24
ON THE MEASUREMENT OF YIELD STRENGTH BY SPHERICAL INDENTATION E. G. Herbert 1 , W. C. Oliver 1 , and G. M. Pharr 2 1 University of Tennessee, Dept. of Materials Science and Engineering; & MTS Nano Instruments Innovation Center 2 University of Tennessee, Dept. of Materials Science and Engineering; & Oak Ridge National Laboratory, Metals and Ceramics Division

On The Measurement Of Yield Strength

Embed Size (px)

DESCRIPTION

Nanoindentation, spherical tip, yield strength estimation

Citation preview

Page 1: On The Measurement Of Yield Strength

ON THE MEASUREMENT OF YIELD STRENGTH BY SPHERICAL INDENTATION

E. G. Herbert 1, W. C. Oliver 1, and G. M. Pharr 2

1 University of Tennessee, Dept. of Materials Science and Engineering; & MTS Nano Instruments Innovation Center

2 University of Tennessee, Dept. of Materials Science and Engineering; & Oak Ridge National Laboratory, Metals and Ceramics Division

Page 2: On The Measurement Of Yield Strength

CONTEMPORARY INVESTIGATIONS

• 1995 Field and Swain

1996 Y d Bl h d• 1996 Yu and Blanchard

• 1998 Taljet, Zacharia, and Kosel

• 2001 Schwarzer et al.How well do they work?

• Test material: Al 6061‐T6• 2002 Durst, Goken, and Pharr

• 2003 Ma, Ong, Lu, and He

• 2004 Cao and Lu

• Test material: Al 6061 T6

• Diamond sphere, measured radius of 385 nm 

( ll h i ll• 2004 Cao and Lu

• 2004 Mulford, Asaro, and Sebring

• 2004 Kogut and Komvopoulos

(smallest sphere commercially available)

• 2004 Lee and Lee

• 2004 Kwon et al.

Page 3: On The Measurement Of Yield Strength

UNIAXIAL TENSILE MEASUREMENTS

400

l

300

350

MPa

)

Al 6061‐T6

200

250

tres

s (M

E = 72.59 GPa ± 2.54%(confirmed ultrasonically)

273 MP ± 0 70%

100

150

True

St = 273 MPa ± 0.70%yσ

Literature Values:E = 69 GPa

0

50

0 0 02 0 04 0 06 0 08 0 1 0 12

T E  69 GPa= 275 MPayσ

0 0.02 0.04 0.06 0.08 0.1 0.12True Strain (-)

Page 4: On The Measurement Of Yield Strength

UNIAXIAL TENSILE MEASUREMENTS

400

l

300

350

MPa

)

Al 6061‐T6

200

250

tres

s (M

nkεσ =Power law fit:

100

150

True

St 093.00.432 εσ =

0

50

0 0 02 0 04 0 06 0 08 0 1 0 12

T

0 0.02 0.04 0.06 0.08 0.1 0.12True Strain (-)

Page 5: On The Measurement Of Yield Strength

CONFIRMATION OF MEASURED TIP RADIUS

3 280

0 20 40 60 80 100M

Contact Depth (nm)

2 4

2.8

3.2

60

70

Modulus from unload,(mN

)M

odulus

1.6

2

2.4

40

50R = 385 nm

Sam

ple

s of ElaFused silica

0.8

1.2

6

20

30

oad

on S

asticity (

0

0.4

0

10

0 20 40 60 80 100 120 140 160

Experimental DataHertz Theory, R = 385 nm

Lo(G

Pa)

0 20 40 60 80 100 120 140 160Displacement Into Surface (nm)

Page 6: On The Measurement Of Yield Strength

INDENTATION DATA

0.5N

)

0 3

0.4

ple

(mN

Controlled loading, 

Al 6061‐T6

0 2

0.3

n Sa

mp g,

P/P = 0.05 s‐1.

0.1

0.2

oad

On

00 20 40 60 80 100

Lo

0 20 40 60 80 100Displacement Into Surface (nm)

Page 7: On The Measurement Of Yield Strength

EFFECTS OF SURFACE ROUGHNESS

Mechanically polished Al 6061‐T6Al 6061 T6

Page 8: On The Measurement Of Yield Strength

EFFECTS OF SURFACE ROUGHNESS

Mechanically polished Al 6061‐T6Al 6061 T6

Prevents us from accuratelydetermining small stressesgand strains.

Page 9: On The Measurement Of Yield Strength

Ma et al., J. Appl. Phys. 94, 1 (2003)

X

m hhPP ⎟⎟⎠

⎞⎜⎜⎝

⎛= ⎟⎟

⎞⎜⎜⎝

⎛Φ=

Rh

EEn

EERP miyH

Hm ,,,2

σ⎟⎟⎠

⎞⎜⎜⎝

⎛=

Rh

EEn

EX miyH

H ,,,σ

ψmh ⎠⎝ ⎠⎝ REEER ⎠⎝

Page 10: On The Measurement Of Yield Strength

Ma et al., J. Appl. Phys. 94, 1 (2003)

1.00 < X < 1.36

0 04

hm = 0.05R = 19.25 nm

hm = 0.025R = 9.63 nm

hm = 0.01R = 3.85 nm

0.001 < Pm / (ER2) < 0.01

Pm / (ER2):0 03

0.035

0.04

mN

) P = 0.03666(h/hm)1.8417

P = 0.0097747(h/h )1.7786

0.01R→ 0.0002110.025R→ 0.0009080.05R→ 0.003407

0 02

0.025

0.03

ampl

e (m (

m)

P = 2.2654E-3(h/hm)1.2192

0 01

0.015

0.02

d O

n Sa

This isn’t working!Presumably due to

0

0.005

0.01

Loa Presumably due to

roughness and contaminants on thesurface.0

0 0.2 0.4 0.6 0.8 1h/h

m (-)

Page 11: On The Measurement Of Yield Strength

Cao and Lu, Acta Materialia 52, (2004)n

fy

yE

⎟⎟⎠

⎞⎜⎜⎝

⎛+= εσ

σσ 1 ⎥⎦

⎤⎢⎣

⎡+⎟⎟

⎞⎜⎜⎝

⎛+⎟⎟

⎞⎜⎜⎝

⎛+⎟⎟

⎞⎜⎜⎝

⎛= 43

22

31

2 lnlnln CECECEChPr

r

r

r

r

rgrg σσσ

σ

2

106.1435.000939.0 ⎟⎟⎞

⎜⎜⎛

−+=Rh

Rh gg

n

⎟⎠

⎜⎝ RRr

n

ry

yrE

⎥⎥⎦

⎢⎢⎣

⎡+= 1,1, 1 εσ

σσ

n

ry

yrE

⎥⎥⎦

⎢⎢⎣

⎡+= 2,2, 1 εσ

σσy ⎦⎣

Page 12: On The Measurement Of Yield Strength

Cao and Lu, Acta Materialia 52, (2004)

⎥⎦

⎤⎢⎣

⎡+⎟⎟

⎞⎜⎜⎝

⎛+⎟⎟

⎞⎜⎜⎝

⎛+⎟⎟

⎞⎜⎜⎝

⎛= 43

22

31

2 lnlnln CECECEChPr

r

r

r

r

rgrg σσσ

σn

fy

yE

⎟⎟⎠

⎞⎜⎜⎝

⎛+= εσ

σσ 1

hg, 1 = ~ 0.01R = 4.2 nm

P 1 = 2 18 µN

2

106.1435.000939.0 ⎟⎟⎞

⎜⎜⎛

−+=Rh

Rh gg

rεPg, 1  2.18 µN

hg, 2 = ~ 0.06R = 23.3 nm

P 52 98 N n

⎟⎠

⎜⎝ RRr

Pg, 2 = 52.98 µN

= 4.24E+7 Pa1,rσSolution does notconverge for 0 ≤ n ≤ 1

n

ry

yrE

⎥⎥⎦

⎢⎢⎣

⎡+= 1,1, 1 εσ

σσ

= 2.98E+8 Pa

= 0.0141

2,rσ

1,rε

0 ≤ n ≤ 1Presumably due toroughness and contaminants on the

n

ry

yrE

⎥⎥⎦

⎢⎢⎣

⎡+= 2,2, 1 εσ

σσ 0.0141

= 0.0316

,

2,rεcontaminants on thesurface.

y ⎦⎣

Page 13: On The Measurement Of Yield Strength

Yu & Blanchard, J. Mater. Res. 11, 9 (1996)

⎟⎠⎞

⎜⎝⎛ −=

RaC Ra 4921.0845.2, λ( )

⎪⎨

⎧≤≤

=arb

ar-p

rpm for 1

23

2

2

⎠⎝ R( )⎪⎩

⎨≤≤ brC yRa 0 for , σ

Page 14: On The Measurement Of Yield Strength

Yu & Blanchard, J. Mater. Res. 11, 9 (1996)

⎪⎪⎪⎪⎧

≤−

−<

−Ra

RaE

RaE y

y

14921.0845.2

)1(2

0 for )1(3

4 2

2

συπσυπ

⎪⎪⎪

⎪⎪⎪

∞<−

<⎟⎟⎟⎟⎞

⎜⎜⎜⎜⎛

⎟⎠⎞

⎜⎝⎛ −

⎟⎠⎞

⎜⎝⎛ −

=

RaE

Ra

a

RH

y

y

)1(2

1for 4921.0845.2

-14921.0845.2 2

2

2

συπσ

⎪⎪⎪⎪

−⎟⎟⎟

⎠⎜⎜⎜

⎝⎟⎟⎠

⎞⎜⎜⎝

⎟⎠

⎜⎝

Ra

RaER

y

4921.0845.2)1(

232

2 συπ

( ) ( ) ( )( )Ea

RaRaR

H

y

yyy

yy

2222242

2222222

021.520299.0

13459.011730.094.18 σ

σσυσυ

συσυ⎟⎟

⎜⎜

−+−

+−−−−−

=REa

H 22=

Apply P, measure h and S, assume E to get A, @ h = 20 nm (full contact), H = 1186.12 MPa

= 424 MPa, relative error = 55.3%yσ

Page 15: On The Measurement Of Yield Strength

Field and Swain, J. Mater. Res. 10, 1 (1995)2

P ca'20hrh

rte hhh −=2e

rbh

hh +=

2

⎟⎠⎞

⎜⎝⎛

+−

=1412

252

nnc

PdP 3

32

⎟⎟⎠

⎞⎜⎜⎝

⎛=

s

t

PP

r

2)'( 8.2 caP

r πσ =

Rca

r 2.0=ε1−−

=r

hrhh ts

r

22' bb hRha −=ee h

PdhdP

23

=

Pt and ht

P and hPs and hs

Field and Swain (1993)

Page 16: On The Measurement Of Yield Strength

Field and Swain, J. Mater. Res. 10, 1 (1995)

0.50 20 40 60 80 100Al 6061-T6

0.4Field & SwainP/P

(mN

) .

0.3

Sam

ple

peak load

0.1

0.2

oad

on S

0

0.1

0 20 40 60 80 100

Lo 50% unloaded

0 20 40 60 80 100Displacement Into Surface (nm)

Page 17: On The Measurement Of Yield Strength

Field and Swain, J. Mater. Res. 10, 1 (1995)

• slope = Meyer’s index, m+ 2-0 6

Al 6061‐T6

•m + 2 = nwhere• n = 0.5491

il d 0 0931

-0.8

0.6

Y = ‐6.7719 + 2.5491X R = 0.99937nkεσ =

• n, tensile data = 0.093

•-1.2

-1

og (P

)

h = 100 nm ⎟⎟⎠

⎞⎜⎜⎝

⎛+−

=1412

252

nnc

• c = 0.893 → sink‐in-1.6

-1.4Lo ⎠⎝ +142 n

• The stiffness equation:

-2

-1.8

1 9 2 2 1 2 2 2 3 2 4 ASEr 2

π=1.9 2 2.1 2.2 2.3 2.4

Log (a')A2

Page 18: On The Measurement Of Yield Strength

Field and Swain, J. Mater. Res. 10, 1 (1995)⎞⎛2

P ca'20hrh

rte hhh −=2e

rbh

hh +=

2

⎟⎠⎞

⎜⎝⎛

+−

=1412

252

nnc

PdP 3

32

⎟⎟⎠

⎞⎜⎜⎝

⎛=

s

t

PP

r ASEr 2

π=

2)'(caP

r πσ =

Rca

r 2.0=ε1−−

=r

hrhh ts

r

22' bb hRha −=ee h

PdhdPS

23

==

Pt and ht

P and hPs and hs

Page 19: On The Measurement Of Yield Strength

FIELD AND SWAIN ‐ TABOR: TENSILE VS. IIT

8000 0.03 0.06 0.09 0.12 0.15 0.18

0.2 a(Es=72.59GPa)/R (-)

600

700

800

Pa) 135.02.651 εσ

εσ

=

= nkAl 6061‐T6

400

500

600

ess

(MP 093.00.432 εσ =

h = 100 nm

200

300

400

rue

Stre

0

100

200 Tensile dataF and S, (P

m via A(E

s=72.59GPa))/2.8

Tr

00 0.03 0.06 0.09 0.12 0.15 0.18

True Strain (-)

Page 20: On The Measurement Of Yield Strength

FIELD AND SWAIN ‐ TABOR: TENSILE VS. IIT

8000 0.03 0.06 0.09 0.12 0.15 0.18

0.2 a(Es=72.59GPa)/R (-)

600

700

800

Pa)

Al 6061‐T6135.02.651 εσ

εσ

=

= nk

400

500

600

ess

(MP 093.00.432 εσ =

200

300

400

rue

Stre

h = 100 nm

0

100

200 Tensile dataF and S, (P

m via A(E

s=72.59GPa))/2.8

Tr

00 0.03 0.06 0.09 0.12 0.15 0.18

True Strain (-)

Page 21: On The Measurement Of Yield Strength

P/P ‐ TABOR: TENSILE VS. IIT.

8000 0.03 0.06 0.09 0.12 0.15 0.18

0.2 a(Es=72.59GPa)/R (-)

600

700

800

Pa)

h = 17 nm εσ = nk

h = 100 nm

400

500

600

ess

(MP h  17 nm

093.0

189.0

04320.742εσ

εσ

εσ

=

=

= k

200

300

400

Tensile datarue

Stre 0.432 εσ =

0

100

200 Tensile dataP/P, (P

m via A(E

s=72.59GPa))/2.8

Tr .

00 0.03 0.06 0.09 0.12 0.15 0.18

True Strain (-)

Page 22: On The Measurement Of Yield Strength

PREVIOUS OBSERVATIONS: ISE

Indenters:Spherical indentation of Iridium

Swadener et al., J. Mech. Phys. Solids 50 (2002)

• sapphire spheres,R = 69,122,318 mm

• diamond “sphere”,3.00 0.01 0.02 0.03 0.04

Effective strain, 0.2a/R

R = 14 mm• hardened steel ball,R = 1600 mm2.0

2.5

(GP

a)

14 μm

122

69 μm

Features:• H and 3s similarfor large spheres1.0

1.5

ardn

ess

( 122 μm1600 μm

318μm g p• H increases as R decreases

• increase in H with0 0

0.5

Ha

3σ ρG =1

bR

a/R parallels workhardening

0.00 0.05 0.1 0.15 0.2

a/R

Page 23: On The Measurement Of Yield Strength

P/P ‐ TABOR: TENSILE VS. IIT.

6000 0.03 0.06 0.09 0.12 0.15 0.18

0.2 a(Es=72.59GPa)/R (-)

εσ = nk

500

600

Pa)

h = 100 nm

093.0

189.0

0.4322.561εσ

εσ

=

=h = 17 nm

300

400

ess

(MP 03 εσ

RE in k = 30%

RE in n = 103%

200

300

Tensile dataP/P, (P

m via A(E

s=72.59GPa))/3.7ru

e St

re

.⎟⎟⎠

⎞⎜⎜⎝

⎛=

n

yEkσ

σ

0

100Tr

Al 6061‐T6 MPa 8.180=∴

⎟⎠

⎜⎝

y

y

σ

σ

RE i 34%σ00 0.03 0.06 0.09 0.12 0.15 0.18

True Strain (-)RE in    = ‐34%yσ

Page 24: On The Measurement Of Yield Strength

SUMMARY AND CONCLUSIONS

1. Assumption of a perfect sphere.

b d h d ld b ll l d2. FEA based methods could not be experimentally implemented:   proscribed depths < roughness and/or contaminants. Techniques are not ideally suited to investigating volumes of material that require small spheres.

3. Yu’s theoretical pressure distribution overestimated σy by 55%.

4. Field & Swain’s procedure overestimated the plastic flow curve by ~40%.

5. Work‐hardening from the mechanical polishing cannot fully account for these discrepancies.

6. One possible explanation: Indentation Size Effect.