34
On the Different Interpretations of Classical Countable Choice Paulo Oliva [email protected] Queen Mary, University of London 2nd Workshop on the Logic for Pragmatics Paris, Jul 23, 2004 On the Different Interpretations of Classical Countable Choice – p.1/13

On the Different Interpretations of Classical Countable Choicepbo/away-talks/2004_07_23Paris.pdf · On the Different Interpretations of Classical Countable Choice Paulo Oliva [email protected]

  • Upload
    leminh

  • View
    212

  • Download
    0

Embed Size (px)

Citation preview

Page 1: On the Different Interpretations of Classical Countable Choicepbo/away-talks/2004_07_23Paris.pdf · On the Different Interpretations of Classical Countable Choice Paulo Oliva pbo@dcs.qmul.ac.uk

On the Different Interpretations ofClassical Countable Choice

Paulo Oliva

[email protected]

Queen Mary, University of London

2nd Workshop on the Logic for Pragmatics

Paris, Jul 23, 2004

On the Different Interpretations of Classical Countable Choice – p.1/13

Page 2: On the Different Interpretations of Classical Countable Choicepbo/away-talks/2004_07_23Paris.pdf · On the Different Interpretations of Classical Countable Choice Paulo Oliva pbo@dcs.qmul.ac.uk

Road Map

Introduction

Proof Interpretations

Classical Logic

Countable Choice

Interpreting Classical Countable Choice

Bar Recursion (Spector’62)

Modified Bar Recursion (BO’03)

Krivine’s Clock (Krivine’03)

Final Remarks

On the Different Interpretations of Classical Countable Choice – p.2/13

Page 3: On the Different Interpretations of Classical Countable Choicepbo/away-talks/2004_07_23Paris.pdf · On the Different Interpretations of Classical Countable Choice Paulo Oliva pbo@dcs.qmul.ac.uk

Proof Interpretations

T ` A ⇒ S ` AI (usually S ⊆ T )

On the Different Interpretations of Classical Countable Choice – p.3/13

Page 4: On the Different Interpretations of Classical Countable Choicepbo/away-talks/2004_07_23Paris.pdf · On the Different Interpretations of Classical Countable Choice Paulo Oliva pbo@dcs.qmul.ac.uk

Proof Interpretations

T ` A ⇒ S ` AI (usually S ⊆ T )

Consistency (AI ≡ A ≡ false)

¬ConsT ⇒ ¬ConsS

On the Different Interpretations of Classical Countable Choice – p.3/13

Page 5: On the Different Interpretations of Classical Countable Choicepbo/away-talks/2004_07_23Paris.pdf · On the Different Interpretations of Classical Countable Choice Paulo Oliva pbo@dcs.qmul.ac.uk

Proof Interpretations

T ` A ⇒ S ` AI (usually S ⊆ T )

Consistency (AI ≡ A ≡ false)

¬ConsT ⇒ ¬ConsS

Theorem refinement (T ≡ S, AI → A)

S ` A ⇒ S ` AI

On the Different Interpretations of Classical Countable Choice – p.3/13

Page 6: On the Different Interpretations of Classical Countable Choicepbo/away-talks/2004_07_23Paris.pdf · On the Different Interpretations of Classical Countable Choice Paulo Oliva pbo@dcs.qmul.ac.uk

Proof Interpretations

T ` A ⇒ S ` AI (usually S ⊆ T )

Consistency (AI ≡ A ≡ false)

¬ConsT ⇒ ¬ConsS

Theorem refinement (T ≡ S, AI → A)

S ` A ⇒ S ` AI

Hypothesis elimination (T ≡ S + P , AI ≡ A)

S + P ` A ⇒ S ` A

On the Different Interpretations of Classical Countable Choice – p.3/13

Page 7: On the Different Interpretations of Classical Countable Choicepbo/away-talks/2004_07_23Paris.pdf · On the Different Interpretations of Classical Countable Choice Paulo Oliva pbo@dcs.qmul.ac.uk

Proof Interpretations

Refinement + elimination (T ≡ S + P , AI → A)

S + P ` A ⇒ S ` AI

On the Different Interpretations of Classical Countable Choice – p.4/13

Page 8: On the Different Interpretations of Classical Countable Choicepbo/away-talks/2004_07_23Paris.pdf · On the Different Interpretations of Classical Countable Choice Paulo Oliva pbo@dcs.qmul.ac.uk

Proof Interpretations

Refinement + elimination (T ≡ S + P , AI → A)

S + P ` A ⇒ S ` AI

Associates formula A with AI ≡ ∃xAI(x).

A is interpretable in T if

T ` AI(t), for some term t.

On the Different Interpretations of Classical Countable Choice – p.4/13

Page 9: On the Different Interpretations of Classical Countable Choicepbo/away-talks/2004_07_23Paris.pdf · On the Different Interpretations of Classical Countable Choice Paulo Oliva pbo@dcs.qmul.ac.uk

Proof Interpretations

Refinement + elimination (T ≡ S + P , AI → A)

S + P ` A ⇒ S ` AI

Associates formula A with AI ≡ ∃xAI(x).

A is interpretable in T if

T ` AI(t), for some term t.

|A| ≡ {t : T ` AI(t)}. (realisers of A)

On the Different Interpretations of Classical Countable Choice – p.4/13

Page 10: On the Different Interpretations of Classical Countable Choicepbo/away-talks/2004_07_23Paris.pdf · On the Different Interpretations of Classical Countable Choice Paulo Oliva pbo@dcs.qmul.ac.uk

Proof Interpretations

Finite type approach (|A| is a set of terms)

|A → B| ≡ |A| → |B|

|∀xτAx| ≡ Πx∈τ |Ax|

|∃xτAx| ≡ Σx∈τ |Ax|

On the Different Interpretations of Classical Countable Choice – p.5/13

Page 11: On the Different Interpretations of Classical Countable Choicepbo/away-talks/2004_07_23Paris.pdf · On the Different Interpretations of Classical Countable Choice Paulo Oliva pbo@dcs.qmul.ac.uk

Proof Interpretations

Finite type approach (|A| is a set of terms)

|A → B| ≡ |A| → |B|

|∀xτAx| ≡ Πx∈τ |Ax|

|∃xτAx| ≡ Σx∈τ |Ax|

E.g. AC ≡ ∀xσ∃yτA(x, y) → ∃f∀xA(x, f(x))

|AC| ≡ ΠxΣy|A(x, y)| → ΣfΠx|A(x, f(x))|

then λφ.〈λx.π0(φx), λx.π1(φx)〉 ∈ |AC|.

On the Different Interpretations of Classical Countable Choice – p.5/13

Page 12: On the Different Interpretations of Classical Countable Choicepbo/away-talks/2004_07_23Paris.pdf · On the Different Interpretations of Classical Countable Choice Paulo Oliva pbo@dcs.qmul.ac.uk

Proof Interpretations

Finite type approach (|A| is a set of terms)

|A → B| ≡ |A| → |B|

|∀xτAx| ≡ Πx∈τ |Ax|

|∃xτAx| ≡ Σx∈τ |Ax|

Second order approach (parametrised by model M)

|A → B| ≡ |A| → |B|

|∀xA| ≡⋂

a∈M

|Aa|

|∃xA| ≡⋃

a∈M

|Aa|

On the Different Interpretations of Classical Countable Choice – p.5/13

Page 13: On the Different Interpretations of Classical Countable Choicepbo/away-talks/2004_07_23Paris.pdf · On the Different Interpretations of Classical Countable Choice Paulo Oliva pbo@dcs.qmul.ac.uk

Proof Interpretations

E.g. Let

Int(n) ≡ ∀X(X(0) ∧ ∀x(X(x) → X(x + 1)) → X(n))

then λxλf.fn(x) ∈ |Int(n)|.

Second order approach (parametrised by model M)

|A → B| ≡ |A| → |B|

|∀xA| ≡⋂

a∈M

|Aa|

|∃xA| ≡⋃

a∈M

|Aa|

On the Different Interpretations of Classical Countable Choice – p.5/13

Page 14: On the Different Interpretations of Classical Countable Choicepbo/away-talks/2004_07_23Paris.pdf · On the Different Interpretations of Classical Countable Choice Paulo Oliva pbo@dcs.qmul.ac.uk

Dealing with Countable Choice

cAC : ∀n∃yτA(n, y) → ∃f∀nA(n, fn)

cAC : ∀n∃SA(n, S) → ∃Y(·)∀nA(n, Yn)

On the Different Interpretations of Classical Countable Choice – p.6/13

Page 15: On the Different Interpretations of Classical Countable Choicepbo/away-talks/2004_07_23Paris.pdf · On the Different Interpretations of Classical Countable Choice Paulo Oliva pbo@dcs.qmul.ac.uk

Dealing with Countable Choice

cAC : ∀n∃yτA(n, y) → ∃f∀nA(n, fn)

cAC : ∀n∃SA(n, S) → ∃Y(·)∀nA(n, Yn)

Accepted intuitionistically.

Heyting arithmetic closed under ”rule of choice”:

HAω ` ∀x∃yA(x, y) ⇒ HA

ω ` ∃f∀xA(x, f(x))

On the Different Interpretations of Classical Countable Choice – p.6/13

Page 16: On the Different Interpretations of Classical Countable Choicepbo/away-talks/2004_07_23Paris.pdf · On the Different Interpretations of Classical Countable Choice Paulo Oliva pbo@dcs.qmul.ac.uk

Dealing with Countable Choice

cAC : ∀n∃yτA(n, y) → ∃f∀nA(n, fn)

cAC : ∀n∃SA(n, S) → ∃Y(·)∀nA(n, Yn)

Accepted intuitionistically.

Heyting arithmetic closed under ”rule of choice”:

HAω ` ∀x∃yA(x, y) ⇒ HA

ω ` ∃f∀xA(x, f(x))

Very strong in the presence of classical logic:

LEM + cAC ` CA

where CA ≡ ∃f∀n(f(n) = 0 ↔ A(n)).

On the Different Interpretations of Classical Countable Choice – p.6/13

Page 17: On the Different Interpretations of Classical Countable Choicepbo/away-talks/2004_07_23Paris.pdf · On the Different Interpretations of Classical Countable Choice Paulo Oliva pbo@dcs.qmul.ac.uk

Dealing with Countable Choice

cAC : ∀n∃yτA(n, y) → ∃f∀nA(n, fn)

cAC : ∀n∃SA(n, S) → ∃Y(·)∀nA(n, Yn)

Accepted intuitionistically.

Heyting arithmetic closed under ”rule of choice”:

HAω ` ∀x∃yA(x, y) ⇒ HA

ω ` ∃f∀xA(x, f(x))

Very strong in the presence of classical logic:

LEM + cAC ` CA

where CA ≡ ∃f∀n(f(n) = 0 ↔ A(n)).

So, PAω + cAC ≡ full classical analysis.

On the Different Interpretations of Classical Countable Choice – p.6/13

Page 18: On the Different Interpretations of Classical Countable Choicepbo/away-talks/2004_07_23Paris.pdf · On the Different Interpretations of Classical Countable Choice Paulo Oliva pbo@dcs.qmul.ac.uk

Dealing with Classical Logic

Eliminate classical logic:

HAω + LEM ` A ⇒ HA

ω ` AN .

N ≡ negative translation. (Godel’33)

Interpret classical logic:

Find functional C witnessing LEMI .

C ≡ continuation. (Griffin’90)

On the Different Interpretations of Classical Countable Choice – p.7/13

Page 19: On the Different Interpretations of Classical Countable Choicepbo/away-talks/2004_07_23Paris.pdf · On the Different Interpretations of Classical Countable Choice Paulo Oliva pbo@dcs.qmul.ac.uk

Interpreting Countable Choice (1)

Finite type approach

HAω + LEM + cAC ` A

HAω + cAC

N ` AN (by negative translation)

HAω + DNS + cAC ` AN (since DNS + cAC ` cAC

N )

where DNS : ∀n¬¬A(n) → ¬¬∀nA(n)

On the Different Interpretations of Classical Countable Choice – p.8/13

Page 20: On the Different Interpretations of Classical Countable Choicepbo/away-talks/2004_07_23Paris.pdf · On the Different Interpretations of Classical Countable Choice Paulo Oliva pbo@dcs.qmul.ac.uk

Interpreting Countable Choice (1)

Finite type approach

HAω + LEM + cAC ` A

HAω + cAC

N ` AN (by negative translation)

HAω + DNS + cAC ` AN (since DNS + cAC ` cAC

N )

where DNS : ∀n¬¬A(n) → ¬¬∀nA(n)

Bar recursion interprets DNS [Spector’62].

(via functional interpretation [Godel’56])

On the Different Interpretations of Classical Countable Choice – p.8/13

Page 21: On the Different Interpretations of Classical Countable Choicepbo/away-talks/2004_07_23Paris.pdf · On the Different Interpretations of Classical Countable Choice Paulo Oliva pbo@dcs.qmul.ac.uk

Interpreting Countable Choice (2)

Thm[BO’02] Modified bar recursion interprets DNS

(via modified realizability)

On the Different Interpretations of Classical Countable Choice – p.9/13

Page 22: On the Different Interpretations of Classical Countable Choicepbo/away-talks/2004_07_23Paris.pdf · On the Different Interpretations of Classical Countable Choice Paulo Oliva pbo@dcs.qmul.ac.uk

Interpreting Countable Choice (2)

Thm[BO’02] Modified bar recursion interprets DNS

(via modified realizability)

Based on work of Berardi, Bezem & Coquand (98).

On the Different Interpretations of Classical Countable Choice – p.9/13

Page 23: On the Different Interpretations of Classical Countable Choicepbo/away-talks/2004_07_23Paris.pdf · On the Different Interpretations of Classical Countable Choice Paulo Oliva pbo@dcs.qmul.ac.uk

Interpreting Countable Choice (2)

Thm[BO’02] Modified bar recursion interprets DNS

(via modified realizability)

Based on work of Berardi, Bezem & Coquand (98).

Thm[BO’02] SBR is primitive recursively definable in

MBR, but not conversely.

On the Different Interpretations of Classical Countable Choice – p.9/13

Page 24: On the Different Interpretations of Classical Countable Choicepbo/away-talks/2004_07_23Paris.pdf · On the Different Interpretations of Classical Countable Choice Paulo Oliva pbo@dcs.qmul.ac.uk

Krivine’s Interpretation

Reduce

∀n∃SA(n, S) → ∃Y(·)∀nA(n, Yn)

to

∀n∃SA(n, S) → ∃Y(·,·)∀n∃kA(n, Yn,k)

On the Different Interpretations of Classical Countable Choice – p.10/13

Page 25: On the Different Interpretations of Classical Countable Choicepbo/away-talks/2004_07_23Paris.pdf · On the Different Interpretations of Classical Countable Choice Paulo Oliva pbo@dcs.qmul.ac.uk

Krivine’s Interpretation

Reduce

∀n∃SA(n, S) → ∃Y(·)∀nA(n, Yn)

to

∀n∃SA(n, S) → ∃Y(·,·)∀n∃kA(n, Yn,k)

On the Different Interpretations of Classical Countable Choice – p.10/13

Page 26: On the Different Interpretations of Classical Countable Choicepbo/away-talks/2004_07_23Paris.pdf · On the Different Interpretations of Classical Countable Choice Paulo Oliva pbo@dcs.qmul.ac.uk

Krivine’s Interpretation

Reduce

∀n∃SA(n, S) → ∃Y(·)∀nA(n, Yn)

to

∀n∃SA(n, S) → ∃Y(·,·)∀n∃kA(n, Yn,k)

which follows from

∃Y(·,·)∀n(∀kA(n, Yn,k) → ∀SA(n, S)).

On the Different Interpretations of Classical Countable Choice – p.10/13

Page 27: On the Different Interpretations of Classical Countable Choicepbo/away-talks/2004_07_23Paris.pdf · On the Different Interpretations of Classical Countable Choice Paulo Oliva pbo@dcs.qmul.ac.uk

Krivine’s Interpretation

Interpretation of

∃Y(·,·)∀n(∀kA(n, Yn,k) → ∀SA(n, S)).

asks for term χ in the set

Y(·,·)

n

(⋂

k

(|Int(k)| → |A(n, Yn,k)|) → |∀SA(n, S)|).

On the Different Interpretations of Classical Countable Choice – p.11/13

Page 28: On the Different Interpretations of Classical Countable Choicepbo/away-talks/2004_07_23Paris.pdf · On the Different Interpretations of Classical Countable Choice Paulo Oliva pbo@dcs.qmul.ac.uk

Krivine’s Interpretation

Interpretation of

∃Y(·,·)∀n(∀kA(n, Yn,k) → ∀SA(n, S)).

asks for term χ in the set

Y(·,·)

n

(⋂

k

(|Int(k)| → |A(n, Yn,k)|) → |∀SA(n, S)|).

Assume b : k 7→ tk. Take Yn,k (by cAC) satisfying:

(∗) if tk(k) ∈ |A(n, Yn,k)| then tk(k) ∈ |∀SA(n, S)|.

On the Different Interpretations of Classical Countable Choice – p.11/13

Page 29: On the Different Interpretations of Classical Countable Choicepbo/away-talks/2004_07_23Paris.pdf · On the Different Interpretations of Classical Countable Choice Paulo Oliva pbo@dcs.qmul.ac.uk

Krivine’s Interpretation

Interpretation of

∃Y(·,·)∀n(∀kA(n, Yn,k) → ∀SA(n, S)).

asks for term χ in the set

Y(·,·)

n

(⋂

k

(|Int(k)| → |A(n, Yn,k)|) → |∀SA(n, S)|).

Assume b : k 7→ tk. Take Yn,k (by cAC) satisfying:

(∗) if tk(k) ∈ |A(n, Yn,k)| then tk(k) ∈ |∀SA(n, S)|.

We can take χt = t(kt). (b−1 : t 7→ kt)

On the Different Interpretations of Classical Countable Choice – p.11/13

Page 30: On the Different Interpretations of Classical Countable Choicepbo/away-talks/2004_07_23Paris.pdf · On the Different Interpretations of Classical Countable Choice Paulo Oliva pbo@dcs.qmul.ac.uk

Comparing the Two Approaches

Finite types Second order

Basic terms Primitive rec Recursive

Induction Interprets Eliminates

Scales Yes ?

Curry-Howard ? Yes

Classical Logic Eliminates Interprets

Comprehension Goal Axiom

Reduces cAC to DNS KA

On the Different Interpretations of Classical Countable Choice – p.12/13

Page 31: On the Different Interpretations of Classical Countable Choicepbo/away-talks/2004_07_23Paris.pdf · On the Different Interpretations of Classical Countable Choice Paulo Oliva pbo@dcs.qmul.ac.uk

Open Questions

Classical logic:

Finite types: use continuations?

Second order: negative translation?

On the Different Interpretations of Classical Countable Choice – p.13/13

Page 32: On the Different Interpretations of Classical Countable Choicepbo/away-talks/2004_07_23Paris.pdf · On the Different Interpretations of Classical Countable Choice Paulo Oliva pbo@dcs.qmul.ac.uk

Open Questions

Classical logic:

Finite types: use continuations?

Second order: negative translation?

Induction:

Interpret weak forms of induction?

Subsystems of analysis?

On the Different Interpretations of Classical Countable Choice – p.13/13

Page 33: On the Different Interpretations of Classical Countable Choicepbo/away-talks/2004_07_23Paris.pdf · On the Different Interpretations of Classical Countable Choice Paulo Oliva pbo@dcs.qmul.ac.uk

Open Questions

Classical logic:

Finite types: use continuations?

Second order: negative translation?

Induction:

Interpret weak forms of induction?

Subsystems of analysis?

Krivine’s interpretation:

Not assume comprehension?

No conflict between classical logic and choice?

On the Different Interpretations of Classical Countable Choice – p.13/13

Page 34: On the Different Interpretations of Classical Countable Choicepbo/away-talks/2004_07_23Paris.pdf · On the Different Interpretations of Classical Countable Choice Paulo Oliva pbo@dcs.qmul.ac.uk

Open Questions

Classical logic:

Finite types: use continuations?

Second order: negative translation?

Induction:

Interpret weak forms of induction?

Subsystems of analysis?

Krivine’s interpretation:

Not assume comprehension?

No conflict between classical logic and choice?

Polymorphism versus Bar recursion?

On the Different Interpretations of Classical Countable Choice – p.13/13