12
On Rearrangements of Fourier Series Mark Lewko On the distribution of values of orthonormal systems with restricted supports

On Rearrangements of Fourier Series Mark Lewko TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: A A AAA A AAA A A A A

Embed Size (px)

Citation preview

On Rearrangements of Fourier Series

Mark Lewko

On the distribution of values of orthonormal systems with restricted supports

Orthonormal System

©:= fÁ1;Á2; : : : ;Áng

hÁi ;Áj i = 0

Ái : T ! C

i 6= jhÁi ;Ái i = 1

Meta-Question

f (x) :=X

n2­

anÁn(x)

©:= fÁ1;Á2; : : : ;Áng

­ µ [N ]

Given:

What can we say about:

Random versus Explicit

­ µ [N ]Sharp (or nearly sharp) results

• Stochastic processes

• Metrical entropy

A lot of work to marginally beat trivial estimates • Analytic number theory

(circle method)

• Fourier restriction theory (multi-linear estimates)

• Combinatorics (sum-product estimates)

• ? ABC Conjecture / PFR conjecture / Faltings theorem ?

Theorem (Bourgain)

©:= fÁn : n 2 [N ]g jjÁi jjL 1 ¿ 1

jjX

n2­

anÁn jjp ¿

ÃX

n

jan j2! 1=2j­ j À N p=2

(Random)

No explicit examples (unless p is even integer)

Finite Field Restriction Estimates

P := f (n1;n2;n21+n22) : n1;n2 2 F

2pg

¯¯¯¯¯

¯¯¯¯¯

X

n2P

ane(n ¢x)

¯¯¯¯¯

¯¯¯¯¯L p

¿ jFj1¡ 3=p³ X

jan j2´1=2

©:= fe(n ¢x) : n 2 F3pg

­ := fe(n) : n 2 Pg

Conjectured for p¸ 3 and ¡ 1 not a square.

Compressed Sensing

­ µ [N ]

X

y2­

jX

i

aiÁi (x)j2

X

x2[N ]

jX

i

aiÁi (x)j2=X

i2 [N ]

jai j2

»j­ jN

X

i2 [N ]

jai j2

©:= fÁn : n 2 [N ]g

Compressed Sensing II

X

y2­

jX

i

aiÁi (x)j2 · (1+ ²)j­ jN

X

i2 [N ]

jai j2(1¡ ²)j­ jN

X

i2 [N ]

jai j2 ·

A = (a1;a2; : : : ;an) jjA jj0 =R

r log4(n)²2

¿ j­ j

Theorem (Candes-Tao / Rudelson-Vershynin)

©:= fÁn : n 2 [N ]g

Rearrangements of Fourier Series©:= fÁ1;Á2; : : :g

f (x) = lim`! 1

X

n· `

anÁn(x)a.e.

Kolmogorov (1920’s)

f (x) = lim`! 1

X

n· `

a¼(n)Á¼(n)(x)?a.e.

Does thereexist a ¼: N ! N such that:

f (x) =XanÁn(x)

Rearrangements of Fourier Series II©:= fÁ1;Á2; : : :g

M f (x) =max`

¯¯¯¯¯¯

X

n· `

anÁn(x)

¯¯¯¯¯¯

jjM f jjL 2 ¿ log(N )(Xjan j2)1=2

f (x) =XanÁn(x)

Rademacher-Menshov

Bourgain

M ¼f (x) =max`

¯¯¯¯¯¯

X

n· `

a¼(n)Á¼(n)(x)

¯¯¯¯¯¯

jjM ¼f jjL 2 ¿ loglog(N )(Xjan j2)1=2

Rearrangements of Fourier Series III

M ¼f (x) =max`

¯¯¯¯¯¯

X

n· `

a¼(n)Á¼(n)(x)

¯¯¯¯¯¯

¯¯¯¯¯

X

n2I

a¼(n)Á¼(n)(x)

¯¯¯¯¯

¯¯¯¯¯

X

n2­

a¼(n)Á¼(n)(x)

¯¯¯¯¯

j­ j = jI j

Thank You!