46
On Courant’s nodal domain property for linear combinations of eigenfunctions (after P. B´ erard and B. Helffer). Bernard Helffer, Laboratoire de Math´ ematiques Jean Leray, Universit´ e de Nantes. Bernard Helffer, Laboratoire de Math´ ematiques Jean Leray, Universit´ On Courant’s nodal domain property for linear combinations of ei

On Courant’s nodal domain property for linear combinations

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: On Courant’s nodal domain property for linear combinations

On Courant’s nodal domain property for linearcombinations of eigenfunctions

(after P. Berard and B. Helffer).

Bernard Helffer,Laboratoire de Mathematiques Jean Leray,

Universite de Nantes.

Bernard Helffer, Laboratoire de Mathematiques Jean Leray, Universite de Nantes.On Courant’s nodal domain property for linear combinations of eigenfunctions (after P. Berard and B. Helffer).

Page 2: On Courant’s nodal domain property for linear combinations

In Memoriam of A. El Soufi.

Figure: CIMPA Summer School in Damas (2004)

Bernard Helffer, Laboratoire de Mathematiques Jean Leray, Universite de Nantes.On Courant’s nodal domain property for linear combinations of eigenfunctions (after P. Berard and B. Helffer).

Page 3: On Courant’s nodal domain property for linear combinations

Abstract

We revisit Courant’s nodal domain property for linearcombinations of eigenfunctions, and propose new, simple andexplicit counterexamples for domains in R2, S2, T2, or R3.

This work has been done in collaboration with P. Berard andhas benefitted from the precious help of V. Bonnaillie-Noel.

Bernard Helffer, Laboratoire de Mathematiques Jean Leray, Universite de Nantes.On Courant’s nodal domain property for linear combinations of eigenfunctions (after P. Berard and B. Helffer).

Page 4: On Courant’s nodal domain property for linear combinations

Introduction

Let Ω ⊂ Rd be a bounded open domain or, more generally, acompact Riemannian manifold with boundary.

Consider the eigenvalue problem−∆u = λ u in Ω ,

B(u) = 0 on ∂Ω ,(1)

where B(u) is some boundary condition on ∂Ω, so that we have aself-adjoint boundary value problem (including the empty conditionif Ω is a closed manifold).For example, D(u) = u

∣∣∂Ω

for the Dirichlet boundary condition, or

N(u) = ∂u∂ν |∂Ω for the Neumann boundary condition.

Bernard Helffer, Laboratoire de Mathematiques Jean Leray, Universite de Nantes.On Courant’s nodal domain property for linear combinations of eigenfunctions (after P. Berard and B. Helffer).

Page 5: On Courant’s nodal domain property for linear combinations

Call H(Ω,B) the associated self-adjoint extension of −∆, and listits eigenvalues in nondecreasing order, counting multiplicities,

0 ≤ λ1(Ω,B) < λ2(Ω,B) ≤ λ3(Ω,B) ≤ · · · (2)

For any n ≥ 1, define the number

τ(Ω,B, n) = mink | λk(Ω,B) = λn(Ω,B). (3)

Eλn will denote the eigenspace associated with λn.

Bernard Helffer, Laboratoire de Mathematiques Jean Leray, Universite de Nantes.On Courant’s nodal domain property for linear combinations of eigenfunctions (after P. Berard and B. Helffer).

Page 6: On Courant’s nodal domain property for linear combinations

The Courant nodal theorem

For a real continuous function v on Ω, the nodal set is

Z(v) = x ∈ Ω | v(x) = 0 , (4)

and β0(v) denotes the number of connected components ofΩ \ Z(v) i.e., the number of nodal domains of v .

Courant’s nodal Theorem (1923)

For any nonzero u ∈ Eλn(Ω,B) ,

β0(u) ≤ τ(Ω,B, n) ≤ n . (5)

Courant’s nodal domain theorem can be found in Courant-Hilbert[7].

Bernard Helffer, Laboratoire de Mathematiques Jean Leray, Universite de Nantes.On Courant’s nodal domain property for linear combinations of eigenfunctions (after P. Berard and B. Helffer).

Page 7: On Courant’s nodal domain property for linear combinations

The extended Courant nodal propertyGiven r > 0, denote by L(Ω,B, r) (or shortly Lr ) the space

L(Ω,B, r) =

∑λj (Ω,B)≤r

cj uj | cj ∈ R, uj ∈ Eλj (Ω,B)

. (6)

Extended Courant Property:= (ECP)

We say that v ∈ L (Ω,B, λn(Ω,B)) satisfies (ECP) if

β0(v) ≤ τ(Ω,B, n) . (7)

A footnote in Courant-Hilbert [7] indicates that (ECP) holds forany linear combination of the n first eigenfunctions, and refers tothe PhD thesis of Horst Herrmann (Gottingen, 1932) [13].

Bernard Helffer, Laboratoire de Mathematiques Jean Leray, Universite de Nantes.On Courant’s nodal domain property for linear combinations of eigenfunctions (after P. Berard and B. Helffer).

Page 8: On Courant’s nodal domain property for linear combinations

Historical remarks : Sturm (1836), Pleijel (1956).

1. (ECP) is true for Sturm-Liouville equations. This was firstannounced by C. Sturm in 1833 [26] and the proof was publishedin 1836 in [27].Other proofs were later on given by J. Liouville and Lord Rayleighwho both cite Sturm explicitly.

2. A. Pleijel mentions (ECP) in his well-known paper [23] (1956)on the asymptotic behaviour of the number of nodal domains of an-th Dirichlet eigenfunction with the following comment:“In order to treat, for instance the case of the freethree-dimensional membrane [0, π]3, it would be necessary to use,in a special case, the theorem quoted in [6].... However, as far as Ihave been able to find there is no proof of this assertion in theliterature.”

Bernard Helffer, Laboratoire de Mathematiques Jean Leray, Universite de Nantes.On Courant’s nodal domain property for linear combinations of eigenfunctions (after P. Berard and B. Helffer).

Page 9: On Courant’s nodal domain property for linear combinations

Historical remarks: V. Arnold (1973)

3. As pointed out by V. Arnold [1], when Ω = Sd , (ECP) isrelated to Hilbert’s 16−th problem. Arnold [2] mentions that heactually discussed the footnote with R. Courant, that (ECP)cannot be true (contradiction with one of his theorems), and thatO. Viro produced in 1979 counter-examples for the 3-sphere S3,and any degree (for the corresponding harmonic polynomials)larger than or equal to 6 [28].

Bernard Helffer, Laboratoire de Mathematiques Jean Leray, Universite de Nantes.On Courant’s nodal domain property for linear combinations of eigenfunctions (after P. Berard and B. Helffer).

Page 10: On Courant’s nodal domain property for linear combinations

More precisely V. Arnold wrote:”Having read all this, I wrote a letter to Courant: ”Where can Ifind this proof now, 40 years after Courant announced thetheorem?”. Courant answered that one can never trust one’sstudents: to any question they answer either that the problem istoo easy to waste time on, or that it is beyond their weak powers.”

Note here that R. Courant was eighty years old (He died in 1972).

Bernard Helffer, Laboratoire de Mathematiques Jean Leray, Universite de Nantes.On Courant’s nodal domain property for linear combinations of eigenfunctions (after P. Berard and B. Helffer).

Page 11: On Courant’s nodal domain property for linear combinations

And V. Arnold continues:The point is that for the sphere S2 (with the standard Riemannianmetric) the eigenfunctions (spherical functions) are polynomials.Therefore, their linear combinations are also polynomials, and thezeros of these polynomials are algebraic curves (whose degree isbounded by the number n of the eigenvalue). Therefore, from thegeneralized Courant theorem one can, in particular, deriveestimates for topological invariants of the complements ofprojective real algebraic curves (in terms of the degrees of thesecurves).Knowing this, I immediately deduced from the generalized Couranttheorem new results in Hilbert’s famous 16th-problem: ”Study thetopological properties of the arrangement of real algebraic curvesof degree n on the real projective plane.”

Bernard Helffer, Laboratoire de Mathematiques Jean Leray, Universite de Nantes.On Courant’s nodal domain property for linear combinations of eigenfunctions (after P. Berard and B. Helffer).

Page 12: On Courant’s nodal domain property for linear combinations

This Hilbert problem (for n > 7) is still unsolved, although manyinteresting estimates for different invariants have been obtained byPetrovskii, Oleinik, Gudkov, and others. About 1970, I associatedthis theory with the topology of four-dimensional manifolds, andmy successors (Rokhlin, Viro, Kharlamov, Givental, Gromov,Witten, Floer, McDuff, and others) included all this intosymplectic topology and quantum field theory. And then it turnedout that the results of the topology of algebraic curves that I hadderived from the generalized Courant theorem contradict theresults of quantum field theory. Nevertheless, I knew that both myresults and the results of quantum field theory were true. Hence,the statement of the generalized Courant theorem is not true(explicit counterexamples were soon produced by Viro).

Bernard Helffer, Laboratoire de Mathematiques Jean Leray, Universite de Nantes.On Courant’s nodal domain property for linear combinations of eigenfunctions (after P. Berard and B. Helffer).

Page 13: On Courant’s nodal domain property for linear combinations

Historical remarks: Gladwell-Zhu (2003)

4. In [9], Gladwell and Zhu refer to (ECP) as theCourant-Herrmann conjecture.

They claim that this extension of Courant’s theorem is not stated,a fortiori proved, in Herrmann’s thesis or subsequent publications.

They consider the case in which Ω is a rectangle in R2, stating thatthey were not able to find a counter-example to (ECP) in this case.

They also provide numerical evidence that there arecounter-examples for more complicated (non convex) domains.

They suggest that may be the conjecture could be true in theconvex case.

Bernard Helffer, Laboratoire de Mathematiques Jean Leray, Universite de Nantes.On Courant’s nodal domain property for linear combinations of eigenfunctions (after P. Berard and B. Helffer).

Page 14: On Courant’s nodal domain property for linear combinations

Historical remarks: looking for the PHD thesis of H.Herrmann

5. After a personal investigation, what we can add, after gettingfrom the BNF, the manuscript of the PHD-thesis is thatHerrmann’s thesis has three parts.Only the second part was accepted by the evaluating committeefor publication. This part does not contain any mention of (ECP).The first part, was published later in [14] in Math. Z. in 1936 in adifferent form.The third part was never published. The title of this chapterindicates that this part was devoted to the analysis of theFourier-Robin problem and to analyze how the eigenvalues tend tothe eigenvalues of the Dirichlet problem as the Robin parametertends to +∞. Nothing to do with (ECP).

Bernard Helffer, Laboratoire de Mathematiques Jean Leray, Universite de Nantes.On Courant’s nodal domain property for linear combinations of eigenfunctions (after P. Berard and B. Helffer).

Page 15: On Courant’s nodal domain property for linear combinations

The purpose in this talk is to provide simple counter-examples tothe Extended Courant Property for domains in R2, S2 or R3,including convex domains.

Let us observe that:

I Numerics is involved for some examples.

I For other we give purely mathematical proofs.

I No algebraic topology will be involved.

Bernard Helffer, Laboratoire de Mathematiques Jean Leray, Universite de Nantes.On Courant’s nodal domain property for linear combinations of eigenfunctions (after P. Berard and B. Helffer).

Page 16: On Courant’s nodal domain property for linear combinations

Rectangle with a crackLet R0 be the rectangle ]0, 4π[×]0, 2π[. For 0 < a ≤ 1, letCa :=]0, a]× π and Ra := R0 \ Ca and consider the Neumanncondition. The setting is described in Dauge-Helffer [8].

We call 0 < δ1(0) < δ2(0) ≤ δ3(0) ≤ · · ·resp.

0 = ν1(0) < ν2(0) ≤ ν3(0) ≤ · · ·(8)

the Neumann eigenvalues of −∆ in R0 .They are given by the m2

16 + n2

4 for pairs (m, n) of non-negativeintegers.Corresponding eigenfunctions are products of cosines.Similarly, the Neumann eigenvalues of −∆ in Ra are denoted by

0 < δ1(a) < δ2(a) ≤ δ3(a) ≤ · · ·resp.

0 = ν1(a) < ν2(a) ≤ ν3(a) ≤ · · ·. (9)

Bernard Helffer, Laboratoire de Mathematiques Jean Leray, Universite de Nantes.On Courant’s nodal domain property for linear combinations of eigenfunctions (after P. Berard and B. Helffer).

Page 17: On Courant’s nodal domain property for linear combinations

The first three Neumann eigenvalues for the rectangle R0 are asfollows.

ν1(0) 0 (0, 0) ψ1(x , y) = 1

ν2(0) 116 (1, 0) ψ2(x , y) = cos( x4 )

ν3(0) (0, 1) ψ3(x , y) = cos( y2 )

ν4(0) 14 (2, 0) ψ4(x , y) = cos( x2 )

(10)

Bernard Helffer, Laboratoire de Mathematiques Jean Leray, Universite de Nantes.On Courant’s nodal domain property for linear combinations of eigenfunctions (after P. Berard and B. Helffer).

Page 18: On Courant’s nodal domain property for linear combinations

Dauge-Helffer (1993) prove:

Theorem

For i ≥ 1,

1. [0, 1] 3 a 7→ νi (a) is non-increasing.

2. ]0, 1[3 a 7→ νi (a), is continuous.

3. lima→0+ νi (a) = νi (0).

It follows that for 0 < a, small enough, we have

0 = ν1(a) = ν1(0) < ν2(a) ≤ ν2(0) < ν3(a) ≤ ν4(a) ≤ ν3(0) .(11)

Bernard Helffer, Laboratoire de Mathematiques Jean Leray, Universite de Nantes.On Courant’s nodal domain property for linear combinations of eigenfunctions (after P. Berard and B. Helffer).

Page 19: On Courant’s nodal domain property for linear combinations

Observe that for i = 1 and 2, ∂ψi∂y (x , y) = 0. Hence for a small

enough, ψ1 and ψ2 are the first two eigenfunctions for Ra with theNeumann condition with associated eigenvalues 0 and 1

4 . We have

αψ1(x , y) + βψ2(x , y) = α + β cos(x

4).

We can choose the coefficients α, β in such a way that theselinear combinations of the first two eigenfunctions have two orthree nodal domains in Ra.

Bernard Helffer, Laboratoire de Mathematiques Jean Leray, Universite de Nantes.On Courant’s nodal domain property for linear combinations of eigenfunctions (after P. Berard and B. Helffer).

Page 20: On Courant’s nodal domain property for linear combinations

Figure: Rectangle with a crack (Neumann condition)

This proves that (ECP) is false in Ra with Neumanncondition.

Notice that we can introduce several cracks

(x , bj) | 0 < x < ajkj=1

so that for any d ∈ 2, 3, . . . k + 2 there exists a linearcombination of 1 and cos( x4 ) with d nodal domains.

Bernard Helffer, Laboratoire de Mathematiques Jean Leray, Universite de Nantes.On Courant’s nodal domain property for linear combinations of eigenfunctions (after P. Berard and B. Helffer).

Page 21: On Courant’s nodal domain property for linear combinations

Sphere S2 with cracks

On the round sphere S2, we consider the geodesic lines(x , y , z) 7→ (

√1− z2 cos θi ,

√1− z2 sin θi , z) through the north

pole (0, 0, 1), with distinct θi ∈ [0, π[.Removing the geodesic segments θ0 = 0 and θ2 = π

2 with1− z ≤ a ≤ 1, we obtain a sphere S2

a with a crack in the form of across.We consider the Neumann condition on the crack.We then easily produce a function in the space generated by thetwo first eigenspaces of the sphere with a crack having five nodaldomains.

Bernard Helffer, Laboratoire de Mathematiques Jean Leray, Universite de Nantes.On Courant’s nodal domain property for linear combinations of eigenfunctions (after P. Berard and B. Helffer).

Page 22: On Courant’s nodal domain property for linear combinations

The function z is also an eigenfunction of S2a with eigenvalue 2.

For a small enough, λ4(a) = 2, with eigenfunction z .For 0 < b < a, the linear combination z − b has five nodaldomains in S2

a, see Figure below in spherical coordinates.

It follows that (ECP) does not hold on the sphere withcracks.

Bernard Helffer, Laboratoire de Mathematiques Jean Leray, Universite de Nantes.On Courant’s nodal domain property for linear combinations of eigenfunctions (after P. Berard and B. Helffer).

Page 23: On Courant’s nodal domain property for linear combinations

Figure: Sphere with crack, five nodal domains

Remark. Removing more geodesic segments around the northpole, we can obtain a linear combination z − b with as many nodaldomains as we want.

Bernard Helffer, Laboratoire de Mathematiques Jean Leray, Universite de Nantes.On Courant’s nodal domain property for linear combinations of eigenfunctions (after P. Berard and B. Helffer).

Page 24: On Courant’s nodal domain property for linear combinations

The cube with Dirichlet boundary condition

We can adapt a method of Gladwell-Zhu, which has no success forthe square in 2D, to the 3D-case.

Consider the cube Cπ =]0, π[3. The eigenvalues are the numbers

q3(k ,m, n) = k2 + m2 + n2 , k ,m, n ∈ N.

A corresponding complete set of eigenfunctions is given by

φk,m,n(x , y , z) = sin(kx) sin(my) sin(nz) , k,m, n ∈ N.

Bernard Helffer, Laboratoire de Mathematiques Jean Leray, Universite de Nantes.On Courant’s nodal domain property for linear combinations of eigenfunctions (after P. Berard and B. Helffer).

Page 25: On Courant’s nodal domain property for linear combinations

The first Dirichlet eigenvalues of the cube are given by

δ1 [3] < δ2 = δ3 = δ4 [6] < δ5 = δ6 = δ7 [9] << δ8 = δ9 = δ10 [11] < δ11 · · · .

Using Chebyshev polynomials, for k,m, n ∈ N we have

φk,m,n(x , y , z) = φ1,1,1(x , y , z)Uk−1(cos x)Um−1(cos y)Un−1(cos z) .

The factor φ1,1,1 does not vanish in the cube Cπ. The map

Cπ 3 (x , y , z) 7→ (X ,Y ,Z ) := (cos(x), cos(y), cos(z)) ∈]− 1, 1[3

is a diffeomorphism from Cπ to the cube ]− 1, 1[3.

Bernard Helffer, Laboratoire de Mathematiques Jean Leray, Universite de Nantes.On Courant’s nodal domain property for linear combinations of eigenfunctions (after P. Berard and B. Helffer).

Page 26: On Courant’s nodal domain property for linear combinations

The counting of the nodal domains of a linear combination Φ ∈ Lr ,

Φ =∑

q3(k,m,n)≤r

ck,m,n φk,m,n

in the cube Cπ, is the same as the counting for,

Ψ =∑

q3(k,m,n)≤r

ck,m,n Uk−1(X )Um−1(Y )Un−1(Z )

in the cube ]− 1, 1[3.

Bernard Helffer, Laboratoire de Mathematiques Jean Leray, Universite de Nantes.On Courant’s nodal domain property for linear combinations of eigenfunctions (after P. Berard and B. Helffer).

Page 27: On Courant’s nodal domain property for linear combinations

Using the formulas for the Chebyshev polynomials, one gets thatthe linear combinations Ψ for k2 + m2 + n2 ≤ 11 = δ10 correspondto the polynomials of degree ≤ 2 in the variables X ,Y and Z .

In particular, fa(X ,Y ,Z ) := X 2 + Y 2 + Z 2 − a is a linearcombination Ψ with k2 + m2 + n2 ≤ 11.

Since 11 = δ8 = δ9 = δ10, Courant’s upper bound is

8 = τ(Cπ,D, 10) .

It follows that when√

2 < a <√

3, the zero set of thefunction φa determines 9 nodal domains and this provides acounter-example to (ECP) for the 3D-cube with Dirichletboundary condition.

Bernard Helffer, Laboratoire de Mathematiques Jean Leray, Universite de Nantes.On Courant’s nodal domain property for linear combinations of eigenfunctions (after P. Berard and B. Helffer).

Page 28: On Courant’s nodal domain property for linear combinations

Figure: Cube with Dirichlet boundary condition

Bernard Helffer, Laboratoire de Mathematiques Jean Leray, Universite de Nantes.On Courant’s nodal domain property for linear combinations of eigenfunctions (after P. Berard and B. Helffer).

Page 29: On Courant’s nodal domain property for linear combinations

The equilateral triangle (Dirichlet or Neumann)Let Te denote the equilateral triangle with sides 1, see Figure 5.The eigenvalues and eigenfunctions of Te , with either Dirichlet orNeumann condition on the boundary ∂Te , can be completelydescribed.We show that the equilateral triangle provides a counterexample tothe Extended Courant Property for both the Dirichlet and theNeumann boundary condition.

Figure: Equilateral triangle Te = [OAB]

Bernard Helffer, Laboratoire de Mathematiques Jean Leray, Universite de Nantes.On Courant’s nodal domain property for linear combinations of eigenfunctions (after P. Berard and B. Helffer).

Page 30: On Courant’s nodal domain property for linear combinations

Neumann boundary condition

The sequence of Neumann eigenvalues of the equilateral triangleTe begins as follows,

ytretl0 = λ1(Te ,N) <16π2

9= λ2(Te ,N) = λ3(Te ,N) < λ4(Te ,N) .

(12)The second eigenspace has dimension 2, and contains one invarianteigenfunction ϕN

2 under the mirror symmetry w.r.t OM, andanother antiinvariant eigenfunction ϕN

3 .ϕN

2 is given by

ϕN2 (x , y) = 2 cos

(2πx

3

)(cos

(2πx

3

)+ cos

(2πy√

3

))− 1 . (13)

Bernard Helffer, Laboratoire de Mathematiques Jean Leray, Universite de Nantes.On Courant’s nodal domain property for linear combinations of eigenfunctions (after P. Berard and B. Helffer).

Page 31: On Courant’s nodal domain property for linear combinations

The set ϕN2 + 1 = 0 consists of the two line segments

x = 34 ∩ Te and x +

√3y = 3

2 ∩ Te , which meet at the point

( 34 ,√

34 ) on ∂Te . The sets ϕ2 + a = 0, with

a ∈ 0, 1− ε, 1, 1 + ε, and small positive ε, are shown in Figure 7.When a varies from 1− ε to 1 + ε, the number of nodal domains ofϕ2 + a in Te jumps from 2 to 3, with the jump occurring for a = 1.

Bernard Helffer, Laboratoire de Mathematiques Jean Leray, Universite de Nantes.On Courant’s nodal domain property for linear combinations of eigenfunctions (after P. Berard and B. Helffer).

Page 32: On Courant’s nodal domain property for linear combinations

Figure: Levels sets ϕN2 + a = 0 for a ∈ 0 ; 0.9 ; 1 ; 1.1

Bernard Helffer, Laboratoire de Mathematiques Jean Leray, Universite de Nantes.On Courant’s nodal domain property for linear combinations of eigenfunctions (after P. Berard and B. Helffer).

Page 33: On Courant’s nodal domain property for linear combinations

If we take the coordinates X = cos 2π3 x and Y = cos 2π√

3y we are

reduced to the level sets of (X ,Y ) 7→ X (X + Y ):

Figure: Levels sets in the X ,Y variablesBernard Helffer, Laboratoire de Mathematiques Jean Leray, Universite de Nantes.On Courant’s nodal domain property for linear combinations of eigenfunctions (after P. Berard and B. Helffer).

Page 34: On Courant’s nodal domain property for linear combinations

It follows that ϕN2 + a = 0, for 1 ≤ a ≤ 1.2, provides a

counterexample to the Extended Courant Property for theequilateral triangle with Neumann boundary condition.

Bernard Helffer, Laboratoire de Mathematiques Jean Leray, Universite de Nantes.On Courant’s nodal domain property for linear combinations of eigenfunctions (after P. Berard and B. Helffer).

Page 35: On Courant’s nodal domain property for linear combinations

Dirichlet boundary condition

The sequence of Dirichlet eigenvalues of the equilateral triangle Tebegins as follows,

δ1(Te) =16π2

3< δ2(Te) = δ3(Te) =

112π2

9< δ4(Te). (14)

Up to scaling, the first eigenfunction ϕD1 is given by

ϕD1 (x , y) = −8 sin

2πy√3

sinπ(√

3x + y)√3

sinπ(√

3x − y)√3

, (15)

which shows that it does not vanish inside Te .

Bernard Helffer, Laboratoire de Mathematiques Jean Leray, Universite de Nantes.On Courant’s nodal domain property for linear combinations of eigenfunctions (after P. Berard and B. Helffer).

Page 36: On Courant’s nodal domain property for linear combinations

A surprising (new ?) formula.

The second eigenvalue has multiplicity 2, with one eigenfunctionϕD

2 symmetric with respect to the median OM, and the other ϕD3

anti-symmetric. Up to scaling, ϕD2 is given by

ϕD2 (x , y) = sin

(2π3 (5x +

√3y))− sin

(2π3 (5x −

√3y))

+ sin(

2π3 (x − 3

√3y))− sin

(2π3 (x + 3

√3y))

+ sin(

4π3 (2x +

√3y))− sin

(4π3 (2x −

√3y)).(16)

Bernard Helffer, Laboratoire de Mathematiques Jean Leray, Universite de Nantes.On Courant’s nodal domain property for linear combinations of eigenfunctions (after P. Berard and B. Helffer).

Page 37: On Courant’s nodal domain property for linear combinations

First astonished by some numerics, we arrive to the conclusion thatthe following surprising result could be true:

Lemma

ϕD2 = −ϕD

1 ϕN2 .

Proof Express everything in terms of X = cos 2π3 x and

Y = cos 2π√3y . We have then to verify an equality between two

polynomials of the variables X and Y .

We deduce from the lemma that the counterexample for Neumannis identical to the counterexample for Dirichlet ! The level sets ofϕN

2 and ϕD2 /ϕ

D1 are the same.

Bernard Helffer, Laboratoire de Mathematiques Jean Leray, Universite de Nantes.On Courant’s nodal domain property for linear combinations of eigenfunctions (after P. Berard and B. Helffer).

Page 38: On Courant’s nodal domain property for linear combinations

Numerical simulations for Regular polygons (VirginieBonnaillie-Noel).

In (2D) Gladwell-Zhu were not successful for the square. One canbe successfull for the hexagone for Neumann and for Dirichlet(Numerics).

Figure: Level lines of u1,D , u6,D andu6,D

u1,Dfor the Dirichlet problem in the

regular hexagon

Bernard Helffer, Laboratoire de Mathematiques Jean Leray, Universite de Nantes.On Courant’s nodal domain property for linear combinations of eigenfunctions (after P. Berard and B. Helffer).

Page 39: On Courant’s nodal domain property for linear combinations

Heptagon

Figure: Level lines ofw6,D

w1,Dfor the Dirichlet problem in the regular

heptagon

Bernard Helffer, Laboratoire de Mathematiques Jean Leray, Universite de Nantes.On Courant’s nodal domain property for linear combinations of eigenfunctions (after P. Berard and B. Helffer).

Page 40: On Courant’s nodal domain property for linear combinations

Bibliography.

V. Arnold.The topology of real algebraic curves (the works of Petrovskiiand their development).Uspekhi Math. Nauk. 28:5 (1973), 260–262.

V. Arnold.Topological properties of eigenoscillations in mathematicalphysics.Proc. Steklov Inst. Math. 273 (2011), 25–34.

L. Bauer and E.L. Reiss.Cutoff Wavenumbers and Modes of Hexagonal Waveguides.SIAM Journal on Applied Mathematics, 35:3 (1978), 508–514.

P. Berard.Spectres et groupes cristallographiques.Inventiones Math. 58 (1980), 179–199.

P. Berard and B. Helffer.

Bernard Helffer, Laboratoire de Mathematiques Jean Leray, Universite de Nantes.On Courant’s nodal domain property for linear combinations of eigenfunctions (after P. Berard and B. Helffer).

Page 41: On Courant’s nodal domain property for linear combinations

Courant-sharp eigenvalues for the equilateral torus, and for theequilateral triangle.Letters in Math. Physics 106 (2016).

R. Courant and D. Hilbert.Methoden der mathematischen Physik, Vol. I.Springer 1931.

R. Courant and D. Hilbert.Methods of mathematical physics. Vol. 1.First english edition. Interscience, New York 1953.

M. Dauge and B. Helffer.Eigenvalues variation II. Multidimensional problems.J. Diff. Eq. 104 (1993), 263–297.

G. Gladwell and H. Zhu.The Courant-Herrmann conjecture.ZAMM - Z. Angew. Math. Mech. 83:4 (2003), 275–281.

B. Helffer and T. Hoffmann-Ostenhof and S. Terracini.

Bernard Helffer, Laboratoire de Mathematiques Jean Leray, Universite de Nantes.On Courant’s nodal domain property for linear combinations of eigenfunctions (after P. Berard and B. Helffer).

Page 42: On Courant’s nodal domain property for linear combinations

Nodal domains and spectral minimal partitions.Ann. Inst. H. Poincare Anal. Non Lineaire 26 (2009), 101–138.

B. Helffer and T. Hoffmann-Ostenhof and S. TerraciniOn spectral minimal partitions: the case of the sphere.In Around the Research of Vladimir Maz’ya III.International Math. Series, Springer, Vol. 13, p. 153–178(2010).

B. Helffer and M. Persson-Sundqvist.On nodal domains in Euclidean balls.ArXiv:1506.04033v2. Proc. Amer. Math. Soc. 144 (2016), no.11, 4777–4791.

H. Herrmann.Beitrage zur Theorie der Eigenwerte und Eigenfunktionen.Gottinger Dissertation 1932.Published by Teubner.

H. Herrmann.

Bernard Helffer, Laboratoire de Mathematiques Jean Leray, Universite de Nantes.On Courant’s nodal domain property for linear combinations of eigenfunctions (after P. Berard and B. Helffer).

Page 43: On Courant’s nodal domain property for linear combinations

Beziehungen zwischen den Eigenwerten und Eigenfunktionenverschiedener Eigenwertprobleme.Math. Z. 40:1 (1936), 221–241.

T. Kato.Perturbation Theory for Linear Operators.Second edition. Springer 1977.

N. Kuznetsov.On delusive nodal sets of free oscillations.Newsletter of the European Mathematical Society, 96 (2015).

R. Laugesen and B. Siudeja.Sharp spectral bounds on starlike domains.J. Spectral Theory 4:2 (2014), 309–347.

J. Leydold.On the number of nodal domains of spherical harmonics.PHD, Vienna University (1992).

J. Leydold.

Bernard Helffer, Laboratoire de Mathematiques Jean Leray, Universite de Nantes.On Courant’s nodal domain property for linear combinations of eigenfunctions (after P. Berard and B. Helffer).

Page 44: On Courant’s nodal domain property for linear combinations

On the number of nodal domains of spherical harmonics.Topology 35 (1996), 301–321.

J.B. McCartin.Eigenstructure of the Equilateral Triangle, Part I: The DirichletProblem.SIAM Review, 45:2 (2003), 267–287.

J.B. McCartin.Eigenstructure of the Equilateral Triangle, Part II: TheNeumann Problem.Mathematical Problems in Engineering 8:6 (2002), 517–539.

J.B. McCartin.On Polygonal Domains with Trigonometric Eigenfunctions ofthe Laplacian under Dirichlet or Neumann BoundaryConditions.Applied Mathematical Sciences, Vol. 2, 2008, no. 58, 2891 -2901.

A. Pleijel.

Bernard Helffer, Laboratoire de Mathematiques Jean Leray, Universite de Nantes.On Courant’s nodal domain property for linear combinations of eigenfunctions (after P. Berard and B. Helffer).

Page 45: On Courant’s nodal domain property for linear combinations

Remarks on Courant’s nodal theorem.Comm. Pure. Appl. Math. 9 (1956), 543–550.

B. Simon.A canonical decomposition for quadratic forms withapplications to monotone convergence theorems.J. of Funct. Analysis 28 (1978), 377–385.

B. Siudeja.Nearly radial Neumann eigenfunctions on symmetric domains.To appear in JST (2017).

C. Sturm.[No title].L’institut. Journal general des societes et travaux scientifiquesde la France et de l’etranger. 1 (1833), 247–248.

C. Sturm.Memoire sur une classe d’equations a differences partielles.Journal de Mathematiques Pures et Appliquees 1 (1836),373–444.

Bernard Helffer, Laboratoire de Mathematiques Jean Leray, Universite de Nantes.On Courant’s nodal domain property for linear combinations of eigenfunctions (after P. Berard and B. Helffer).

Page 46: On Courant’s nodal domain property for linear combinations

O. Viro.Construction of multi-component real algebraic surfaces.Soviet Math. dokl. 20:5 (1979), 991–995.

Bernard Helffer, Laboratoire de Mathematiques Jean Leray, Universite de Nantes.On Courant’s nodal domain property for linear combinations of eigenfunctions (after P. Berard and B. Helffer).