21
Computer Applications: An International Journal (CAIJ), Vol.2, No.1, February 2015 DOI : 10.5121/caij.2015.2107 71 ON ANALYTICAL APPROACH FOR ANALYSIS INFLUENCE OF MISMATCH-INDUCED STRESS IN A HETEROSTRUC- TURE ON DISTRIBUTIONS OF CONCENTRATIONS OF DO- PANTS IN A MULTIEMITTER HETEROTRANSISTOR E.L. Pankratov 1,3 , E.A. Bulaeva 1,2 1 Nizhny Novgorod State University,Russia 2 Nizhny Novgorod State University of Architecture and Civil Engineering, Russia 3 Nizhny Novgorod Academy of the Ministry of Internal Affairs of Russia, Russia ABSTRACT In this paper we analytically model technological processes of manufacturing of multiemitter heterotransis- tors with account relaxation of mismatch-induced stress. Based on this modeling some recommendations to increase sharpness of p-n- junctions, which included into the transistors, and increasing compactness of the transistors have been formulated. KEYWORDS Multiemitter heterotransistors, distributions of concentrations, influence of mismatch-induced stress, ana- lytical approach to model technological processes 1.INTRODUCTION In the present time integration degree of elements of integrated circuits is intensively increasing (p-n-junctions, field-effect and bipolar transistors, ...) [1-14]. At the same time with increasing of integration degree of elements of integrated circuits dimensions of this elements decreases. It is attracted an interest increasing of performance of the above elements [1-7]. To increase the per- formance it should be determine materials with higher values of charge carrier mobility for manu- facturing elements of integrated circuits [15-18]. Another way to increase the performance is de- velopment of new and optimization of existing technological processes. It could be used different approaches to decrease dimensions of elements of integrated circuits. Two of them are laser and microwave types of annealing of dopants and/or radiation defects [19-21]. Using this approaches leads to manufacture inhomogenous distribution of temperature in the considered materials. In- homogeneity of the distribution gives us possibility to decrease dimensions of elements of inte- grated circuits and their discrete analogs. Another way to decrease dimensions of the elements is doping of required parts of epitaxial layers of heterostructures by diffusion or ion implantation. However using the approach leads to necessity to optimize annealing of dopant and /or radiation defects [22,23]. It is also attracted an interest radiation processing of doped materials. The processing leads to changing of distributions of concentrations of dopants in doped materials [24]. The changing could leads to decreasing dimensions of the above elements [25]. In this paper we consider manufacturing of multiemitter transistor in the heteristructure, which consist of a substrate and three epitaxial layers (see Fig. 1). Some sections have been manufac- tured in the epitaxial layers by using another materials (see Fig. 1). After manufacturing these section they are should be doped by diffusion or ion implantation. The doping is necessary to produce required type of conductivity in the sections (n or p). The first step of manufacturing of the transistor is formation the first epitaxial layer (nearest to the substrate). After finishing of the formation is doping of the single section by diffusion or ion implantation. Farther we consider

ON ANALYTICAL APPROACH FOR ANALYSIS INFLUENCE OF MISMATCH-INDUCED STRESS IN A HETEROSTRUCTURE ON DISTRIBUTIONS OF CONCENTRATIONS OF DOPANTS IN A MULTIEMITTER HETEROTRANSISTOR

Embed Size (px)

DESCRIPTION

In this paper we analytically model technological processes of manufacturing of multiemitter heterotransistorswith account relaxation of mismatch-induced stress. Based on this modeling some recommendations toincrease sharpness of p-n- junctions, which included into the transistors, and increasing compactness of thetransistors have been formulated.

Citation preview

  • Computer Applications: An International Journal (CAIJ), Vol.2, No.1, February 2015

    DOI : 10.5121/caij.2015.2107 71

    ON ANALYTICAL APPROACH FOR ANALYSIS INFLUENCE

    OF MISMATCH-INDUCED STRESS IN A HETEROSTRUC-

    TURE ON DISTRIBUTIONS OF CONCENTRATIONS OF DO-

    PANTS IN A MULTIEMITTER HETEROTRANSISTOR

    E.L. Pankratov1,3

    , E.A. Bulaeva1,2

    1 Nizhny Novgorod State University,Russia

    2 Nizhny Novgorod State University of Architecture and Civil Engineering, Russia

    3 Nizhny Novgorod Academy of the Ministry of Internal Affairs of Russia, Russia

    ABSTRACT

    In this paper we analytically model technological processes of manufacturing of multiemitter heterotransis-

    tors with account relaxation of mismatch-induced stress. Based on this modeling some recommendations to

    increase sharpness of p-n- junctions, which included into the transistors, and increasing compactness of the

    transistors have been formulated.

    KEYWORDS

    Multiemitter heterotransistors, distributions of concentrations, influence of mismatch-induced stress, ana-

    lytical approach to model technological processes

    1.INTRODUCTION In the present time integration degree of elements of integrated circuits is intensively increasing

    (p-n-junctions, field-effect and bipolar transistors, ...) [1-14]. At the same time with increasing of

    integration degree of elements of integrated circuits dimensions of this elements decreases. It is

    attracted an interest increasing of performance of the above elements [1-7]. To increase the per-

    formance it should be determine materials with higher values of charge carrier mobility for manu-

    facturing elements of integrated circuits [15-18]. Another way to increase the performance is de-

    velopment of new and optimization of existing technological processes. It could be used different

    approaches to decrease dimensions of elements of integrated circuits. Two of them are laser and

    microwave types of annealing of dopants and/or radiation defects [19-21]. Using this approaches

    leads to manufacture inhomogenous distribution of temperature in the considered materials. In-

    homogeneity of the distribution gives us possibility to decrease dimensions of elements of inte-

    grated circuits and their discrete analogs. Another way to decrease dimensions of the elements is

    doping of required parts of epitaxial layers of heterostructures by diffusion or ion implantation.

    However using the approach leads to necessity to optimize annealing of dopant and /or radiation

    defects [22,23]. It is also attracted an interest radiation processing of doped materials. The

    processing leads to changing of distributions of concentrations of dopants in doped materials [24].

    The changing could leads to decreasing dimensions of the above elements [25].

    In this paper we consider manufacturing of multiemitter transistor in the heteristructure, which

    consist of a substrate and three epitaxial layers (see Fig. 1). Some sections have been manufac-

    tured in the epitaxial layers by using another materials (see Fig. 1). After manufacturing these

    section they are should be doped by diffusion or ion implantation. The doping is necessary to

    produce required type of conductivity in the sections (n or p). The first step of manufacturing of

    the transistor is formation the first epitaxial layer (nearest to the substrate). After finishing of the

    formation is doping of the single section by diffusion or ion implantation. Farther we consider

  • Computer Applications: An International Journal (CAIJ), Vol.2, No.1, February 2015

    72

    manufacturing the second epitaxial layer with own section. After that we consider doping of this

    section by diffusion or ion implantation. Farther we consider manufacturing the third epitaxial

    layer with several sections. After that we consider doping of these sections by diffusion or ion

    implantation. Farther the dopants and/or radiation defects should be annealed. Analysis of dynam-

    ics of redistribution of dopants and radiation defects in the considered heterostructure with ac-

    count relaxation of mechanical stress is the main aim of the present paper.

    Fig. 1a. Structure of the considered heterostructure. The heterostructure include into itself a substrate and

    three epitaxial layers with sections, manufactured by using another materials. View from top

    Substrate

    Collector

    Emitter Emitter Emitter

    Fig. 1b. Heterostructure, which consist of a substrate and three epitaxial layers with sections, manufactured

    by using another materials. View from one side

  • Computer Applications: An International Journal (CAIJ), Vol.2, No.1, February 2015

    73

    2. Method of solution To solve our aim we shall analyze spatio-temporal distribution of concentration of dopant. We

    determine the spatio-temporal distribution of concentration of dopant by solving the following

    boundary problems [1,3-5,26,27]

    ( ) ( ) ( ) ( )+

    +

    +

    =

    z

    tzyxCD

    zy

    tzyxCD

    yx

    tzyxCD

    xt

    tzyxC ,,,,,,,,,,,,

    ( ) ( ) +

    +

    zL

    S

    S WdtWyxCtzyxTk

    D

    x 0,,,,,,

    ( ) ( )

    +

    zL

    S

    S WdtWyxCtzyxTk

    D

    y0

    ,,,,,, (1)

    with initial and boundary conditions

    C (x,y,z,0)=fC (x,y,z), ( )

    0,,,

    0

    =

    =xx

    tzyxC,

    ( )0

    ,,,=

    = xLxx

    tzyxC,

    ( )0

    ,,,

    0

    =

    =yy

    tzyxC,

    ( )0

    ,,,=

    = yLxy

    tzyxC,

    ( )0

    ,,,

    0

    =

    =zz

    tzyxC,

    ( )0

    ,,,=

    = zLxz

    tzyxC.

    The function C(x,y,z,t) describes the spatio-temporal distribution of concentration of dopant; is the atomic volume of the dopant; symbol S is the surficial gradient; the function

    ( )z

    L

    zdtzyxC0

    ,,, describes the surficial concentration of dopant in area of interface between ma-

    terials of heterostructure. In this case we assume, that Z-axis is perpendicular to interface between

    materials of heterostructure; (x,y,z,t) is the chemical potential; D are DS are the coefficients of volumetric and surficial diffusions (the surficial diffusion is the consequences of mismatch in-

    duced stress). Values of diffusion coefficients depend on properties of materials of heterostruc-

    ture, speed of heating and cooling of heterostructure, concentration of dopant. Dependences of

    dopant diffusion coefficients on parameters could be approximated by the following relations

    [3,28-30]

    ( ) ( )( )

    ( ) ( )( )

    ++

    +=

    2*

    2

    2*1

    ,,,,,,1

    ,,,

    ,,,1,,,

    V

    tzyxV

    V

    tzyxV

    TzyxP

    tzyxCTzyxDD

    LC

    ,

    ( ) ( )( )

    ( ) ( )( )

    ++

    +=

    2*

    2

    2*1

    ,,,,,,1

    ,,,

    ,,,1,,,

    V

    tzyxV

    V

    tzyxV

    TzyxP

    tzyxCTzyxDD

    SLSS

    . (2)

    Functions DL (x,y,z,T) and DLS (x,y,z,T) describe the spatial (due to varying of values of dopant

    diffusion coefficients in the heterostruicture with varying of coordinate) and temperature (due to

    Arrhenius law) dependences of dopant diffusion coefficients; T is the temperature of annealing;

    the function P (x,y,z,T) describe the limit of solubility of dopant; parameter could be integer in the following interval [1,3] [3] and varying with variation of properties of materials of hetero-structure; function V (x,y,z,t) describes the spatio-temporal distribution of concentration of radia-

  • Computer Applications: An International Journal (CAIJ), Vol.2, No.1, February 2015

    74

    tion vacancies; V* is the equilibrium distribution of vacancies. Detailed description of concentra-

    tional dependence of dopant diffusion coefficient is presented in [3]. We determine the spatio-

    temporal distributions of concentration of point radiation defects by solving the following system

    of equations [28-30]

    ( ) ( ) ( ) ( ) ( ) +

    +

    =

    y

    tzyxITzyxD

    yx

    tzyxITzyxD

    xt

    tzyxIII

    ,,,,,,

    ,,,,,,

    ,,,

    ( ) ( ) ( ) ( ) ( ) ( )

    + tzyxITzyxktzyxITzyxk

    z

    tzyxITzyxD

    zVIIII

    ,,,,,,,,,,,,,,,

    ,,,,

    2

    ,

    ( ) ( ) ( ) +

    +

    zL

    S

    IS WdtWyxItzyxTk

    D

    xtzyxV

    0

    ,,,,,,,,,

    ( ) ( )

    +

    zL

    S

    IS WdtWyxItzyxTk

    D

    y 0,,,,,, (3)

    ( ) ( ) ( ) ( ) ( ) +

    +

    =

    y

    tzyxVTzyxD

    yx

    tzyxVTzyxD

    xt

    tzyxVVV

    ,,,,,,

    ,,,,,,

    ,,,

    ( ) ( ) ( ) ( ) ( ) ( )

    + tzyxITzyxktzyxVTzyxk

    z

    tzyxVTzyxD

    zVIVVV

    ,,,,,,,,,,,,,,,

    ,,, ,2

    ,

    ( ) ( ) ( ) +

    +

    zL

    S

    VS WdtWyxVtzyxTk

    D

    xtzyxV

    0

    ,,,,,,,,,

    ( ) ( )

    +

    zL

    S

    VS WdtWyxVtzyxTk

    D

    y 0,,,,,,

    with boundary and initial conditions

    ( )0

    ,,,

    0

    ==x

    x

    tzyxI

    ,

    ( )0

    ,,,=

    = xLxx

    tzyxI

    ,

    ( )0

    ,,,

    0

    ==y

    y

    tzyxI

    ,

    ( )0

    ,,,=

    = yLyy

    tzyxI

    ,

    ( )0

    ,,,

    0

    ==z

    z

    tzyxI

    ,

    ( )0

    ,,,=

    = zLzz

    tzyxI

    ,

    ( )0

    ,,,

    0

    ==x

    x

    tzyxV

    ,

    ( )0

    ,,,=

    = xLxx

    tzyxV

    ,

    ( )0

    ,,,

    0

    ==y

    y

    tzyxV

    ,

    ( )0

    ,,,=

    = yLyy

    tzyxV

    ,

    ( )0

    ,,,

    0

    ==z

    z

    tzyxV

    ,

    ( )0

    ,,,=

    = zLzz

    tzyxV

    ,

    I (x,y,z,0)=fI (x,y,z), V (x,y,z,0)=fV (x,y,z). (4)

    Function I (x,y,z,t) describes the spatio-temporal distribution of concentration of radiation intersti-

    tials; I* is the equilibrium distribution of interstitials; DI(x,y,z,T), DV(x,y,z,T), DIS(x,y,z,T),

    DVS(x,y,z,T) are the coefficients of volumetric and surficial diffusions of interstitials and vacan-

    cies, respectively; terms V2(x,y,z,t) and I2(x,y,z,t) correspond to generation of divacancies and di-

    interstitials, respectively (see, for example, [30] and appropriate references in this book);

    kI,V(x,y,z,T) and kI,I(x,y,z,T) are the parameters of recombination of point radiation defects, kV,V(x,

    y,z,T) is the parameter generation of their complexes.

    We determine spatio-temporal distributions of concentrations of divacancies V(x,y,z,t) and diin-terstitials I(x,y,z,t) by solving the following boundary problem [28-30]

  • Computer Applications: An International Journal (CAIJ), Vol.2, No.1, February 2015

    75

    ( ) ( ) ( ) ( ) ( ) +

    +

    =

    y

    tzyxTzyxD

    yx

    tzyxTzyxD

    xt

    tzyxIII

    II

    ,,,,,,

    ,,,,,,

    ,,,

    ( ) ( ) ( ) ( ) +

    +

    +

    zI

    I

    L

    IS

    SI WdtWyxtzyxTk

    D

    xz

    tzyxTzyxD

    z 0,,,,,,

    ,,,,,,

    ( ) ( ) ( ) ( ) ++

    + tzyxITzyxkWdtWyxtzyx

    Tk

    D

    yII

    L

    IS

    ISz

    ,,,,,,,,,,,, 2,0

    ( ) ( )tzyxITzyxkI

    ,,,,,,+ (5)

    ( ) ( ) ( ) ( ) ( ) +

    +

    =

    y

    tzyxTzyxD

    yx

    tzyxTzyxD

    xt

    tzyxVVV

    VV

    ,,,,,,

    ,,,,,,

    ,,,

    ( )( )

    ( ) ( ) +

    +

    +

    zV

    V

    L

    VS

    SV WdtWyxtzyxTk

    D

    xz

    tzyxTzyxD

    z 0,,,,,,

    ,,,,,,

    ( ) ( ) ( ) ( ) ++

    +

    tzyxVTzyxkWdtWyxtzyx

    Tk

    D

    yVV

    L

    VS

    Sz

    V ,,,,,,,,,,,, 2,0

    ( ) ( )tzyxVTzyxkV

    ,,,,,,+

    with boundary and initial conditions

    ( )0

    ,,,

    0

    =

    =x

    I

    x

    tzyx

    ,

    ( )0

    ,,,=

    = xLxx

    tzyxI

    ,

    ( )0

    ,,,

    0

    ==y

    y

    tzyxI

    ,

    ( )0

    ,,,=

    = yLyy

    tzyxI

    ,

    ( )0

    ,,,

    0

    =

    =z

    I

    z

    tzyx

    ,

    ( )0

    ,,,=

    = zLzz

    tzyxI

    ,

    ( )0

    ,,,

    0

    =

    =x

    V

    x

    tzyx

    ,

    ( )0

    ,,,=

    = xLxx

    tzyxV

    ,

    ( )0

    ,,,

    0

    ==y

    y

    tzyxV

    ,

    ( )0

    ,,,=

    = yLyy

    tzyxV

    ,

    ( )0

    ,,,

    0

    ==z

    z

    tzyxV

    ,

    ( )0

    ,,,=

    = zLz

    V

    z

    tzyx

    ,

    I (x,y,z,0)=fI (x,y,z), V (x,y,z,0)=fV (x,y,z). (6)

    Here DI(x,y,z,T), DV(x,y,z,T), DIS (x,y,z,T) and DVS(x,y,z,T) are the coefficients of volumetric

    and surficial diffusions of complexes of radiation defects; kI(x,y,z,T) and kV (x,y,z,T) are the para-

    meters of decay these complexes.

    Chemical potential in the Eq.(1) could be determined by the following relation [26]

    =E(z) [ij [uij(x,y,z,t)+uji(x,y,z,t)]/2, (7)

    where E(z) is the Young modulus, ij is the stress tensor;

    +

    =

    i

    j

    j

    i

    ijx

    u

    x

    uu

    2

    1 is the deformation

    tensor; ui, uj are the components ux(x,y,z,t), uy(x,y,z,t) and uz(x,y,z,t) of the displacement vector

    ( )tzyxu ,,,r ; xi, xj are the coordinate x, y, z. The Eq. (3) could be transform to the following form

  • Computer Applications: An International Journal (CAIJ), Vol.2, No.1, February 2015

    76

    ( ) ( )( ) ( ) ( )

    +

    +

    =

    i

    j

    j

    i

    i

    j

    j

    i

    x

    tzyxu

    x

    tzyxu

    x

    tzyxu

    x

    tzyxutzyx

    ,,,,,,

    2

    1,,,,,,,,,

    ( )( )

    ( ) ( ) ( ) ( )[ ] ( )zETtzyxTzzKx

    tzyxu

    z

    zij

    k

    kij

    ij2

    ,,,3,,,

    21000

    +

    ,

    where is Poisson coefficient; 0 = (as-aEL)/aEL is the mismatch parameter; as, aEL are lattice dis-tances of the substrate and the epitaxial layer; K is the modulus of uniform compression; is the thermal expansion coefficient; Tr is the equilibrium temperature, which has been assumed as

    room temperature. Components of displacement vector could be obtained by solution of the fol-

    lowing equations [27]

    ( ) ( ) ( )( ) ( )

    z

    tzyx

    y

    tzyx

    x

    tzyx

    t

    tzyxuz xz

    xyxxx

    +

    +

    =

    ,,,,,,,,,,,,2

    2

    ( )( ) ( ) ( ) ( )

    z

    tzyx

    y

    tzyx

    x

    tzyx

    t

    tzyxuz

    yzyyyxy

    +

    +

    =

    ,,,,,,,,,,,,2

    2

    ( ) ( ) ( )( ) ( )

    z

    tzyx

    y

    tzyx

    x

    tzyx

    t

    tzyxuz zz

    zyzxz

    +

    +

    =

    ,,,,,,,,,,,,2

    2 ,

    where ( )

    ( )[ ]( ) ( ) ( ) ( )

    +

    +

    +=

    k

    k

    ij

    k

    kij

    i

    j

    j

    i

    ijx

    tzyxu

    x

    tzyxu

    x

    tzyxu

    x

    tzyxu

    z

    zE ,,,,,,

    3

    ,,,,,,

    12

    ( ) ( ) ( ) ( )[ ]r

    TtzyxTzKzzK ,,, , (z) is the density of materials of heterostructure, ij Is

    the Kronecker symbol. With account the relation for ij last system of equation could be written as

    ( )( )

    ( )( )

    ( )[ ]( )

    ( )( )

    ( )[ ]( )

    +

    ++

    ++=

    yx

    tzyxu

    z

    zEzK

    x

    tzyxu

    z

    zEzK

    t

    tzyxuz

    yxx,,,

    13

    ,,,

    16

    5,,,2

    2

    2

    2

    2

    ( )( )[ ]

    ( ) ( )( )

    ( )( )[ ]

    ( )

    +++

    +

    ++

    zx

    tzyxu

    z

    zEzK

    z

    tzyxu

    y

    tzyxu

    z

    zE zzy ,,,

    13

    ,,,,,,

    12

    2

    2

    2

    2

    2

    ( ) ( ) ( )x

    tzyxTzzK

    ,,,

    ( )( ) ( )

    ( )[ ]( ) ( )

    ( ) ( )( )

    +

    +

    +=

    y

    tzyxTzzK

    yx

    tzyxu

    x

    tzyxu

    z

    zE

    t

    tzyxuz x

    yy ,,,,,,,,,

    12

    ,,, 2

    2

    2

    2

    2

    ( )( )[ ]

    ( ) ( ) ( ) ( )( )[ ]

    ( ) +

    ++

    +

    +

    +

    + zK

    z

    zE

    y

    tzyxu

    y

    tzyxu

    z

    tzyxu

    z

    zE

    z

    yzy

    112

    5,,,,,,,,,

    12 2

    2

    ( )( )

    ( )[ ]( )

    ( )( )

    yx

    tzyxuzK

    zy

    tzyxu

    z

    zEzK

    yy

    +

    ++

    ,,,,,,

    16

    22

    (8)

    ( )( ) ( )

    ( )[ ]( ) ( ) ( ) ( )

    +

    +

    +

    +

    +=

    zy

    tzyxu

    zx

    tzyxu

    y

    tzyxu

    x

    tzyxu

    z

    zE

    t

    tzyxuz

    yxzzz,,,,,,,,,,,,

    12

    ,,,22

    2

    2

    2

    2

    2

    2

    ( ) ( )( ) ( ) ( ) ( ) ( ) +

    +

    +

    +

    z

    tzyxTzzK

    z

    tzyxu

    y

    tzyxu

    x

    tzyxuzK

    z

    xyx,,,,,,,,,,,,

  • Computer Applications: An International Journal (CAIJ), Vol.2, No.1, February 2015

    77

    ( )( )

    ( ) ( ) ( ) ( )

    +

    +

    z

    tzyxu

    y

    tzyxu

    x

    tzyxu

    z

    tzyxu

    z

    zE

    z

    zyxz,,,,,,,,,,,,

    616

    1

    .

    Conditions for the system of Eq. (8) could be written in the form

    ( )0

    ,,,0=

    x

    tzyur

    ; ( )

    0,,,

    =

    x

    tzyLux

    r

    ; ( )

    0,,0,

    =

    y

    tzxur

    ; ( )

    0,,,

    =

    y

    tzLxuy

    r

    ;

    ( )0

    ,0,,=

    z

    tyxur

    ; ( )

    0,,,

    =

    z

    tLyxuz

    r

    ; ( )00,,, uzyxurr

    = ; ( ) 0,,, uzyxurr

    = .

    We determine spatio-temporal distributions of concentrations of dopant and radiati-on defects by solving the Eqs.(1), (3) and (5) framework standard method of averaging of function corrections

    [25,31]. Previously we transform the Eqs.(1), (3) and (5) to the following form with account ini-

    tial distributions of the considered concentrations

    ( ) ( ) ( ) ( )+

    +

    +

    =

    z

    tzyxCD

    zy

    tzyxCD

    yx

    tzyxCD

    xt

    tzyxC ,,,,,,,,,,,,

    ( ) ( ) ( ) ( ) +

    ++

    zL

    S

    S

    CWdtWyxCtzyx

    Tk

    D

    xtzyxf

    0

    ,,,,,,,,

    ( ) ( )

    +

    zL

    S

    S WdtWyxCtzyxTk

    D

    y 0,,,,,, (1a)

    ( ) ( ) ( ) ( ) ( ) +

    +

    =

    y

    tzyxITzyxD

    yx

    tzyxITzyxD

    xt

    tzyxIII

    ,,,,,,

    ,,,,,,

    ,,,

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) +

    + tzyxftzyxVtzyxITzyxk

    z

    tzyxITzyxD

    zIVII

    ,,,,,,,,,,,

    ,,,,,,

    ,

    ( ) ( ) ( ) ( ) +

    +

    zL

    S

    IS

    IIWdtWyxItzyx

    Tk

    D

    xtzyxITzyxk

    0

    2

    , ,,,,,,,,,,,,

    ( ) ( )

    +

    zL

    S

    IS WdtWyxItzyxTk

    D

    y 0,,,,,, (3a)

    ( ) ( ) ( ) ( ) ( ) +

    +

    =

    y

    tzyxVTzyxD

    yx

    tzyxVTzyxD

    xt

    tzyxVVV

    ,,,,,,

    ,,,,,,

    ,,,

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) +

    + tzyxftzyxVtzyxITzyxk

    z

    tzyxVTzyxD

    zVVIV

    ,,,,,,,,,,,

    ,,,,,,

    ,

    ( ) ( ) ( ) ( ) +

    +

    zL

    S

    VS

    VVWdtWyxVtzyx

    Tk

    D

    xtzyxVTzyxk

    0

    2

    , ,,,,,,,,,,,,

    ( ) ( )

    +

    zL

    S

    VS WdtWyxVtzyxTk

    D

    y 0,,,,,,

    ( ) ( ) ( ) ( ) ( ) +

    +

    =

    y

    tzyxTzyxD

    yx

    tzyxTzyxD

    xt

    tzyxI

    I

    I

    I

    I

    ,,,,,,

    ,,,,,,

    ,,,

    ( ) ( ) ( ) ( ) +

    +

    +

    zI

    I

    L

    IS

    SI WdtWyxtzyxTk

    D

    xz

    tzyxTzyxD

    z 0,,,,,,

    ,,,,,,

  • Computer Applications: An International Journal (CAIJ), Vol.2, No.1, February 2015

    78

    ( ) ( ) ( ) ( ) ++

    +

    tzyxITzyxkWdtWyxtzyx

    Tk

    D

    yI

    L

    IS

    Sz

    I ,,,,,,,,,,,,0

    ( ) ( ) ( ) ( )tzyxftzyxITzyxkIII

    ,,,,,,,, 2, ++ (5a)

    ( ) ( ) ( ) ( ) ( ) +

    +

    =

    y

    tzyxTzyxD

    yx

    tzyxTzyxD

    xt

    tzyxV

    V

    V

    V

    V

    ,,,,,,

    ,,,,,,

    ,,,

    ( )( )

    ( ) ( ) +

    +

    +

    zV

    V

    L

    VS

    SV WdtWyxtzyxTk

    D

    xz

    tzyxTzyxD

    z 0,,,,,,

    ,,,,,,

    ( ) ( ) ( ) ( ) ++

    +

    tzyxVTzyxkWdtWyxtzyx

    Tk

    D

    yV

    L

    VS

    Sz

    V ,,,,,,,,,,,,0

    ( ) ( ) ( ) ( )tzyxftzyxVTzyxkVVV

    ,,,,,,,, 2, ++ .

    Farther we replace the required functions in right sides of Eqs. (1a), (3a) and (5a) on their not yet

    known average values 1. In this situation we obtain equations for the first-order approximations of the considered concentrations in the following form

    ( )( ) ( ) +

    +

    =

    tzyx

    Tk

    Dz

    ytzyx

    Tk

    Dz

    xt

    tzyxCS

    S

    CS

    S

    C,,,,,,

    ,,,11

    1

    ( ) ( )tzyxfC

    ,,+ (1b)

    ( ) ( ) ( ) ( )

    ( ) ( ) ( )

    ( ) ( ) ( ) ( )

    ( ) ( ) ( )

    +

    +

    +=

    +

    +

    +=

    TzyxkTzyxktzyxTk

    Dz

    y

    tzyxTk

    D

    xztzyxf

    t

    tzyxV

    TzyxkTzyxktzyxTk

    Dz

    y

    tzyxTk

    D

    xztzyxf

    t

    tzyxI

    VIVIVVVS

    VS

    V

    S

    VS

    VV

    VIVIIIIS

    IS

    I

    S

    IS

    II

    ,,,,,,,,,

    ,,,,,,,,

    ,,,,,,,,,

    ,,,,,,,,

    ,11,

    2

    11

    1

    1

    ,11,

    2

    11

    1

    1

    (3b)

    ( )( ) ( ) ( ) ( )

    ( ) ( ) ( ) ( )

    ( )( ) ( ) ( ) ( )

    ( ) ( ) ( ) ( )

    +

    +

    +

    +=

    +

    +

    +

    +=

    tzyxVTzyxktzyxTk

    D

    yztzyxV

    TzyxktzyxTk

    D

    xztzyxf

    t

    tzyx

    tzyxITzyxktzyxTk

    D

    yztzyxI

    TzyxktzyxTk

    D

    xztzyxf

    t

    tzyx

    VVS

    S

    VS

    SV

    IIS

    S

    IS

    SI

    V

    V

    V

    VV

    I

    I

    I

    II

    ,,,,,,,,,,,,

    ,,,,,,,,,,,

    ,,,,,,,,,,,,

    ,,,,,,,,,,,

    2

    ,1

    1

    1

    2

    ,1

    1

    1

    (5b)

    Integration of the left and right sides of Eqs. (1b), (3b) and (5b) gives us possibility to obtain rela-

    tions for above first-order approximations in the following form

  • Computer Applications: An International Journal (CAIJ), Vol.2, No.1, February 2015

    79

    ( ) ( ) ( )( ) ( )

    ( )

    ++

    =

    t

    SLSC

    V

    zyxV

    V

    zyxVzyxTzyxD

    xtzyxC

    02*

    2

    2*111

    ,,,,,,1,,,,,,,,,

    ( )( )

    ( ) ( )

    +

    +

    +

    +

    tCSCS

    LSC

    CS

    TzyxPTzyxPTzyxD

    yd

    TzyxPTk

    z

    0

    11

    1

    1

    ,,,1

    ,,,1,,,

    ,,,1

    ( ) ( )( )

    ( )zyxfdV

    zyxV

    V

    zyxV

    Tkz

    C,,

    ,,,,,,1

    2*

    2

    2*1+

    ++

    (1c)

    ( ) ( ) ( ) ( )

    ( ) ( )

    ( ) ( ) ( ) ( )

    ( ) ( )

    +

    +

    +=

    +

    +

    =

    t

    S

    IS

    V

    t

    S

    IS

    V

    t

    VIVI

    t

    VVVV

    t

    S

    IS

    I

    t

    S

    IS

    I

    t

    VIVI

    t

    IIII

    dzyxTk

    D

    yzdzyx

    Tk

    D

    xz

    dTzyxkdTzyxkzyxftzyxV

    dzyxTk

    D

    yzdzyx

    Tk

    D

    xz

    dTzyxkdTzyxkzyxftzyxI

    01

    01

    0,11

    0,

    2

    11

    01

    01

    0,11

    0,

    2

    11

    ,,,,,,

    ,,,,,,,,,,,

    ,,,,,,

    ,,,,,,,,,,,

    (3c)

    ( ) ( ) ( )

    ( ) ( ) ( )

    ( ) ( )

    ( ) ( ) ( )

    ( ) ( ) ( )

    ( ) ( )

    +

    ++

    +

    +

    +=

    +

    ++

    +

    +

    +=

    t

    VV

    t

    V

    t

    S

    S

    t

    S

    S

    V

    t

    II

    t

    I

    t

    S

    S

    t

    S

    S

    I

    dzyxVTzyxk

    dzyxVTzyxkdzyxTk

    D

    yz

    dzyxTk

    D

    xzzyxftzyx

    dzyxITzyxk

    dzyxITzyxkdzyxTk

    D

    yz

    dzyxTk

    D

    xzzyxftzyx

    V

    V

    V

    VV

    I

    I

    I

    II

    0

    2

    ,

    001

    011

    0

    2

    ,

    001

    011

    ,,,,,,

    ,,,,,,,,,

    ,,,,,,,,

    ,,,,,,

    ,,,,,,,,,

    ,,,,,,,,

    (5c)

    We determine average values of the first-order approximations of required functions by using the

    following relations [25,31]

    ( )

    =

    0 0 0 011 ,,,

    1 x y zL L L

    zyx

    tdxdydzdtzyxLLL

    . (9)

    Substitution of these relations (1c), (3c) and (5c) into relation (9) gives us possibility to obtain the

    following relations

    ( ) =x y zL L L

    C

    zyx

    Cxdydzdzyxf

    LLL 0 0 01 ,,

    1 ,

    ( )

    4

    3

    4

    1

    2

    3

    2

    4

    2

    3

    14

    44 a

    Aa

    a

    aLLLBaB

    a

    Aa zyxI

    +

    ++

    += ,

  • Computer Applications: An International Journal (CAIJ), Vol.2, No.1, February 2015

    80

    ( )

    =

    zyxIII

    L L L

    I

    IIV

    VLLLSxdydzdzyxf

    S

    x y z

    0010 0 0100

    1,,

    1

    ,

    where ( ) ( ) ( ) ( ) =

    0 0 0 011, ,,,,,,,,,

    x y zL L Lji

    ijtdxdydzdtzyxVtzyxITzyxktS , = 004 IISa

    ( )0000

    2

    00 VVIIIVSSS ,

    0000

    2

    0000003 VVIIIVIIIV SSSSSa += , ( ) =x y zL L L

    Vxdydzdzyxfa

    0 0 02 ,,

    ( ) ( ) +x y zx y z LL L

    IIV

    L L L

    IIIVVIVIVxdydzdzyxfSxdydzdzyxfSSSS

    0 0 0

    2

    000 0 0

    0000

    2

    0000 ,,,,2

    222

    0000

    222

    zyxIVVVzyxLLLSSLLL + , ( ) =

    x y zL L L

    IIVxdydzdzyxfSa

    0 0 0001 ,, ,

    4

    2

    2

    4

    2

    32 48a

    a

    a

    ayA += ,

    ( )2

    0 0 0000 ,,

    =x y zL L L

    IVVxdydzdzyxfSa , 3

    323 32

    4

    2

    6qpqqpq

    a

    aB ++++

    = ,

    2

    4

    2

    1

    4

    222

    3

    4

    3

    2

    3

    4

    2

    32

    22

    4

    02

    4

    31

    02

    4

    2

    3

    8544

    84

    24 a

    aLLL

    a

    a

    a

    aa

    a

    a

    a

    aaLLLa

    a

    aq

    zyxzyx

    = ,

    4

    2

    2

    4

    31402

    1812

    4

    a

    a

    a

    aaLLLaap

    zyx

    = ,

    ( ) +

    +

    = x y z

    II

    L L L

    zyxzyx

    II

    zyx

    I xdydzdzyxfLLLLLL

    S

    LLL

    R

    0 0 0

    201

    1 ,,1

    ( ) +

    +

    = x y z

    VV

    L L L

    zyxzyx

    VV

    zyx

    V xdydzdzyxfLLLLLL

    S

    LLL

    R

    0 0 0

    201

    1 ,,1

    ,

    where ( ) ( ) ( ) =

    0 0 0 01 ,,,,,,

    x y zL L Li

    Ii tdxdydzdtzyxITzyxktR .

    We obtain the second-order approximations and approximations with higher orders of concentra-

    tions of dopant and radiation defects by using standard iteration procedure of method of averag-

    ing of function corrections [25,31]. Framework this procedure to calculate n-th-order approxima-

    tions of concentrations of dopant and radiation defects we replace the required concentrations

    C(x,y,z,t), I(x,y,z,t), V(x,y,z,t), I(x,y,z,t) and V(x,y,z,t) in the right sides of Eqs. (1a), (3a), (5a) on the following sums n+n-1(x, y,z,t). This substitution gives us possibility to obtain equations for the second-order approximations of the required concentrations

    ( ) ( )[ ]( )

    ( ) ( )( )

    ++

    +

    +

    =

    2*

    2

    2*1

    122 ,,,,,,1,,,

    ,,,1

    ,,,

    V

    tzyxV

    V

    tzyxV

    TzyxP

    tzyxC

    xt

    tzyxC C

    ( )( ) ( ) ( )

    ( )( )

    ++

    +

    y

    tzyxC

    V

    tzyxV

    V

    tzyxV

    yx

    tzyxCTzyxD L

    ,,,,,,,,,1

    ,,,,,, 1

    2*

    2

    2*1

    1

    ( ) ( )[ ]( )

    ( ) ( )( )

    ++

    +

    +

    +2*

    2

    2*1

    12 ,,,,,,1,,,

    ,,,1,,,

    V

    tzyxV

    V

    tzyxV

    zTzyxP

    tzyxCTzyxD CL

    ( ) ( )( )[ ]

    ( )( ) ( )

    ++

    +

    +

    Tk

    D

    xtzyxf

    TzyxP

    tzyxC

    z

    tzyxCTzyxD S

    C

    C

    L

    ,,,,,

    ,,,1

    ,,,,,, 121 (1d)

  • Computer Applications: An International Journal (CAIJ), Vol.2, No.1, February 2015

    81

    ( ) ( ) ( ) ( )

    +

    zz L

    S

    SL

    SWdtWyxCtzyx

    Tk

    D

    yWdtWyxCtzyx

    00

    ,,,,,,,,,,,,

    ( ) ( ) ( ) ( ) ( )

    +

    =

    y

    tzyxITzyxD

    yx

    tzyxITzyxD

    xt

    tzyxIII

    ,,,,,,

    ,,,,,,

    ,,,112

    ( ) ( ) ( ) ( )[ ] ( )[ ] ++

    + tzyxVtzyxITzyxk

    z

    tzyxITzyxD

    zVIVII

    ,,,,,,,,,,,,

    ,,,1111,

    1

    ( ) ( )[ ] ( ) ( )[ ] +

    +

    ++

    zL

    IS

    IS

    IIIWdtWyxItzyx

    Tk

    D

    xtzyxITzyxk

    012

    2

    11, ,,,,,,,,,,,,

    ( ) ( )[ ]

    +

    +

    zL

    IS

    IS WdtWyxItzyxTk

    D

    y 012

    ,,,,,, (3d)

    ( ) ( ) ( ) ( ) ( )

    +

    =

    y

    tzyxVTzyxD

    yx

    tzyxVTzyxD

    xt

    tzyxVVV

    ,,,,,,

    ,,,,,,

    ,,,112

    ( ) ( ) ( ) ( )[ ] ( )[ ] ++

    + tzyxVtzyxITzyxk

    z

    tzyxVTzyxD

    zVIVIV

    ,,,,,,,,,,,,

    ,,,1111,

    1

    ( ) ( )[ ] ( ) ( )[ ] +

    +

    ++

    zL

    VS

    VS

    VVVWdtWyxVtzyx

    Tk

    D

    xtzyxVTzyxk

    012

    2

    11, ,,,,,,,,,,,,

    ( ) ( )[ ]

    +

    +

    zL

    VS

    VS WdtWyxVtzyxTk

    D

    y 012

    ,,,,,,

    ( ) ( ) ( ) ( ) ( ) +

    +

    =

    y

    tzyxTzyxD

    yx

    tzyxTzyxD

    xt

    tzyxIII

    II

    ,,,,,,

    ,,,,,,

    ,,, 112

    ( ) ( ) ( ) ( )[ ] +

    +

    ++

    z

    I

    I

    L

    IS

    S

    IIWdtWyxtzyx

    Tk

    D

    xtzyxITzyxk

    012

    2

    ,,,,,,,,,,,,,

    ( ) ( )[ ] ( ) ( )++

    +

    +

    tzyxITzyxkWdtWyxtzyx

    Tk

    D

    yI

    L

    IS

    Sz

    I

    I ,,,,,,,,,,,,0

    12

    ( ) ( ) ( ) ( )tzyxfz

    tzyxTzyxD

    z III

    ,,

    ,,,,,, 1 +

    + (5d)

    ( )( )

    ( )( )

    ( )+

    +

    =

    y

    tzyxTzyxD

    yx

    tzyxTzyxD

    xt

    tzyxVVV

    VV

    ,,,,,,

    ,,,,,,

    ,,,112

    ( ) ( ) ( ) ( )[ ] +

    +

    ++

    z

    V

    V

    L

    VS

    S

    VVWdtWyxtzyx

    Tk

    D

    xtzyxVTzyxk

    012

    2

    , ,,,,,,,,,,,,

    ( ) ( )[ ] ( ) ( )++

    +

    +

    tzyxVTzyxkWdtWyxtzyx

    Tk

    D

    yV

    L

    VS

    Sz

    V

    V ,,,,,,,,,,,,0

    12

    ( ) ( ) ( ) ( )tzyxfz

    tzyxTzyxD

    z VVV

    ,,

    ,,,,,, 1 +

    + .

    Integration of left and right sides of Eqs. (1d), (3d) and (5d) gives us possibility to obtain final

    relations for the second-order approximations of the required concentrations of dopant and radia-

    tion defects in the following form

  • Computer Applications: An International Journal (CAIJ), Vol.2, No.1, February 2015

    82

    ( ) ( )[ ]( )

    ( ) ( )( )

    ++

    +

    +

    =

    tC

    V

    zyxV

    V

    zyxV

    TzyxP

    zyxC

    xtzyxC

    02*

    2

    2*1

    12

    2

    ,,,,,,1

    ,,,

    ,,,1,,,

    ( ) ( ) ( ) ( ) ( )( )

    ++

    +

    t

    LL

    V

    zyxV

    V

    zyxVTzyxD

    yd

    x

    zyxCTzyxD

    02*

    2

    2*1

    1 ,,,,,,1,,,,,,

    ,,,

    ( ) ( )[ ]( )

    ( ) ( )( )

    ++

    +

    +

    +

    tC

    V

    zyxV

    V

    zyxV

    zTzyxP

    tzyxC

    y

    zyxC

    02*

    2

    2*1

    121 ,,,,,,1,,,

    ,,,1

    ,,,

    ( ) ( ) ( )[ ]( )

    ( )

    ++

    +

    +

    tS

    C

    C

    LTk

    D

    xzyxfd

    TzyxP

    zyxC

    z

    zyxCTzyxD

    0

    121 ,,,,,

    ,,,1

    ,,,,,,

    ( ) ( )[ ] ( )[ ] +

    + +

    t L

    C

    SL

    CS

    zz

    WdWyxCTk

    D

    ydWdWyxCzyx

    0 012

    012 ,,,,,,,,,

    ( ) dzyxS

    ,,, (1e)

    ( ) ( ) ( ) ( ) ( ) ++=t

    I

    t

    Id

    y

    zyxITzyxD

    yd

    x

    zyxITzyxD

    xtzyxI

    0

    1

    0

    1

    2

    ,,,,,,

    ,,,,,,,,,

    ( ) ( ) ( ) ( )[ ] ++t

    III

    t

    IdzyxITzyxkd

    z

    zyxITzyxD

    z 0

    2

    12,0

    1 ,,,,,,,,,

    ,,,

    ( ) ( )[ ] ( )

    + +

    +

    t

    S

    ISt L

    I

    IS

    Szyx

    Tk

    D

    ydWdWyxI

    Tk

    Dzyx

    x

    z

    00 012 ,,,,,,,,,

    ( )[ ] ( ) ( )[ ] ( )[ ] + ++ +t

    VIVI

    L

    IdzyxVzyxITzyxkdWdWyxI

    z

    01212,

    012

    ,,,,,,,,,,,,

    ( )zyxfI

    ,,+ (3e)

    ( ) ( ) ( ) ( ) ( ) ++=t

    V

    t

    Vd

    y

    zyxVTzyxD

    yd

    x

    zyxVTzyxD

    xtzyxV

    0

    1

    0

    1

    2

    ,,,,,,

    ,,,,,,,,,

    ( ) ( ) ( ) ( )[ ] ++t

    VVV

    t

    VdzyxVTzyxkd

    z

    zyxVTzyxD

    z 0

    2

    12,0

    1 ,,,,,,,,,

    ,,,

    ( ) ( )[ ] ( )

    + +

    +

    t

    S

    VSt L

    V

    VS

    Szyx

    Tk

    D

    ydWdWyxV

    Tk

    Dzyx

    x

    z

    00 012 ,,,,,,,,,

    ( )[ ] ( ) ( )[ ] ( )[ ] + ++ +t

    VIVI

    L

    VdzyxVzyxITzyxkdWdWyxV

    z

    01212,

    012

    ,,,,,,,,,,,,

    ( )zyxfV

    ,,+

    ( ) ( ) ( ) ( )

    +

    = t

    It

    I

    Iy

    zyx

    yd

    x

    zyxTzyxD

    xtzyx

    I0

    1

    0

    1

    2

    ,,,,,,,,,,,,

    ( ) ( ) ( ) ( )

    +

    +

    t

    S

    St

    I zyxTk

    D

    xd

    z

    zyxTzyxD

    zdTzyxD I

    II00

    1 ,,,,,,

    ,,,,,,

    ( )[ ] ( ) ( )[ ] +

    + +

    t L

    IS

    L

    I

    z

    I

    z

    IWdWyxzyx

    ydWdWyx

    0 012

    012

    ,,,,,,,,,

    ( ) ( ) ( ) ( ) ( )zyxfdzyxITzyxkdzyxITzyxkdTk

    D

    I

    It

    I

    t

    II

    S,,,,,,,,,,,,,,

    00

    2

    ,

    +++ (5e)

    ( ) ( ) ( ) ( )

    +

    = t

    Vt

    V

    Vy

    zyx

    yd

    x

    zyxTzyxD

    xtzyx

    V0

    1

    0

    1

    2

    ,,,,,,,,,,,,

  • Computer Applications: An International Journal (CAIJ), Vol.2, No.1, February 2015

    83

    ( ) ( )( )

    ( )

    +

    +

    t

    S

    St

    V zyxTk

    D

    xd

    z

    zyxTzyxD

    zdTzyxD V

    VV00

    1 ,,,,,,

    ,,,,,,

    ( )[ ] ( ) ( )[ ] +

    + +

    t L

    VS

    L

    V

    z

    V

    z

    VWdWyxzyx

    ydWdWyx

    0 012

    012

    ,,,,,,,,,

    ( ) ( ) ( ) ( ) ( )zyxfdzyxVTzyxkdzyxVTzyxkdTk

    D

    V

    Vt

    V

    t

    VV

    S,,,,,,,,,,,,,,

    00

    2

    ,

    +++ .

    We determine average values of the second-order approximations of the considered concentra-

    tions by using standard relations [25,31]

    ( ) ( )[ ]

    =

    0 0 0 0122 ,,,,,,

    1 x y zL L L

    zyx

    tdxdydzdtzyxtzyxLLL

    . (10)

    Substitution of the relations (1e), (3e), (5e) into relation (10) gives us possibility to obtain final

    relations for the required relations 2

    2C=0, 2I =0, 2V =0, ( )

    4

    3

    4

    1

    2

    3

    2

    4

    2

    3

    24

    44 b

    Eb

    b

    bLLLFaF

    b

    Eb zyxV

    +

    ++

    += ,

    ( )00201

    11021001200

    2

    2

    2

    2

    IVVIV

    VIVVzyxVIVVVVVVV

    ISS

    SSLLLSSSC

    +

    ++= ,

    where 00

    2

    0000

    2

    004

    11IIVV

    zyx

    VVIV

    zyx

    SSLLL

    SSLLL

    b

    = , ( ++

    =100100

    00

    32

    IVVVVV

    zyx

    II SSSLLL

    Sb

    ) ( ) (

    ++++

    ++yxIV

    zyx

    VVIVzyxIVIIIV

    zyx

    zyxLLS

    LLLSSLLLSSS

    LLLLLL

    2

    000000011001

    12

    1

    ) 333310

    2

    0010012

    zyxIVIVIVVVzLLLSSSSL ++ , ( ) ( ++

    =

    zyxVIVVV

    zyx

    VVII LLLCSSLLL

    SSb 1102

    0000

    2

    ) ( ) ( +++

    +++

    ++1001

    00

    0110

    00012

    1001222

    IIIVzyx

    zyx

    IV

    IVIIzyx

    zyx

    VVIV

    IVVVSSLLL

    LLL

    SSSLLL

    LLL

    SSSS

    )( ) ( ) +

    +++ 010010

    2

    00

    1102100101

    222

    IVIVIV

    zyxzyx

    IV

    IVVVVIVzyxVVIVSSS

    LLLLLL

    SSSCSLLLSS

    2222

    2

    00

    zyx

    IVI

    LLL

    SC

    + , ( )( ) (

    +++++

    =

    x

    zyx

    IV

    zyxIVVVVVVIV

    zyx

    II LLLL

    SLLLSSCSS

    LLL

    Sb 01

    10010211

    00

    12

    )( ) ( )( ++

    ++++VzyxIIIV

    zyx

    IV

    zyxIVVVIVIIzyCLLLSS

    LLL

    SLLLSSSSLL 1001

    00

    10010110 2322

    )zyx

    IVIV

    IVIVIIVVVLLL

    SSSSCSS

    +

    2

    0110

    01001102 2 , ( ) ( +++

    = 102

    0200

    00

    0 2 IIzyxVVIVzyx

    II SLLLSSLLL

    Sb

    ) ( ) ( )( ) +++

    + 1102011001

    0211

    01

    01 2 IVVVVIVIIzyxzyx

    IV

    VVIVV

    zyx

    IV

    IVSSCSSLLL

    LLL

    SSSC

    LLL

    SS

    2

    012 IVI SC+ , zyx

    IV

    zyx

    IIII

    zyx

    III

    zy

    IV

    x

    I

    VILLL

    S

    LLL

    SS

    LLL

    S

    LL

    S

    LC

    +

    = 11202000

    2

    1001

    1

    , += 020011 VVIVVIV SSC

    1100

    2

    1 IVVVV SS + , 4

    2

    2

    4

    2

    32 48a

    a

    a

    ayE += , 3 323 32

    4

    2

    6rsrrsr

    a

    aF ++++

    = ,

    =

    2

    4

    2

    3

    24b

    br

  • Computer Applications: An International Journal (CAIJ), Vol.2, No.1, February 2015

    84

    2

    4

    2

    1

    4

    222

    3

    4

    3

    2

    3

    4

    2

    32

    22

    4

    2

    0

    4

    31

    0854

    48

    4b

    bLLL

    b

    b

    b

    bb

    bb

    b

    bbLLLb

    zyxzyx

    , ( =

    402

    4

    2

    412

    bbb

    s

    )4231

    18bbbbLLLzyx

    .

    Farther we determine solutions of the system of Eqs.(8). The solutions physically correspond to

    components of displacement vector. To determine components of displacement vector we used

    method of averaging of function corrections in standard form. Framework the approach we re-

    place the above components in right sides of Eqs.(8) on their not yet known average values i. The substitution leads to the following results

    ( ) ( ) ( ) ( ) ( )x

    tzyxTzzK

    t

    tzyxuz x

    =

    ,,,,,,2

    1

    2

    , ( )( )

    ( ) ( ) ( )y

    tzyxTzzK

    t

    tzyxuz

    y

    =

    ,,,,,,2

    1

    2

    ,

    ( ) ( ) ( ) ( ) ( )z

    tzyxTzzK

    t

    tzyxuz z

    =

    ,,,,,,2

    1

    2

    .

    Integration of the left and right sides of the above equations on time t leads to final relations for

    the first-order approximations of components of displacement vector in the following form

    ( ) ( ) ( )( )

    ( ) ( ) ( )( )

    ( )x

    t

    xuddzyxT

    xz

    zzKddzyxT

    xz

    zzKtzyxu 0

    0 00 01 ,,,,,,,,, +

    =

    ,

    ( ) ( ) ( )( )

    ( ) ( ) ( )( )

    ( )y

    t

    yuddzyxT

    yz

    zzKddzyxT

    yz

    zzKtzyxu

    00 00 0

    1,,,,,,,,, +

    =

    ,

    ( ) ( ) ( )( )

    ( ) ( ) ( )( )

    ( )z

    t

    zuddzyxT

    zz

    zzKddzyxT

    zz

    zzKtzyxu 0

    0 00 01 ,,,,,,,,, +

    =

    .

    The second-order approximations and approximations with higher orders of components of dis-

    placement vector could be calculated by replacement of the required components in the Eqs. (8)

    on the following sums i+ui(x,y,z,t) [25,31]. This replacement leads to the following result

    ( )( )

    ( ) ( )( )[ ]

    ( )( ) ( )

    ( )[ ]

    ++

    ++=

    z

    zEzK

    x

    tzyxu

    z

    zEzK

    t

    tzyxuz xx

    13

    ,,,

    16

    5,,,2

    1

    2

    2

    2

    2

    ( ) ( )( )[ ]

    ( ) ( )( )

    ( )( )[ ]

    +++

    +

    ++

    z

    zEzK

    z

    tzyxu

    y

    tzyxu

    z

    zE

    yx

    tzyxuzyy

    13

    ,,,,,,

    12

    ,,,2

    1

    2

    2

    1

    2

    1

    2

    ( )( ) ( ) ( )

    x

    tzyxTzzK

    zx

    tzyxuz

    ,,,,,,12

    ( )( ) ( )

    ( )[ ]( ) ( )

    ( ) ( ) ( ) +

    +

    +=

    y

    tzyxTzzK

    yx

    tzyxu

    x

    tzyxu

    z

    zE

    t

    tzyxuz

    xyy ,,,,,,,,,

    12

    ,,,1

    2

    2

    1

    2

    2

    2

    2

    ( ) ( )( )[ ]

    ( ) ( )( )[ ]

    ( ) ( )+

    +

    +

    +

    ++

    +

    y

    tzyxu

    z

    tzyxu

    z

    zE

    zzK

    z

    zE

    y

    tzyxuzyy ,,,,,,

    12112

    5,,, 112

    1

    2

    ( ) ( )( )[ ]

    ( )( )

    ( )yx

    tzyxuzK

    zy

    tzyxu

    z

    zEzK

    yy

    +

    ++

    ,,,,,,

    16

    1

    2

    1

    2

  • Computer Applications: An International Journal (CAIJ), Vol.2, No.1, February 2015

    85

    ( ) ( ) ( )( )[ ]

    ( ) ( ) ( ) ( )

    +

    +

    +

    +=

    zy

    tzyxu

    zx

    tzyxu

    y

    tzyxu

    x

    tzyxu

    z

    zE

    t

    tzyxuz

    yxzzz,,,,,,,,,,,,

    12

    ,,, 12

    1

    2

    2

    1

    2

    2

    1

    2

    2

    2

    2

    ( ) ( )( )

    ( )( ) ( ) ( )

    +

    +

    +

    +

    z

    tzyxu

    y

    tzyxu

    x

    tzyxuzK

    zz

    tzyxTzzK x

    yx ,,,,,,,,,,,, 111

    ( )( )[ ]

    ( ) ( ) ( ) ( )

    ++

    z

    tzyxu

    y

    tzyxu

    x

    tzyxu

    z

    tzyxu

    zz

    zE zyxz ,,,,,,,,,,,,616

    1111

    .

    Integration of left and right sides of the above equations on time t leads to the following results

    ( )( )

    ( )( )

    ( )[ ]( )

    ( )( )

    ( )( )[ ]

    ++

    ++=

    z

    zEzK

    zddzyxu

    xz

    zEzK

    ztzyxu

    t

    xx

    13

    1,,,

    16

    51,,,

    0 012

    2

    2

    ( ) ( ) ( )

    +

    +

    t

    z

    t

    y

    t

    y ddzyxuz

    ddzyxuy

    ddzyxuyx 0 0

    12

    2

    0 012

    2

    0 01

    2

    ,,,,,,,,,

    ( )( ) ( )[ ] ( )

    ( ) ( ) ( )( )[ ]

    ( ) ( )( )

    ++

    +

    +

    z

    zzK

    z

    zEzKddzyxu

    zxzzz

    zE t

    z

    13,,,

    1

    12 0 01

    2

    ( )( )

    ( ) ( ) ( )( )[ ] ( )

    ( )

    ++

    zKzz

    zEzKddzyxu

    xzddzyxT

    xx

    t

    1

    16

    5,,,

    1,,,

    0 012

    2

    0 0

    ( )( )[ ]

    ( ) ( ) ( )

    +

    +

    0 012

    2

    0 012

    2

    0 01

    2

    ,,,,,,,,,13

    ddzyxuz

    ddzyxuy

    ddzyxuyxz

    zEzyy

    ( )( ) ( )[ ]

    ( ) ( )( )

    ( )( )

    ( ) ( ){ +

    +

    +

    zKddzyxuzxz

    ddzyxTxz

    zzK

    zz

    zEz

    0 01

    2

    0 0

    ,,,1

    ,,,12

    ( ) ( )[ ]} xuzzE 013 +++

    ( ) ( )( ) ( )[ ]

    ( ) ( ) +

    +

    +=

    t

    x

    t

    xy ddzyxuyx

    ddzyxuxzz

    zEtzyxu

    0 01

    2

    0 012

    2

    2 ,,,,,,12

    ,,,

    ( )( )

    ( )( )

    ( )( )[ ]

    ( ) ( ) +

    ++

    +

    +

    t

    x

    t

    y ddzyxuy

    zKz

    zE

    zddzyxu

    yxz

    zK

    0 012

    2

    0 01

    2

    ,,,112

    51,,,

    ( )( )

    ( )( ) ( ) ( ) ( )

    ( )

    +

    +

    +

    z

    zzKddzyxu

    yddzyxu

    zz

    zE

    zz

    t

    z

    t

    y

    0 01

    0 01 ,,,,,,

    12

    1

    ( )( )

    ( )( )

    ( )[ ]( )

    ( )( )

    ++

    z

    zEddzyxu

    zyz

    zEzK

    zddzyxT

    t

    y

    t

    2,,,

    16

    1,,,

    0 01

    2

    0 0

    ( )( ) ( ) ( )

    +

    +

    0 00 01

    2

    0 012

    2

    ,,,,,,,,,1

    1

    ddzyxTddzyxu

    yxddzyxu

    xzxx

    ( )( )( )

    ( )( )

    ( )( )

    ( ) ( )

    +

    zKddzyxuyz

    ddzyxuyxz

    zK

    z

    zzK xy

    0 012

    2

    0 01

    2

    ,,,1

    ,,,

    ( )( )[ ] ( )

    ( )( )

    ( ) ( )

    +

    +

    ++

    0 01

    0 01 ,,,,,,

    12

    1

    112

    5

    ddzyxu

    yddzyxu

    zz

    zE

    zzz

    zEzy

    ( )( )

    ( )( )[ ]

    ( ) yy uddzyxuzyz

    zEzK

    z0

    0 01

    2

    ,,,16

    1+

    +

    ( ) ( ) ( ) ( )

    +

    +

    +

    =

    0 01

    2

    0 012

    2

    0 012

    2

    2

    2

    ,,,,,,,,,,,,

    ddzyxuzx

    ddzyxuy

    ddzyxuxt

    tzyxuxzz

    z

  • Computer Applications: An International Journal (CAIJ), Vol.2, No.1, February 2015

    86

    ( )( )

    ( ) ( )[ ] ( )( )

    +

    +

    +

    +

    0 01

    0 01

    2

    ,,,1

    12,,,

    ddzyxuxzzzz

    zEddzyxu

    zyxy

    ( ) ( ) ( )( )

    ( )( )

    +

    +

    +

    +

    z

    zE

    zzzKddzyxu

    zddzyxu

    yxx

    16

    1,,,,,,

    0 01

    0 01

    ( ) ( ) ( )

    0 01

    0 01

    0 01 ,,,,,,,,,6

    ddzyxuy

    ddzyxux

    ddzyxuz

    yxz

    ( ) ( ) ( )( )

    ( ) zz uddzyxTzz

    zzKddzyxu

    z0

    0 00 01 ,,,,,, +

    .

    Framework this paper we determine concentration of dopant, concentrations of radiation defects

    and components of displacement vector by using the second-order approximation framework me-

    thod of averaging of function corrections. This approximation is usually enough good approxima-

    tion to make qualitative analysis and to obtain some quantitative results. All obtained results have

    been checked by comparison with results of numerical simulations.

    3. Discussion

    In this section we analyzed influence of mismatch-induced stress on redistributions of dopant and

    radiation defects during annealing. The Figs. 2 and 3 show typical distributions of concentrations

    of dopant in heterostructures for diffusion and ion types of doping. All distributions in Figs. 2 and 3 have been calculated for larger value of dopant diffusion coefficient in doped area is larger in

    comparison with dopant diffusion coefficient in nearest areas. The figures show, that using inho-

    mogeneity of heterostructure gives us possibility to increase sharpness of p-n- junctions with in-

    creasing homogeneity of dopant distribution in doped part of epitaxial layer. Increasing of sharp-

    ness of p-n-junction leads to decreasing of switching time. Increasing of homogeneity of dopant

    distribution gives us possibility to decrease local overheats of materials during functioning of p-n-junction or decreasing of dimensions of the p-n-junction for fixed maximal value of local over-

    heat. It should be noted, that using the considered approach for manufacture a bipolar transistor

    leads to necessity to optimize annealing of dopant and/or radiation defects. Reason of this optimi-zation is following. If annealing time is small, the dopant did not achieves any interfaces between

    materials of heterostructure. In this situation one can not find any modifications of distribution of

    concentration of dopant. Increasing of annealing time leads to increasing of homogeneity of do-pant distribution. We optimize annealing time framework recently introduces approach

    [22,23,25,32-36]. Framework this criterion we approximate real distribution of concentration of

    dopant by step-wise function (see Figs. 4 and 5). Farther we determine optimal values of anneal-

    ing time by minimization of the following mean-squared error

  • Computer Applications: An International Journal (CAIJ), Vol.2, No.1, February 2015

    87

    Fig.2. Typical distributions of concentration of dopant, which has been infused in heterostructure from

    Figs. 1 in direction, which is perpendicular to interface between epitaxial layer substrate. Increasing of

    number of curve corresponds to increasing of difference between values of dopant diffusion coefficient in

    layers of heterostructure under condition, when value of dopant diffusion coefficient in epitaxial layer is

    larger, than value of dopant diffusion coefficient in substrate

    x

    0.0

    0.5

    1.0

    1.5

    2.0

    C(x

    ,)

    23

    4

    1

    0 L/4 L/2 3L/4 L

    Epitaxial layer Substrate

    Fig.3. Typical distributions of concentration of dopant, which has been implanted in heterostructure from

    Figs. 1 in direction, which is perpendicular to interface between epitaxial layer substrate. Curves 1 and 3

    corresponds to annealing time = 0.0048(Lx2+Ly

    2+Lz

    2)/D0. Curves 2 and 4 corresponds to annealing time

    = 0.0057(Lx2+ Ly

    2+Lz

    2)/D0. Curves 1 and 2 corresponds to homogenous sample. Curves 3 and 4 corres-

    ponds to heterostructure under condition, when value of dopant diffusion coefficient in epitaxial layer is

    larger, than value of dopant diffusion coefficient in substrate

    C(x

    ,)

    0 Lx

    2

    13

    4

    Fig. 4. Spatial distributions of dopant in heterostructure after dopant infusion. Curve 1 is idealized distribu-

    tion of dopant. Curves 2-4 are real distributions of dopant for different values of annealing time. Increasing

    of number of curve corresponds to increasing of annealing time

    x

    C(x

    ,)

    1

    23

    4

    0 L

    Fig. 5. Spatial distributions of dopant in heterostructure after ion implantation. Curve 1 is idealized distri-

    bution of dopant. Curves 2-4 are real distributions of dopant for different values of annealing time. Increas-

    ing of number of curve corresponds to increasing of annealing time

  • Computer Applications: An International Journal (CAIJ), Vol.2, No.1, February 2015

    88

    ( ) ( )[ ] =x y zL

    L L

    zyx

    xdydzdzyxzyxCLLL

    U0 0 0

    ,,,,,1

    , (15)

    where (x,y,z) is the approximation function. Dependences of optimal values of annealing time on parame-ters are presented on Figs. 6 and 7 for diffusion and ion types of doping, respectively. It should be noted,

    that it is necessary to anneal radiation defects after ion implantation. One could find spreading of concen-

    tration of distribution of dopant during this annealing. In the ideal case distribution of dopant achieves ap-

    propriate interfaces between materials of heterostructure during annealing of radiation defects. If dopant

    did not achieves any interfaces during annealing of radiation defects, it is practicably to additionally anneal

    the dopant. In this situation optimal value of additional annealing time of implanted dopant is smaller, than

    annealing time of infused dopant.

    0.0 0.1 0.2 0.3 0.4 0.5

    a/L, , ,

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    D

    0 L

    -2

    3

    2

    4

    1

    Fig.6. Dependences of dimensionless optimal annealing time for doping by diffusion on several parameters.

    Curve 1 is the dependence of dimensionless optimal annealing time on the relation a/L and = = 0 for equal to each other values of dopant diffusion coefficient in all parts of heterostructure. Curve 2 is the de-

    pendence of dimensionless optimal annealing time on value of parameter for a/L=1/2 and = = 0. Curve 3 is the dependence of dimensionless optimal annealing time on value of parameter for a/L=1/2 and =

    = 0. Curve 4 is the dependence of dimensionless optimal annealing time on value of parameter for a/L=1/2 and = = 0

    0.0 0.1 0.2 0.3 0.4 0.5a/L, , ,

    0.00

    0.04

    0.08

    0.12

    D

    0 L

    -2

    3

    2

    4

    1

    Fig.7. Dependences of dimensionless optimal annealing time for doping by ion implantation on several

    parameters. Curve 1 is the dependence of dimensionless optimal annealing time on the relation a/L and = = 0 for equal to each other values of dopant diffusion coefficient in all parts of heterostructure. Curve 2 is the dependence of dimensionless optimal annealing time on value of parameter for a/L=1/2 and = = 0. Curve 3 is the dependence of dimensionless optimal annealing time on value of parameter for a/L=1/2

    and = = 0. Curve 4 is the dependence of dimensionless optimal annealing time on value of parameter for a/L=1/2 and = = 0

    Farther we analyzed influence of relaxation of mechanical stress on distribution of dopant in doped areas of

    heterostructure. Under following condition 0< 0 one can find compression of distribution of concentration

  • Computer Applications: An International Journal (CAIJ), Vol.2, No.1, February 2015

    89

    of dopant near interface between materials of heterostructure. Contrary (at 0>0) one can find spreading of distribution of concentration of dopant in this area. This changing of distribution of concentration of dopant

    could be at least partially compensated by using laser annealing [33]. This type of annealing gives us possi-

    bility to accelerate diffusion of dopant and another processes in annealed area due to inhomogenous distri-

    bution of temperature and Arrhenius law. Accounting relaxation of mismatch-induced stress in heterostruc-

    ture could leads to changing of optimal values of annealing time.

    4. CONCLUSIONS

    In this paper we analyzed influence of relaxation of mismatch-induced stress in heterostructure on distribu-

    tions of concentrations of dopants in manufactured in this heterostructure transistors. At the same time in

    this paper we introduce an approach to increase compactness of multiemitter transistor. The approach based

    on doping by diffusion or ion implantation of required parts of dopants and/or radiation defects.

    Acknowledgments

    This work is supported by the contract 11.G34.31.0066 of the Russian Federation Government, grant of

    Scientific School of Russia, the agreement of August 27, 2013 02..49.21.0003 between The Ministry

    of education and science of the Russian Federation and Lobachevsky State University of Nizhni Novgorod

    and educational fellowship for scientific research of Nizhny Novgorod State University of Architecture and

    Civil Engineering.

    REFERENCES

    [1] I.P. Stepanenko. Basis of Microelectronics (Soviet Radio, Moscow, 1980).

    [2] A.G. Alexenko, I.I. Shagurin. Microcircuitry. Moscow: Radio and communication, 1990.

    [3] Z.Yu. Gotra, Technology of microelectronic devices (Radio and communication, Moscow, 1991).

    [4] N.A. Avaev, Yu.E. Naumov, V.T. Frolkin. Basis of microelectronics (Radio and communication,

    Moscow, 1991).

    [5] V.I. Lachin, N.S. Savelov. Electronics. Rostov-on-Don: Phoenix, 2001.

    [6] A. Polishscuk. analog integrated circuits Anadigm: the whole range of analog electronics on a single

    chip. The first acquaintance. Modern Electronics. Issue 12. P. 8-11 (2004).

    [7] G. Volovich. Modern chips UM3Ch class D manufactured by firm MPS. Modern Electronics. Issue 2.

    P. 10-17 (2006).

    [8] A. Kerentsev, V. Lanin, Constructive-technological features of MOSFET- transistors. Power Elec-

    tronics. Issue 1. P. 34 (2008).

    [9] A.O. Ageev, A.E. Belyaev, N.S. Boltovets, V.N. Ivanov, R.V. Konakova, Ya.Ya. Kudrik, P.M. Lit-

    vin, V.V. Milenin, A.V. Sachenko. AuTiBx-n-6H-SiC Schottky barrier diodes: the features of cur-

    rent flow in rectifying and nonrectifying contacts. Semiconductors. Vol. 43 (7). P. 897-903 (2009).

    [10] Jung-Hui Tsai, Shao-Yen Chiu, Wen-Shiung Lour, Der-Feng Guo. High-performance InGaP/GaAs

    pnp -doped heterojunction bipolar transistor. Semiconductors. Vol. 43 (7). P. 971-974 (2009).

    [11] E.I. Goldman, N.F. Kukharskaya, V.G. Naryshkina, G.V. Chuchueva. The manifestation of exces-

    sive centers of the electron-hole pair generation, appeared as a result to field and thermal stresses, and

    their subsequent annihilation in the dynamic current-voltage characteristics of Si-MOS-structures

    with the ultrathin oxide Semiconductors. Vol. 45 (7). P. 974-979 (2011).

    [12] T.Y. Peng, S.Y. Chen, L.C. Hsieh C.K. Lo, Y.W. Huang, W.C. Chien, Y.D. Yao. Impedance behavior

    of spin-valve transistor. J. Appl. Phys. Vol. 99 (8). P. 08H710-08H712 (2006).

    [13] W. Ou-Yang, M. Weis, D. Taguchi, X. Chen, T. Manaka, M. Iwamoto. Modeling of threshold voltage

    in pentacene organic field-effect transistors J. Appl. Phys. Vol. 107 (12). P. 124506-124510 (2010).

    [14] J. Wang, L. Wang, L. Wang, Z. Hao, Yi Luo, A. Dempewolf, M. M ller, F. Bertram, J rgen Christen.

    An improved carrier rate model to evaluate internal quantum efficiency and analyze efficiency droop

    origin of InGaN based light-emitting diodes. J. Appl. Phys. Vol. 112 (2). P. 023107-023112 (2012).

    [15] O.V. Alexandrov, A.O. Zakhar'in, N.A. Sobolev, E.I. Shek, M.M. Makoviychuk, E.O. Parshin. For-

    mation of donor centers after annealing of dysprosium and holmium implanted silicon. Semiconduc-

    tors. Vol. 32 (9). P. 1029-1032 (1998).

    [16] I.B. Ermolovich, V.V. Milenin, R.A. Red'ko, S.M. Red'ko. Features of recombination processes in

    CdTe films, preparing at different temperature conditions and further annealing. Semiconductors.

    Vol. 43 (8). P. 1016-1020 (2009).

  • Computer Applications: An International Journal (CAIJ), Vol.2, No.1, February 2015

    90

    [17] P. Sinsermsuksakul, K. Hartman, S.B. Kim, J. Heo, L. Sun, H.H. Park, R. Chakraborty, T. Buonassisi,

    R.G. Gordon. Enhancing the efficiency of SnS solar cells via band-offset engineering with a zinc oxy-

    sulfide buffer layer. Appl. Phys. Lett. Vol. 102 (5). P. 053901-053905 (2013).

    [18] J.G. Reynolds, C.L. Reynolds, Jr.A. Mohanta, J.F. Muth, J.E. Rowe, H.O. Everitt, D.E. Aspnes. Shal-

    low acceptor complexes in p-type ZnO Appl. Phys. Lett. Vol. 102 (15). P. 152114-152118 (2013).

    [19] K.K. Ong, K.L. Pey, P.S. Lee, A.T.S. Wee, X.C. Wang, Y.F. Chong, Dopant distribution in the re-

    crystallization transient at the maximum melt depth induced by laser annealing Appl. Phys. Lett. 89

    (17), 172111-172114 (2006).

    [20] H.T. Wang, L.S. Tan, E. F. Chor. Pulsed laser annealing of Be-implanted GaN. J. Appl. Phys. 98 (9),

    094901-094905 (2006).

    [21] Yu.V. Bykov, A.G. Yeremeev, N.A. Zharova, I.V. Plotnikov, K.I. Rybakov, M.N. Drozdov, Yu.N.

    Drozdov, V.D. Skupov. Diffusion processes in semiconductor structures during microwave annealing.

    Radiophysics and Quantum Electronics. Vol. 43 (3). P. 836-843 (2003).

    [22] E.L. Pankratov. Dopant diffusion dynamics and optimal diffusion time as influenced by diffusion-

    coefficient nonuniformity. Russian Microelectronics. 2007. V.36 (1). P. 33-39.

    [23] E.L. Pankratov. Redistribution of dopant during annealing of radiative defects in a multilayer struc-

    ture by laser scans for production an implanted-junction rectifiers. Int. J. Nanoscience. Vol. 7 (4-5). P.

    187197 (2008).

    [24] V.V. Kozlivsky. Modification of semiconductors by proton beams (Nauka, Sant-Peterburg, 2003, in

    Russian).

    [25] E.L. Pankratov, E.A. Bulaeva. Doping of materials during manufacture p-n-junctions and bipolar

    transistors. Analytical approaches to model technological approaches and ways of optimization of dis-

    tributions of dopants. Reviews in Theoretical Science. Vol. 1 (1). P. 58-82 (2013).

    [26] Y.W. Zhang, A.F. Bower. Numerical simulations of island formation in a coherent strained epitaxial

    thin film system. Journal of the Mechanics and Physics of Solids. Vol. 47 (11). P. 2273-2297 (1999).

    [27] L.D. Landau, E.M. Lefshits. Theoretical physics. 7 (Theory of elasticity) (Physmatlit, Moscow, 2001,

    in Russian).

    [28] E.I. Zorin, P.V. Pavlov and D.I. Tetelbaum. Ion doping of semiconductors. Moscow: Energy, 1975.

    [29] P.M. Fahey, P.B. Griffin, J.D. Plummer. Point defects and dopant diffusion in silicon. Rev. Mod.

    Phys. 1989. V. 61. 2. P. 289-388.

    [30] V.L. Vinetskiy, G.A. Kholodar', Radiative physics of semiconductors. ("Naukova Dumka", Kiev,

    1979, in Russian).

    [31] Yu.D. Sokolov. About the definition of dynamic forces in the mine lifting Applied Mechanics. Ap-

    plied Mechanics. Vol.1 (1). P. 23-35 (1955).

    [32] E.L. Pankratov, E.A. Bulaeva. Decreasing of quantity of radiation defects in an implanted-junction

    rectifiers by using overlayers. Int. J. Micro-Nano Scale Transp. Vol. 3 (3). P. 119-130 (2012).

    [33] E.L. Pankratov. Increasing of the sharpness of p-n-junctions by laser pulses Nano. Vol. 6 (1). P. 31-40

    (2011).

    [34] E.L. Pankratov, E.A. Bulaeva. Application of native inhomogeneities to increase compactness of ver-

    tical field -effect transistors. J. Comp. Theor. Nanoscience. Vol. 10 (4). P. 888-893 (2013).

    [35] E.L. Pankratov, E.A. Bulaeva. Optimization of doping of heterostructure during manufacturing of p-i-

    n-diodes. Nanoscience and Nanoengineering. Vol. 1 (1). P. 7-14 (2013).

    [36] E.L. Pankratov, E.A. Bulaeva. An approach to manufacture of bipolar transistors in thin film struc-

    tures. On the method of optimization. Int. J. Micro-Nano Scale Transp. Vol. 4 (1). P. 17-31 (2014).

    Authors:

    Pankratov Evgeny Leonidovich was born at 1977. From 1985 to 1995 he was educated in a secondary

    school in Nizhny Novgorod. From 1995 to 2004 he was educated in Nizhny Novgorod State University:

    from 1995 to 1999 it was bachelor course in Radiophysics, from 1999 to 2001 it was master course in Ra-

    diophysics with specialization in Statistical Radiophysics, from 2001 to 2004 it was PhD course in Radio-

    physics. From 2004 to 2008 E.L. Pankratov was a leading technologist in Institute for Physics of Micro-

    structures. From 2008 to 2012 E.L. Pankratov was a senior lecture/Associate Professor of Nizhny Novgo-

    rod State University of Architecture and Civil Engineering. Now E.L. Pankratov is in his Full Doctor

    course in Radiophysical Department of Nizhny Novgorod State University. He has 105 published papers in

    area of his researches.

    Bulaeva Elena Alexeevna was born at 1991. From 1997 to 2007 she was educated in secondary school of

    village Kochunovo of Nizhny Novgorod region. From 2007 to 2009 she was educated in boarding school

  • Computer Applications: An International Journal (CAIJ), Vol.2, No.1, February 2015

    91

    Center for gifted children. From 2009 she is a student of Nizhny Novgorod State University of Architec-

    ture and Civil Engineering (spatiality Assessment and management of real estate). At the same time she

    is a student of courses Translator in the field of professional communication and Design (interior art)

    in the University. E.A. Bulaeva was a contributor of grant of President of Russia (grant MK-

    548.2010.2). She has 52 published papers in area of her researches.