37
On the Spectroscopy Study of the Earthshine Spectra Marina von Steinkirch (laboratory partners: A. Massari and M. von Hippel) State University of New York at Stony Brook Department of Physics and Astronomy Received : April 24, 2012; accepted : April 24, 2012

On the Spectroscopy Study of the Earthshine Spectra

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: On the Spectroscopy Study of the Earthshine Spectra

On the Spectroscopy Study of the Earthshine Spectra

Marina von Steinkirch

(laboratory partners: A. Massari and M. von Hippel)

State University of New York at Stony Brook

Department of Physics and Astronomy

Received : April 24, 2012; accepted : April 24, 2012

Page 2: On the Spectroscopy Study of the Earthshine Spectra

– 2 –

ABSTRACT

We obtain a low-resolution optical spectrum of the faint glow from the dark

side of the Moon, i.e., the Earthshine. We extract the Earth’s spectrum from

it and observe absorption features of ozone, molecular oxygen, and water. The

spectra is fitted to five well-known models for the atmosphere and the ground

of a planet with life content. At short wavelengths, the largest contribution to

this spectra comes from Rayleigh scattering. At long wavelengths, enhancements

with values of 4 ± 5% starting at 740 nm were found, corresponding to the red

reflectivity edge of vegetation.

Subject headings: Earthshine · Earth’s Spectrum · biosignature

Page 3: On the Spectroscopy Study of the Earthshine Spectra

– 3 –

1. Introduction

The detection of exolife is one of the most important goals for future space missions.

Current space missions used to identify exoplanets include COROT, Spitzer and the Hubble

Space Telescope, as well as the secondary extended mission of Deep Impact (EPOCh)

which will observe the light reflected from exoplanets (1). ESAs Darwin mission (estimated

launch 2015) will aim to find and study the properties and composition of Earth-like

exoplanets in the infrared. Over 300 giant exoplanets already have been detected, and

hundreds, perhaps thousands more, are anticipated in the coming years. The nature of

these planets, including their orbits, masses, sizes, constituents, and likelihood that life

could develop on them, can be probed by a combination of observations and modeling.

Our observations tie in with current and future missions to observe and search for

life on exoplanets. By looking at the spectra of Earth, we can characterize what makes it

suitable for sustaining life - information that can be related to present and future exoplanet

observations. This search is characterized by the detection of possible biomarkers on

Earth-like exoplanets. On a first approach, they are simple molecules present in the planet’s

atmosphere, such as O2, O3, CO2, and H2O (see Fig.1-a). Further studies aim for the

detectibility of a proper signature of life from the planet’s surface, considering, for instance,

green vegetation as a biormaker (2).

Solar’s photon flux reaches the ground after absorption through Earth’s atmosphere.

In this case, vegetation reflects or transmits almost all incident radiation at wavelengths

where sunlight has about 40% of its energy. The vegetation reflectance (vegetation spectral

signature) has a well know spectrum, with a sharp edge of λ = 700 nm in the visible

electromagnetic spectra due to the missing photons used in photosynthetic process. This is

detected as a positive shift above the continuous spectra, starting at this wavelength, also

known as the Vegetation Red Edge (VRE) (see Fig. 1-b).

Page 4: On the Spectroscopy Study of the Earthshine Spectra

– 4 –

Fig. 1.— (i) Mars Express record of Earth spectrum on the visible, (ii) The vegetation spectral signature.

The Earthshine as a Tool to the Study of other Earth-like Systems

The observation of the spectrum of Moon Earthshine, i.e., the reflection of the Earth’s

light on the non-sunlit Moon, allows one to observe the Earth as any distant planet, and to

perform studies on the detectibility of biomarkers (e.g. VRE) in its spectrum. Extracting

the Earth albedo from the Earthshine spectrum requires the measurement of moonlight

spectra (lit side of the moon) and the Earthshine spectra (unlit portion of the moon) in the

visible wavelength (3) (see Fig. 2).

The spectrum of the light reflected by the planet, when normalized to the Sun (parent

star spectrum), gives the planet reflectance spectrum revealing its atmospheric and ground

color (if this is visible by a transparent atmosphere). Quantitatively, the Earth spectrum

from the Earthshine depends on the following variables:

• the Sun spectrum as seen from outside of Earth’s atmosphere, S(λ),

• the Earth’s atmospheric transmittance, AT (λ),

• the moonlight (sunlight reflected by the Moon’s surface), MS(λ),

Page 5: On the Spectroscopy Study of the Earthshine Spectra

– 5 –

Fig. 2.— (i) Moon’s Earthshine and the schematic illustration of the dark and bright side of the moon,

(ii) Schematic illustration of the sunlight reflected from the the Earth.

• the earthshine, ES(λ),

• the lunar reflectance, MS(λ),

• the Earth’s reflectance, ER(λ).

So we can write

MS(λ) = S(λ) × MR(λ) × AT (λ) × g1,

and

ES(λ) = S(λ) × ER(λ) × MR(λ) × AT (λ) × g2.

The Earth’s reflectance is given by the ratio of the two equations,

ER(λ) =ES(λ)g1

MS(λ)g2

, (1)

where EM(λ) and MS(λ) should be recorded simultaneously to avoid airmass variation,

and g1, g2 are geometric factors related to the position of Sun, Moon and Earth, and they

can be set to unity.

Page 6: On the Spectroscopy Study of the Earthshine Spectra

– 6 –

The vegetation red edge is extracted from ER(λ),

V RE =rI − rR

rR

, (2)

where rI and rR are the near infrared and red reflectance integrated over the spectral

domains (∼ 10 nm width) (1) (4) (5).

Page 7: On the Spectroscopy Study of the Earthshine Spectra

– 7 –

2. Observations

This experiment aims to obtain an optical spectrum of Earthshine and test for the

presence of biomarker features,e.g., O2, O3, H2O, and the presence of the vegetation red

edge through fits of several models’ components to the observed spectrum. The observations

were performed on the Mt. Stony Brook 14-inch telescope, with the DADOS optical

spectrograph (6), and the SBIG STL-402 CCD camera (7), on the date of April 17th,

from 1:30 am to 5:30 am. The sky was clean and the temperature was around 55◦ F. The

overall cloud cover from the archival satellite imagery and the Earth seen from the moon,

can be seen in the figures 12 and 13, in the appendix.

2.1. Setting up the Spectrometer

A spectrometer splits the incoming light of Earthshine by wavelength, having previously

been focused by the optical section of the instrument. The intensity of light at each

wavelength is measured and recorded by the detector, and it is then plotted against light

intensity, which is analyzed to find a number of features. In order to pick up the key

features of oxygen, water and vegetation red edge, we investigate the visible and near

infrared sections of the electromagnetic spectrum, with light of wavelengths between 500 to

800 nm.

Earthshine is brightest when most of the Earth as seen from the Moon is illuminated,

i.e., when the Moon is only a thin crescent. However, if the Moon is too close to the Sun,

there are difficulties separating the glow of Earthshine from the bright twilight sky (3). We

select a night of waxing crescent moon when the angular separation from the Sun to the

moon (from the moonrise to the sunrise) is suitable for the experiment. This means that the

moon is sufficiently high above the horizon (> 20◦), yet sufficiently close to the Sun (< 90◦)

Page 8: On the Spectroscopy Study of the Earthshine Spectra

– 8 –

so that the Earthshine signal is bright. The observations cease at sunrise, since when the

Sun reaches about 5◦ below the horizon, the sky will be too bright to measure Earthshine.

We set the optical wavelength range of the spectrograph to cover our chosen set of

Earthshine absorption by molecular O2, O3, H2O. This was done before mounting the

spectrograph on the telescope with the help of the Neon light source. We looked up the

wavelengths of the strongest Neon gas transitions in the optical, adjusting the wavelength

range of the spectrograph. We use the DADOS spectrograph with long integration times.

To maximize the spectral resolution the narrowest width slit 25µm is to be used. This gives

a spectral resolution of λ/∆λ ∼ 500.

Setting the telescope tracking rate to lunar (Autostar II keypad), we obtain sequences

of spectra of the bright (moonshine) and dark (earthshine) sides of the facing Moon, each

of them together with the adjacent sky (in the adjacent slit). We also take calibration

exposures of the Neon light source and darks with duration matched to the duration of all

of the science exposures.

2.2. Estimative of Exposure Times

The Earthshine usually has low S/N (signal to background) ratio because the

observations are obtained with Moon low above the horizon, and consequently a high

airmass and low Earthshine fluxes with respect to the sky. Moreover, the detector can be

quickly saturated when recording the spectrum of the sunlit Moon crescent. When it comes

to the vegetation signal, the Earthshine data reduction becomes even more difficult: past

works (2) have shown that it is only a few percent (less than 5%) above the continuum.

Two reasons for this are pointed in the literature: (i) the variable amplitude, induced by a

variable cloud cover and the Earth phase, (ii) the strong astmospheric bands which need to

Page 9: On the Spectroscopy Study of the Earthshine Spectra

– 9 –

be removed to access the surface reflectance.

Assuming that the signal is limited to photons, the signal to background ratio for each

of the sciences can be written as

S/N =√

Nγt, (3)

where t is the time of integration ans Nγ the number of photon counts.

First, we make an estimate of the exposure time for the dark and the bright side of

the waxing crescent moon, supposing that their S/N are similar. Considering that the full

moon has magnitude mfull = −12.7 and the new moon has magnitude mnew = −2.5, the

ratio of photon fluxes for the dark and bright side of the moon (7) is

Rd/b ∼Fdark

Fbright

,

∼ 0.1 × 10(mfull−mnew)/2.5,

∼ 103.

We can then derive the exposures times for each side,

tbright × Nγ bright ∼ tdark × Nγ dark × R−1d/b.

The last result means that if we keep the number of counts constant for the dark and

bright sides, we should aim for calibration dark exposure times of around 1000 larger than

those for bright, e.g., we should have at least 90 minutes of net observation of the dark side

for a 5 seconds exposure of the bright side. However, due the observational constrains, we

ended up collecting only 1/4 of this value, as it is shown in the Table 1 of the appendix.

2.3. Steps of Data Acquisition

The data acquisition was performed by the following steps, based on the exposure

times in the Table 1 in the appendix:

Page 10: On the Spectroscopy Study of the Earthshine Spectra

– 10 –

1. We record the spectrum of the Neon lamp on all the slits.

2. We record a non-saturated spectrum of a bright stellar point source (Altair) at two

distinct positions on the slit. We trace their spectrum, which gives the direction along

which we extract the spectrum of the Earthshine.

3. We track the dark side of the Moon, positioning the dark limb in one slit and the

adjacent on the other and recording the spectra.

4. We measure the illuminated limb of the moon in the same way, with a much smaller

time to avoid saturation.

5. We repeat the above three procedures while the Sun is still not close enough to the

Moon.

6. We obtain sets of dark frames for all the exposure times of our sciences.

Page 11: On the Spectroscopy Study of the Earthshine Spectra

– 11 –

3. Data Reduction

The CCD observations are registered as astronomical images (FITS, Flexibble Image

Transport System). All the analysis was done in IDL and ATV (8) - the source codes are

included in the appendix.

3.1. CCD Dark Frame Calibration

The first step of the data reduction is to remove the various instrumental artifacts

of the CCD, by calibrating the science images. We create dark master frames for every

exposure times, i.e., median combined frames of the CCD closed, the high signal-to-noise

dark. We subtract these frames from the respective science frames with same exposure

times and median combine these last to form a deep exposure frame.

3.2. Spectra Trace Calibration

Spectra are arranged on the CCD in a manner that most efficiently makes use of the

detector size/area. Before these spectra can be extracted, their exact positions on the

CCD must be mapped. This is the process of aperture tracing. To this, we calculated the

spectra’s trace from two methods:

1. Method 1: From a standard point source;

2. Method 2: By integrating the 1 + 1/2 strips.

The trace of the point source, e.g., a bright (standard) star in the sky, is taken by

positioning this star in each of the three slits. With ATV (8), it is possible to extract the

Page 12: On the Spectroscopy Study of the Earthshine Spectra

– 12 –

spectral flux distribution 1, Fλ, as shown in the Fig. 3.

Fig. 3.— Trace extraction from a point source star in each of the three slits (from ATV).

For the Moonshine, the flux is very high and using only the the point source trace

(method 1) was enough. (see Figs. 4).

Only for the Earthshine, due to their much lower signal (in the same order of the

adjacent sky), we determine a second set of data (method 2), aiming to extract more

statistics from the data. We proceeded integrating over the whole Earthshine strip and

adding half of the middle strip (which has the adjacent sky on the other half).

3.3. Adjacent Sky Subtraction

Both the dark and bright side of the Moon are corrected for scattered light in the

telescope by subtracting the adjacent sky spectrum. The adjacent skies were always

extracted in the same way the their respective set of data. The sky-subtracted spectra can

been in the see Figs. 5.

After these reductions we were able to calculate the signal to background for the

Earthshine (methods 1 and 2) and for the Moonshine spectra, obtaining S/Npointearth = 1.8,

1Loading the image with decomposed, device=0 option and pressing x on it.

Page 13: On the Spectroscopy Study of the Earthshine Spectra

– 13 –

Fig. 4.— Extraction of the point source spectra for the bright (above) and dark (below) side

of the waning crescent moon and its adjacent sky (from ATV).

S/N stripearth = 3.4 and S/Nmoon = 148, respectively.

3.4. Obtaining the Reflectivity of Earth

The reflectivity of Earth is the ratio of the Earthshine to the Moonlight spectra, i.e., by

reducing the contribution of the extra passage of the Sun through the Earth’s atmosphere

in the spectrum of the Earthshine. Dividing the dark side by the bright side (the earthshine

by the moonshine) for methods 1 and 2, we obtain the Fig. 6. We confirm that they show

a very good agreement, with a very small enhancement from the method 2. We shall use

Page 14: On the Spectroscopy Study of the Earthshine Spectra

– 14 –

Fig. 5.— Earthshine spectra from method 1(top) and method 2 (down), comparing to the

scaled Moonshine spectra, in function of CCD pixel counts, and wavelength calibrated.

only this spectra on the following analysis and refer to it as the Earthshine reflectivity.

3.5. Absolute Spectra Calibration

To obtain the absolute wavelengths of the Earthshine spectrum, we measure the

spectrum of a neon calibration lamp and compare it to the well-known wavelengths of neon

transitions, see Fig. 7.

We find the λ/pixels scale dispersion and we reduce the Earthshine spectra from it.This

results on the Earthshine spectra correlation to light wavelengths, i.e., the reflectivity of

the Earth.

Page 15: On the Spectroscopy Study of the Earthshine Spectra

– 15 –

Fig. 6.— Earthshine reflectivity from method 1 and 2, scaled to each other.

Fig. 7.— Wavelength transitions of neon: (left) from the literature (10), (right) experimen-

tally obtained.

Page 16: On the Spectroscopy Study of the Earthshine Spectra

– 16 –

Fig. 8.— The Reflectivity of the Earth.

Page 17: On the Spectroscopy Study of the Earthshine Spectra

– 17 –

4. Data Analysis and Results

4.1. Detecting Molecular Gas Features

We compare the final sky-subtracted and wavelength calibrated spectrum of the

Earthshine to predictions and existing measurements. First, we detect the molecular bands

of O2, O3, and H2O by comparing the absorption lines obtained from (9). We verify that

the abundance of those components are compatible to the literature (see Fig. 9).

Fig. 9.— Atmospheric molecular bands detected in the Earthshine spectrum.

The presence of strong absorption lines in the near infrared when comparing to shorter

regions (blue) of the spectra indicates that if human vision were sensitive a little further

toward the red, the natural world would be very red and exceeding bright. In the next

session we also see that the blue spectrum from the subsurface ocean water has a very small

contribution ranging for wavelengths around 500 to 600 nm.

Page 18: On the Spectroscopy Study of the Earthshine Spectra

– 18 –

4.2. Detecting the Vegetation Red Edge

The main contributors to the optical spectrum of Earthshine (5) (12) are

1. The neutral reflectivity from high clouds (same as the Sun (blackbody) with

T ∼ 5700K and independent of the wavelength).

2. The blue spectrum of subsurface ocean water (see Fig. 10 (right)) .

3. The transmission of Earth’s clear atmosphere.

4. The Rayleigh scattering (proportional to 1/λ4).

5. The vegetation reflection spectrum from land chlorophyll plants (see Fig. 10 (left)).

Fig. 10.— Some of the models we fitted our spectra: (left) Vegetation reflection and (right)

Ocean Surface.

We fit together each of the previous five models to our spectra of the Eartshine,

inferring the partial contributions to the combined spectrum (see Fig. 11), i.e., our model

has 5 parameters. We calculate the best values for these parameters to minimize χ2point on

each point then integrate to an acceptable final value of χ2 = 7.8 (see fitting code in ROOT

Page 19: On the Spectroscopy Study of the Earthshine Spectra

– 19 –

in the appendix). We assume the data are normally distributed with a variance equal to

the mean and the data points are independent from each other, so we can use the level of

significance of α > 0.1 for the fit. For five parameters, the χ25 should be less than 9, so we

see that our fit is indeed significant: χ2 is not too large for a good fit and it is large enough

to reject the null hypothesis (5).

Fig. 11.— The main models to the optical spectrum of Earthshine which we fit to our data.

They are scaled in the plot for a better display.

The most important components in the fitting are the Rayleigh scattering (high cloud

continuous) in the beginning of the spectra and the clear atmosphere (molecular spectrum)

in the whole range.

We calculate the vegetation edge from equation 2. With mean reflectances in the [600,

670 nm] and [740, 800 nm] windows in the spectrum, we obtain V GE = 4 ± 5%, which was

small but compatible with the literature (12). The errors were estimating by looking at the

Page 20: On the Spectroscopy Study of the Earthshine Spectra

– 20 –

standard deviation during a “flat” part of the spectra and dividing by the mean in that

region.

Page 21: On the Spectroscopy Study of the Earthshine Spectra

– 21 –

5. Conclusion

The spectrum of the Earth as it would appear to an extrasolar observer is useful for

learning how to analyze the spectra of extrasolar planets. It illustrates both atmospheric

and surface reflectivity features.

The main contribuition for the spectra comes from the atmosphere transmission. We

also see enhanced reflectivity at short wavelengths from Rayleigh scattering and apparently

negligible contributions from aerosol and ocean water scattering. We see enhanced

reflectivity of 4 ± 5% at long wavelengths starting at about 740 nm, corresponding to the

well-known vegetation red-edge. Our fittings for the Earth’s reflection spectrum shows good

agreement with the combination of reflectance, scattering, and transmission models.

The vegetation signal was not very significant mostly because of the difficulties of the

observation - we had a signal-to-background ratios of S/N < 5. Although the observations

had great part of reflecting land and had not much high clouds in the atmosphere (see

figures 12 and 13), the low signal is due to the fact that we only had 20 minutes of net

observation for the Earthshine (less than one fourth of the minimum we had estimated in

the beginning of the report).

In conclusion, we have shown that an observer in a nearby stellar system, with the same

or better resources used in this experiment, would be able to use the oxygen, water and

ozone absorption features to suspect the presence of life on Earth. The small chlorophyll

red-edge reflection feature might also help to confirm the presence of life.

Page 22: On the Spectroscopy Study of the Earthshine Spectra

– 22 –

REFERENCES

Arnold, L., et al. 2008, ApJ, 135, 323

Seager, R., et al. 2005, ApJ, 5, 3

Woolf, E., et al. 2002, ApJ, 574, 433

Arnold, L., et al. 2002, astro-ph:02063

Metchev, The Spectrum of Earthshine: Experiment Writeup, 2012.

DADOS, Spectrograph Manual, 2008

ccd, Visible-light CCD Camera Manual, 2012

ATV.PRO, http://www.physics.uci.edu/ barth/atv/, as in 04/2012

NIST Atomic Spectra Database, http://www.nist.gov/pml/data/asd.cfm, as in 04/2012

NEON spectrum, http://www.astro.sunysb.edu/metchev/, as 04/2012

Parameters for spectrum simulation, http://hitran.iao.ru, as in 04/2012

Resource for spectra of vegetation and ocean water,

http://speclab.cr.usgs.gov/spectral.lib06/ds231/datatable.html, as in 04/2012

Page 23: On the Spectroscopy Study of the Earthshine Spectra

– 23 –

Fig. 12.— Cloud coverage on Earth for the period of observations.

Fig. 13.— Earth seen from the Moon in the begin and the end time of our observations.

Page 24: On the Spectroscopy Study of the Earthshine Spectra

– 24 –

Fig. 14.— Phases of the moon for the month we were observing. The data was taken on the

17th, a waning crescent moon.

Table 1. DADOS Spectrograph Observations Log Sheet

File Object Exp. Time (s) Position in the Slit Slit (µm)

cal/1 Neon 1 in all of them 200

cal/2 Star - Altair 30 middle 200

cal/3 Star - Altair 30 bottom 200

cal/4 Star - Altair 60 top 200

bright/15/1-5 Moonshine 15 Sky on top 200

bright/30/1-5 Moonshine 30 Sky on top 200

dark/1-10 Earthshine 120 Sky on bottom 200

Page 25: On the Spectroscopy Study of the Earthshine Spectra

����������AB��CA�D

EFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

EFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

E

E������������������������������ !"#$"%

E

E���&&��������'������������(&������)(*�����������+

E $,�������AB��CA�D-����.../������0��12���AB��CA�D

E ",�2��C343AD2-����.../�25C���C�4�6��2��C343AD2

E 7,�D2�D-����../�D2�D���AB��CA�D

E 8,��A�9��14-�����.../���ADC�1�2�:���B�D�4

E ;,�0AC-����<�0AC-��.../�1��2�0ACCAD9

E

EFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

EFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

=��D4C�DC4

E......................................................................

E�$,��2���C32���C32�A1�924��0��:��4�A2D�2���:C�ADC���D�����6�>��?,

E......................................................................

E...������4A�2

0���A@#����:1B2�'A24(���.$����B29AD

�(���>A�F�F,�@��2��0AC4>�(���'��2�<�4C�C�A1>A<$�",�<�A-'��A�3(�,

2D�0��

E...�B�A93C�4A�2�>C?��CA12�25��4:�24,

0���A@#����:1B2�'A24B�A93C.$����B29AD

A0�A�C�;�C32D�B29AD

�B�A93C$;>A�F�F,�@��2��0AC4>�B�A93C'��2��#%�<�4C�C�A1>A<$�",�<�A-'��A�3B�,

2D�A0�242�B29AD�

C@A.��:1B2�'A24B�A93C$;

�B�A93C7#>C�F�F,�@�2��0AC4>�B�A93C'��2��$%�<�4C�C�A1>A<$�",�<�A-'��A�3B�,

2D�242

2D�0��

E.....���AB��CA�D�����

0���C@#����:1B2��5��A12.$����B29AD

0���A@#����:1B2�'A24(�����.$����B29AD

0(��@��(�����'��2��C%�<�4C�C�A1>A<$�",�<�A-'��A

A0�C�2D�#�C32D� �(�����$;>A�F�F,�@��2��0AC4>0(���3(�,

A0�C�2D�$�C32D� �(�����7#>A�F�F,�@��2��0AC4>0(���3(�,

A0�C�2D�"�C32D� �(�����$"#>A�F�F,�@��2��0AC4>0(���3(�,

2D�0��

2D�0��

E....�12�A�D���1BADAD9�

0���5@#��'��12�AE2F.$����B29AD

0���6@#��'��12�AE2*.$����B29AD

�(���'��12>5�6,�@�12�A�D>��(���>F�5�6,��!2G2D�,

�B�A93C$;'��12>5�6,�@�12�A�D>��B�A93C$;>F�5�6,��!2G2D�,�

�B�A93C7#'��12>5�6,�@�12�A�D>��B�A93C7#>F�5�6,��!2G2D�,�

Page 26: On the Spectroscopy Study of the Earthshine Spectra

�(�����$;'��12>5�6,�@�12�A�D>��(�����$;>F�5�6,��!2G2D�,�

�(�����7#'��12>5�6,�@�12�A�D>��(�����7#>F�5�6,��!2G2D�,�

�(�����$"#'��12>5�6,�@�12�A�D>��(�����$"#>F�5�6,��!2G2D�,�

2D�0��

2D�0��

E....�?�ACAD9�0AC4

?�AC20AC4����:C��<�A����#-0ACA���(���'��12��3(�

?�AC20AC4����:C��<�AB�A93C#H$;-0ACA���B�A93C$;'��12��3B�

?�AC20AC4����:C��<�AB�A93C#H7#-0ACA���B�A93C7#'��12��3B

�(�����2�@��(���'��12

�B�A93C$;��2�@��B�A93C$;'��12

E.........................................................................

E",��:B4C���C�����-

E.........................................................................

E...��24�:�AD9�

0���A@#����:1B2�'A24(���.$����B29AD

�(���>A�F�F,�@��(���>A�F�F,�.��(�����$"#'��12

2D�0��

0���A@#����:1B2�'A24B�A93C$;.$����B29AD

�B�A93C$;>A�F�F,�@��B�A93C$;>A�F�F,�.��(�����$;'��12

2D�0��

0���A@#����:1B2�'A24B�A93C7#.$����B29AD

�B�A93C7#>A�F�F,�@��B�A93C7#>A�F�F,�.��(�����7#'��12

2D�0��

E....�12�A�D���1BADAD9�

0���5@#��'��12�AE2F.$����B29AD

0���6@#��'��12�AE2*.$����B29AD

�(���'��12>5�6,�@�12�A�D>��(���>F�5�6,��!2G2D�,

�B�A93C$;'��12>5�6,�@�12�A�D>��B�A93C$;>F�5�6,��!2G2D�,�

�B�A93C7#'��12>5�6,�@�12�A�D>��B�A93C7#>F�5�6,��!2G2D�,�

2D�0��

2D�0��

E....�?�ACAD9�0AC4

?�AC20AC4����:C��<�A����-0ACA���(���'��12��3(�

?�AC20AC4����:C��<�AB�A93CH$;-0ACA���B�A93C$;'��12��3B�

?�AC20AC4����:C��<�AB�A93CH7#-0ACA���B�A93C7#'��12��3B�

4�G2���(���'��12�����B�A93C$;'��12���0A2D�12@���:C�<�A����HB�A93C-��CA

2D�

Page 27: On the Spectroscopy Study of the Earthshine Spectra

����������AB�

CDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD

CDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD

C

C�EF����������������������������� !" #

C

C

C�$�%��������&'�()���*�A�B��+����,��������*��,����-AB�,�%��-�������AB����*����

C��B����.

CDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD

CDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD

/*�B��B�

C00000000000000���,AB1������22�����*�2A)����,�A-�1���%��(��*A�B*�

���,*�2�*�(�34������AB�".�5�4���6��������������AB�" C��7���2A�

���,*�2�*�(�34������AB�&'".�5�4��6������&'���������AB��&'"

���,*�2�*�(�34������AB� .�5�4���6��������������AB�

���,*�2�*�(�34������AB�&' .�5�4��6������&'���������AB��&'

���,*�2�*�(�34������AB�8.�5�4���6��������������AB�8

���,*�2�*�(�34������AB�&'8.�5�4��6������&'���������AB��&'8

���,*�2�*�(�34������AB�9.�5�4���6��������������AB�9

���,*�2�*�(�34������AB�&'9.�5�4��6������&'���������AB��&'9

���,*�2�*�(�34������AB�:.�5�4���6��������������AB�:

���,*�2�*�(�34������AB�&':.�5�4��6������&'���������AB��&':

���,*�2�*�(�34������AB�;.�5�4���6��������������AB�;

���,*�2�*�(�34������AB�&';.�5�4��6������&'���������AB��&';

���,*�2�*�(�34������AB�.�5�4���6��������������AB� C���AB���(�*�����*�

���,*�2�*�(�34������AB�&'.�5�4��6������&'���������AB��&'

���,*�2�*�(�34-��B�AB�.�5�4���6F��B���F��B�AB� C":��* �5��

���,*�2�*�(�34-��B�AB�&'.�5�4���6F��B�&'���F��B�AB��&'

���,*�2�*�(�34-��B�AB�".�5�4���6F��B���F��B�AB�" C�8!��*��5��

���,*�2�*�(�34-��B�AB�&'".�5�4���6F��B�&'���F��B�AB��&'"

C0000000000000000000000000000000000000000000000000

C�"<���=��>$���������?���F��������.

C0000000000000000000000000000000000000000000000000

�F��B�AB��@��F��B�AB��3��F��B�AB�"� �0��F��B�AB��&'�0��F��B�AB��&'"�

�F��B�AB��@�-�,A�BA��F��B�AB�� <

C00000000���2*(2��AB1����

��F��B�@��F��B�AB��A�F��B�AB��&'"�3�F��B�AB��&'<

��AB���F�,A�BA��F��B<

C0000000000000000000000000000000000000000000000000

C� <���=��>$���������?�������������.

C0000000000000000000000000000000000000000000000000

C000���AB���(�*�����*�

�������AB�?��-�"@��������AB�

�������AB��&'?��-�"�@��������AB��&'

C�0000�AB��1���AB1��7�����A�

Page 28: On the Spectroscopy Study of the Earthshine Spectra

�������AB�?��-� @��������AB�"3�������AB� �3��������AB�8�3�������AB�9�3�������AB�:3�������AB�;

�������AB��&'?��-� �@�

�������AB��&'"3�������AB��&' 3�������AB��&'83�������AB��&'93�������AB��&':3�������AB��&';

C�00000�-��*�AB1�&'�)�%����()���*�A�B

*��B1�@+����A�6������1��9!!��B,��6������2���:!!<

*�����F�5�@�-ABA�������AB�?��-�"E*��B1�#<

A�����F�5�@�+����A�������AB�?��-�"��B�*�����F�5<

*������&'F�5�@�-ABA�������AB��&'?��-�"E*��B1�#<

A������&'F�5�@�+����A�������AB��&'?��-�"��B�*������&'F�5<

*CA%%�@�A�����F�5�0�A������&'F�5�

*�AD�F��B@�BE�2�-�B�A�������AB��&'?��-�"<

%���A�@�!��*�AD�F��B0"�,��)�1AB

�������AB��&'?��-�"AA<�@��������AB��&'?��-�"AA�3�*CA%%<

�B,%��

*�����F�5�@�-ABA�������AB�?��-� E*��B1�#<

A�����F�5�@�+����A�������AB�?��-� ��B�*�����F�5<

*������&'F�5�@�-ABA�������AB��&'?��-� E*��B1�#<

A������&'F�5�@�+����A�������AB��&'?��-� ��B�*������&'F�5<

*CA%%�@�A�����F�5�0�A������&'F�5�

*�AD�F��B@�BE�2�-�B�A�������AB��&'?��-� <

%���A�@�!��*�AD�F��B0"�,��)�1AB

�������AB��&'?��-� AA<�@��������AB��&'?��-� AA�3�*CA%%<

�B,%��

C�0000()���*�A�B��-�,A�B�*�-)ABAB1

�������AB�?��-�"�@��������AB�?��-�"�0��������AB��&'?��-�"

�������AB�?��-�"�@�-�,A�BA�������AB�?��-�"� <

�������AB�?��-� �@��������AB�?��-� �0��������AB��&'?��-�

�������AB�?��-� �@�-�,A�BA�������AB�?��-� � <

C00000000���2*(2��AB1����

�������"�@��������AB�?��-�"��������AB��&'?��-�"

��AB���F�,A�BA�������"<

������� �@��������AB�?��-� ��������AB��&'?��-�

��AB���F�,A�BA������� <

C0000000000000000000000000000000000000000000000000

C�9<��6�����������?F�������=��B,��F������.

C0000000000000000000000000000000000000000000000000

C00000�-��*�AB1�-��B�AB���B,�������AB��)�%����()���*�A�B

*��B1�@+����A�6������1��9!!��B,��6������2���:!!<

*�����F�5�@�-ABA�������AB�?��-�"E*��B1�#<

A�����F�5�@�+����A�������AB�?��-�"��B�*�����F�5<

*F��BF�5�@�-ABA�F��B�AB�E*��B1�#<

AF��BF�5�@�+����A�F��B�AB���B�*F��BF�5<

*CA%%�@�AF��BF�5�0�A�����F�5

*�AD�F��B@�BE�2�-�B�A�F��B�AB�<

%���A�@�!��*�AD�F��B0"�,��)�1AB

�F��B�AB�?��-�"AA<�@��F��B�AB�AA�3�*CA%%<

�B,%��

*��B1�@+����A�6������1��9!!��B,��6������2���:!!<

Page 29: On the Spectroscopy Study of the Earthshine Spectra

*�����F�5�@�-ABA�������AB�?��-� E*��B1�#<

A�����F�5�@�+����A�������AB�?��-� ��B�*�����F�5<

*F��BF�5�@�-ABA�F��B�AB�E*��B1�#<

AF��BF�5�@�+����A�F��B�AB���B�*F��BF�5<

*CA%%�@�AF��BF�5�0�A�����F�5

*�AD�F��B@�BE�2�-�B�A�F��B�AB�<

%���A�@�!��*�AD�F��B0"�,��)�1AB

�F��B�AB�?��-� AA<�@��F��B�AB�AA�3�*CA%%<

�B,%��

C000000��2��AB1

,�7A*���,�*�-���,@!��

2��,*��:�

*�2���@�E:!�"!!#�

2AB�@E!�!#

B�-�@�E4�������AB�4��4��2��A7��F��B�AB�������4#

��E�������?�F���F��@�*�(��2��34�����E��AB�.�B14

�2������6��������������AB�?��-����B�,������A�2�@4������AB���%�����&'��()���*�A�B�(AB1���AB����(�*�����*�4���5�A�2�@4��C�

�A5�2���B1�4��'�A�2�@4��2��A7���B��BA�'4��'��B1��@�E0"!!�8!!!#

��2������6��������������AB�?��-�"��*�2��@*�2��E!#���'-@�2AB�E!#

��2������6F��B��-�,A�BA�F��B�AB�?��-�"�9<D �"!!!��*�2���@�*�2��E"#���'-@2AB�E"#

2�1�B,��B�-���*�2���@�*�2�����'-�@�2AB�

��E�B,�����

��E�������?�F���F��@�*�(��2��34�����E��A�.�B14

�2������6��������������AB�?��-����B�,������A�2�@4������AB���%�����&'��()���*�A�B�AB��1���AB1��7����������A�4���5�A�2�@4��C�

�A5�2���B1�4��'�A�2�@4��2��A7���B��BA�'4��'��B1��@�E0"!!�G!!!#

��2������6��������������AB�?��-� ��*�2��@*�2��E!#���'-@�2AB�E!#

��2������6F��B��-�,A�BA�F��B�AB�?��-� �9<D:�"!!!��*�2���@�*�2��E"#���'-@2AB�E"#

2�1�B,��B�-���*�2���@�*�2�����'-�@�2AB�

��E�B,�����

�������AB�"@��������AB�?��-�"��F��B�AB�?��-�"

�������AB� @��������AB�?��-� ��F��B�AB�?��-�

B�-�@�E4���*AB1�%��-���AB����(�*���A-���B��1���A�B�����4��4�B��1���AB1��7����2A�4#

��E�������?�F���F��@�*�(��2��34��%2�*�A7A�'!.�B14

�2������6��������������AB� ���B�,������A�2�@4��%2�*�A�B����*��(-��%�������AB�4��5�A�2�@4�A5�2���B1�4�'�A�2�@4��2��A7��

�B��BA�'4��'��B1�@E0!.!:��!.!G#

��2������6��������������AB�"D;���*�2���@�*�2��E!#���'-@2AB�E!#

��2������6��������������AB� ���*�2���@�*�2��E"#���'-@2AB�E"#

2�1�B,��B�-���*�2���@�*�2�����'-�@�2AB�

��E�B,�����

�7����������AB�?��-�"����6��������������AB�"��%A2�B�-�@�*�(��3�4������AB�E�A5�2".,��4

�7����������AB�?��-� ����6��������������AB� ��%A2�B�-�@�*�(��3�4������AB�E�A5�2 .,��4

�B,

Page 30: On the Spectroscopy Study of the Earthshine Spectra

��������

�����������������������������������������������������������������������������������

�����������������������������������������������������������������������������������

��ABCDEB�F�E����DE�DC������CDE�������

�����������������������������������������������������������������������������������

�����������������������������������������������������������������������������������

� ��!"#�"!

�$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

���%��B&�'&B�DE��(D���C�D�E�)C�A�E��E

�$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

��!"����� �*"�+�,�#�"-!-.��/�.0�1!�23#", �#�#�"-!-.��)�#4�����#5�#�"-��#�#�"-!-.���

���!"����� �*"�+�,�#�"-!-.��/�.0�1!�23#", �#�#�"-!-.��)�#4�����#5�#�"-��#�#�"-!-.���

��#3 �1�� �*"�+,����2"0",��#5E�����#E���

�$$$$$$$$$�C�#3.�6������!�� "�#7�8.�3.�6�8.�!"�4#0.4*4

).�!"A#0�9�4#0:#E���%

.).�!"A#0�9�;-���:#E�����<� ).�!"A#0%

�$$$$$$$$$�C�#3.�6������!�� "�#7�8.�3.�6�!� ��3�4#0.4*4

C#�6�9;-���:#5E����6"�=���#�3�#5E����1"��>��%

�� ��3A#0�9�4#0:#E��� C#�6��%

.�� ��3A#0�9��;-���:#E�����<� �� ��3A#0%

�$$$$$$$$$��#1 *1#".�6�3.!���!.��

(.!"#� ��.0�1�9���.).�!"A#0�$�.�� ��3A#0

(.!"#� �?#@�&���9� E���&.��!���$�� E���&.��!��

(.!���!.���9� (.!"#� �?#@�&��� (.!"#� ��.0�1

A9�� E���&.��!���$�:#5�#�"-.).�!"A#0�$�#5�#�"-��%� (.!���!.��

�$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

���%�E�CAB&DBDE�����������CB�2

�$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

�.C��#�"-9��/�1�4��"!:#5�#�"-%

#5�#�"-).�#1�9�81"#��: �.C��#�"-%

8���.�9���� �.C��#�"-$��3��D�6.�

#5�#�"-).�#1:.%9�:#5�#�"-:.%� (.!���!.���+� A%������

��38��

#�#�"-!-.����9�4�3.#�:#�#�"-!-.�����%����+�2E

#�#�"-!-.����9�4�3.#�:#�#�"-!-.�����%����+�2E

#�#�"-!-.��)�#4���9�#�#�"-!-.��)�#4��������+�2E

#�#�"-!-.��)�#4���9�#�#�"-!-.��)�#4��������+��2�F�

�$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

��=%��&��DE�

�$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

3�@. ���3� �4��!�39���

1�#3 "�F�

Page 31: On the Spectroscopy Study of the Earthshine Spectra

��/�"#�"��)D&�EBA��9� �*"�1�"�+�,��81� ".@."G�2��6,

�1�"���#5�#�"-).�#1��#�#�"-!-.��������3#"#��"."1�9,C�81� ".@."G��8�"-���#�"-!-.���:��.�"���� "�#���# �%,��G"."1�9,C�1#".@��

C�81� ".@."G,��0"."1�9,?#@�1��6-"�:,�+�4. ���+�,4%,��0�#�6�9�2E���2H���G�#�6�9����

��1�"���#5�#�"-).�#1��#�#�"-!-.����� �1���9�F�

��/��3���E�

��/�"#�"��)D&�EBA��9� �*"�1�"�+�,��81� ".@."G�2��6,

�1�"���#5�#�"-).�#1��#�#�"-!-.��������3#"#��"."1�9,C�81� ".@."G��8�"-���#�"-!-.���:D�"�6�#".�6��1."!%,��G"."1�9,C�1#".@��

C�81� ".@."G,��0"."1�9,?#@�1��6-"�:,�+�4. ���+�,4%,��0�#�6�9�2E���2H���G�#�6�9����

��1�"���#5�#�"-).�#1��#�#�"-!-.����� �1���9����

��/��3���E�

��/�"#�"��)D&�EBA��9� �*"�1�"�+�,!�� "�#�2��6,

�1�"���#5�#�"-).�#1��#�#�"-!-.��)�#4������3#"#��"."1�9,��� "�#��8�"-���#�"-!-.���:��.�"���� "�#���# �%,��G"."1�9,C�1#".@��

D�"��!."G,��0"."1�9,?#@�1��6-"�:,�+�4. ���+�,4%,���0�#�6�9�2FF���2H���G�#�6�9�2��2��

��1�"���#5�#�"-).�#1��#�#�"-!-.��)�#4���� �1���9�F�

��/��3���E�

��/�"#�"��)D&�EBA��9� �*"�1�"�+�,!�� "�#�2��6,

�1�"���#5�#�"-).�#1��#�#�"-!-.��)�#4������3#"#��"."1�9,��� "�#��8�"-���#�"-!-.���:D�"�6�#".�6��1."!%,��G"."1�9,C�1#".@��

D�"��!."G,��0"."1�9,?#@�1��6-"�:,�+�4. ���+�,4%,���0�#�6�9�2FF���2H���G�#�6�9�2��2��

��1�"���#5�#�"-).�#1��#�#�"-!-.��)�#4���� �1���9����

��/��3���E�

!#@���#�#�"-!-.��)�#4�����#5�#�"-).�#1��#�#�"-!-.�����#�#�"-!-.��)�#4����#�#�"-!-.�����8.1��#4�9� �*"�+�

,�#�"-!-.��/�.0�1!�23#",

��3

Page 32: On the Spectroscopy Study of the Earthshine Spectra

��������

A��BC�DE�DF�

�����������������������������������������������������������������������������������

�����������������������������������������������������������������������������������

�B�������B���B��������� !B�"���#$%&'%(

�����������������������������������������������������������������������������������

�����������������������������������������������������������������������������������

���)��D)��

�**************��DC�)EB+���

�������!B��,�B-B.�D��/�/�)�0A�1��%2CD�. �BD�D��/�/�)�+�DF�'!%!BBD3�D��/+�)D!BD�D��/�/�)�'!%

�************************************************

�B'4B����,D�B+����)E

�************************************************

��D)E�5�/���6D3�D��/+�)DBE�B&278BD)CBD3�D��/+�)DB�BB&2774�B&%6�4

�9D)C'B5BF�)6D�D��/�/�)�'���D)E�(4

�9D)C'B5BB�/���6D�D��/�/�)�'B�:B�9D)C'4

��D)E�5�/���6D3�D��/+�)DBE�B&28;BD)CBD3�D��/+�)DB�BB&27&4�B&%694

�9D)C%B5BF�)6D�D��/�/�)�'���D)E�(4

�9D)C%B5BB�/���6D�D��/�/�)�'B�:B�9D)C%4

�D���1B5B�&27'<!&27=<(

�D���>B5B�&2?<<'!&2?<<'(

�=1B5B�&28!&28;(

�=>B5B�&2<%!&2<%(

�)��B5B�&!&!&(

�����B5B�'&&!<&!7&(

C�@���!BC���FA���C5&BB

�DC��!<B

"�0��D��!B+�A�����B5B��,�"��B-B.F�'2A)E.

A��!BBD3�D��/+�)D!BD�D��/�/�)�'�;$'&!B$)�CD�D!B����5.����,D�B9D)C�B�BB�/�B�D��/�/�)�B.!B>����5.��D��@�B��B����@��>.!B

1����5.CD@��)E/�B6.B-BF����B-B.F4.!B1�D)E�5�&28!B&2;(!B>�D)E�5�&!&2;(

�A��!BBD3�D��/+�)D!BD�D��/�/�)�'�;$'&!B����B5B&!BA�>FB5B�)���&(

�A��!BB�D���1!B�D���>!B����B5B������&(!BA�>FB5B�)���&(

1>�,��!B&27'<!B&2?!B. %�.!B� ����D�5%!B)���A5'!B����5������&(

�A��!BB�=1!B�=>!B����B5B������%(!BA�>FB5B�)���&(

1>�,��!B&28=!B&2?<!B.�=.!B� ����D�5%!B)���A5'!B����5������%(

1>�,��!B&278!BD�D��/�/�)�'��9D)C'(!B.&%6�4.!B����)�D���)5E&!B� ����D�5%!B)���A5'!B����5'<&

1>�,��!BD3�D��/+�)D��9D)C%(!BB&28!B.&%694.!B����)�D���)5E&!� ����D�5%!B)���A5'!B����B5B'<&

"�0�)C!$"�#

�������!B.�D��/�/�)�'2�1�.!BD�D��/�/�)�'!BD3�D��/+�)D

�������!B.�D��/�/�)�%2�1�.!BD�D��/�/�)�%!BD3�D��/+�)D

�)C

Page 33: On the Spectroscopy Study of the Earthshine Spectra

��������

A��BC��

DEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

DEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

D

DBF������B���B�����������B������ !"#!$

D

DEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

DEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

���%&�'%�&

D((((((((((((((��')�%*B+��&

��')���B,�'��-&-�%�#.�/�,�B���C����B�0'1�

��')���B,�'��-&-�%�!.�/�,�B���C���!�B�0'1�!

��')���B,'.�/�,�B'0'1��B'��C��� D'�2�&A-���

��')���B,*.�/�,�B*0'1��B*��C��� D1�*��'���%

��')���B,&.�/�,�B&0'1��B&��C��� D���'%

��')���B,�.�/�,�B�0'1��B���C��� D�'3�%*�-

��')���B,�.�/�,�B�0'1��B���C��� D-�*-

D(((((((((((((((((((((((((((((((((((((((((((((((((((

DB#4B�'�5'��%*B��*��'���%B�)*�B'%)B�'3�%*�-.

D(((((((((((((((((((((((((((((((((((((((((((((((((((

���B6B�-���7�0'1�B*�B".89B'%)B�0'1�B�BB".:4

���B6B�-���7�0'1�B*�B".:;B'%)B�0'1�B�BB".<4

���B6B2�)�'%7���C���F���$4

���B6B2�)�'%7���C���F���$4

���B6B7���(���4 ���

���B6B�-���7�0'1�!B*�B".89B'%)B�0'1�!B�BB".:4

���B6B�-���7�0'1�!B*�B".:;B'%)B�0'1�!B�BB".<4

���B6B2�)�'%7���C���!F���$4

���B6B2�)�'%7���C���!F���$4

���!B6B7���(���4 ���

��=B6B�-���7�0'1�B*�B".9B'%)B�0'1�B�BB".994

���B6B�-���7�0'1�B*�B".89B'%)B�0'1�B�BB".:4

��=B6B2�)�'%7���C���F��=$4

���B6B2�)�'%7���C���F���$4

��>B6B7���(��=4 ��=

A��%�����

A��%�����!

A��%��B��>

D(((((((((((((((((((((((((((((((((((((((((((((((((((

DB!4B��'�%*�BA����%*B'%)B&'1�%*B�5�A5�BC��BC���%*

D(((((((((((((((((((((((((((((((((((((((((((((((((((

DB(((((B&�'�%*B��BA��

'��C���B6B'��C���E#"B(".#9

*��C���B6B*��C���E#"

Page 34: On the Spectroscopy Study of the Earthshine Spectra

&��C���B6B&��C���E#"

���C���B6B���C���E#"

���C���B6B���C���E#"B(".#9

)�1����B)���2A�&�)6"BB

�')���9B

����&B6BF"�<"�;"�#""�B9�B#!"$B

�%�&6F"�"�"�"�B"�B"$

%'2�&6BF,�'��-&-�%�B�A����',�B,��*��'���%B��C�����%,�B,���'%B��C�����%,�B,��2�&A-���B��'%&2�&&��%,�B,�'3��*-B��'�����%*,�B

,��5��'B��C����1��3B��*-B��5)&,$

��?��'���B+�@�����B6B��5����BAB,C��.A%*,

A���B�0'1��B���C����B %�)'�'B�B����6,�=&��1�)B��C����1��3B�CB�'��-&-�%�B'%)B��)�&B,�B3����6,��'��1�B��C����1��3,�B

/����6,0'1��%*-�B7,BAB2����BAB,24,�B/�'%*�6F".9�B".<$�B3�'%*�6F"�#.!$

�*�%)�B%'2�&�B����B6B����&�BA&32B6B�%�&�B=�/6"�B�-'�&�B�6#

�A���BB�0'1��B���C����B����B6B����&F"$�BA&326�%�&F"$

�A���BB*0'1��B*��C����B����B6B����&F#$�BA&326�%�&F#$

�A���BB&0'1��B&��C����B����B6B����&F!$�BA&32B6B�%�&F!$

�A���BB'0'1��B'��C����B����B6B����&FC$�BA&32B6B�%�&FC$

�A���BB�0'1��B���C����B����B6B����&F;$�BA&32B6B�%�&F;$

�A���BB�0'1��B���C����B����B6B����&F9$�BA&32B6B�%�&F9$

��?�%)� ���

�%)

Page 35: On the Spectroscopy Study of the Earthshine Spectra

��������ABC����DEFA

������������D�����

�����������������

���������������D��

�F�����DF��������

�D�D������D���������D !������"D����

�D�D������D��D�����"��

�D�D������D��������#�����D�$�"%&���'&E�(�

B)���*+���,�D�"B)���--.���/A��D�&E���DA0�

B)���*+���C����&"B)���--.���/A����������E���DA0�

B)���*+���C����$"B)���--.���/A�D������E���DA0�

B)���*+���C����1"B)���--.���/A��������E���DA0�

B)���*+���C����1"B)���--.���/A��������E���DA0�

B)���*+���C����1"B)���--.���/A��+�����E���DA0�

�D�D��B2&,*F& ��D�"/B2&,*0+���,�D�3�4�D/A��D�&A0�

�D�D��B2&,*F& ����������"/B2&,*0+���C����&3�4�D/A����������A0�

�D�D��B2&,*F& �D������"/B2&,*0+���C����$3�4�D/A�D������A0�

�D�D��B2&,*F& ��������"/B2&,*0+���C����13�4�D/A��������A0�

�D�D��B2&,*F& ��������"/B2&,*0+���C����$3�4�D/A��������A0�

�D�D��B2&,*F& ��+�����"/B2&,*0+���C����13�4�D/A��+�����A0�

B2&,*5�6B�D�� !�����"/B2&,*0F& ��D�3�7����/A5�6B�D�� !�����A0�

5�6B�D�� !�����3�8���D/0�

������+����B�D�� "�E��

������+����� "�E��

������+����� "�E��

������+����� "�E��

������+������ "�E��

������+������ "�E��

������+������ "�E��

������+������ "�E��

������+������ "�E��

������+�������"�E��

������+������� "�E��

�D�D����D��D�"F& ��D�3�4�D5����9/0�

::

::BF����DF��F�$+���D���E;D�������+ <���+ �F�!�������������D����=��'����D

::�����DF����FDF��������+����D�����������D��DF��F��>E;������+F�D�����'DF�

::F��D����������D�����D����=�������D��������C����D+���D������<��E

!���+��/��D?����'������*���'������?+'������*���'��D�+���0

%

::DF������������F�$�������D���+�������D������=�D������D����

�������F��>"�E��

���������D��

�������!�� +���"�E�

��D�D��D@���D"��

Page 36: On the Spectroscopy Study of the Earthshine Spectra

��D���@���D"AB��

+��/��D�@���D"�D��D@���D��@���D����@���DC&��@���DCC0%

�!�� +���"������*F& ����������3�4�DD��7��D��D/�@���DC&0�

�!�� +���"����&�*F& �D������3�4�DD��7��D��D/�@���DC&0�

�!�� +���"����$�*F& ��������3�4�DD��7��D��D/�@���DC&0�

�!�� +���"����1�*F& ��������3�4�DD��7��D��D/�@���DC&0�

�!�� +���"����E�*F& ��+�����3�4�DD��7��D��D/�@���DC&0�

���D�"/�!�� +���3F& ��D�3�4�DD��7��D��D/�@���DC&00:/F& ��D�3�4�DD��F����/�@���DC&00�

�F��>C"���D�*���D��

(

+"�F��>�

(

!���)�D/0

�������D��D !����������

�������D��D !�� �����������

�������D�� ��=���������

��������6 �����������

�������� �����������

������������D��������

+��/��D�"�����������CC0%

�D��D !�����"&E��

�D��D !�� ������"�E��

�D�� ��=����"�E�����

��6 ������"�E���

�� ������"�E��

::������D���"&��E��

(

������D���"��#�����D����

������D�&�"��#�����D�&��

������D�$�"��#�����D�$��

������D�1�"��#�����D�1��

������D�E�"��#�����D�E��

��D���+��"��

F& ��D� !�����3�)�D/A�<��A'AG5A'AA'&E&'$E$0�

�C����D"��6BC����D/�����0�

�C����D3�H�D)75/+��0�

�C����D3�H�D@���DI�!��/3&0�

������D���"&E��

�C����D3����<��/AHFBF88A'������D'&'���+��0�

+��/��D����"�����������������CC0

�C����D3�������/����')���/A���J�A'����0'�D��D !��������'�D�� ��=�������'��6 ���������'�� ���������'���+��0�

������D���"��#�����D����

������D�&�"��#�����D�&��

������D�$�"��#�����D�$��

������D�1�"��#�����D�1��

������D�E�"��#�����D�E��

�C����D3����<��/AH;C@IF9A'������D'$'���+��0�

+��/��D����"�����������������CC0%

�C����D3�4�D@�����D��/����'�D��D !��������'�D��D !�� ���������0�

�C����D3�������/����')���/A���J�A'����0'�D��D !��������'�D�� ��=�������'��6 ���������'�� ���������'���+��0�

Page 37: On the Spectroscopy Study of the Earthshine Spectra

(

::)���C;48#,

���D��AKKKKKKKK)�����C;48#,LLKKKKKKKKA�������

�C����D3����<��/AC;48#,A'������D'$'���+��0�

::������DDF����6���EEEE

������+���� +�D�������"%�E�(�

������+���� +�D ����������"%�E�(�

+��/��D����"�����������������CC0%

�C����D3�4�D@�����D��/����'+���� +�D������'+���� +�D ���������0�

���D��A)����+�D�����D�A��������A"A��+���� +�D��������AC:3A��+���� +�D ����������������

(

+����� "+���� +�D����

+����� "+���� +�D�&��

+����� "+���� +�D�$��

+������ "+���� +�D�1��

+������ "+���� +�D�E��

+������ "+���� +�D �������

+������ "+���� +�D ����&��

+������ "+���� +�D ����$��

+������� "+���� +�D ����1��

+������� "+���� +�D ����E��

(

!���)�D���/0%

)�D/0�

���D�������

���D��A)����7F��>����-A������)����7F��>/0�������

(

����������)����7F��>/0

%

::DF������������F�$�������D���+�������D������=�D������D����

�������F��>"�E��

���������D��

�������!�� +���"�E�

��D�D��D@���D"F& ��D�3�)���D��/�0�

��D���@���D"F& ��D�3�)���D��/AB�0�

+��/��D�@���D"�D��D@���D��@���D����@���DC&��@���DCC0%

�+/F& ��D� !�����3�4�DD��F����/�@���DC&0L"�E�0%

�!�� +���C"+�����*F& ����������3�4�DD��7��D��D/�@���DC&0�

�!�� +���C"+�����*F& �D������3�4�DD��7��D��D/�@���DC&0�

�!�� +���C"+�����*F& ��������3�4�DD��7��D��D/�@���DC&0�

�!�� +���C"+������*F& ��������3�4�DD��7��D��D/�@���DC&0�

�!�� +���C"+������*F& ��+�����3�4�DD��7��D��D/�@���DC&0�

���D�"/�!�� +���3F& ��D�3�4�DD��7��D��D/�@���DC&00:/F& ��D�3�4�DD��F����/�@���DC&00�

�F��>C"���D�*���D��

(

(

��D����F��>�

(