35
On the use of eddy-covariance and optical remote sensing data for biogeochemical modelling Markus Reichstein, Dario Papale Biogeochemical Model-Data-Integration Group, Max-Planck-Institute Jena Laboratory of Forest Ecology, University of Tuscia Carbon Fusion International Workshop Edinburgh, May 2006 BEAM -D IG M PI-BGC Biogeochemical Model-Data Integration Group

On the use of eddy-covariance and optical remote sensing data for biogeochemical modelling

  • Upload
    caden

  • View
    38

  • Download
    9

Embed Size (px)

DESCRIPTION

Biogeochemical Model-Data Integration Group. Carbon Fusion International Workshop Edinburgh, May 2006. On the use of eddy-covariance and optical remote sensing data for biogeochemical modelling. Markus Reichstein, Dario Papale - PowerPoint PPT Presentation

Citation preview

Page 1: On the use of eddy-covariance and optical remote sensing data for biogeochemical modelling

On the use of eddy-covariance and optical remote sensing data for biogeochemical

modellingMarkus Reichstein, Dario Papale

Biogeochemical Model-Data-Integration Group, Max-Planck-Institute Jena

Laboratory of Forest Ecology, University of Tuscia

Carbon Fusion International Workshop Edinburgh, May 2006

BEAM-DIG

MPI-BGC

BEAM-DIG

MPI-BGC

Biogeochemical

Model-Data Integration Group

Page 2: On the use of eddy-covariance and optical remote sensing data for biogeochemical modelling

Carbon Fusion Workshop, Edinburgh May 2006 Markus Reichstein

Ecosystem models

+ provide system understanding+ promise inter-/extrapolation capacity+ may include historical effects

– are simplifications of the world– can’t predict stochastic events

Remote sensing

+ objective/consistent observations+ spatially and temporally dense

– data quality lower– processes not directly observable,

no history, no prediction

Ecosystem data

+ Potentially high quality+ often high temporal resolution

– data compatibility ? – ‘point’ observations

BGC-Model-Data Integration Overview

Page 3: On the use of eddy-covariance and optical remote sensing data for biogeochemical modelling

Carbon Fusion Workshop, Edinburgh May 2006 Markus Reichstein

Outline

• Introduction to eddy covariance data

• Bottom-up perspective of an ‘ideal’ data integration-validation process

• Problems and obstacles in this process

Page 4: On the use of eddy-covariance and optical remote sensing data for biogeochemical modelling

Carbon Fusion Workshop, Edinburgh May 2006 Markus Reichstein

Observing ecosystem gas exchange: eddy covariance

Flux = speed x concentration

Pho

to:

Bal

docc

hi

Page 5: On the use of eddy-covariance and optical remote sensing data for biogeochemical modelling

Carbon Fusion Workshop, Edinburgh May 2006 Markus Reichstein

+ Measures whole ecosystem exchange of CO2 and H2O, …+ Non-destructive & continuous+ time-scale hourly to interannual+ integrates over large area

- only on flat sites- relies on turbulent conditions ==> data gaps, stochastic data- source area varying (flux footprint)- only ‚point‘ measurements

Does not deliver compartment fluxes, but:NEP = GPP - Reco

CO2, H2O

Eddy covariance

Page 6: On the use of eddy-covariance and optical remote sensing data for biogeochemical modelling

Carbon Fusion Workshop, Edinburgh May 2006 Markus Reichstein

Half-hourly eddy covariance data

-25-20-15-10

-505

1015

5/2001 6/2001 7/2001 8/2001 9/2001 10/2001 10/2001 11/2001 12/2001 1/2002

Ca

rbo

n f

lux

[µm

ol m

-2 s

-1]

-20

30

80

130

180

230

280

5/2001 6/2001 7/2001 8/2001 9/2001 10/2001 10/2001 11/2001 12/2001 1/2002

Wate

r flu

x [W

m-2

]

0.00

0.20

0.40

0.60

0.80

1.00

1.20

5/2001 6/2001 7/2001 8/2001 9/2001 10/2001 10/2001 11/2001 12/2001 1/2002So

il w

ate

r co

nte

nt

[fra

ctio

n F

C]

Respiration

Carbon uptake

Evapotransp.

Page 7: On the use of eddy-covariance and optical remote sensing data for biogeochemical modelling

Carbon Fusion Workshop, Edinburgh May 2006 Markus Reichstein

Network of ecosystem-level observations

>1000 site-years 1012 raw measurements (1013 bytes)

• Network and intercomparison studies• Harmonised and documented data processing

• Aubinet et al. (2000), Falge et al. (2001), Foken et al. (2002), Göckede/Rebmann/Foken (2004) : general set-up and methodology, quality assurance, gap-filling

• Reichstein et al. (2005), Glob. Ch. Biol.: u*-correction, gap-filling, partitioning of NEE

• Papale et al. (in prep), Biogeosciences: Quality control, eval. uncertainties• Moffat et al. (in prep): Gap-filling inter-comparison• Online processing tool: http://gaia.agraria.unitus.it/lab/reichstein/

Raw data Knowledge

1013 108 106 102 bytesTurb stat. Synth./aggr. Model param.

Page 8: On the use of eddy-covariance and optical remote sensing data for biogeochemical modelling

Carbon Fusion Workshop, Edinburgh May 2006 Markus Reichstein

Ideal model-data integration cycle (bottom-up)

Model(re)formulation(Definition of model

structure)Model

characterization(Forward runs, consistency check,

sensitivity, uncert. analysis)

Model parameter estimation

(Multiple constraint)

Parameterinterpretation

(Thinking)

Generalization(‘up-scaling’)

Model validation(against indep. data, by scale or quantity)

Model application

DATA

Page 9: On the use of eddy-covariance and optical remote sensing data for biogeochemical modelling

Carbon Fusion Workshop, Edinburgh May 2006 Markus Reichstein

The bottom-up model PROXEL

Canopy Layer 1Canopy Layer 2Canopy Layer 3

...

Canopy Layer n

Canopy

Solar radiation Air temperature [CO2] Relative humidity Wind speed

LAI, SAI

Leaf physiology

Phenology

CO2

H2O

Soil Layer 1Soil Layer 2Soil Layer 3

...

Soil Layer n

Soil

Air temperature Wind speed

Soil hydraulicparameters

Soil thermalparameters

Soil respirationparameters

PrecipitationWater

extraction

Vapour pressure

Root distri-bution

CO2

H2Oeffective soil

{Quantum use efficiency,electron transport and carboxylation capacities, stomatal conductance}

Page 10: On the use of eddy-covariance and optical remote sensing data for biogeochemical modelling

Carbon Fusion Workshop, Edinburgh May 2006 Markus Reichstein

I. Model charaterization / forward model run

Rei

chst

ein,

Ten

hune

n et

al.,

Glo

bal C

hang

e B

iolo

gy, 2

002

CO

2 flu

x of

GP

P [

µm

ol m

-2 s

-1]

00.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

-2

0

2

4

6

8

10

12

0 4 8 12 16 20 24Local time [hr]

H2O

flux

[m

m/h

]

(a)

(c)

Eddy cov.Sap flowModelled

Eddy cov.Modelled

Well watered conditions

0 4 8 12 16 20 24Local time [hr]

(b)

(d)

Drought stressed conditions

Page 11: On the use of eddy-covariance and optical remote sensing data for biogeochemical modelling

Carbon Fusion Workshop, Edinburgh May 2006 Markus Reichstein

II. Dual-constraint parameter estimation

Reic

hst

ein

et

al. 2

00

3, JG

R

Target region

Page 12: On the use of eddy-covariance and optical remote sensing data for biogeochemical modelling

Carbon Fusion Workshop, Edinburgh May 2006 Markus Reichstein

IIa. Inferred parameter timeseries

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

150 200 250 300

Estimated course of photosynthetic capacity (Vcmax)

Rel

ativ

e ca

paci

ty

Rain event

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

150 200 250 300

Rel

ativ

e

Rain event

Julian day

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

150 200 250 300

Estimated course of photosynthetic capacity (Vcmax)

Rel

ativ

e ca

paci

ty

Rain event

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

150 200 250 300

Rel

ativ

e

Rain event

Julian day

Page 13: On the use of eddy-covariance and optical remote sensing data for biogeochemical modelling

Carbon Fusion Workshop, Edinburgh May 2006 Markus Reichstein

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.2 0.4 0.6 0.8 1 1.2

Rel

ativ

e va

lue

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.2 0.4 0.6 0.8 1 1.2

Rel

ativ

e va

lue

Reichstein et al. 2003, JGR

III. Interpretation & Generalization

Relative soil water content

Rel

ativ

e le

af a

ctiv

ity

Page 14: On the use of eddy-covariance and optical remote sensing data for biogeochemical modelling

Carbon Fusion Workshop, Edinburgh May 2006 Markus Reichstein

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

ENF EBF DBF MF Sav Oshrub Crop

RU

E [

gC

/ M

J A

PA

R]

III. Interpretation and Generalization:Keyp. RUEmax

PFTs color coded

0 5 10

GPP_MOD17_MET [gC m-2 day-1]

0

5

10G

PP

[gC

m-2

day

-1]

0 5 10

0

5

10

Bi5/1

Bi7/1

Bi8/1Bi6/2Bi7/2Bi8/2

Bi9/2

Bi10/2

0 5 10

0

5

10

Bi1/1Bi2/1

Bi3/1Bi4/1

Bi5/1

Bi6/1Bi7/1

Bi8/1

Bi9/1Bi10/1

Bi11/1Bi12/1

0 5 10

0

5

10

Br1/1

Br2/1

Br3/1

Br4/1

Br5/1

Br6/1

Br7/1

Br8/1

Br9/1Br10/1Br11/1

Br12/1

0 5 10

0

5

10

El2/1

El3/1

El4/1

El5/1

El6/1

El8/1

El12/1El1/2

El6/2

El7/2

El8/2

El10/2El11/2El12/2

0 5 10

0

5

10

Ha1/1Ha2/1Ha3/1

Ha4/1

Ha5/1

Ha6/1

Ha7/1

Ha8/1

Ha9/1

Ha10/1

Ha11/1Ha12/1

0 5 10

0

5

10

He1/1 He2/1He3/1

He4/1

He5/1

He6/1He7/1

He8/1

He9/1

He10/1

He11/1

He12/1He1/2 He2/2

He3/2

He4/2

He5/2

He6/2He7/2

He8/2

He9/2

He10/2

He11/2He12/2

0 5 10

0

5

10

Hy1/1Hy3/1

Hy4/1

Hy5/1

Hy6/1

Hy7/1

Hy8/1

Hy9/1

Hy10/1

Hy11/1

0 5 10

0

5

10

Jo1/1Jo2/1Jo3/1Jo4/1Jo5/1

Jo6/1

Jo7/1

Jo8/1

Jo9/1

Jo10/1Jo11/1Jo12/1Jo1/2Jo2/2Jo3/2

Jo4/2

Jo5/2

Jo6/2

Jo7/2

Jo8/2

Jo9/2

Jo10/2Jo11/2Jo12/2

0 5 10

0

5

10

Mi1/1

Mi4/1

Mi6/1

Mi11/1

Mi2/2

Mi4/2

Mi7/2Mi9/2

0 5 10

0

5

10

No2/1

No3/1

No5/1

No6/1

No7/1

No8/1

No9/1

No10/1

No11/1No12/1

0 5 10

0

5

10

Pi4/2

Pi5/2

Pi6/2

Pi7/2

Pi8/2

Pi9/2

0 5 10

0

5

10

Pu1/1

Pu2/1

Pu3/1

Pu4/1Pu5/1

Pu6/1

Pu7/1

Pu8/1Pu9/1

Pu10/1Pu11/1

Pu12/1

0 5 10

0

5

10

Sa3/1

Sa4/1

Sa5/1Sa6/1

Sa7/1

Sa8/1

Sa9/1Sa10/1

Sa12/1

0 5 10

0

5

10

TC1/1TC2/1TC3/1

TC4/1

TC5/1

TC6/1

TC7/1

TC8/1

TC9/1

TC10/1

TC11/1

TC12/1TC1/2TC2/2

TC3/2 TC4/2

TC6/2

TC8/2

TC9/2

TC10/2

TC11/2TC12/2

0 5 10

0

5

10

Th1/1Th2/1

Th3/1

Th4/1

Th5/1

Th6/1

Th7/1

Th8/1

Th9/1

Th10/1

Th11/1

Th12/1

0 5 10

0

5

10

Vi1/1

Vi2/1

Vi3/1

Vi4/1

Vi6/1 Vi7/1

Vi8/1

Vi9/1

Vi10/1

Vi11/1

Vi12/1

0 5 10

0

5

10

Ya1/1

Ya2/1

Ya3/1

Ya6/1Ya8/1Ya9/1Ya10/1

Ya1/2

Ya2/2Ya3/2

Ya4/2

Ya5/2

Ya7/2 Ya8/2Ya9/2

Ya12/2

PFTs color coded

0 5 10

GPP_MOD17epsmax_new [gC m-2 d-1]

0

5

10G

PP

[gC

m-2

day

-1]

0 5 10

0

5

10

Bi5/1

Bi7/1

Bi8/1Bi6/2Bi7/2Bi8/2

Bi9/2

Bi10/2

0 5 10

0

5

10

Bi1/1Bi2/1

Bi3/1Bi4/1

Bi5/1

Bi6/1Bi7/1

Bi8/1

Bi9/1Bi10/1

Bi11/1Bi12/1

0 5 10

0

5

10

Br1/1

Br2/1

Br3/1

Br4/1

Br5/1

Br6/1

Br7/1

Br8/1

Br9/1Br10/1Br11/1

Br12/1

0 5 10

0

5

10

El2/1

El3/1

El4/1

El5/1

El6/1

El8/1

El12/1El1/2

El6/2

El7/2

El8/2

El10/2El11/2El12/2

0 5 10

0

5

10

Ha1/1 Ha2/1Ha3/1

Ha4/1

Ha5/1

Ha6/1

Ha7/1

Ha8/1

Ha9/1

Ha10/1

Ha11/1Ha12/1

0 5 10

0

5

10

He1/1 He2/1He3/1

He4/1

He5/1

He6/1He7/1

He8/1

He9/1

He10/1

He11/1

He12/1He1/2 He2/2

He3/2

He4/2

He5/2

He6/2He7/2

He8/2

He9/2

He10/2

He11/2He12/2

0 5 10

0

5

10

Hy1/1Hy3/1

Hy4/1

Hy5/1

Hy6/1

Hy7/1

Hy8/1

Hy9/1

Hy10/1

Hy11/1

0 5 10

0

5

10

Jo1/1Jo2/1Jo3/1 Jo4/1Jo5/1

Jo6/1

Jo7/1

Jo8/1

Jo9/1

Jo10/1Jo11/1Jo12/1Jo1/2Jo2/2Jo3/2

Jo4/2

Jo5/2

Jo6/2

Jo7/2

Jo8/2

Jo9/2

Jo10/2Jo11/2Jo12/2

0 5 10

0

5

10

Mi1/1

Mi4/1

Mi6/1

Mi11/1

Mi2/2

Mi4/2

Mi7/2Mi9/2

0 5 10

0

5

10

No2/1

No3/1

No5/1

No6/1

No7/1

No8/1

No9/1

No10/1

No11/1No12/1

0 5 10

0

5

10

Pi4/2

Pi5/2

Pi6/2

Pi7/2

Pi8/2

Pi9/2

0 5 10

0

5

10

Pu1/1

Pu2/1

Pu3/1

Pu4/1Pu5/1

Pu6/1

Pu7/1

Pu8/1Pu9/1

Pu10/1Pu11/1

Pu12/1

0 5 10

0

5

10

Sa3/1

Sa4/1

Sa5/1Sa6/1

Sa7/1

Sa8/1

Sa9/1Sa10/1

Sa12/1

0 5 10

0

5

10

TC1/1TC2/1TC3/1

TC4/1

TC5/1

TC6/1

TC7/1

TC8/1

TC9/1

TC10/1

TC11/1

TC12/1TC1/2TC2/2

TC3/2 TC4/2

TC6/2

TC8/2

TC9/2

TC10/2

TC11/2TC12/2

0 5 10

0

5

10

Th1/1Th2/1

Th3/1

Th4/1

Th5/1

Th6/1

Th7/1

Th8/1

Th9/1

Th10/1

Th11/1

Th12/1

0 5 10

0

5

10

Vi1/1

Vi2/1

Vi3/1

Vi4/1

Vi6/1 Vi7/1

Vi8/1

Vi9/1

Vi10/1

Vi11/1

Vi12/1

0 5 10

0

5

10

Ya1/1

Ya2/1

Ya3/1

Ya6/1Ya8/1Ya9/1Ya10/1

Ya1/2

Ya2/2Ya3/2

Ya4/2

Ya5/2

Ya7/2Ya8/2Ya9/2

Ya12/2

250.0500.0750.01000.01250.01500.01750.02000.0

0.00

2000.00

250.0500.0750.01000.01250.01500.01750.02000.0

0.00

2000.00

250.0500.0750.01000.01250.01500.01750.02000.0

0.00

2000.00

• inter-PFT variability• intra-PFT variability• f(species, N, T???)

Page 15: On the use of eddy-covariance and optical remote sensing data for biogeochemical modelling

IV. Validation at larger scale

70°N29,2° W

11° W 23° E

58° E

60°N

50°N

40°N

"Les Landes"

0

5

10

15

20

Flight 'Upscaled' Schmittgen et al. (2004), JGR

NE

E in

teg

rate

d 1

2:30

-14:

30[µ

mol

m-2

s-1]

Page 16: On the use of eddy-covariance and optical remote sensing data for biogeochemical modelling

Carbon Fusion Workshop, Edinburgh May 2006 Markus Reichstein

GCB, in press

Page 17: On the use of eddy-covariance and optical remote sensing data for biogeochemical modelling

Carbon Fusion Workshop, Edinburgh May 2006 Markus Reichstein

The problems

Page 18: On the use of eddy-covariance and optical remote sensing data for biogeochemical modelling

Carbon Fusion Workshop, Edinburgh May 2006 Markus Reichstein

To consider with DA of eddy covariance data:

• How is the error structure of the data itself?

• How to address mismatch of scales (‘point’ versus pixel)?– Remote sensing– Meteorological data

• How do perform up-scaling from tower sites?– Representativity– Generalization

Page 19: On the use of eddy-covariance and optical remote sensing data for biogeochemical modelling

Carbon Fusion Workshop, Edinburgh May 2006 Markus Reichstein

Errors in the data

Page 20: On the use of eddy-covariance and optical remote sensing data for biogeochemical modelling

Carbon Fusion Workshop, Edinburgh May 2006 Markus Reichstein

Error model influence on parameter estimates

Const. abs errors Const. rel. errors

Pa

ram

ete

r es

tima

te

Search strategy

I

II

Simplified after Trudinger et al. (OPTIC)

Page 21: On the use of eddy-covariance and optical remote sensing data for biogeochemical modelling

Carbon Fusion Workshop, Edinburgh May 2006 Markus Reichstein

Errors in eddy covariance data

• Random errors – ~ 30% for the half-hourly flux, (turbulences !)

• Systematic errors– can be largely controlled/avoided

• Selective systematic errors– Conditions where the theory does not apply:– Low turbulent conditions (night-time)– Advection→ good quality control necessary

→“Better few unbiased data, than a lot of biased data”

→Uncertainties: mean NEE > interannual variability

Page 22: On the use of eddy-covariance and optical remote sensing data for biogeochemical modelling

Carbon Fusion Workshop, Edinburgh May 2006 Markus Reichstein

Characterization of the random error

cf. Richardson et al. (2006)

Page 23: On the use of eddy-covariance and optical remote sensing data for biogeochemical modelling

Carbon Fusion Workshop, Edinburgh May 2006 Markus Reichstein

NEE

0 6 12 18 24

Jan

Feb

Mar

Apr

May

Jun

Jul

Aug

Sep

Oct

Nov

Dec

0 6 12 18 24

Jan

Feb

Mar

Apr

May

Jun

Jul

Aug

Sep

Oct

Nov

Dec

NEE_sigma

0 6 12 18 24

Jan

Feb

Mar

Apr

May

Jun

Jul

Aug

Sep

Oct

Nov

Dec

0 6 12 18 24

Jan

Feb

Mar

Apr

Jun

Jul

Aug

Sep

Oct

Nov

Dec

2468101214

0.00

15.00

-10-505101520

-13.0

20.0

NEE[µmol m-2 s-1]

NEE_sigma[µmol m-2 s-1]

Quantifying uncertaintie

s

Page 24: On the use of eddy-covariance and optical remote sensing data for biogeochemical modelling

Carbon Fusion Workshop, Edinburgh May 2006 Markus Reichstein

Error distribution of eddy covariance data

-20.0-16.9-13.8-10.8 -7.7 -4.6 -1.5 1.5 4.6 7.7 10.8 13.8 16.9 20.0

Error NEE [umol m-2 s-1]

0.00

0.10

0.20

0.30

0.40

1 0 3 6 3 11 10 20 31 39 75115

329

1401

3133

1286

371

16866 44 39 20 15 9 5 5 1 1 0

Skewness KurtosisGaussian: 0 0

Laplace: 0 6Empirical: -0.08 15

Page 25: On the use of eddy-covariance and optical remote sensing data for biogeochemical modelling

Carbon Fusion Workshop, Edinburgh May 2006 Markus Reichstein

Distribution of model error against eddy data

Chevalier et al. (in rev.)

Page 26: On the use of eddy-covariance and optical remote sensing data for biogeochemical modelling

Carbon Fusion Workshop, Edinburgh May 2006 Markus Reichstein

PDF only 10am-3pm and Jun-Sep

-13.9-12.5-11.1 -9.7 -8.2 -6.8 -5.4 -4.0 -2.6 -1.2 0.2 1.6 3.1 4.5 5.9 7.3 8.7 10.1 11.5 12.9 14.4Variable

0.00

0.05

0.10

0.15

10 0 0 0 0

10 0

2

7 76

14

17 17

29

42

38 38

3435

27

16

14

5

34

2

0 0 0 0 0 0 0 0 0 01

-13.9-12.5-11.1 -9.7 -8.2 -6.8 -5.4 -4.0 -2.6 -1.2 0.2 1.6 3.1 4.5 5.9 7.3 8.7 10.1 11.5 12.9 14.4NEE error

0.00

0.05

0.10

0.15

10 0 0 0 0

10 0

2

7 76

14

17 17

29

42

38 38

3435

27

16

14

5

34

2

0 0 0 0 0 0 0 0 0 01

NEE error

Page 27: On the use of eddy-covariance and optical remote sensing data for biogeochemical modelling

Carbon Fusion Workshop, Edinburgh May 2006 Markus Reichstein

More complicated error structures

Page 28: On the use of eddy-covariance and optical remote sensing data for biogeochemical modelling

Carbon Fusion Workshop, Edinburgh May 2006 Markus Reichstein

Maximizing the likelihood?

P

j jP

jjN

i iobs

iippOBSxf

J1

2,

2

12

,

2 ˆ

2

1,

2

1

p

Bayesian approachCost function:

Trust in data Trust in apriori model parameters

Page 29: On the use of eddy-covariance and optical remote sensing data for biogeochemical modelling

Carbon Fusion Workshop, Edinburgh May 2006 Markus Reichstein

Spatial representation problem I

• Does the tower site represent the grid cell of interest?

– 0.25-2km km for MODIS/SEAWIFS remote

sensing

– 30-100 km for meteorological fields

– 30-100 km for DGVMs, BGCs applied in

global context

Page 30: On the use of eddy-covariance and optical remote sensing data for biogeochemical modelling

Aerial photo

Spatial heterogeneity...

Landsat

MODIS

1 km

Page 31: On the use of eddy-covariance and optical remote sensing data for biogeochemical modelling

Carbon Fusion Workshop, Edinburgh May 2006 Markus Reichstein

It‘s not always so bad...

TM3 coeff. of variation

TM 3,4,7 MODIS 1,2,7

Dinh et al., subm.

Page 32: On the use of eddy-covariance and optical remote sensing data for biogeochemical modelling

Carbon Fusion Workshop, Edinburgh May 2006 Markus Reichstein

Spatial representation problem II

• Does the network of tower sites represent the spatial domain of interest or are there chances to generalize with scaling variables?

Page 33: On the use of eddy-covariance and optical remote sensing data for biogeochemical modelling

Carbon Fusion Workshop, Edinburgh May 2006 Markus Reichstein

Day of the year

fAP

AR

[M

OD

IS-R

T)

We have to have up-scaling strategies

Page 34: On the use of eddy-covariance and optical remote sensing data for biogeochemical modelling

Carbon Fusion Workshop, Edinburgh May 2006 Markus Reichstein

Conclusions

• Eddy covariance data contains a lot of interpretable information on both carbon and water cycle

• Inclusion of pools and fluxes for system understanding and for linking short and long time-scales necessary

• Major challenge within eddy data– Characterization of the error (random, bias)

– Scale and representativeness problem

– Interpret. & Generalization of site specific parameters

– Documentation of site dynamics, that may violate model structure (e.g., soil water, management)

Page 35: On the use of eddy-covariance and optical remote sensing data for biogeochemical modelling

Carbon Fusion Workshop, Edinburgh May 2006 Markus Reichstein

Conclusions