79
Oleg V. Selyugin 1 1 Spin- flip amplitude in the impact parameter represantation ASI-2008 ASI-2008 « SYMMETRY and SPIN « SYMMETRY and SPIN » » PRAHA -2008 BLTPh,JINR

Oleg V. Selyugin

  • Upload
    sumi

  • View
    44

  • Download
    0

Embed Size (px)

DESCRIPTION

ASI-2008 « SYMMETRY and SPIN ». PRAHA -2008. Oleg V. Selyugin. Spin-flip amplitude in the impact parameter represantation. BLTPh,JINR. Introduction Structure of hadron elastic scattering amplitude Non-linear equations and saturation - PowerPoint PPT Presentation

Citation preview

Page 1: Oleg V.  Selyugin

Oleg V. Selyugin

11

Spin-flip amplitude in the impact parameter represantation

ASI-2008 ASI-2008

« SYMMETRY and SPIN »« SYMMETRY and SPIN »PRAHA -2008

BLTPh,JINR

Page 2: Oleg V.  Selyugin

Introduction Structure of hadron elastic scattering amplitude Non-linear equations and saturation Basic properties of the unitarization schemes b-dependence of the phases Analysing power in different unitarization schemes

Summary

2

Page 3: Oleg V.  Selyugin

Total cross-sectionTotal cross-section Understand the asymptotic

behavior of tot

new (precise) data to constraint the fit: tot vs (ln s)

1% error ~1mb

3

Page 4: Oleg V.  Selyugin

Model el/ t=0) B t=0)

COMPET 111 0.11

Marsel 103 0.28 0.12 19

Dubna 128 0.33 0.19 21.

Pomer.(s+h) 150 0.29 0.24 21.4

Serpukhov 230 0.67

PredictionsPredictions 14s TeV

Page 5: Oleg V.  Selyugin

Pomerons

Regge theory

Simple pole – (s/s0)Double pole – Ln (s/s0)

Triple pole – Ln2(s/s0) +C

Landshoff 1984 – soft

1988 HERA data (Landshoff ) – hard 1976 BFKL (LO) -

2005 – Kovner – 7

tot(s)~

Page 6: Oleg V.  Selyugin

66

1 1 1 1;

2 2 2 2

1 2 1 2 1

2 2 1 2 1

3 2 5 1 2 5 1

4 2 5 1 2 5 1

5 2 1 2 1 2 1 2 1

6

( , ) ( , ) ( ) ( ) ( ) ( )

( , ) ( ) ( ) ( ) ( )

( , ) ( ) ( ) ( ) ( ) ( ) ( )

( , ) ( ) ( ) ( ) ( )

( , )[ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )]

M s t T s t u p u p u k u k

T s t u p K u p u k P u k

T s t u p K u p u k P u k

T s t u p u p u k u k

T s t u p K u p u k u k u p u p u k P u k

T

2 1 2 1 2 1 2 1

7 2 5 1 2 5 1

8 2 5 1 2 5 1

( , )[ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )]

( , ) ( ) ( ) ( ) ( ) ( )

( , ) ( ) ( ) ( ) ( ) ( ) ;

s t u p K u p u k u k u p u p u k P u k

T s t u p u p u k P u k

T s t u p K u p u k u k

5

Page 7: Oleg V.  Selyugin

77

3 1 4 2

3 4 1 2 3 1 4 2

| | | |

0

( , ) [ ] ( ) (1 exp[ ])iB i ii

i

ss t g g t i

s

for fixed t

;s The crossing matrix factorized in the limit

the Regge-pole contributions to the helicity amplitudes in the s-chanel

( , ) ( , ) 0B Bs t s t

when exchanged Regge poles have natural parity

( , ) ( , ).B Bs t s t

Regge limit

Page 8: Oleg V.  Selyugin

Impact parameter representation

2

0( , ) ( , )

2iqbip

M s t s b e d b

00

1( , ) ( ) ( , )

2M s t b J b q s b db

Page 9: Oleg V.  Selyugin

Unitarity in impact parameter representation

S S+ = 14 2

21 2 1 2

1 1

(2 )Im , , | | , , ( ( )| |

2

n

r rp p out T p p in d p q T

0

0

( , ) ( ) ( , )T s t is b db J bq b s

( , ) 1;s b

2 2Im ( , ) | Im ( , ) | | Re ( , ) | inels b s b s b g

9

Page 10: Oleg V.  Selyugin

Saturation bound

1010

( , )00

1( , ) ( ) [1 ]

2s bT s t b J b q e db

00( , ) 2 ( ) ( , )Bs b q J b q M s q dq

00

( , ) 2 ( ) ( , )Bs b q J b q M s q dq

2 21( , ) [ ]

2s b dzV z b

k

Page 11: Oleg V.  Selyugin

Non-linear equation (K-matrix)

(1 );dN

N Ndy

( , )( , ) ;

1 ( , )

K s bs b

i K s b

[ ] ( ,0);N y s

( , )[ ] ;

1 ( , )

i s bN y

s b

11

0ln( / );y s s

( )[ ] ;

1 ( )

y

y

s f bN y

s f b

Page 12: Oleg V.  Selyugin

Non-linear equation (eikonal)

( , ) 1 exp[ ( , )];N s b i s b

( [1 ]) (1 );dN

Ln N Ndy

12

Page 13: Oleg V.  Selyugin

Eikonal and K-matrixEikonal and K-matrix

dN

dy

13

Page 14: Oleg V.  Selyugin

Eikonal and K-matrixEikonal and K-matrix

14

Page 15: Oleg V.  Selyugin

Interpolating form of unitarization

( , ) 1 (1 ( , ) / ) ;G s b s b

1; 1 ( , )

( , ) 1 ;(1 ( , )) 1 ( , )

s bG s b

s b s b

; ( , ) 1 ( ( , );G s b Exp s b

1/(1 [1 ] ) (1 ;)dN

N Ndy

15

Page 16: Oleg V.  Selyugin

Normalization and forms of unitarization

0

1( ) 8 (1 exp[ ( , )])

2tot s b db s b

( , ) 2 ( , );s b s b

0

( ) 4 (1 exp[ ( , )])tot s b db s b

0

( , )( ) 8 ;

1 ( , )tot

U s bs b db

U s b

1616

( , ) ( , ) ( , ) / 2;U s b s b s b

0

( , )( ) 4 ;

1 ( , ) / 2tot

s bs b db

s b

Low energiesLow energies ( , ) ( , ) ( , );eik U m Borns b s b F s t

Page 17: Oleg V.  Selyugin

Inelastic cross sections

0

( ) 2 (1 exp[ 2 ( , )])eikinel s b db s b

20

( , )( ) 2 ;

(1 ( , ) / 2)U m

inel

s bs b db

s b

17

( )1;

( )el

tot

s

s

eikonaleikonal

U-matrixU-matrix

(1 / );uu n u

dNN N c

dy 2;uc

Page 18: Oleg V.  Selyugin

Asymptotic features of unitarization schemes

Low energiesLow energies( , ) ( , );eikG s b s b

( , ) ( , );U mG s b s b

High energiesHigh energies ( , ) 1;eik satG s b b

( , ) 2;U m satG s b b

18

Page 19: Oleg V.  Selyugin

Effect of antishadowing

0

( ) 8 (1 exp[ ( , )])tot s b db s b

( , ) ( , )

0

( ) 8 e (1 e )s b s binel s b db

« Black Disk Limit is a direct consequence of the exponential unitarization with an extra assumption on the pure imaginary nature of

the phase shift »

S. Troshin (hep-ph/0701241 v4 June 4S. Troshin (hep-ph/0701241 v4 June 4

Renormalized eikonalRenormalized eikonal

19

( )1;

( )el

tot

s

s

Page 20: Oleg V.  Selyugin

2 TeV

20

Page 21: Oleg V.  Selyugin

14 TeV

21

Page 22: Oleg V.  Selyugin

Corresponding phases

1( , ) 2 { ( , )};

2U m eiks b tanh s b

1 ( , ) / 2( , ) { };

1 ( , ) / 2U m

eikU m

s bs b log

s b

1( ) (1 1 4 ( ) ),

2 2l l l

if s s f

1( ) (1 1 4 ( ) ), 1.

2 2l l l

if s s f

22

Page 23: Oleg V.  Selyugin

Renormalization of the U-matrix - K-matrix

0

( , )( ) 4 ;

1 ( , )tot

s bs b db

s b

2

2

( , ) ( , ) / 2( , )

(1 ( , ))inel

s b s bG s b

s b

( ) 1;

( ) 2el

tot

s

s

1 ( , ) / 2;

1 ( , ) / 2

s bS

s b

1

1 ( ,;

)S

s b

23

( , )( , ) 1 ;

1 ( , ) / 2

s bG s b S

s b

( , )( , ) 1 ;

1 ( , )

s bG s b S

s b

Page 24: Oleg V.  Selyugin

2424

RHIC beams +internal targets fixed target modes ~ 14 GeV

Page 25: Oleg V.  Selyugin

Analysing power

*2

4Im[ ]N nfl fl

dA F F

dt s

2| ( ) ( , ) |iC N

de F t F s t

dt

*1 22

4| || | sin( )N nfl fl

dA F F

dt s

NA

Page 26: Oleg V.  Selyugin

2626

2

0( , ) ( , )

2iqbip

M s t s b e d b

ˆ ( , )00

1( , ) ( ) [1 ]

2s bT s t b J b q e db

1 2( , ) ( , ) ( , )( ) ( )c LSs b s b i s b b l

Page 27: Oleg V.  Selyugin

2727

( , )00

( , ) ( ) [1 ]c s bnfF s t ip b J b q e db

( , )210

( , ) ( ) c s bsf LSF s t p b J b q e db

Eikonal case

Page 28: Oleg V.  Selyugin

2828

3 4 1 2 3 4 1 2 3 4 3 4( , ) ( , ) ( , ) ( , )

8B B

kF p q U p q i d U p k F k q

2 2 21 1 2 3 4 1 2 5

1 21 2 1 2 3 4 5

1

1

( )(1 ) 2(1 2 2 )( , )

(1 )(1 )(1 ) 4

;1

u u u u u u u us b

u u u u u u u

u

u

5 55 2 2

1 2 3 4 5 1

( , ) ;(1 )(1 ) 4 (1 )

u us b

u u u u u u

2 51 20

1

( , ) ( )(1 )sf

uF s t p b J b q db

u

Page 29: Oleg V.  Selyugin

2929

2 2

2

(1 )1( , ) 1 1

(1 ) (1 ) (1 ) ( )

;1 (1 )

c sf c sf

c sf c sf c sf

sfc

c c

s b

K-matrix

U-matrix

2( , ) ;

(1 / 2 / 2) 1 / 2 (1 / 2)c sf sfc

c sf c c

s b

Page 30: Oleg V.  Selyugin

3030

A N - eikonal

( , ) (1 exp[ ( , )])Eiknfs b s b

( , ) ( , ) exp[ ( , )])Eiksf nfs b s b s b

50 ;GeVs

Page 31: Oleg V.  Selyugin

3131

A N - eikonal

( , ) (1 exp[ ( , )])Eiknfs b s b

( , ) exp[ ( , )])Eiksf nfs b s b

50 ;GeVs

500 ;GeVs

Page 32: Oleg V.  Selyugin

3232

A N – Born term

( , ) ( , )Bornnfs b s b

( , ) ( , )Bornsfs b s b

500 ;GeVs

Page 33: Oleg V.  Selyugin

3333

A N – K-matrix

( , )( , )

1 ( , )nfK m

nf

s bs b

s b

2

( , )( , )

(1 ( , ))sfK m

nf

s bs b

s b

50 ;GeVs

Page 34: Oleg V.  Selyugin

3434

A N – K-matrix

( , )( , )

1 ( , )nfK m

nf

s bs b

s b

2

( , )( , )

(1 ( , ))sfK m

nf

s bs b

s b

500 ;GeVs

50 ;GeVs

Page 35: Oleg V.  Selyugin

3535

A N – UT-matrix

( , )( , )

1 ( , ) / 2nfU m

nf

s bs b

s b

2

( , )( , )

(1 ( , ) / 2)sfU m

nf

s bs b

s b

50 ;GeVs

Page 36: Oleg V.  Selyugin

3636

A N – UT-matrix

( , )( , )

1 ( , ) / 2nfU m

nf

s bs b

s b

2

( , )( , )

(1 ( , ) / 2)sfU m

nf

s bs b

s b

50 ;GeVs 500 ;GeVs

Page 37: Oleg V.  Selyugin

3737

1( , ) 2 { ( , )};

2U m eiks b tanh s b

50 ;GeVs

500 ;GeVs

( , )/2 ( , )/2

( , )/2 ( , )/2( , ) 2 ;eik eik

eik eik

s b s b

U m s b s b

e es b

e e

Page 38: Oleg V.  Selyugin

3838

A N – UT-matrix (New fit of from

( , )( , )

1 ( , ) / 2

fitnfU m

fitnf

s bs b

s b

2

( , )( , )

(1 ( , ) / 2)sfU m

fitnf

s bs b

s b

d

dt

50 ;GeVs

500 ;GeVs

;( , ) ( , )fit Bornnf nfs b s b

( , )fitnf s b

Page 39: Oleg V.  Selyugin

Summary

Non-linear equations correspond to the different forms of the unitarization schemes. They can have the same asymptotic regime.

39

Unitarization effects is very important for the description spin correlation parameters at RHIC

An interpolating form of unitarization can reproduce both the eikonal

and the K-matrix (extended U-matrix} unitarization

Page 40: Oleg V.  Selyugin

Summary

The true form of the unitarization, which is still to be determined,

can help to determine the form of the non-linear equation,

which describes the non-perturbative processes at high energies.

40

Page 41: Oleg V.  Selyugin

ENDEND

41

Page 42: Oleg V.  Selyugin

42

The experiments on proton elastic scattering occupy

an important place in the research program at the LHC.

It is very likely that BDL regime will be reached at LHC energies. It will be reflected in the behavior of B(t) and (t).

Page 43: Oleg V.  Selyugin

Double Spin Correlation parameter

4343

NNA

4*32

*1

252 Re2

4),(

sdtd

tsANN

Page 44: Oleg V.  Selyugin

С П И Н 0 5 Alessandro Bravar

RHIC beams +internal targets fixed target modes ~ 14 GeV

The Elastic Process: Kinematics

recoil protonor Carbon

(polarized)proton beam

scatteredproton

02 inout pptpolarized

proton targetor Carbon target

essentially 1 free parameter:

momentum transfer t = (p3 – p1)2 = (p4 – p2)2 <0

+ center of mass energy s = (p1 + p2)2 = (p3 – p4)2

+ azimuthal angle if polarized !

elastic pp kinematics fully constrained by recoil proton only !

Page 45: Oleg V.  Selyugin

Complex eikonal and unitarity bound

0.50.75

1

1.25

1.5

x

0

0.5

1

1.5

2

y

1

1.25

1.5

1.75

2

Im Geik

1

1.25

1.5

1.75

2

Im Geik

1

2

3

x

0

0.5

1

1.5

2

y

0

0.5

1

1.5

2

Im Geik

0

0.5

1

1.5

2

Im Geik

( , ) (1 exp[ ( , ) ( , )])G s b Y s b i X s b

45

Page 46: Oleg V.  Selyugin

С П И Н 0 5С П И Н 0 5 Alessandro BravarAlessandro Bravar

Some AN measurements in the CNI region

pp Analyzing Power

no hadronicspin-flip

-t

AN

(%)

E704@FNALp = 200 GeV/c

PRD48(93)3026

E950@BNLp = 21.7 GeV/c

PRL89(02)052302

with hadonicspin-flip

no hadronicspin-flip

pC Analyzing Power

r5pC Fs

had / Im F0had

Re r5 = 0.088 0.058

Im r5 = 0.161 0.226

highly anti-correlated

Page 47: Oleg V.  Selyugin

Spin correlation parameter - AN

4747

ANbeam (t ) AN

target (t )

for elastic scattering only!

Pbeam = Ptarget . B / T

Page 48: Oleg V.  Selyugin

Soft and hard Pomeron

Donnachie-Landshoff model;

Schuler-Sjostrand model

1 01 ln( / )1

0

( , ) [ ( ) t s ssT s t h e

s

2 02 ln( / ) 22

0

( ) ] ( )t s ssh e F t

s

Page 49: Oleg V.  Selyugin

4949

Such form of U-matrix does not have the BDL regimeSuch form of U-matrix does not have the BDL regime

Predictions at LHC Predictions at LHC (14 TEV)(14 TEV)

( ) 230 ;tot s mb ( )

0.67;( )

el

tot

s

s

Page 50: Oleg V.  Selyugin

Corresponding phases

( , ) {1 ( , )};eik U ms b log s b

( , )( , )( , ) {1 };eik s bs bU m s b e e

50

Page 51: Oleg V.  Selyugin

Radius of the saturation

2( ) ( );R s Ln s

2 2( ) ( ).R s Ln ss Low s

/ 0.1*0.3 0.03soft IPomeron

/ 0.4*0.1 0.04hard IPomeron

'2 / 2

0 0( ) 4[ ( ) [ ( )] ( ) ( )]2 2( ( ))

h hR s R Ln R Ln Ln s Ln s

B d Ln s

Page 52: Oleg V.  Selyugin

1ing 2 22 Im ( , ) | Im ( , ) | | Re ( , ) | 0ins b s b s b g

( , ) [1 (1 ) ( )]ins b i g exp i

( , ) [1 ( )]s b i exp i

( , ) 1 exp[ ( , )]

1 exp[ Re ( , )][ ( ) ( )]

s b i s b

s b cos i sin

52

Page 53: Oleg V.  Selyugin

5353

momentum transfer t = (p3 – p1)2 = (p4 – p2)2 <0+ center of mass energy

s = (p1 + p2)2 = (p3 – p4)2 + azimuthal angle if

polarized !

elastic pp kinematics fully constrained by recoil proton

only

Page 54: Oleg V.  Selyugin

Soft and hard Pomeron

Donnachie-Landshoff model;

1 01 ln( / )1

0

( , ) [ ( ) t s ssT s t h e

s

2 02 ln( / ) 22

0

( ) ] ( )t s ssh e F t

s

Schuler-Sjostrand model

Cudell-Lengyel-Martynov-Selyugin

54

Page 55: Oleg V.  Selyugin

55

[ ];dN

Expdy

Page 56: Oleg V.  Selyugin

Corresponding phases 2

56

Page 57: Oleg V.  Selyugin

Extended forms of the unitarization

0

1( ) 8 (1 exp[ 2 ( , )])

2tot s b db C s bC

0

( , )( ) 8 ;

1 2 ( , )tot

s bs b db

C s b

Ter-Martirosyan-KaidalovTer-Martirosyan-Kaidalov

Giffon-Martynov-PredazziGiffon-Martynov-Predazzi

1;

2C

1.2;C

0

1( ) 8 (1 exp[ 2 ( , )])

2tot s b db C s bC

1

1 ( )( , ) 2 ( , )

2 !n

n

G ns b i s b

i n

1( ) nG n C

1( ) ! nG n n C

eikonaleikonal

U-matrixU-matrix

57

Page 58: Oleg V.  Selyugin

Interpolating form of unitarization

24

68

10

g

00.25

0.5

0.75

1b

0.4

0.5

0.6

0.7

Re Geik

0.4

0.5

0.6

0.7

Re Geik

58

Page 59: Oleg V.  Selyugin

Elastic scattering amplitude

2 2 2 2 21 2 3 4 52 [| | | | | | | | 4 | | ]

d

dt

1 2( , ) [ ln ( B (s, t) | t | / 2 ) ]s t

( , ) ( , ) ( )h e ii i is t s t t e

pp pp pp pp

( )0,577... the Euler constant 1 2and are small correction terms

59

Page 60: Oleg V.  Selyugin

0

0

( , ) ( ) (1 exp[ ( , )])T s t is b db J bq i s b

0

0

( , )( , ) ( ) ;

1 ( , )

U s bT s t is b db J bq

iU s b

Impact parameter representation and unitarization schemes

0

0

( , ) ( ) ( , )T s t is b db J bq b s

60

Page 61: Oleg V.  Selyugin

General form of UnitarizationGeneral form of Unitarization

1( , ) [1 exp( ( , ))];s b n s b

n

Ter-Martirosyan, KaidalovTer-Martirosyan, Kaidalov

Desgrolard, MartynovDesgrolard, Martynov

1 1( , ) [1 ]

(1 ( , ))n ns b

n s b

( , )( , ) 1 [1 ]

s bs b

Miettinen, ThomasMiettinen, Thomas

eikonaleikonal

1 K-matrixK-matrix

Page 62: Oleg V.  Selyugin

0.4 2

0.4 2

2

( , )[ ] ;

1 ( , )

0.1 [( / 3) ]

1 0.1 [( / 3) ]

1 [ 0.1 [( / 3) ]]

i s bN y

s b

s Exp bN

s Exp b

N Exp s Exp b

1.3 1.3 1.3 1.3

0

(1 ) [ (1 ) ]z

x x Exp x x dx 6262

3 1 4 2

3 4 1 2 3 4 1 2 3 1 4 2

| | | |

, 0

( , ) ( , ) ( ) [ ] ( ) (1 exp[ ])iB i ii

ss b U s b i s g g t i

s

Page 63: Oleg V.  Selyugin

1 3( , ) ( , ) ( )

( , ) ( ) iN C

F s t s t t

F s t F t e

2( ) 2 ( ) / | |CF t G t t

( , ) (ln ( , )),d d

B s t s tdt dt

Re ( , )( , ) ;

Im ( , )N

N

F s ts t

F s t ( ) 4 Im ( , )tot s F s t

63

Page 64: Oleg V.  Selyugin

Eikonal

( , ) / 2{1 ( [ / 2])}s b i Exp b Exp i

{1 [ [ / 2]]*[cos( sin( / 2)) sin( sin( / 2)]2

iExp b cos b i b

64

Page 65: Oleg V.  Selyugin

Impact parameters dependence

0

0

( , ) ( ) (1 exp[ ( , )])T s t is b db J bq i s b

The Froissart bound

2( ) log ( )tot s a s

Factorization

( , ) ( ) ( );s b h s f b ( )h s s

65

Page 66: Oleg V.  Selyugin

Corresponding phases

Bound on the region of validity of Bound on the region of validity of the U-matrix phasethe U-matrix phase

66

Page 67: Oleg V.  Selyugin

U-matrix

( , ) exp[ / 2)] /(1 exp[ / 2)]2

is b b i b i

2

1{1 (1 [ / 2] sin( / 2)]}

2 1 2 [ / 2]

ib cos i b

b bcos

67

Page 68: Oleg V.  Selyugin

TANGH

2 2(1 );dN

N Ndy

( , ) [ ( , )]s b Tanh s b

68

Page 69: Oleg V.  Selyugin

Total cross sections at the LHC

69

Page 70: Oleg V.  Selyugin

linked to tot via dispersion relations

sensitive to tot beyond the energy

at which is measured

predictions of tot beyond LHC energies

Or, are dispersion relations still valid at LHC energies?

The The parameter parameter

70

Page 71: Oleg V.  Selyugin

7171

2 last combination don’t satisfied the cgarge invariants and change

signe of timeIf all particles are the same the amplitude do not changes with

Change з1бз2 on л1бл2 and P->K K->P

So the 6 cobination also disappear.

Page 72: Oleg V.  Selyugin

Saturation of the Gluon dencity

[ ];dN

Expdx

( ) (1 )xG x x x

72

Page 73: Oleg V.  Selyugin

Interpolating form of unitarization

73

Page 74: Oleg V.  Selyugin

Interpolating form of unitarization

74

Page 75: Oleg V.  Selyugin

7575

A N – UT-matrix

( , )( , )

1 ( , ) / 2

fitnfU m

fitnf

s bs b

s b

2

( , )( , )

(1 ( , ) / 2)sfU m

fitnf

s bs b

s b

Page 76: Oleg V.  Selyugin

Eikonal and renormalized U-matrix0

2.5

5

7.5

10

g

0

2500

5000

7500

10000s, GeV ^H- 2L

0.2

0.4

0.6

GHs,bL

0.2

0.4

0.6

GHs,bL

76

Page 77: Oleg V.  Selyugin

t-region of 10-2 10-1 GeV2

The b parameter is sensitive to the exchange process

Its measurement will allow to understand the QCD based models of hadronic interactions

“Old” language : shrinkage of the forward peak

b(s) 2 ’ log s ; where ’ is the slope of the Pomeron trajectory 0.25 GeV2

Not simple exponential - t-dependence of local slope

Structure of small oscillations?

The nuclear slope parameter bThe nuclear slope parameter b

77

Page 78: Oleg V.  Selyugin

7878

AN UmTeiAn-UfT

( , )( , )

1 ( , )eik fitU

fit

s bs b

s b

( , )( , )

1 ( , ) / 2eik fitU

fit

s bs b

s b

2

( , )( , )

(1 ( , ))eik

sU

fit

s bs b

s b

2

( , )( , )

(1 ( , ) / 2)eik

sU

fit

s bs b

s b

Page 79: Oleg V.  Selyugin

eikonaleikonal U-matrixU-matrix

0.1

1 0.1

sN

s

(1 );dN

N Ndy

( log[1 ]) (1 );dN

N Ndy

1 [ 0.1 ]N exp s

Non-linear equationsNon-linear equations ( ) ( , )fixN y s b

79