48
Background Research Final Remarks On the Okounkov-Olshanski Formula for the Number of Tableaux of Skew Shapes Daniel Zhu mentor: Prof. Alejandro Morales Montgomery Blair High School UMass Amherst May , MIT PRIMES Conference Daniel Zhu The Okounkov-Olshanski Formula

On the Okounkov-Olshanski Formula for the Number of ... Zhu.pdfI Reverseplanepartition(RPP):nonnegativeintegers,rows andcolumnsweaklyincreasing 0 0 3 1 1 3 8 8 8 I RPP( = ): RPPofshape

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: On the Okounkov-Olshanski Formula for the Number of ... Zhu.pdfI Reverseplanepartition(RPP):nonnegativeintegers,rows andcolumnsweaklyincreasing 0 0 3 1 1 3 8 8 8 I RPP( = ): RPPofshape

BackgroundResearch

Final Remarks

On the Okounkov-Olshanski Formula for theNumber of Tableaux of Skew Shapes

Daniel Zhu1mentor: Prof. Alejandro Morales2

1Montgomery Blair High School

2UMass Amherst

May 20, 2018MIT PRIMES Conference

Daniel Zhu The Okounkov-Olshanski Formula

Page 2: On the Okounkov-Olshanski Formula for the Number of ... Zhu.pdfI Reverseplanepartition(RPP):nonnegativeintegers,rows andcolumnsweaklyincreasing 0 0 3 1 1 3 8 8 8 I RPP( = ): RPPofshape

BackgroundResearch

Final Remarks

Ordinary ShapesSkew Shapes

Partitions

I Partition: way to write a nonnegative integer as a sum ofpositive integers, without regard to order

9 = 3 + 3 + 2 + 1 – = (3, 3, 2, 1) |–| = 9

I Young diagram: grid of boxes representing a partition

[–] =

33

21

Daniel Zhu The Okounkov-Olshanski Formula

Page 3: On the Okounkov-Olshanski Formula for the Number of ... Zhu.pdfI Reverseplanepartition(RPP):nonnegativeintegers,rows andcolumnsweaklyincreasing 0 0 3 1 1 3 8 8 8 I RPP( = ): RPPofshape

BackgroundResearch

Final Remarks

Ordinary ShapesSkew Shapes

Partitions

I Partition: way to write a nonnegative integer as a sum ofpositive integers, without regard to order

9 = 3 + 3 + 2 + 1 – = (3, 3, 2, 1) |–| = 9

I Young diagram: grid of boxes representing a partition

[–] =

33

21

Daniel Zhu The Okounkov-Olshanski Formula

Page 4: On the Okounkov-Olshanski Formula for the Number of ... Zhu.pdfI Reverseplanepartition(RPP):nonnegativeintegers,rows andcolumnsweaklyincreasing 0 0 3 1 1 3 8 8 8 I RPP( = ): RPPofshape

BackgroundResearch

Final Remarks

Ordinary ShapesSkew Shapes

Standard Young Tableaux

I Standard Young tableau (SYT): way to fill in boxes of a Youngdiagramwith 1 through |–|, with rows and columns strictlyincreasing

<1 3 6

< 2 5 84 79

I f–: number of SYT of shape –I f– is the dimension of an irreducible representation of thesymmetric group

Daniel Zhu The Okounkov-Olshanski Formula

Page 5: On the Okounkov-Olshanski Formula for the Number of ... Zhu.pdfI Reverseplanepartition(RPP):nonnegativeintegers,rows andcolumnsweaklyincreasing 0 0 3 1 1 3 8 8 8 I RPP( = ): RPPofshape

BackgroundResearch

Final Remarks

Ordinary ShapesSkew Shapes

Standard Young Tableaux

I Standard Young tableau (SYT): way to fill in boxes of a Youngdiagramwith 1 through |–|, with rows and columns strictlyincreasing

<1 3 6

< 2 5 84 79

I f–: number of SYT of shape –I f– is the dimension of an irreducible representation of thesymmetric group

Daniel Zhu The Okounkov-Olshanski Formula

Page 6: On the Okounkov-Olshanski Formula for the Number of ... Zhu.pdfI Reverseplanepartition(RPP):nonnegativeintegers,rows andcolumnsweaklyincreasing 0 0 3 1 1 3 8 8 8 I RPP( = ): RPPofshape

BackgroundResearch

Final Remarks

Ordinary ShapesSkew Shapes

Standard Young Tableaux

I Standard Young tableau (SYT): way to fill in boxes of a Youngdiagramwith 1 through |–|, with rows and columns strictlyincreasing

<1 3 6

< 2 5 84 79

I f–: number of SYT of shape –I f– is the dimension of an irreducible representation of thesymmetric group

Daniel Zhu The Okounkov-Olshanski Formula

Page 7: On the Okounkov-Olshanski Formula for the Number of ... Zhu.pdfI Reverseplanepartition(RPP):nonnegativeintegers,rows andcolumnsweaklyincreasing 0 0 3 1 1 3 8 8 8 I RPP( = ): RPPofshape

BackgroundResearch

Final Remarks

Ordinary ShapesSkew Shapes

Hook-Length Formula

Theorem (Frame-Robinson-Thrall, 1954)

f– =|–|!∏

u∈[–] h(u)

I h(u) is the size of a hook of a cell u

u h(u) = 5

Daniel Zhu The Okounkov-Olshanski Formula

Page 8: On the Okounkov-Olshanski Formula for the Number of ... Zhu.pdfI Reverseplanepartition(RPP):nonnegativeintegers,rows andcolumnsweaklyincreasing 0 0 3 1 1 3 8 8 8 I RPP( = ): RPPofshape

BackgroundResearch

Final Remarks

Ordinary ShapesSkew Shapes

Applications of the Hook-Length Formula

I Hook lengths of (n, n) are

n+1 n · · · 3 2

n n−1 · · · 2 1

so

f (n,n) =(2n)!∏

u∈[(n,n)] h(u)=

(2n)!n!(n + 1)!

=1

n + 1

(2nn

)= Cn

I There exists a bijection between SYT of shape (n, n) and Dyckpaths

Daniel Zhu The Okounkov-Olshanski Formula

Page 9: On the Okounkov-Olshanski Formula for the Number of ... Zhu.pdfI Reverseplanepartition(RPP):nonnegativeintegers,rows andcolumnsweaklyincreasing 0 0 3 1 1 3 8 8 8 I RPP( = ): RPPofshape

BackgroundResearch

Final Remarks

Ordinary ShapesSkew Shapes

Applications of the Hook-Length Formula

I Hook lengths of (n, n) are

n+1 n · · · 3 2

n n−1 · · · 2 1

so

f (n,n) =(2n)!∏

u∈[(n,n)] h(u)=

(2n)!n!(n + 1)!

=1

n + 1

(2nn

)= Cn

I There exists a bijection between SYT of shape (n, n) and Dyckpaths

Daniel Zhu The Okounkov-Olshanski Formula

Page 10: On the Okounkov-Olshanski Formula for the Number of ... Zhu.pdfI Reverseplanepartition(RPP):nonnegativeintegers,rows andcolumnsweaklyincreasing 0 0 3 1 1 3 8 8 8 I RPP( = ): RPPofshape

BackgroundResearch

Final Remarks

Ordinary ShapesSkew Shapes

Applications of the Hook-Length Formula

I Hook lengths of (n, n) are

n+1 n · · · 3 2

n n−1 · · · 2 1

so

f (n,n) =(2n)!∏

u∈[(n,n)] h(u)=

(2n)!n!(n + 1)!

=1

n + 1

(2nn

)= Cn

I There exists a bijection between SYT of shape (n, n) and Dyckpaths

Daniel Zhu The Okounkov-Olshanski Formula

Page 11: On the Okounkov-Olshanski Formula for the Number of ... Zhu.pdfI Reverseplanepartition(RPP):nonnegativeintegers,rows andcolumnsweaklyincreasing 0 0 3 1 1 3 8 8 8 I RPP( = ): RPPofshape

BackgroundResearch

Final Remarks

Ordinary ShapesSkew Shapes

Applications of the Hook-Length Formula

I Hook lengths of (n, n) are

n+1 n · · · 3 2

n n−1 · · · 2 1

so

f (n,n) =(2n)!∏

u∈[(n,n)] h(u)=

(2n)!n!(n + 1)!

=1

n + 1

(2nn

)= Cn

I There exists a bijection between SYT of shape (n, n) and Dyckpaths

Daniel Zhu The Okounkov-Olshanski Formula

Page 12: On the Okounkov-Olshanski Formula for the Number of ... Zhu.pdfI Reverseplanepartition(RPP):nonnegativeintegers,rows andcolumnsweaklyincreasing 0 0 3 1 1 3 8 8 8 I RPP( = ): RPPofshape

BackgroundResearch

Final Remarks

Ordinary ShapesSkew Shapes

Standard Young Tableaux of Skew Shape

I Consider — so that [—] ⊆ [–]Example: take – = (3, 3, 2, 1),— = (2, 1)

[–=—] =

21 4

3 65

I f–=—: number of SYT of shape –=—I f–=— are dimensions of irreducible representations of Heckealgebras

I Is there a formula for f–=—?

Daniel Zhu The Okounkov-Olshanski Formula

Page 13: On the Okounkov-Olshanski Formula for the Number of ... Zhu.pdfI Reverseplanepartition(RPP):nonnegativeintegers,rows andcolumnsweaklyincreasing 0 0 3 1 1 3 8 8 8 I RPP( = ): RPPofshape

BackgroundResearch

Final Remarks

Ordinary ShapesSkew Shapes

Standard Young Tableaux of Skew Shape

I Consider — so that [—] ⊆ [–]Example: take – = (3, 3, 2, 1),— = (2, 1)

[–=—] =

21 4

3 65

I f–=—: number of SYT of shape –=—I f–=— are dimensions of irreducible representations of Heckealgebras

I Is there a formula for f–=—?

Daniel Zhu The Okounkov-Olshanski Formula

Page 14: On the Okounkov-Olshanski Formula for the Number of ... Zhu.pdfI Reverseplanepartition(RPP):nonnegativeintegers,rows andcolumnsweaklyincreasing 0 0 3 1 1 3 8 8 8 I RPP( = ): RPPofshape

BackgroundResearch

Final Remarks

Ordinary ShapesSkew Shapes

Standard Young Tableaux of Skew Shape

I Consider — so that [—] ⊆ [–]Example: take – = (3, 3, 2, 1),— = (2, 1)

[–=—] =

21 4

3 65

I f–=—: number of SYT of shape –=—I f–=— are dimensions of irreducible representations of Heckealgebras

I Is there a formula for f–=—?

Daniel Zhu The Okounkov-Olshanski Formula

Page 15: On the Okounkov-Olshanski Formula for the Number of ... Zhu.pdfI Reverseplanepartition(RPP):nonnegativeintegers,rows andcolumnsweaklyincreasing 0 0 3 1 1 3 8 8 8 I RPP( = ): RPPofshape

BackgroundResearch

Final Remarks

Ordinary ShapesSkew Shapes

Standard Young Tableaux of Skew Shape

I Consider — so that [—] ⊆ [–]Example: take – = (3, 3, 2, 1),— = (2, 1)

[–=—] =

21 4

3 65

I f–=—: number of SYT of shape –=—I f–=— are dimensions of irreducible representations of Heckealgebras

I Is there a formula for f–=—?

Daniel Zhu The Okounkov-Olshanski Formula

Page 16: On the Okounkov-Olshanski Formula for the Number of ... Zhu.pdfI Reverseplanepartition(RPP):nonnegativeintegers,rows andcolumnsweaklyincreasing 0 0 3 1 1 3 8 8 8 I RPP( = ): RPPofshape

BackgroundResearch

Final Remarks

Ordinary ShapesSkew Shapes

Standard Young Tableaux of Skew Shape

I Consider — so that [—] ⊆ [–]Example: take – = (3, 3, 2, 1),— = (2, 1)

[–=—] =

21 4

3 65

I f–=—: number of SYT of shape –=—I f–=— are dimensions of irreducible representations of Heckealgebras

I Is there a formula for f–=—?

Daniel Zhu The Okounkov-Olshanski Formula

Page 17: On the Okounkov-Olshanski Formula for the Number of ... Zhu.pdfI Reverseplanepartition(RPP):nonnegativeintegers,rows andcolumnsweaklyincreasing 0 0 3 1 1 3 8 8 8 I RPP( = ): RPPofshape

BackgroundResearch

Final Remarks

Ordinary ShapesSkew Shapes

Standard Young Tableaux of Skew Shape

I Consider — so that [—] ⊆ [–]Example: take – = (3, 3, 2, 1),— = (2, 1)

[–=—] =

21 4

3 65

I f–=—: number of SYT of shape –=—I f–=— are dimensions of irreducible representations of Heckealgebras

I Is there a formula for f–=—?

Daniel Zhu The Okounkov-Olshanski Formula

Page 18: On the Okounkov-Olshanski Formula for the Number of ... Zhu.pdfI Reverseplanepartition(RPP):nonnegativeintegers,rows andcolumnsweaklyincreasing 0 0 3 1 1 3 8 8 8 I RPP( = ): RPPofshape

BackgroundResearch

Final Remarks

Ordinary ShapesSkew Shapes

Standard Young Tableaux of Skew Shape

I Consider — so that [—] ⊆ [–]Example: take – = (3, 3, 2, 1),— = (2, 1)

[–=—] =

21 4

3 65

I f–=—: number of SYT of shape –=—I f–=— are dimensions of irreducible representations of Heckealgebras

I Is there a formula for f–=—?

Daniel Zhu The Okounkov-Olshanski Formula

Page 19: On the Okounkov-Olshanski Formula for the Number of ... Zhu.pdfI Reverseplanepartition(RPP):nonnegativeintegers,rows andcolumnsweaklyincreasing 0 0 3 1 1 3 8 8 8 I RPP( = ): RPPofshape

BackgroundResearch

Final Remarks

Ordinary ShapesSkew Shapes

Standard Young Tableaux of Skew Shape

I Consider — so that [—] ⊆ [–]Example: take – = (3, 3, 2, 1),— = (2, 1)

[–=—] =

21 4

3 65

I f–=—: number of SYT of shape –=—I f–=— are dimensions of irreducible representations of Heckealgebras

I Is there a formula for f–=—?

Daniel Zhu The Okounkov-Olshanski Formula

Page 20: On the Okounkov-Olshanski Formula for the Number of ... Zhu.pdfI Reverseplanepartition(RPP):nonnegativeintegers,rows andcolumnsweaklyincreasing 0 0 3 1 1 3 8 8 8 I RPP( = ): RPPofshape

BackgroundResearch

Final Remarks

Ordinary ShapesSkew Shapes

Bad News: No Product Formula

I One can compute

f = 61

which is primeI No nontrivial product formulaI In particular, f–=— does not divide |–=—|! anymore

Daniel Zhu The Okounkov-Olshanski Formula

Page 21: On the Okounkov-Olshanski Formula for the Number of ... Zhu.pdfI Reverseplanepartition(RPP):nonnegativeintegers,rows andcolumnsweaklyincreasing 0 0 3 1 1 3 8 8 8 I RPP( = ): RPPofshape

BackgroundResearch

Final Remarks

Ordinary ShapesSkew Shapes

Bad News: No Product Formula

I One can compute

f = 61

which is primeI No nontrivial product formulaI In particular, f–=— does not divide |–=—|! anymore

Daniel Zhu The Okounkov-Olshanski Formula

Page 22: On the Okounkov-Olshanski Formula for the Number of ... Zhu.pdfI Reverseplanepartition(RPP):nonnegativeintegers,rows andcolumnsweaklyincreasing 0 0 3 1 1 3 8 8 8 I RPP( = ): RPPofshape

BackgroundResearch

Final Remarks

Ordinary ShapesSkew Shapes

Bad News: No Product Formula

I One can compute

f = 61

which is primeI No nontrivial product formulaI In particular, f–=— does not divide |–=—|! anymore

Daniel Zhu The Okounkov-Olshanski Formula

Page 23: On the Okounkov-Olshanski Formula for the Number of ... Zhu.pdfI Reverseplanepartition(RPP):nonnegativeintegers,rows andcolumnsweaklyincreasing 0 0 3 1 1 3 8 8 8 I RPP( = ): RPPofshape

BackgroundResearch

Final Remarks

Ordinary ShapesSkew Shapes

Bad News: No Product Formula

I One can compute

f = 61

which is primeI No nontrivial product formulaI In particular, f–=— does not divide |–=—|! anymore

Daniel Zhu The Okounkov-Olshanski Formula

Page 24: On the Okounkov-Olshanski Formula for the Number of ... Zhu.pdfI Reverseplanepartition(RPP):nonnegativeintegers,rows andcolumnsweaklyincreasing 0 0 3 1 1 3 8 8 8 I RPP( = ): RPPofshape

BackgroundResearch

Final Remarks

The Number of Nonzero TermsAn RPP q-Analogue

The Okounkov-Olshanski Formula

Theorem (Okounkov-Olshanski, 1996)

f–=— =|–=—|!∏u∈[–] h(u)

∑T∈SSYT(—,d)

∏(i,j)∈[—]

(–d+1−T(i,j) + i − j)

I SSYT(—,d) is semistandard tableaux of shape —with allentries at most d

≤1 1 5

< 2 2 68 99

Daniel Zhu The Okounkov-Olshanski Formula

Page 25: On the Okounkov-Olshanski Formula for the Number of ... Zhu.pdfI Reverseplanepartition(RPP):nonnegativeintegers,rows andcolumnsweaklyincreasing 0 0 3 1 1 3 8 8 8 I RPP( = ): RPPofshape

BackgroundResearch

Final Remarks

The Number of Nonzero TermsAn RPP q-Analogue

The Okounkov-Olshanski Formula

Theorem (Okounkov-Olshanski, 1996)

f–=— =|–=—|!∏u∈[–] h(u)

∑T∈SSYT(—,d)

∏(i,j)∈[—]

(–d+1−T(i,j) + i − j)

f =5!

5 · 4 · 3 · 1 · 3 · 2 · 1 ( 3 · 2︸︷︷︸1 1

+ 3 · 3︸︷︷︸1 2

+ 4 · 3︸︷︷︸2 2

)

=13· 27 = 9

Daniel Zhu The Okounkov-Olshanski Formula

Page 26: On the Okounkov-Olshanski Formula for the Number of ... Zhu.pdfI Reverseplanepartition(RPP):nonnegativeintegers,rows andcolumnsweaklyincreasing 0 0 3 1 1 3 8 8 8 I RPP( = ): RPPofshape

BackgroundResearch

Final Remarks

The Number of Nonzero TermsAn RPP q-Analogue

Observations About the Formula

Theorem (Okounkov-Olshanski, 1996)

f–=— =|–=—|!∏u∈[–] h(u)

∑T∈SSYT(—,d)

∏(i,j)∈[—]

(–d+1−T(i,j) + i − j)

I All terms are nonnegativeI Howmany nonzero terms are there? (call this T(–=—))

Daniel Zhu The Okounkov-Olshanski Formula

Page 27: On the Okounkov-Olshanski Formula for the Number of ... Zhu.pdfI Reverseplanepartition(RPP):nonnegativeintegers,rows andcolumnsweaklyincreasing 0 0 3 1 1 3 8 8 8 I RPP( = ): RPPofshape

BackgroundResearch

Final Remarks

The Number of Nonzero TermsAn RPP q-Analogue

Observations About the Formula

Theorem (Okounkov-Olshanski, 1996)

f–=— =|–=—|!∏u∈[–] h(u)

∑T∈SSYT(—,d)

∏(i,j)∈[—]

(–d+1−T(i,j) + i − j)

I All terms are nonnegativeI Howmany nonzero terms are there? (call this T(–=—))

Daniel Zhu The Okounkov-Olshanski Formula

Page 28: On the Okounkov-Olshanski Formula for the Number of ... Zhu.pdfI Reverseplanepartition(RPP):nonnegativeintegers,rows andcolumnsweaklyincreasing 0 0 3 1 1 3 8 8 8 I RPP( = ): RPPofshape

BackgroundResearch

Final Remarks

The Number of Nonzero TermsAn RPP q-Analogue

Observations About the Formula

Theorem (Okounkov-Olshanski, 1996)

f–=— =|–=—|!∏u∈[–] h(u)

∑T∈SSYT(—,d)

∏(i,j)∈[—]

(–d+1−T(i,j) + i − j)

I All terms are nonnegativeI Howmany nonzero terms are there? (call this T(–=—))

Daniel Zhu The Okounkov-Olshanski Formula

Page 29: On the Okounkov-Olshanski Formula for the Number of ... Zhu.pdfI Reverseplanepartition(RPP):nonnegativeintegers,rows andcolumnsweaklyincreasing 0 0 3 1 1 3 8 8 8 I RPP( = ): RPPofshape

BackgroundResearch

Final Remarks

The Number of Nonzero TermsAn RPP q-Analogue

Our Result

Theorem (Morales-Z., 2018+)

T(–=—) = det[(–i − —j + j − 1

i − 1

)]di,j=1

T((4, 3)=(2)) = 3 by previous example

det

(20

) (50

)(11

) (41

) = 1 · 4− 1 · 1 = 3

Daniel Zhu The Okounkov-Olshanski Formula

Page 30: On the Okounkov-Olshanski Formula for the Number of ... Zhu.pdfI Reverseplanepartition(RPP):nonnegativeintegers,rows andcolumnsweaklyincreasing 0 0 3 1 1 3 8 8 8 I RPP( = ): RPPofshape

BackgroundResearch

Final Remarks

The Number of Nonzero TermsAn RPP q-Analogue

Our Result

Theorem (Morales-Z., 2018+)

T(–=—) = det[(–i − —j + j − 1

i − 1

)]di,j=1

T((4, 3)=(2)) = 3 by previous example

det

(20

) (50

)(11

) (41

) = 1 · 4− 1 · 1 = 3

Daniel Zhu The Okounkov-Olshanski Formula

Page 31: On the Okounkov-Olshanski Formula for the Number of ... Zhu.pdfI Reverseplanepartition(RPP):nonnegativeintegers,rows andcolumnsweaklyincreasing 0 0 3 1 1 3 8 8 8 I RPP( = ): RPPofshape

BackgroundResearch

Final Remarks

The Number of Nonzero TermsAn RPP q-Analogue

Our Result

Theorem (Morales-Z., 2018+)

T(–=—) = det[(–i − —j + j − 1

i − 1

)]di,j=1

T((4, 3)=(2)) = 3 by previous example

det

(20

) (50

)(11

) (41

) = 1 · 4− 1 · 1 = 3

Daniel Zhu The Okounkov-Olshanski Formula

Page 32: On the Okounkov-Olshanski Formula for the Number of ... Zhu.pdfI Reverseplanepartition(RPP):nonnegativeintegers,rows andcolumnsweaklyincreasing 0 0 3 1 1 3 8 8 8 I RPP( = ): RPPofshape

BackgroundResearch

Final Remarks

The Number of Nonzero TermsAn RPP q-Analogue

Proof Idea

Daniel Zhu The Okounkov-Olshanski Formula

Page 33: On the Okounkov-Olshanski Formula for the Number of ... Zhu.pdfI Reverseplanepartition(RPP):nonnegativeintegers,rows andcolumnsweaklyincreasing 0 0 3 1 1 3 8 8 8 I RPP( = ): RPPofshape

BackgroundResearch

Final Remarks

The Number of Nonzero TermsAn RPP q-Analogue

Proof Idea

Daniel Zhu The Okounkov-Olshanski Formula

Page 34: On the Okounkov-Olshanski Formula for the Number of ... Zhu.pdfI Reverseplanepartition(RPP):nonnegativeintegers,rows andcolumnsweaklyincreasing 0 0 3 1 1 3 8 8 8 I RPP( = ): RPPofshape

BackgroundResearch

Final Remarks

The Number of Nonzero TermsAn RPP q-Analogue

Proof Idea

Daniel Zhu The Okounkov-Olshanski Formula

Page 35: On the Okounkov-Olshanski Formula for the Number of ... Zhu.pdfI Reverseplanepartition(RPP):nonnegativeintegers,rows andcolumnsweaklyincreasing 0 0 3 1 1 3 8 8 8 I RPP( = ): RPPofshape

BackgroundResearch

Final Remarks

The Number of Nonzero TermsAn RPP q-Analogue

Proof Idea

Daniel Zhu The Okounkov-Olshanski Formula

Page 36: On the Okounkov-Olshanski Formula for the Number of ... Zhu.pdfI Reverseplanepartition(RPP):nonnegativeintegers,rows andcolumnsweaklyincreasing 0 0 3 1 1 3 8 8 8 I RPP( = ): RPPofshape

BackgroundResearch

Final Remarks

The Number of Nonzero TermsAn RPP q-Analogue

Proof Idea

Daniel Zhu The Okounkov-Olshanski Formula

Page 37: On the Okounkov-Olshanski Formula for the Number of ... Zhu.pdfI Reverseplanepartition(RPP):nonnegativeintegers,rows andcolumnsweaklyincreasing 0 0 3 1 1 3 8 8 8 I RPP( = ): RPPofshape

BackgroundResearch

Final Remarks

The Number of Nonzero TermsAn RPP q-Analogue

Proof Idea

Daniel Zhu The Okounkov-Olshanski Formula

Page 38: On the Okounkov-Olshanski Formula for the Number of ... Zhu.pdfI Reverseplanepartition(RPP):nonnegativeintegers,rows andcolumnsweaklyincreasing 0 0 3 1 1 3 8 8 8 I RPP( = ): RPPofshape

BackgroundResearch

Final Remarks

The Number of Nonzero TermsAn RPP q-Analogue

Reverse Plane Partitions

I Reverse plane partition (RPP): nonnegative integers, rowsand columns weakly increasing

≤0 0 3

≤ 1 1 38 88

I RPP(–=—): RPP of shape –=—

Daniel Zhu The Okounkov-Olshanski Formula

Page 39: On the Okounkov-Olshanski Formula for the Number of ... Zhu.pdfI Reverseplanepartition(RPP):nonnegativeintegers,rows andcolumnsweaklyincreasing 0 0 3 1 1 3 8 8 8 I RPP( = ): RPPofshape

BackgroundResearch

Final Remarks

The Number of Nonzero TermsAn RPP q-Analogue

An RPP Generating Function

Definition

For T ∈ RPP(–=—), let |T| be the sum of entries in T. Then let

rpp–=—(q) =∑

T∈RPP(–=—)

q|T|.

Theorem (Stanley, 1971)

limq→1

rpp–=—(q) · (1− q)|–=—| =f–=—

|–=—|!

Daniel Zhu The Okounkov-Olshanski Formula

Page 40: On the Okounkov-Olshanski Formula for the Number of ... Zhu.pdfI Reverseplanepartition(RPP):nonnegativeintegers,rows andcolumnsweaklyincreasing 0 0 3 1 1 3 8 8 8 I RPP( = ): RPPofshape

BackgroundResearch

Final Remarks

The Number of Nonzero TermsAn RPP q-Analogue

An RPP Generating Function

Definition

For T ∈ RPP(–=—), let |T| be the sum of entries in T. Then let

rpp–=—(q) =∑

T∈RPP(–=—)

q|T|.

Theorem (Stanley, 1971)

limq→1

rpp–=—(q) · (1− q)|–=—| =f–=—

|–=—|!

Daniel Zhu The Okounkov-Olshanski Formula

Page 41: On the Okounkov-Olshanski Formula for the Number of ... Zhu.pdfI Reverseplanepartition(RPP):nonnegativeintegers,rows andcolumnsweaklyincreasing 0 0 3 1 1 3 8 8 8 I RPP( = ): RPPofshape

BackgroundResearch

Final Remarks

The Number of Nonzero TermsAn RPP q-Analogue

Our Result

Theorem (Morales-Z., 2018+)

rpp–=—(q)rpp–(q)

=∑

T∈SSYT(—,d)

qp(T)∏u∈[—]

(1− qw(u,T(u)))

whereI w(u, t) = –d+1−t + i − jwhere u = (i, j)I p(T) =

∑u∈[—],mT (u)≤t<T(u)w(u, t)

I mT(u) is the minimum positive integer t such that replacingthe entry of u in T with t still yields a semistandard tableau

Daniel Zhu The Okounkov-Olshanski Formula

Page 42: On the Okounkov-Olshanski Formula for the Number of ... Zhu.pdfI Reverseplanepartition(RPP):nonnegativeintegers,rows andcolumnsweaklyincreasing 0 0 3 1 1 3 8 8 8 I RPP( = ): RPPofshape

BackgroundResearch

Final Remarks

The Number of Nonzero TermsAn RPP q-Analogue

Our Result

Theorem (Morales-Z., 2018+)

rpp–=—(q)rpp–(q)

=∑

T∈SSYT(—,d)

qp(T)∏u∈[—]

(1− qw(u,T(u)))

whereI w(u, t) = –d+1−t + i − jwhere u = (i, j)I p(T) is a sum ofw(u, t) for some u, t

Chen and Stanley have a similar q-analogue for semistandardtableaux

Daniel Zhu The Okounkov-Olshanski Formula

Page 43: On the Okounkov-Olshanski Formula for the Number of ... Zhu.pdfI Reverseplanepartition(RPP):nonnegativeintegers,rows andcolumnsweaklyincreasing 0 0 3 1 1 3 8 8 8 I RPP( = ): RPPofshape

BackgroundResearch

Final Remarks

Other Work

Other results:I Two other determinant formulas for T(–=—)I Equivalence of formulas for f–=— of Okounkov-Olshanski andKnutson-Tao

Future work:I Prove q-analogue without equivariant K-theory, possiblycombinatorially

I Relate Okounkov-Olshanski to other formulas

Daniel Zhu The Okounkov-Olshanski Formula

Page 44: On the Okounkov-Olshanski Formula for the Number of ... Zhu.pdfI Reverseplanepartition(RPP):nonnegativeintegers,rows andcolumnsweaklyincreasing 0 0 3 1 1 3 8 8 8 I RPP( = ): RPPofshape

BackgroundResearch

Final Remarks

Other Work

Other results:I Two other determinant formulas for T(–=—)I Equivalence of formulas for f–=— of Okounkov-Olshanski andKnutson-Tao

Future work:I Prove q-analogue without equivariant K-theory, possiblycombinatorially

I Relate Okounkov-Olshanski to other formulas

Daniel Zhu The Okounkov-Olshanski Formula

Page 45: On the Okounkov-Olshanski Formula for the Number of ... Zhu.pdfI Reverseplanepartition(RPP):nonnegativeintegers,rows andcolumnsweaklyincreasing 0 0 3 1 1 3 8 8 8 I RPP( = ): RPPofshape

BackgroundResearch

Final Remarks

Other Work

Other results:I Two other determinant formulas for T(–=—)I Equivalence of formulas for f–=— of Okounkov-Olshanski andKnutson-Tao

Future work:I Prove q-analogue without equivariant K-theory, possiblycombinatorially

I Relate Okounkov-Olshanski to other formulas

Daniel Zhu The Okounkov-Olshanski Formula

Page 46: On the Okounkov-Olshanski Formula for the Number of ... Zhu.pdfI Reverseplanepartition(RPP):nonnegativeintegers,rows andcolumnsweaklyincreasing 0 0 3 1 1 3 8 8 8 I RPP( = ): RPPofshape

BackgroundResearch

Final Remarks

Other Work

Other results:I Two other determinant formulas for T(–=—)I Equivalence of formulas for f–=— of Okounkov-Olshanski andKnutson-Tao

Future work:I Prove q-analogue without equivariant K-theory, possiblycombinatorially

I Relate Okounkov-Olshanski to other formulas

Daniel Zhu The Okounkov-Olshanski Formula

Page 47: On the Okounkov-Olshanski Formula for the Number of ... Zhu.pdfI Reverseplanepartition(RPP):nonnegativeintegers,rows andcolumnsweaklyincreasing 0 0 3 1 1 3 8 8 8 I RPP( = ): RPPofshape

BackgroundResearch

Final Remarks

Acknowledgements

I Mymentor, Prof. Alejandro MoralesI MIT-PRIMES ProgramI Dr. Tanya KhovanovaI MIT Math DepartmentI My family

Daniel Zhu The Okounkov-Olshanski Formula

Page 48: On the Okounkov-Olshanski Formula for the Number of ... Zhu.pdfI Reverseplanepartition(RPP):nonnegativeintegers,rows andcolumnsweaklyincreasing 0 0 3 1 1 3 8 8 8 I RPP( = ): RPPofshape

BackgroundResearch

Final Remarks

Summary

Theorems (Morales-Z., 2018+)

T(–=—) = det[(–i − —j + j − 1

i − 1

)]di,j=1

rpp–=—(q)rpp–(q)

=∑

T∈SSYT(—,d)

qp(T)∏u∈[—]

(1− qw(u,T(u)))

Daniel Zhu The Okounkov-Olshanski Formula