate

its

quan

tita

tive

ris

k m

easu

re, t

akin

g in

to

acco

un

t th

e oc

curr

ence

pr

obab

ility

of a

n

adve

rse

even

t an

d it

s po

ten

tial

co

nse

quen

ces

cau

sed

by fa

ilure

.

(B)

(B)

(B)

(E)

Out

com

eti

tle

Leve

l of c

ogni

tive

ach

ieve

men

t

1 K

now

ledg

e2

Com

preh

ensi

on3

App

licat

ion

4A

naly

sis

5 Sy

nthe

sis

6 Ev

alua

tion

Page 46: On!the!ABET!! ProgramCriteriafor ......On!the!ABET!! ProgramCriteriafor! CivilandSimilarlyNamedPrograms! Effective!for2016@2017!Accreditation!Cycle!!!! October16,!2015! Commentary!

109CIVIL ENGINEERING BODY OF KNOWLEDGE FOR THE 21ST CENTURY

13P

roje

ct

man

agem

ent

List

key

man

agem

ent

prin

cipl

es.

Exp

lain

wh

at a

pro

ject

is

and

the

key

asp

ects

of

proj

ect

man

agem

ent.

Dev

elop

sol

uti

ons

to

wel

l-de

fin

ed p

roje

ct

man

agem

ent

prob

lem

s.

Form

ula

te

docu

men

ts to

be

inco

rpor

ated

into

th

e pr

ojec

t pl

an.

Cre

ate

proj

ect

plan

s.Ev

alu

ate

the

effe

ctiv

enes

s of

a

proj

ect

plan

.

(B)

(B)

(B)

(E)

14B

read

th in

civ

il en

gin

eeri

ng

area

s

Def

ine

key

fact

ual

in

form

atio

n r

elat

ed

to a

t le

ast

fou

r te

chn

ical

are

as

appr

opri

ate

to c

ivil

engi

nee

rin

g.

Exp

lain

key

con

cept

s an

d pr

oble

m-s

olvi

ng

proc

esse

s in

at

leas

t fo

ur

tech

nic

al

area

s ap

prop

riat

e to

civ

il en

gin

eeri

ng.

Solv

e pr

oble

ms

in o

r ac

ross

at

leas

t fo

ur

tech

nic

al a

reas

ap

prop

riat

e to

civ

il en

gin

eeri

ng.

An

alyz

e an

d s

olve

w

ell-

defi

ned

en

gin

eeri

ng

prob

lem

s in

at l

east

fou

r te

chn

ical

ar

eas

appr

opri

ate

to

civi

l en

gin

eeri

ng.

Cre

ate

new

kn

owle

dge

that

spa

ns

mor

e th

an o

ne

tech

nic

al a

rea

appr

opri

ate

to c

ivil

engi

nee

rin

g.

Eval

uat

e th

e va

lidit

y of

new

ly

crea

ted

know

ledg

e th

at s

pan

s m

ore

than

on

e te

chn

ical

are

a ap

prop

riat

e to

civ

il en

gin

eeri

ng.

(B)

(B)

(B)

(B)

15Te

chn

ical

sp

ecia

lizat

ion

Def

ine

key

asp

ects

of

adv

ance

d te

chn

ical

sp

ecia

lizat

ion

ap

prop

riat

e to

civ

il en

gin

eeri

ng.

Exp

lain

key

con

cept

s an

d pr

oble

m-s

olvi

ng

proc

esse

s in

a t

radi

tion

al o

r em

ergi

ng

spec

ializ

ed

tech

nic

al a

rea

appr

opri

ate

to c

ivil

engi

nee

rin

g.

App

ly s

peci

aliz

ed

tool

s, t

ech

nol

ogy,

or

tech

nol

ogie

s to

solv

e si

mpl

e pr

oble

ms

in a

tr

adit

ion

al o

r em

ergi

ng

spec

ializ

ed te

chn

ical

ar

ea o

f civ

il en

gin

eeri

ng.

An

alyz

e a

com

plex

sy

stem

or

proc

ess

in a

tr

adit

ion

al o

r em

ergi

ng

spec

ializ

ed t

ech

nic

al

area

app

ropr

iate

to c

ivil

engi

nee

rin

g.

Des

ign

a co

mp

lex

syst

em o

r pr

oces

s or

cr

eate

new

kn

owle

dge

or

tech

nol

ogie

s in

a

trad

itio

nal

or

emer

gin

g ad

van

ced

spec

ializ

ed te

chn

ical

ar

ea a

ppro

pria

te to

ci

vil e

ngi

nee

rin

g.

Eval

uat

e th

e de

sign

of

a c

ompl

ex s

yste

m

or p

roce

ss, o

r ev

alu

ate

the

valid

ity

of n

ewly

cr

eate

d kn

owle

dge

or

tech

nol

ogie

s in

a

trad

itio

nal

or

emer

gin

g ad

van

ced

spec

ializ

ed t

ech

nic

al

area

app

ropr

iate

to

civi

l en

gin

eeri

ng.

(B)

(M/3

0)(M

/30)

(M/3

0)(M

/30)

(E)

Out

com

eti

tle

Leve

l of c

ogni

tive

ach

ieve

men

t

1 K

now

ledg

e2

Com

preh

ensi

on3

App

licat

ion

4A

naly

sis

5 Sy

nthe

sis

6 Ev

alua

tion

Page 47: On!the!ABET!! ProgramCriteriafor ......On!the!ABET!! ProgramCriteriafor! CivilandSimilarlyNamedPrograms! Effective!for2016@2017!Accreditation!Cycle!!!! October16,!2015! Commentary!

110 CIVIL ENGINEERING BODY OF KNOWLEDGE FOR THE 21ST CENTURY

Pro

fe

ssio

na

l O

utco

me

s

16C

omm

un

icat

ion

List

th

e ch

arac

teri

stic

s of

ef

fect

ive

verb

al,

wri

tten

, vir

tual

, an

d gr

aph

ical

co

mm

un

icat

ion

s.

Des

crib

e th

e ch

arac

teri

stic

s of

eff

ecti

ve

verb

al, w

ritt

en, v

irtu

al, a

nd

grap

hic

al

com

mu

nic

atio

ns.

App

ly t

he

rule

s of

gr

amm

ar a

nd

com

posi

tion

in v

erba

l an

d w

ritt

en

com

mu

nic

atio

ns,

pr

oper

ly c

ite

sou

rces

, an

d u

se a

ppro

pria

te

grap

hic

al s

tan

dard

s in

pr

epar

ing

engi

nee

rin

g dr

awin

gs.

Org

aniz

e an

d de

live

r ef

fect

ive

verb

al, w

ritt

en, v

irtu

al,

and

grap

hic

al

com

mu

nic

atio

ns.

Pla

n, c

ompo

se, a

nd

inte

grat

e th

e ve

rbal

, w

ritt

en, v

irtu

al, a

nd

grap

hic

al

com

mu

nic

atio

n o

f a

proj

ect

to t

ech

nic

al

and

non

tech

nic

al

aud

ien

ces.

Eval

uat

e th

e ef

fect

iven

ess

of t

he

inte

grat

ed v

erba

l, w

ritt

en, v

irtu

al, a

nd

grap

hic

al

com

mu

nic

atio

n o

f a

proj

ect

to te

chn

ical

an

d n

onte

chn

ical

au

dien

ces.

(B)

(B)

(B)

(B)

(E)

17P

ubl

ic

pol

icy

Des

crib

e ke

y fa

ctu

al

info

rmat

ion

rel

ated

to

pu

blic

pol

icy.

Dis

cuss

an

d ex

plai

n ke

y co

nce

pts

and

proc

esse

s in

volv

ed in

pu

blic

pol

icy.

App

ly p

ubl

ic p

olic

y pr

oces

s te

chn

iqu

es t

o si

mpl

e pu

blic

pol

icy

prob

lem

s re

late

d to

ci

vil e

ngi

nee

rin

g w

orks

.

An

alyz

e re

al-w

orld

pu

blic

pol

icy

prob

lem

s on

civ

il en

gin

eeri

ng

proj

ects

.

Dev

elop

pu

blic

p

olic

y re

com

men

-da

tion

s, a

nd

crea

te o

r ad

apt a

sys

tem

to a

re

al-w

orld

situ

atio

n o

n

civi

l en

gin

eeri

ng

wor

k pr

ogra

ms.

Eval

uat

e th

e ef

fect

iven

ess

of a

pu

blic

pol

icy

in a

co

mpl

ex, r

eal-

wor

ld

situ

atio

n a

ssoc

iate

d

wit

h la

rge-

scal

e ci

vil

engi

nee

rin

g in

itia

tive

s.

(B)

(B)

(E)

18B

usi

nes

s an

d pu

blic

ad

min

istr

atio

n

List

key

fact

ual

in

form

atio

n r

elat

ed

to b

usi

nes

s an

d pu

blic

ad

min

istr

atio

n.

Exp

lain

key

con

cept

s an

d pr

oces

ses

use

d in

bu

sin

ess

and

publ

ic a

dmin

istr

atio

n.

App

ly b

usi

nes

s an

d pu

blic

adm

inis

trat

ion

co

nce

pts

an

d pr

oces

ses.

An

alyz

e re

al-w

orld

pr

oble

ms

invo

lvin

g bu

sin

ess

or p

ubl

ic

adm

inis

trat

ion

.

Cre

ate

or a

dapt

a

syst

em o

f bu

sin

ess

or

publ

ic a

dmin

istr

atio

n

to m

eet

a re

al-w

orld

n

eed.

Eval

uat

e a

syst

em

of b

usi

nes

s or

pu

blic

ad

min

istr

atio

n in

a

com

plex

, rea

l-w

orld

si

tuat

ion

.

(B)

(B)

(E)

Out

com

eti

tle

Leve

l of c

ogni

tive

ach

ieve

men

t

1 K

now

ledg

e2

Com

preh

ensi

on3

App

licat

ion

4A

naly

sis

5 Sy

nthe

sis

6 Ev

alua

tion

Page 48: On!the!ABET!! ProgramCriteriafor ......On!the!ABET!! ProgramCriteriafor! CivilandSimilarlyNamedPrograms! Effective!for2016@2017!Accreditation!Cycle!!!! October16,!2015! Commentary!

111CIVIL ENGINEERING BODY OF KNOWLEDGE FOR THE 21ST CENTURY

19G

loba

lizat

ion

Des

crib

e gl

obal

izat

ion

pr

oces

ses

and

thei

r im

pact

on

pr

ofes

sion

al p

ract

ice

acro

ss c

ult

ure

s,

lan

guag

es, o

r co

un

trie

s.

Exp

lain

glo

bal i

ssu

es

rela

ted

to p

rofe

ssio

nal

pr

acti

ce, i

nfr

astr

uct

ure

, en

viro

nm

ent,

an

d se

rvic

e po

pula

tion

s (a

s th

ey a

rise

ac

ross

cu

ltu

res,

lan

guag

es,

or c

oun

trie

s).

Org

aniz

e,

form

ula

te, a

nd

solv

e en

gin

eeri

ng

prob

lem

s w

ith

in a

gl

obal

con

text

.

An

alyz

e en

gin

eeri

ng

wor

ks a

nd

serv

ices

in

orde

r to

fun

ctio

n a

t a

basi

c le

vel i

n a

glo

bal

con

text

.

Dev

elop

cri

teri

a an

d gu

idel

ines

to a

ddre

ss

glob

al is

sues

.

Eval

uat

e di

ffer

ent

crit

eria

an

d gu

idel

ines

in

addr

essi

ng

glob

al

issu

es.

(B)

(B)

(B)

(E)

20Le

ader

ship

Def

ine

lead

ersh

ip

and

the

role

of a

le

ader

; lis

t lea

ders

hip

pr

inci

ples

an

d at

titu

des.

Exp

lain

th

e ro

le o

f a

lead

er a

nd

lead

ersh

ip

prin

cipl

es a

nd

atti

tude

s.

App

ly le

ader

ship

pr

inci

ples

to d

irec

t th

e ef

fort

s of

a s

mal

l, h

omog

enou

s gr

oup.

Org

aniz

e an

d di

rect

th

e ef

fort

s of

a g

rou

p.

Cre

ate

a n

ew

orga

niz

atio

n to

ac

com

plis

h a

com

plex

ta

sk.

Eval

uat

e th

e le

ader

ship

of a

n

orga

niz

atio

n.

(B)

(B)

(B)

(E)

21Te

amw

ork

Def

ine

and

list

th

e ke

y ch

arac

teri

stic

s of

ef

fect

ive

intr

adis

cipl

inar

y an

d m

ult

idis

cipl

inar

y te

ams.

Exp

lain

th

e fa

ctor

s af

fect

ing

the

abili

ty o

f in

trad

isci

plin

ary

and

mu

ltid

isci

plin

ary

team

s to

fu

nct

ion

eff

ecti

vely

.

Func

tion

eff

ecti

vely

as

a m

embe

r of

an

in

trad

isci

plin

ary

team

.

Fun

ctio

n e

ffec

tive

ly

as a

mem

ber

of a

m

ult

idis

cipl

inar

y te

am.

Org

aniz

e an

in

trad

isci

plin

ary

or

mu

ltid

isci

plin

ary

team

.

Eval

uat

e th

e co

mpo

siti

on,

orga

niz

atio

n, a

nd

per

form

ance

of a

n

intr

adis

cipl

inar

y or

m

ult

idis

cipl

inar

y te

am.

(B)

(B)

(B)

(E)

Out

com

eti

tle

Leve

l of c

ogni

tive

ach

ieve

men

t

1 K

now

ledg

e2

Com

preh

ensi

on3

App

licat

ion

4A

naly

sis

5 Sy

nthe

sis

6 Ev

alua

tion

Page 49: On!the!ABET!! ProgramCriteriafor ......On!the!ABET!! ProgramCriteriafor! CivilandSimilarlyNamedPrograms! Effective!for2016@2017!Accreditation!Cycle!!!! October16,!2015! Commentary!

112 CIVIL ENGINEERING BODY OF KNOWLEDGE FOR THE 21ST CENTURY

22A

ttit

ude

s

List

att

itu

des

supp

orti

ve o

f the

pr

ofes

sion

al p

ract

ice

of c

ivil

engi

nee

rin

g.

Exp

lain

att

itu

des

supp

orti

ve o

f th

e pr

ofes

sion

al p

ract

ice

of

civi

l en

gin

eeri

ng.

Dem

onst

rate

at

titu

des

supp

orti

ve o

f th

e pr

ofes

sion

al

prac

tice

of c

ivil

engi

nee

rin

g.

An

alyz

e a

com

plex

ta

sk to

det

erm

ine

wh

ich

att

itu

des

are

mos

t co

ndu

cive

to

its

effe

ctiv

e ac

com

plis

hm

ent.

Cre

ate

an

orga

niz

atio

nal

st

ruct

ure

tha

t m

ain

tain

s/fo

ster

s th

e de

velo

pmen

t of

at

titu

des

con

duci

ve t

o ta

sk a

ccom

plis

hm

ent.

Eval

uat

e th

e at

titu

des

of k

ey

mem

bers

of a

n

orga

niz

atio

n a

nd

asse

ss t

he e

ffec

t of

th

eir

atti

tude

s on

ta

sk

acco

mpl

ish

men

t.

(B)

(B)

(E)

23Li

felo

ng

lear

nin

g

Def

ine

lifel

ong

lear

nin

g.E

xpla

in t

he

nee

d fo

r lif

elon

g le

arn

ing

and

desc

ribe

th

e sk

ills

requ

ired

of a

life

lon

g le

arn

er.

Dem

onst

rate

the

ab

ility

for

self

-dir

ecte

d le

arn

ing.

Iden

tify

add

itio

nal

kn

owle

dge,

ski

lls, a

nd

at

titu

des

appr

opri

ate

for

prof

essi

onal

pr

acti

ce.

Pla

n a

nd

exec

ute

th

e ac

quis

itio

n o

f re

quir

ed e

xper

tise

ap

prop

riat

e fo

r pr

ofes

sion

al p

ract

ice.

Self

-ass

ess l

earn

ing

proc

esse

s an

d ev

alu

ate

thos

e pr

oces

ses

in li

ght

of

com

peti

ng

and

com

plex

rea

l-w

orld

al

tern

ativ

es.

(B)

(B)

(B)

(E)

(E)

24P

rofe

ssio

nal

an

d et

hica

l re

spon

sibi

lity

List

th

e pr

ofes

sion

al

and

eth

ical

re

spon

sibi

litie

s of

a

civi

l en

gin

eer.

Exp

lain

th

e pr

ofes

sion

al

and

eth

ical

res

pon

sibi

litie

s of

a c

ivil

engi

nee

r.

App

ly s

tan

dard

s of

pr

ofes

sion

al a

nd

eth

ical

resp

onsi

bilit

y to

de

term

ine

an

appr

opri

ate

cou

rse

of

acti

on.

An

alyz

e a

situ

atio

n

invo

lvin

g m

ult

iple

co

nfl

icti

ng

prof

essi

onal

an

d et

hic

al in

tere

sts

to

dete

rmin

e an

ap

prop

riat

e co

urs

e of

ac

tion

.

Syn

thes

ize

stu

dies

an

d ex

per

ien

ces

to

fost

er p

rofe

ssio

nal

an

d et

hic

al c

ondu

ct.

Just

ify

a so

luti

on t

o an

en

gin

eeri

ng

prob

lem

bas

ed o

n

prof

essi

onal

an

d et

hic

al s

tan

dard

s an

d as

sess

per

son

al

prof

essi

onal

an

d et

hica

l dev

elop

men

t.

(B)

(B)

(B)

(B)

(E)

(E)

Out

com

eti

tle

Leve

l of c

ogni

tive

ach

ieve

men

t

1 K

now

ledg

e2

Com

preh

ensi

on3

App

licat

ion

4A

naly

sis

5 Sy

nthe

sis

6 Ev

alua

tion