Oil Spill and Sea Turtles

Embed Size (px)

Citation preview

  • 8/9/2019 Oil Spill and Sea Turtles

    1/116

    National Oceanic and Atmospheric Administration NOAAs National Ocean Service Office of Response and Restoration

    NATION

    AL

    OCE

    ANI

    CAN

    D ATMOSPHER

    ICADM

    INIS

    TRATION

    U.S

    .

    DEPARTMENT OF C

    OMMER

    CE

    BIOLOGY, PLANNING, AN D RESP ONSE

    Oil and

    Sea Turtles

  • 8/9/2019 Oil Spill and Sea Turtles

    2/116

  • 8/9/2019 Oil Spill and Sea Turtles

    3/116

    August 2003

    Gary Shigenaka, Technical Editor

    Contributing Authors

    Sarah Milton and Peter LutzFlorida Atlantic University

    Gary Shigenaka, Rebecca Z. Hoff, Ruth A. Yender, and Alan J. MearnsNOAAs National Ocean Service/Office of Response and Restoration/

    Hazardous Materials Response Division

    National Oceanic and Atmospheric Administration NOAAs National Ocean Service Office of Response and Restoration

    NATI

    ON

    AL

    OCE

    ANI

    CAN

    D ATMOSPHER

    ICADM

    INIS

    TRATION

    U.S

    .

    DEPARTMENT OF C

    OMMER

    CE

    BIOLOGY, PLANNING, AN D RESP ONSE

    Oil and

    Sea Turtles

    Cover photograph courtesy of Ursula Keuper-Bennett

  • 8/9/2019 Oil Spill and Sea Turtles

    4/116

  • 8/9/2019 Oil Spill and Sea Turtles

    5/116

    1

    Table of ContentsIntroduction

    Chapters

    Acknowledgments 5

    Introduction 7

    1 Sea Turtle Taxonomy and Distribution 9

    Key Points 9

    What Is a Sea Turtle? 9

    Sea Turtle Species and Their Geographic Distribution 10

    For Further Reading 19

    2 Life History and Physiology 21

    Key Points 21

    Life History 21

    Physiology 23

    For Further Reading 24

    3 Natural and Human Impacts on Turtles 27

    Key Points 27

    Natural Mortality Factors 27

    Anthropogenic Impacts 29

    For Further Reading 32

    4 Oil Toxicity and Impacts on Sea Turtles 35

    Key Points 35

    Toxicity Basics 36

    Indirect Effects of Oil on Sea Turtles 43

    For Further Reading 45

    5 Response Considerations for Sea Turtles 49

    Key Points 49

    Open-Water Response Options 50

    Shoreline Cleanup 57

    Indirect Response Impacts 59

    Preventative Measures 60

    Application of Sea Turtle Information for Spill Response and Planning 60

  • 8/9/2019 Oil Spill and Sea Turtles

    6/116

    2

    For Further Reading 66

    6 Case Studies of Spills that Threaten Sea Turtles 69

    Key Points 69

    Past and Present Spills that Threaten Sea Turtles 69

    Selected Case Studies 73

    Impacts of Tarballs 81

    Oil-Related Strandings 81

    The Future 82

    For Further Reading 83

    Conclusions 85

    Glossary of Terms and Abbreviations 87

    Appendix A: Protocol for Recovery of Oiled Marine Turtles at Sea 89

    Appendix B: Excerpted Sections from Marine Turtle Guidelines, State of FloridaFish and Wildlife Conservation Commission 90

    Appendix C: Sea Turtle Stranding and Salvage Network (STSSN) Coordinators 109

    Tables

    Table 1.1 Status of turtle species found in U.S. waters 10Table 1.2 Summary of adult habitat and diets for the six sea turtle species found

    in U.S. waters 11

    Table 3.1. A summary of natural and anthropogenic impacts on sea turtles 32

    Figures

    Figure 1.1 Species identification guide to sea turtles found in U.S. territorial waters 12

    Figure 1.2 Male loggerhead turtle swimming in Argostoli harbor, Kefalonia, Greece 13

    Figure 1.3 Green turtle 14

    Figure 1.4 A leatherback turtle covers her nest in French Guiana 15

    Figure 1.5 A Kemps ridley turtle 16

    Figure 1.6 A hawksbill turtle 17

    Figure 1.7 Hawksbill hatchlings emerge from a nest on Pajaros Beach,

    Isla de la Mona, in the Mona Channel west of Puerto Rico 17

    Figure 1.8 An olive ridley turtle 18Figure 1.9 Olive ridley turtles leave the beach at Ostional, Costa Rica 18

  • 8/9/2019 Oil Spill and Sea Turtles

    7/116

    3

    Figure 1.10 A flatback turtle on Abutlion Island, Lownedal Island group,Western Australia 18

    Figure 2.1 A loggerhead hatchling in sargassum 22

    Figure 3.1 A green turtle with fibropapilloma tumors at the base of its flippers 29

    Figure 3.2 Trawl-caught sea turtles off Cape Canaveral, Florida 29

    Figure 3.3 On a nesting beach in North Carolina homeowners placed sandbags to

    halt erosion, rendering previous turtle nesting sites inaccessible to

    sea turtles 30

    Figure 3.4 A hawksbill turtle entangled in plastic line and fishing net 31

    Figure 3.5 This X-ray image of a juvenile green turtle shows fishing hooks and

    other tackle in throat 32

    Figure 4.1 A juvenile green turtle oiled during a spill in Tampa Bay, Florida, in 1993 36Figure 4.2 Conceptual framework of sea turtle behavioral responses to oil exposure 41

    Figure 4.3 Conceptual framework for the effects of oil exposure to sea turtles 41

    Figure 5.1 Schematic of Section 7 endangered species consultation process 51

    Figure 5.2 Conceptual framework for considering chemical dispersant effects to

    sea turtles 53

    Figure 5.3 Decision flowchart for evaluating in-situ burning as a spill response

    option 56

    Figure 5.4 A sea turtle nest endangered by the 1993 Bouchard B155 oil spill in

    Tampa Bay 57

    Figure 5.5 An Environmental Sensitivity Index map for Floridas turtle habitat areas 61

    Figure 5.6 Times when oil near or on nesting beaches will have the most and

    least effect on turtles, by species 62

    Figure 5.7 An oiled green turtle recovered by the Israeli Sea Turtle Rescue Center

    in August 1999 65

    Figure 6.1 Sources of oil spilled in tropical areas, 19922001 72Figure 6.2 Types of oil and fuels spilled in tropical incidents, 19922001 72

    Figure 6.3 Causes of incidents in tropical areas, 19922001 72

    Figure 6.4 A nesting beach oiled after the 1993 Bouchard B155 spill in

    Tampa Bay, Florida 77

    Figure 6.5 A juvenile green turtle oiled during the 1993 Bouchard B155 spill in

    Tampa Bay, Florida 77

    Figure 6.6 Juvenile green turtle recovered during the Morris J. Berman barge spill

    in the waters off Culebra, Puerto Rico 79

  • 8/9/2019 Oil Spill and Sea Turtles

    8/116

  • 8/9/2019 Oil Spill and Sea Turtles

    9/116

    5

    AcknowledgmentsAlthough there is a team of people who are identified as co-authors of this docu-

    ment, many more need to be recognized as contributors. Without their help and (mostly)

    willing assistance, this effort would not have been possible.

    Brad Benggio, Janos Csernoch, Dr. Matthew Godfrey, Chris Johnson, UrsulaKeuper-Bennett, Dr. Anne Meylan, Celia Moorley-Bell, Kellie Pendoley, Dr. Pamela Plotkin,

    Michelle Schrer, Dr. Asaf Senol, Douglas Shea, Patricia Sposato, Michael White, Dr. Blair

    Witherington, and Dr. Jeanette Wyneken graciously contributed personal photographs of

    turtles and turtle habitat for inclusion in the reportas did the authors. The nicely illus-

    trated identification guide (page 10) was created by Dawn Witherington and Dr. Wyneken

    and is reproduced with their permission.

    Patrick Opay of the Sea Turtle Team in the NOAA/National Marine Fisheries

    Service Office of Protected Resources in Silver Spring, Maryland, and Sandra MacPherson,National Sea Turtle Coordinator for the U.S. Fish and Wildlife Service in Jacksonville,

    Florida, reviewed the protected species information for accuracy. Marydele Donnelly

    of the Ocean Conservancy in Washington, D.C., reviewed and updated the status of sea

    turtle conservation efforts worldwide. Jim Jeansonne of the NOAA Damage Assessment

    Center (St. Petersburg, Florida) provided detailed accounts of recent spills affecting sea

    turtles and their habitat. Dr. Karen Eckert (Wider Caribbean Sea Turtle Conservation

    Network, Beaufort, North Carolina) shared information gathered by her organization onoil spills affecting sea turtles in the Caribbean region. Dr. George Balazs (Marine Turtle

    Research Program, NOAA/National Marine Fisheries Service Honolulu Laboratory, Hawaii),Mr. Felix Lopez (U.S. Fish and Wildlife Service, Boqueron, Puerto Rico) Dr. Molly Lutcavage

    (New England Aquarium, Boston, Massachusetts), Dr. Anne Meylan (Florida Marine

    Research Institute, St. Petersburg, Florida), Dr. Jacqueline Michel (Research Planning Inc.,

    Columbia, South Carolina), and Dr. Robert Pavia (NOAA/HAZMAT, Seattle, Washington)

    contributed valuable review comments, which improved the technical and overall quality

    of the product.

    Brian Voss and Maureen Wood of the NOAA Seattle Regional Library sought out

    and found even the most obscure of the sea turtle references we requested, and thuswere largely responsible for the foundation of information on which this document is

    built.

    Andrea Jarvela helped blend a mish-mash of styles and content and made themboth readable and engaging. Kristina Worthington re-drew our primitive graphics and

    was responsible for final lay-out. Vicki Loe supervised the overall design and production

    for this series of documents.

    Finally, funding for this book was provided through NOAAs Coral Reef

    Conservation Program, which is designed to protect and restore the nations coral reefsand assist conservation of reef ecosystems internationally. This program includes efforts

    NMFS - NationalMarine Fisheries Service

    (NOAA).

    NOAA - National

    Oceanic andAtmospheric

    Administration

    (U.S. Department of

    Commerce).

  • 8/9/2019 Oil Spill and Sea Turtles

    10/116

    6

    to monitor and assess coral health, map coral reef ecosystems, conduct research to betterunderstand biological, social, and economic factors that effect coral reefs, partnerships

    to reduce the adverse affects of fishing, coastal development, and pollution, and identify

    coral reef areas for special protection.

    If I have omitted acknowledging the contributions of others, please forgive theoversight and understand that their efforts are nonetheless deeply appreciated.

  • 8/9/2019 Oil Spill and Sea Turtles

    11/116

    7

    Introduction

    Few animals in the worlds oceans evoke the kind of wonder inspired by sea

    turtles. Ancient in their origins, sea turtles are bestowed with a mystical quality that in

    part derives from their longevity as inhabitants of the worlds oceans and in part fromtheir uncanny ability to navigate over vast expanses of water to return to their natal

    beaches.

    However, few animals are at greater risk from an

    unfortunate confluence of global changes, widespread

    disease, and a host of problems of human origin. The

    latter category includes inevitable human population

    growth and the consequences of habitat destruction,

    impairment and entanglement in plastic trash, the persis-

    tent belief that turtle flesh and turtle eggs confer nearlysupernatural health benefits, the inherent beauty andrarity of turtle shell jewelry, and even the indirect impacts

    of the breakdown of indigenous social mores within the

    populations of far-flung islands where turtles also dwell.

    Among these many risks to the continued existence of

    turtles is that from oil spills.

    Admittedly, in the spectrum of threats facing sea turtles, oil spills do not rank

    very high. They are generally rare events, affecting a limited geographic area. Oil is notthe most toxic material that could be spilled in a sensitive marine environment, which in

    places include turtle habitat. Oil may even be released naturally from seeps and vents.

    Yet in 1979 a massive oil spill resulting from a drilling platform blowout in the Gulf of

    Mexico threatened one of the only known nesting beaches of a particularly threatened

    sea turtle, the Kemps ridley. The spill ultimately resulted in minor impacts to the Kemps

    ridley population, but a major tragedy was averted.

    The 1979 Gulf of Mexico incident emphasized the tenuous nature of existence forthreatened sea turtles in the worlds oceans, and how a single catastrophic oil spill might

    serve as the synergistic tipping point that could prove devastating to externally stressed

    populations.

    Those of us who work on environmental issues related to oil and chemical spill

    response often think about our job in the context of game theory and minimum regret.

    We identify courses of action that do not eliminate risk, and in fact expand the area weconsider at risk; but, ultimately, we minimize the regret we may feel about our course of

    action by explicitly considering the consequences of unlikely events. The probability of

    an incident affecting sea turtles may well be lowthat is, mathematically negligible

    but the result of such a low-probability event occurring at just the wrong time of yearand at the wrong location could be catastrophic and unacceptable for a given popula-

    An oiled green turtle recoveredby the Israeli Sea Turtle Rescue

    Center in August 1999. This andone other turtle were cleaned,rehabilitated, and released abouttwo months later. Photo courtesyof Yaniv Levy, Israeli Sea TurtleRescue Center, Hofit, Israel.

  • 8/9/2019 Oil Spill and Sea Turtles

    12/116

    8

    tion. Therefore, we plan for such an occurrence, while hoping we never need to invokethe plans we make.

    The guidance document you hold is a part of that planning effort. It is the third

    in a series of publications prepared by NOAAs Office of Response and Restoration to

    provide response-relevant information on specific warm-water resources at risk. Previouspublications include oil impacts to coral reef and mangrove ecosystems. Our intent is

    to present a basic overview of sea turtle biology, summarize what is known about the

    effects of oil on sea turtles, review potential response actions in the event of a release, andpresent case histories from previous spills that potentially could or actually have affected

    sea turtles. Our audience is intended to include spill responders and planners, resource

    managers, sea turtle rehabilitators, veterinariansand anyone who is interested in the

    continued survival and health of one of the oceans most intriguing inhabitants.

    Gary Shigenaka, Technical Editor

    National Oceanic and Atmospheric Administration

    Office of Response and Restoration

    Seattle, Washington

    NOAA -

    National Oceanicand Atmospheric

    Administration.

    (U.S. Department of

    Commerce).

    RAR - resources at risk.

  • 8/9/2019 Oil Spill and Sea Turtles

    13/116

    9

    Chapter 1 Sea Turtle Taxonomy and Distribution

    Sarah Milton and Peter Lutz

    Key Points

    Sea turtles are long-lived, slow to mature, air-breathing, diving marine reptiles that

    have terrestrial life stages, primarily nesting and egg development, and hatchlings.

    There are seven living species of sea turtles; five are commonly found in continental

    U.S. waters: loggerhead, green, leatherback, hawksbill, and Kemps ridley turtles. The

    olive ridley turtle is found in U.S. territorial waters in the Pacific.

    All five species found in coastal U.S. waters are listed as endangered or threatenedunder the Endangered Species Act; all species are on the Convention on

    International Trade in Endangered Species of Wild Fauna and Flora (CITES) Appendix I

    list, which prohibits their traffic in international trade.

    Sea turtle species are identified by the numbers and pattern of plates (calledscutes)

    on their shells and the scale pattern on their heads.

    While most sea turtles are tropical to subtropical, especially for nesting, some species

    range as far north as the waters off Newfoundland and Alaska and as far south as the

    coasts of Chile and Argentina.

    What Is a Sea Turtle?

    The modern sea turtle is a large (35 to 500 kilograms [kg]), long-lived, air-

    breathing reptile highly adapted and modified for a marine lifestyle. While the most

    obvious adaptation is the flattened, streamlined shell, or carapace (dorsal shell), sea

    turtles also have highly modified limbs, with the forelimb bones, called phalanges,

    extended to thin, flattened, oarlike flippers for swimming. The paddlelike forelimbs are

    relatively non-retractable, however, so they make the turtles awkward and vulnerable onland. Other adaptations to marine life include anatomical and physiological means ofbreathhold diving and excreting excess salt.

    Although they are predominantly marine, sea turtles return to land to nest, and

    after the eggs develop and hatch, the hatchlings return directly to the sea. In some

    locations (Hawaii and Australia, for example), juveniles, subadults, and adults also come

    ashore to bask. In addition, sea turtles migrate great distances, traveling hundreds or

    even thousands of kilometers between foraging and nesting grounds, thus they are

    excellent navigators as well. Hatchlings orient in part by the earths magnetic fields, as domigrating adults.

    Carapace - dorsal(top) shell of a turtle.

    CITES - Convention onInternational Trade in

    Endangered Species of

    Wild Fauna and Flora.

    Phalanges -long finger bones of a

    turtle flipper.

    Scute - plates of thesea turtle shell.

  • 8/9/2019 Oil Spill and Sea Turtles

    14/116

    10

    Sea Turtle Species and Their Geographic Distribution

    Five species of sea turtlesloggerhead, green, leatherback, Kemps ridley, and

    hawksbillare commonly found in U.S. coastal waters. A sixth, the olive ridley, is foundin U.S. territorial waters. All five species are listed as endangered or threatened under the

    U.S. Endangered Species Act. Spill response personnel should be aware that only trained

    and authorized personnel designated under a federal Endangered Species Act permit or

    cooperative agreement can be involved in handling sea turtles and their nests. Table 1.1

    summarizes the current status of sea turtle species under the act, as well as critical habitat

    areas: Table 1.2 summarizes their habitats and diets.

    Table 1.1 Status of turtle species found in U.S. waters.

    Common andSpecies Names Status in the United States

    Date ofListing Critical habitat

    Loggerhead

    Caretta caretta

    Threatened throughout its

    range.

    7/28/78 None designated in the United States.

    Green

    Chelonia mydas

    Breeding colony populations

    in Florida and on the Pacific

    coast of Mexico are listed as

    endangered; all others are

    listed as threatened.

    7/28/78 50 CFR 226.208 Culebra Island, Puerto Rico Waters

    surrounding the island of Culebra from the mean high

    water line seaward to 3 nautical miles (5.6 km). These

    waters include Culebras outlying Keys including Cayo

    Norte, Cayo Ballena, Cayos Geniqu, Isla Culebrita,

    Arrecife Culebrita, Cayo de Luis Pea, Las Hermanas, ElMono, Cayo Lobo, Cayo Lobito, Cayo Botijuela, Alcarraza,

    Los Gemelos, and Piedra Steven.

    LeatherbackDermochelys coriacea

    Endangered throughout itsrange.

    6/2/70 50 CFR 17.95 U.S. Virgin Islands A strip of land 0.2miles wide (from mean high tide inland) at Sandy Point

    Beach on the western end of the island of St. Croix

    beginning at the southwest cape to the south and run-

    ning 1.2 miles northwest and then northeast along the

    western and northern shoreline, and from the south-

    west cape 0.7 miles east along the southern shoreline.

    50 CFR 226.207 The waters adjacent to Sandy Point,

    St. Croix, U.S. Virgin Islands, up to and inclusive of the

    waters from the hundred fathom curve shorewardto the level of mean high tide with boundaries at174212 North and 645000 West.

    Kemps ridley

    Lepidochelys kempii

    Endangered throughout its

    range.

    12/2/70 None designated in the United States.

    Threatened -any species likely to

    become endangered in

    the foreseeable future

    (from the Endangered

    Species Act of 1973).

    Endangered -Any species of animal

    or plant that is in

    danger of extinction

    throughout all or a

    significant part of

    its range (from the

    Endangered Species

    Act of 1973).

  • 8/9/2019 Oil Spill and Sea Turtles

    15/116

    11

    Table 1.1 Cont.

    Common and

    Species Names Status in the United States

    Date of

    Listing Critical habitat

    Hawksbill

    Eretmochelys imbri-cata

    Endangered throughout its

    range.

    6/2/70 50 CFR 17.95 Puerto Rico: (1) Isla Mona. All areas of

    beachfront on the west, south, and east sides of theisland from mean high tide inland to a point 150 m

    from shore. This includes all 7.2 km of beaches on

    Isla Mona. (2) Culebra Island. The following areas of

    beachfront on the north shore of the island from mean

    high tide to a point 150 m from shore: Playa Resaca,

    Playa Brava, and Playa Larga. (3) Cayo Norte. Southbeach, from mean high tide inland to a point 150 m

    from shore. (4) Island Culebrita. All beachfront areas

    on the southwest facing shore, east facing shore, and

    northwest facing shore of the island from mean high

    tide inland to a point 150 m from shore.

    50 CFR 226.209 Mona and Monito Islands, Puerto Rico

    Waters surrounding the islands of Mona and Monito,

    from the mean high water line seaward to 3 nautical

    miles (5.6 km).

    Olive ridley

    Lepidochelys olivacea

    Breeding colony popula-

    tions on the Pacific coast of

    Mexico are listed as endan-

    gered; all others are listed asthreatened

    7/28/78 None designated in the United States.

    Source: http://northflorida.fws.gov/SeaTurtles/turtle-facts-index.htm, Code of Federal Regulations.

    Table 1.2 Summary of adult habitat and diets for the six sea turtle species found in U.S. waters.

    Species Habitat Diet

    Loggerhead Shallow continental shelf, coastal bays Benthic invertebratesmollusks and crustaceans

    Green Nearshore, coastal bays Herbivorousseagrasses and macroalgae

    Leatherback Pelagic Jellyfish

    Kemps ridley Coastal bays, shallow continental shelf Fish and benthic invertebratescrustaceans, squid, sea

    urchins

    Hawksbill Reefs, coastal areas, lagoons Primarily sponges, also shrimp, squid, anemones

    Olive ridley Coastal bays, shallow continental shelf Fish and benthic invertebratescrustaceans, squid, sea

    urchins

  • 8/9/2019 Oil Spill and Sea Turtles

    16/116

    12

    All sea turtle species are on the Convention on International Trade in EndangeredSpecies of Wild Fauna and Flora (CITES) Appendix I list, which prohibits their traffic in

    international trade. In addition to coloring, range, and size, sea turtle species are posi-

    tively identified by the number and pattern of carapace scutes (plates of the shell) and

    scales on the head (Figure 1.1).

    Figure 1.1 Species identificationguide to sea turtles found in U.S. territorial waters. Prefrontalscales are those located betweenthe eyes. Lateral scutes lie oneach side of the vertebral (center)scutes. Drawing courtesy ofDawn Witherington and JeanetteWyneken.

  • 8/9/2019 Oil Spill and Sea Turtles

    17/116

    13

    Loggerhead Turtle, Caretta caretta

    The loggerhead turtle (Figure 1.2) is the most common nestingturtle found in coastal U.S. waters, where it is listed as threatened under the

    Endangered Species Act. The southeastern coast of the United States hosts

    the second largest breeding aggregate of loggerhead turtles in the world,30 percent of the worlds breeding population (the largest breeding popula-

    tion is in Oman). Ninety percent of U.S. nesting occurs along the central and

    southeast Florida coast, though regular nesting also occurs in Georgia, the

    Carolinas, and Floridas Gulf coast.

    Identification

    Adults and subadults have reddish-brown carapaces and dull brown to yellowish

    bottom shells, called plastrons. Juveniles are also reddish brown, while hatchlings have ayellowish margin on the carapace and flippers. Loggerhead turtles have more than one

    pair of prefrontal scales (between the eyes) and five lateral scutes on the carapace (Figure

    1.2). Hatchlings and juveniles have sharp keels on the vertebral scutes, which recede withage. Adults in the southeastern United State are approximately 92 centimeters (cm) in

    straight carapace length (SCL), with a mean mass of 113 kg; adults elsewhere are gener-

    ally somewhat smaller.

    Range

    Loggerheads range along the east coast of the United States, in the Gulf ofMexico, off southern Brazil, in the northern and southwestern Indian Ocean, near easternAustralia, in Japan, and in the Mediterranean. In the Western Hemisphere, loggerheads

    may range as far north as Newfoundland (rare) to as far south as Argentina. Along the

    Pacific coast, loggerheads range from the Gulf of Alaska southward, but are most fre-

    quently seen off the western Baja Peninsula. Nesting occurs in the northern and south-

    ern temperate zones and subtropics (they generally avoid nesting on tropical beaches).

    Habitat

    Adult and subadult loggerhead turtles are found primarily in subtropical (occa-sionally tropical) waters along the continental shelves and estuaries of the Atlantic,

    Pacific, and Indian Oceans. They are a nearshore species, but may be found in a variety

    of habitats from turbid, muddy-bottomed bays and bayous to sandy bottom habitats,

    reefs, and shoals. Juveniles swim directly offshore after hatching and eventually associ-

    ate with the sargassum and pelagic drift lines of convergence zones. Juveniles from the

    southeastern United States may circumnavigate the entire northern Atlantic gyre beforemoving to nearshore habitats, when they have grown to 40 to 50 cm SCL.

    Plastron - ventral(bottom) shell of a

    turtle.

    SCL - straight carapacelength.

    Figure 1.2 Male loggerhead turtleswimming in Argostoli harbor,Kefalonia, Greece. Photo courtesyof Michael White.

    Sargassum -genus of brown algae,

    also known as gulfweed.

    There are 15 species

    in the genus, and each

    has air bladders. Some

    species are free floating.

    Off the U.S. coast, south

    of Bermuda, is theSargasso Sea, a large

    (two-thirds the size

    of the United States),

    loosely-defined portion

    of the Atlantic Ocean

    where an estimated

    7 million tons of live

    sargassum may be

    found.

  • 8/9/2019 Oil Spill and Sea Turtles

    18/116

    14

    Diet

    Adults and subadults feed primarily on benthic mollusks and crustaceans.

    Hatchlings and juveniles consume coelenterates and cephalopod mollusks associated

    with pelagic drift lines.

    Green Turtle, Chelonia mydas

    The green turtle (Figure 1.3) is the largest hard-shelled sea turtle (cheloniid), and

    the second most common nesting turtle, in U.S. waters. While considered threatened in

    most parts of the world, the breeding populations in Florida and on Mexicos Pacific coast

    are considered endangered.

    Identification

    The adult green turtle has a black to gray to greenish orbrown carapace, often with streaks or spots, and a yellowish-white

    plastron. Hatchlings have a dark brown to black carapace and white

    plastron, with a white margin along the carapace and rear edges.Greens have one pair of prefrontal scales, four lateral scutes, a small

    rounded head, and a single visible claw on each flipper. Worldwide,

    green turtles vary in size and weight among different populations. In

    Florida, green turtles average 101 to 102 cm in carapace length (SCL)

    and weigh about 136 kg.

    Range

    Adult green turtles, rare in temperate waters, are found in tropical and subtropical

    waters worldwide. In the United States they range from Texas to the U.S. Virgin Islands,

    near Puerto Rico, and north to Massachusetts. Major nesting areas are located in Costa

    Rica, Australia, Ascension Island, and Surinam. In the United States, small numbers nest

    in Florida, the U.S. Virgin Islands, and Hawaii. Culebra Island, Puerto Rico, is an important

    foraging area for juveniles.

    A subspecies (possibly a distinct species), the black turtle (Chelonia agassizii) isconfined to the eastern Pacific, with important nesting grounds in Mexico. The black

    turtle ranges from southern Alaska to southern Chile, but is usually found between Baja

    California and Peru.

    Habitat

    Like other sea turtle species, green turtles use three distinct habitats: nestingbeaches, convergence zones in the open sea (hatchlings/juveniles), and benthic foraging

    grounds (adults/subadults). Juveniles move into benthic feeding grounds in relatively

    shallow, protected waters when they reach about 20 to 25 cm SCL. Foraging areas consistprimarily of seagrass and algae beds, though they are also found over coral and worm

    Cheloniid -hard-shelled seaturtles composed of

    the genera Chelonia,

    Caretta, Lepidochelys,

    Eretmochelys, and

    Natator; contrast to

    dermochelyid.

    Figure 1.3 Green turtle. Photocourtesy of Douglas Shea.

  • 8/9/2019 Oil Spill and Sea Turtles

    19/116

    15

    reefs and rocky bottoms. In the United States, important foraging areas include Floridaestuaries, such as Indian River Lagoon, and the French Frigate Shoals in Hawaii. Green

    turtles prefer nesting on high-energy beaches, often on islands.

    Diet

    Post-hatchling, pelagic-stage green turtles are believed to be omnivorous. Adults

    and subadults feed primarily on seagrasses and kelp.

    Leatherback turtle, Dermochelys coriacea

    The leatherback turtle (Figure 1.4), the largest and most pelagic sea turtle, is easilyidentified by its lack of scutes (hence the name). The leatherback is listed as endangered.

    IdentificationThis large sea turtle has seven ridges running from front to rear along its back

    instead of the usual scutes, with a continuous thin, black layer of skin, often with white

    spots. Leatherbacks have no scales on their heads and no claws on their flippers. They

    range in size from 150 to 170 cm SCL, and may grow to 500 kg (rarely, even to 900 kg).Hatchlings also have carapace ridges and lack scutes; they are two to three times larger

    than other sea turtle hatchlings.

    Range

    Adult leatherbacks may range as far north as the coastal waters offNewfoundland or the Gulf of Alaska: this is the species most frequently foundstranded on beaches of northern California. Nesting is entirely tropical,

    however, occurring in Mexico, the eastern Pacific, Guyana, the South Pacific

    (Malaysia), coastal Africa, and the Caribbean (Costa Rica, Surinam, French

    Guiana, and Trinidad). Very small numbers (20 to 30) nest along the Florida

    coast each year, with larger numbers nesting in the U.S. Virgin Islands (St. Croix

    in particular) and Puerto Rico (mainland and Culebra Island).

    Habitat

    Leatherbacks are primarily pelagic, deep-diving animals. They are occasionally

    seen in coastal waters, more frequently when nesting.

    Diet

    Leatherbacks primarily eat jellyfish and other coelenterates that inhabit the watercolumn in the open ocean and pelagic colonial tunicates (pyrosomas).

    Dermochelyid -leathery-shelled sea

    turtles (i.e., leather-

    back).

    Figure 1.4 A leatherback turtle

    covers her nest in FrenchGuiana. Photo courtesy ofMatthew Godfrey.

    Pyrosoma -pelagic colonial

    tunicate; most species

    inhabit tropical waters,

    with some up to 4 m inlength.

  • 8/9/2019 Oil Spill and Sea Turtles

    20/116

    16

    Kemps Ridley Turtle, Lepidochelys kempii

    The Kemps ridley (Figure 1.5), along with the olive ridley, is the smallest of all seaturtles. Listed as an endangered species, this is the rarest sea turtle in the world, and it has

    the most restricted range of all U.S. sea turtle species.

    Identification

    The small adult Kemps ridley sea turtle has a light gray to olive or gray-green

    carapace and a creamy white or yellowish plastron. Hatchlings are gray-black on both

    carapace and plastron. Kemps ridleys have more than one pair of prefrontal scalesand five lateral scutes. Adults usually weigh less than 45 kg, with an SCL averaging 65

    cm (nesting females range from 52 to 75 cm), and they are almost as wide as they are

    long.

    Range

    Except for the Australian flatback turtle, the Kemps ridley has the most restrictedrange of all sea turtles, occurring primarily in the coastal areas of the Gulf of Mexico and

    the northwestern Atlantic Ocean. The primary nesting beach is near Rancho Nuevo, on

    Mexicos northeast coast. While adults are confined almost exclusively to the Gulf of

    Mexico, the northeastern coast of the United States appears to be an important habitat

    for juveniles, which are often found in waters off New York and New England.

    HabitatAs with other sea turtles, little is known of the Kemps ridleys post-hatchling,

    planktonic life stage. Young animals presumably feed on sargassum and associated

    infauna in the Gulf of Mexico. As juveniles, they frequent bays, coastal lagoons, and river

    mouths, then as adults move into crab-rich areas of the Gulf of Mexico over sandy or

    muddy bottoms.

    Diet

    Juvenile and adult Kemps ridleys are primarily crab-eaters. They also consume

    fish and a variety of invertebrates such as sea urchins and squid.

    Figure 1.5 A Kemps ridley turtle.

    Photo courtesy of Dr. JeanetteWyneken, Florida AtlanticUniversity.

  • 8/9/2019 Oil Spill and Sea Turtles

    21/116

    17

    Hawksbill Turtle, Eretmochelys imbricata

    The hawksbill turtle (Figure 1.6) is the most tropical sea turtle, and it is one of themost heavily poached, both as juveniles and adults, to obtain tortoiseshell. Hawksbills

    are endangered throughout their range.

    Identification

    The hawksbill turtle has thick carapace scutes, with streaks of brown and

    black on an amber background. The rear edge of the carapace is deeply serrated.

    Hawksbills have two pairs of prefrontal scales and four overlapping lateral scutes; asmall, narrow head that tapers to a distinct hooked beak; and two claws on the front

    of its flippers. The second smallest sea turtle, nesting females vary in size from 27 to

    86 kg, with an SCL of 53 to 114 cm (the average is 95 cm).

    Range

    Hawksbills are found throughout the tropical oceans, with larger populationsin Malaysia, Australia, the Western Atlantic from Brazil to South Florida, throughout the

    Caribbean, and in the southwestern Gulf of Mexico. In U.S. waters, hawksbills are found in

    the U.S. Virgin Islands (nesting beaches are in Buck Island National Monument, St. Croix),

    Puerto Rico (nesting beaches are on Mona Island, Figure 1.7), South Florida, along the

    Pacific coast from southern California southward, and in Hawaii.

    HabitatHawksbills forage near rock or reef habitats in clear, shallow tropi-

    cal waters. They are most common near a variety of reefs, from vertical

    underwater cliffs to gorgonian (soft coral) flats, and are found over sea-

    grass or algae meadows. Adults are not usually found in waters less than

    20 m deep, while juveniles rarely leave shallow coral reefs. Pelagic-stage

    hawksbills presumably are associated with sargassum rafts, moving into

    shallow reefs when they reach 15 to 25 cm SCL, then into deeper watersas their size and diving capabilities increase.

    Diet

    Hawksbill turtles feed primarily on sponges (in the Caribbean, on only a few

    distinct species), but may also forage on corals, tunicates, and algae.

    Figure 1.7 Hawksbill hatchlingsemerge from a nest on PajarosBeach, Isla de la Mona, in theMona Channel west of PuertoRico. Photo courtesty of MichelleSchrer, Department of MarineSciences, University of PuertoRico-RUM.

    Figure 1.6 A hawksbill turtle.Photo of Ake courtesy of UrsulaKeuper-Bennett.

  • 8/9/2019 Oil Spill and Sea Turtles

    22/116

    18

    Olive Ridley Turtle, Lepidochelys olivacea

    The olive ridley (Figure 1.8), while probably the most numerous sea turtleworldwide, is rare in U.S. waters.

    IdentificationThe olive ridley, like its close relative the Kemps ridley, is a small turtle. The

    adult carapace is dark gray and nearly round; hatchlings are gray-brown. Olive ridleys

    have two claws on each limb, more than one pair of prefrontal scales, and six or more

    lateral scutes.

    Range

    The olive ridley is found in Pacific and South Atlantic waters, but may

    occasionally be found in the tropical North Atlantic. Along the Pacific coast,

    the olive ridley ranges from the Gulf of Alaska to Central America, but is most

    common in the southern portion of this range. Enormous nesting aggregations,called arribadas, occur at two sites on Costa Ricas Pacific coast (Figure 1.9), one

    site on Mexicos Pacific coast, and two or three in northeastern India. Smaller

    nesting sites are found in Nicaragua and scattered along other tropical mainland

    shores.

    Habitat

    Olive ridleys are associated with relatively deep, soft-bottomed habitats inhabitedby crabs and other crustaceans. They are common in pelagic habitats but also feed in

    shallower benthic habitats, sometimes near estuaries.

    Diet

    Carnivorous to omnivorous, olive ridley stomach contents have included crabs,

    mollusks, gastropods, fish, fish eggs, and algae.

    Flatback Turtle, Natator depressus

    The flatback turtle (Figure 1.10) is confined to the waters along the northeastto northwest coast of Australia. The adult carapace is a dull olive-gray edged with pale

    brownish-yellow, and the plastron is creamy white. The flatback inhabits inshore turbid

    waters in coastal areas along the main coral reefs and continental islands, where it feeds

    on a varied diet that includes algae, squid, invertebrates, and mollusks.

    Figure 1.8 An olive ridley turtle.Photo courtesy of Janos Csernoch,Programa Restauracin deTortugas Marinas, Costa Rica

    Figure 1.9 Olive ridley turtlesleave the beach at Ostional,Costa Rica. Photo courtesy ofJanos Csernoch, Programa

    Restauracin de TortugasMarinas, Costa Rica.

    Figure 1.10 A flatback turtleon Abutlion Island, LownedalIsland group, Western Australia.Photo courtesy of Kellie Pendoley,Murdoch University, Australia.

    Arribada - massnesting aggregation;

    Spanish, meaning

    literally, arrived.

  • 8/9/2019 Oil Spill and Sea Turtles

    23/116

    19

    For Further Reading

    Bjorndal, K. A. 1982. Biology and Conservation of Sea Turtles, Smithsonian Institution Press, Washington, D.C.

    Gulf of the Farallones National Marine Sanctuary. 1994. Beached Marine Birds and Mammals of the North

    American West Coast, NOAA Sanctuaries and Reserves Division, U.S. Dept. of Commerce, 1443-CX-8140-93-

    011, 1994.Lutz, P. L., and J. A. Musick, eds. 1997. The Biology of Sea Turtles, Vol. I. CRC Press, Boca Raton, Fla.

    Lutz, P. L., J. A. Musick, and J. Wyneken, eds. 2002. The Biology of Sea Turtles, Vol. II. CRC Press, Boca Raton, Fla.

    National Research Council. 1990. Decline of the Sea Turtles, National Academy Press, Washington, D.C.

    Pritchard, P. C. H. 1997. Evolution, phylogeny, and current status. In: The Biology of Sea Turtles, Vol. I, P. L. Lutz and

    J. A. Musick, eds. CRC Press, Boca Raton, Fla. pp. 128

    Pritchard, P. C. H. 1982. Nesting of the leatherback turtle Dermochelys coriacea in Pacific Mexico, with a new

    estimate of world population status. Copeia 3: 741.

    Wyneken, J. 2002. The anatomy of sea turtles. NOAA Tech. Memo. NMFS-SEFSC-470, Miami, Fla.

  • 8/9/2019 Oil Spill and Sea Turtles

    24/116

  • 8/9/2019 Oil Spill and Sea Turtles

    25/116

    21

    Chapter 2 Life History and Physiology

    Sarah Milton and Peter Lutz

    Key Points The life history of all sea turtle species is similar; they are almost entirely marine.

    Females return to the beaches primarily to nest, emerging at night to dig an egg

    chamber and lay eggs. No further parental care is provided.

    Hatchlings of most sea turtles live for several years in the open ocean gyres, returning

    as juveniles to nearshore habitats.

    Some turtles migrate great distances between feeding and nesting areas.

    Sea turtles routinely dive for long periods. They have anatomical and physiologicaladaptations that permit a rapid exchange of air at the surface and the ability to carry

    oxygen on board for diving.

    Sea turtles excrete excess salt loads through modified tear, orlachrymal, glands

    located behind the eyes.

    Life History

    The life history of all sea turtle species is similar. Mature, breeding femalesmigrate from foraging grounds to nesting beaches, which may be nearby (tropical

    hawksbill, for example) or a significant distance away (one population of green turtles

    migrates some 2,000 kilometers (km) from feeding grounds off Brazil to nesting beaches

    on Ascension Island in the mid-Atlantic). The turtles mate some time during the migra-

    tion, usually in the spring, when mature males and females congregate off nesting

    beaches.

    Female turtles must return to land to nest, generally crawling up a dark beach

    to above the high-tide line at night, although female Kemps ridley turtles nest predomi-

    nantly during the day, as do olive ridleys, which nest in a large mass, or arribada. Thegeneral requirements for a nesting beach are that it is high enough to not be inundated

    at high tide, has a substrate that permits oxygen and carbon dioxide to diffuse into and

    out of the nest, and is moist and fine enough that it wont collapse during excavation.

    The female uses her front flippers to toss loose surface sand aside to excavate a large

    body pit, then uses her hind flippers as scoops to dig a flask-shaped egg chamber, intowhich she deposits approximately 100 parchment-shelled eggs, about the size of Ping-

    Pong balls (larger for leatherbacks). Once the eggs are deposited, she covers the eggs

    with moist sand and again uses her flippers to broadcast sand around the nesting area

    to disguise the exact location of the egg chamber. She then returns to the sea, providing

    Lachrymal gland -tear glands highly

    modified to excrete

    excess salt.

  • 8/9/2019 Oil Spill and Sea Turtles

    26/116

    22

    no further parental care. Photographs of sea turtle nests and the typical tracks left bydifferent turtle species are in Appendix B.

    Females generally deposit from 1 to 10 egg clutches per season, laying at regu-

    larly spaced intervals of 10 to 20 days. Most turtle species nest only every two to four

    years. The exceptions to this general schedule are the Kemps and olive ridley turtles,

    which commonly nest each year, with no intervening nonbreeding seasons, unlike other

    turtle species. Both ridleys nest in arribadas, at three- to four-week intervals. Individual

    olive ridleys may nest one, two, or three times per season, typically producing 100 to 110eggs each time.

    After an incubation period of about two months, hatchlings of all species dig their

    way up to the surface all together. Thus the majority of hatchlings emerge from the nest

    on a single night in a group numbering between 20 and 120, with only a few stragglers

    hatching on successive nights. High surface-sand temperatures can inhibit hatchling

    movement, so most emergences occur at night, after the sand has cooled, althoughdaytime emergences on cloudy days or after a rain are not uncommon.

    Upon emerging from the nest, the hatchlings scramble across the beach to the

    ocean, orienting away from the darkness of the duneline and moving toward the shine

    of the surf. Once in the water, hatchlings then orient into the waves, engaging in frenzied

    swimming that transports them to offshore waters within the first 24 to 48 hours. There

    they will spend the next several years, feeding in sargassum beds, upwellings, and conver-

    gence zones of the open sea (Figure 2.1).

    Sea turtles spend their early years caught up in the open ocean gyres. Thusturtles born on the U.S. Atlantic coast circle past Europe and the Mediterranean Sea

    before returning as juveniles to the U.S. eastern seaboard. Young turtles found off the

    California coast generally originate from beaches of the western Pacific.

    As juveniles, most species enter the coastal zone, moving into bays

    and estuaries, where they spend more years feeding and growing to maturity.Estimates of age at sexual maturity vary not only among species, but also

    among different populations of the same species: as early as three years in

    hawksbills, 12 to 30 years in loggerheads, and 20 to 50 years in green turtles.Mature sea turtles then join the adult populations in the nesting and foraging

    grounds.

    Leatherbacks are the exception to this life-history pattern. Upon hatch-

    ing, leatherbacks do not move passively with the open ocean gyres; instead they becomeactive foragers in convergence zones and upwellings. Leatherbacks are the most pelagic

    of the sea turtle species; they remain in deeper waters as both juveniles and adults,

    bypassing the nearshore stage common to other marine turtle species.

    Figure 2.1 A loggerhead hatchlingin sargassum. Photo courtesy ofDr. Blair Witherington, FloridaFish and Wildlife ConservationCommission.

  • 8/9/2019 Oil Spill and Sea Turtles

    27/116

    23

    Physiology

    Sea turtles exhibit a number of adaptations as air-breathing, marine reptiles.

    Besides the obvious physical adaptationsthe flattened, streamlined carapace andelongated, paddlelike flippers (due to the space constraints of streamlining, neither head

    nor flippers are retractable)the most important physical and physiological adaptationsto the marine lifestyle are those that permit diving and excretion of excess salt. These

    adaptations are the focus of this section because they are the features that put sea turtles

    at particular risk when exposed to oil spills (discussed in Chapter 4).

    Diving

    Sea turtles are among the longest and deepest diving air-breathing vertebrates,

    spending as little as 3 to 6 percent of their time at the surface. While most sea turtlespecies routinely dive no deeper than 10 to 50 meters (m), the deepest recorded dives for

    leatherbacks are over 1,000 m! Routine dives may last anywhere from 15 to 20 minutesto nearly an hour. The primary adaptations that permit extended, repeated dives are

    efficient transport of oxygen and a tolerance for low-oxygen conditions, or hypoxia. As

    surface breathers but deep divers, all the oxygen required by a diving turtle must be

    carried on board. Upon surfacing, a sea turtle exhales forcefully and rapidly, requiring

    only a few breaths, each less than 2 to 3 seconds, to empty and refill its lungs. Such high

    flow rates are possible because turtles have large, reinforced airways, and their lungs are

    extensively subdivided, which increases gas exchange between the them and the blood-stream. The blood will continue to pick up oxygen from the lungs even as oxygen storesare depleted to almost undetectable levels, stripping oxygen from the lungs to be used

    by the heart, brain, and muscles.

    Unlike diving marine mammals, which have dark, iron-rich blood and muscle

    tissue that can store large amounts of oxygen, most sea turtles use the lungs as the

    primary oxygen store. (An exception to this is the leatherback, which is more like marine

    mammals in its ability to store oxygen in blood and tissues.) During routine dives, sea

    turtles will surface to breathe before they run out of oxygen, though when forced toremain submerged (for example, when caught in a trawl) their oxygen stores are rapidly

    consumed and instead they must convert glucose to lactic acid for energy, a process

    called anaerobic metabolism. Sea turtles can tolerate up to several hours without oxygen

    (due to their low metabolic rates and adaptations of the brain to survive without oxygen),

    but when they are forced to submerge, and thus expend much energy escaping, their

    survival time under water is greatly decreased. Lactic acid levels can rise rapidly, even to

    lethal levels. Turtles affected by sublethal levels of lactic acid may require up to 20 hoursto recover, during which time they are vulnerable to capture or other stresses. Accidental

  • 8/9/2019 Oil Spill and Sea Turtles

    28/116

    24

    drowning in shrimp trawls, drift nets, and long-line fisheries is a major cause of sea turtlemortality worldwide.

    Salt Excretion

    A second important adaptation for a marine lifestyle is a way to excrete excess

    salt from seawater and food. Sea turtles, like all vertebrates, have a salt concentration in

    their body fluids only about one-third that of seawater. Marine grasses and invertebrates

    (such as crabs and sea urchins), however, have the same salt levels as seawater. The

    turtle must excrete the excess salt consumed eating these plants and animals, because

    high salt levels in vertebrates interfere with a variety of bodily functions and can be

    lethal. To lessen the possibility of accidentally ingesting salt water while feeding, a sea

    turtles esophagus is lined with long, densely packed conical spines, or papillae, which

    are oriented downward, toward the stomach. Biologists believe that this defense againstincidental drinking traps food, while contractions of the esophagus expel seawater out

    the mouth or nostrils, called nares. However, even with these features, most sea turtles

    still ingest high amounts of salt from their prey. Their kidneys are not powerful enough

    to excrete large salt loads, but highly modified tear glands behind their eyes, when

    stimulated by high salt levels in the blood, can excrete a salt solution that is nearly twice

    as concentrated as seawater. The practical effect is that ingesting 1 liter of seawater willresult in the excretion of 500 milliliters (ml) of tears, providing a net gain of 500 ml of

    salt-free water.

    For Further Reading

    Ackerman, R. A. 1977. The respiratory gas exchange of sea turtle nests (Chelonia, Caretta), Respir. Physiol. 31:

    1938.

    Ackerman, R. A. 1997. The nest environment and the embryonic development of sea turtles. In: The Biology of

    Sea Turtles, Vol. I, P. L. Lutz and J. A. Musick, eds. CRC Press, Boca Raton, Fla. 432 p.

    Bjorndal, K. A. 1997. Foraging ecology and nutrition of sea turtles. In: The Biology of Sea Turtles, Vol. I, P. L. Lutz

    and J. A. Musick, eds. CRC Press, Boca Raton, Fla. pp. 199231.

    Crowder, L. B., S. R. Hopkins-Murphy, and J. A. Royle. 1995. Effect of turtle excluder devices ( TEDS) on logger-

    head sea turtle strandings with implications for conservation. Copeia 1995: 773.

    Eckert, S. A. 2000. Global distribution of juvenile leatherback sea turtles. Hubbs Sea World Research Institute

    San Diego, Calif. pp. 99294

    Eckert, S. A., K. L. Eckert, P. Ponganis, and G. L. Kooyman. 1989. Diving and foraging behavior of leatherback sea

    turtles (Dermochelys coriacea). Can. J. Zool. 67: 2834.

    Ehrhart, L. M. 1982. A review of sea turtle reproduction. In: Biology and Conservation of Sea Turtles, K. Bjorndal,

    ed. Smithsonian Institution Press, Washington, D.C. p. 29.

    Hendrickson, J. R. 1982. Nesting behavior of sea turtles with emphasis on physical and behavior determinants

    of nesting success or failure. In:Biology and Conservation of Sea Turtles, K. Bjorndal, ed. Smithsonian InstitutionPress, Washington, D.C. p. 53.

    Nares - externalnostrils.

  • 8/9/2019 Oil Spill and Sea Turtles

    29/116

    25

    Jackson, D. C. 2000. Living without oxygen: Lessons from the freshwater turtle. Comp. Biochem. Physiol. A Mol.

    Integr. Physiol. 125(3): 299315.

    Lohmann, K. J., B. E. Witherington, C. M. Lohmann, and M. Salmon. 1997. Orientation, navigation, and natal

    beach homing in sea turtles. In:The Biology of Sea Turtles, Vol. I, P. L. Lutz and J. A. Musick, eds. CRC Press, Boca

    Raton, Fla. pp. 109135.

    Lutcavage, M., and P. L. Lutz. 1997. Diving physiology. In: The Biology of Sea Turtles, Vol. I, P. L. Lutz and J. A.Musick, eds. CRC Press, Boca Raton, Fla. pp. 277296.

    Lutcavage, M., and P. L. Lutz. 1991. Voluntary diving metabolism and ventilation in the loggerhead sea turtle.J.

    Exp. Mar. Biol. Ecol. 147: 287.

    Lutz, P. L. 1992. Anoxic defense mechanisms in the vertebrate brain.Ann. Rev. Physiol. 54: 601.

    Lutz, P. L. 1997. Salt, water, and pH balance in the sea turtle. In: The Biology of Sea Turtles, Vol. I, P. L. Lutz and J. A.

    Musick, eds. CRC Press, Boca Raton, Fla. pp. 343361.

    Lutz, P. L., and G. E. Nilsson. 1997. The Brain without Oxygen, 2nd ed., Landis Press, Austin, Tex.

    Lutz, P. L., and T. B. Bentley. 1985. Respiratory physiology of diving in the sea turtle. Copeia 1985: 671.

    Lutz, P. L., and A. Dunbar-Cooper. 1987. Variations in the blood chemistry of the loggerhead sea turtle, Carettacaretta. Fish. Bull. 85: 3743.

    Lutz, P. L., A. Bergey, and M. Bergey. 1989. The effect of temperature on respiration and acid-base balance in

    the sea turtle Caretta caretta at rest and during routine activity.J. Exp. Biol. 144: 155169.

    Miller, J. D. 1997. Reproduction in sea turtles. In: The Biology of Sea Turtles, Vol. I, P. L. Lutz and J. A. Musick, eds.

    CRC Press, Boca Raton, Fla. pp. 5181.

    Mortimer, J. A. 1990. Factors influencing beach sand characteristics on the nesting behavior and clutch

    survival of green turtles (Chelonia mydas). Copeia. 1990: 802.

    Mrosovsky, N. 1968. Nocturnal emergence of hatchling sea turtles: Control by thermal inhibition of activity.

    Nature 220: 13381339.

    Musick, J. A., and C. J. Limpus. 1997. Habitat utilization and migration in juvenile sea turtles. In: The Biology of

    Sea Turtles, Vol. I, P. L. Lutz and J. A. Musick, eds. CRC Press, Boca Raton, Fla. pp. 137163.

    Salmon, M., and B. E. Witherington. 1995. Artificial lighting and seafinding by loggerhead hatchlings: Evidence

    for lunar modulation. Copeia 4: 931.

    Salmon, M., and K. J. Lohmann. 1989. Orientation cues used by hatchling loggerhead sea turtles (Caretta

    caretta) during their offshore migration. Ethology83: 215.

    Witham, R. 1991. On the ecology of young sea turtles. Fla. Sci. 54: 179.

    Witherington, B. E., K. A. Bjorndal, and C. M. McCabe. 1990. Temporal pattern of nocturnal emergence of

    loggerhead turtle hatchlings from natural nests. Copeia 4: 11651168.

  • 8/9/2019 Oil Spill and Sea Turtles

    30/116

  • 8/9/2019 Oil Spill and Sea Turtles

    31/116

    27

    Chapter 3 Natural and Human Impacts on Turtles

    Sarah Milton and Peter Lutz

    Key Points Sea turtles worldwide are threatened by a variety of natural and human

    (anthropogenic) forces. Because they use of a variety of habitats (beaches to open

    oceans to nearshore environments), sea turtles are vulnerable to human impacts at

    all life stages, although natural mortality is believed to decline with age (increasing

    size).

    Natural mortality factors include the destruction of eggs on the beach by inundation

    or erosion, predation at all life stages, extreme temperatures, and disease.

    The primary cause of mortality among juvenile and adult sea turtles is drowningafter becoming entangled in fishing gear, primarily shrimp trawls. Mortality has

    decreased in U.S. waters with the use of turtle excluder devices (TEDs).

    Other significant sources of mortality include direct take (poaching) of eggs and

    turtles and the destruction or degradation of their habitat.

    Natural Mortality Factors

    Egg Loss

    Turtle eggs are subject to a variety of both natural and anthropogenic impacts.

    High tides or storms can drown the eggs, cause beach erosion, and wash away nests, and

    beach accretion can prevent access between nesting areas and the water. Predation on

    eggs by raccoons, feral hogs, ants, coyotes, and other animals can be quite high. In the

    1970s, before protective efforts began at Canaveral National Seashore, Florida, raccoons

    destroyed 75 to 100 percent of loggerhead nests, although the numbers destroyed on

    most beaches were considerably lower.

    Predation

    By emerging from the nest at night, turtle hatchlings reduce their risk of preda-tion, but they still must run a gauntlet of predators between the nest and seafrom rac-

    coons, birds, and ghost crabs on shore to tarpon, jacks, sharks, and other fish in the waters

    near shore. Although use of turtle hatcheries has fallen out of favor in the United States,

    past hatchery management problems exacerbated predation by fish. When hatchlings

    TED - turtle excluderdevice, an adaptation to

    commercial shrimp nets

    to permit sea turtles to

    escape.

  • 8/9/2019 Oil Spill and Sea Turtles

    32/116

    28

    were regularly released into the water at the same location and same time, predatory fishwould gather in high numbers for their scheduled meal.

    Larger juveniles and adults may be eaten by sharks and other large predatory fish,

    though predation decreases as turtles size increases. One study indicated that 7 to 75

    percent of tiger sharks sampled in Hawaiian waters inhabited by sea turtles had preyed

    on green turtles.

    Hypothermia

    Another natural source of mortality in sea turtles is hypothermia. Water tem-

    peratures that dip below 8 to 10C affect primarily juvenile and subadult turtles residing

    in nearshore waters, causing them to become lethargic and buoyant until they float atthe surface in a condition known as cold-stunning. At temperatures below 5 to 6C,

    death rates can be significant. The animals can no longer swim or dive, they becomevulnerable to predators, and they may wash up on shore, where they are exposed to even

    colder temperatures. Large cold-stun events have occurred frequently in recent years

    off the coasts of Long Island, New York; Cape Cod, Massachusetts; and even in Florida.

    Intervention and treatment, such as holding the turtle in warm water and administering

    fluids and antibiotics, greatly reduces mortality.

    Disease

    Sea turtles are affected by a number of health problems and diseases. Bacterial

    infections are rare in free-roaming sea turtle populations but higher under captiveconditions. Parasitic infections are common, however. Up to 30 percent of the Atlantic

    loggerhead population, for example, may be impacted by trematodes that infect the

    cardiovascular system. These heart flukes are associated with severe debilitation, muscle

    wasting, and thickening and hardening of major blood vessels. This parasite damage may

    then permit a variety of bacterial infections, including such species as Salmonella and E.

    coli.

    Another risk comes from dinoflagellate blooms (red tides), which are occur-ring in increasing numbers around the world as excess nutrient loads pollute coastal

    waters, conditions that can lead to health problems and mortality in many marine spe-

    cies. Because immediate effects result from aerosol transport, the sea turtles mode of

    respirationinhaling rapidly to fill the lungs before a diveputs them at particular risk.

    Chronic brevetoxicosis, a deadly lung condition caused by red tide dinoflagellates, has

    been suggested as another recent cause of sea turtle mortalities. In Florida, sea turtles

    had neurological symptoms, and the ones that died had measurable brevetoxin levels intheir tissues. More subtle, long-term effects such as impaired feeding, reduced growth,

    Brevetoxicosis -a deadly condition

    caused by ingestion of

    dinoflagellate organ-

    isms often responsible

    for red tides; recently

    linked to deaths of

    manatees in Florida

    and common murres in

    California.

  • 8/9/2019 Oil Spill and Sea Turtles

    33/116

    29

    and immune suppression may occur from consuming prey in which the toxin has bioac-cumulated.

    By far the most prevalent health problem, however, is a sea turtle disease called

    fibropapilloma (FP), which has been linked to a herpes virus. FP is typified by large

    fibrous (noncancerous) tumors (Figure 3.1). If external, these tumors can interfere with

    vision, swimming, and diving, and thus hinder the turtles ability to feed and escape from

    predators. Internal tumors can affect organ function, digestion, buoyancy, cardiac func-

    tion, and respiration. Turtles with advanced FP tend to be anemic and have salt imbal-ances. FP has reached epidemic proportions among green turtles worldwide and has

    been documented in the six other species. Some green turtle populations have infec-

    tion rates of 65 to 75 percent. The disease rate tends to be higher in environmentally

    degraded areas.

    Anthropogenic Impacts

    Fisheries By-catch

    In a comprehensive review of sources of sea turtle mortality conducted by the

    National Research Council (1990), incidental capture of turtles in shrimp trawls was

    determined to account for more deaths than all other human activities combined (Figure

    3.2). Because of sea turtles exceptional breath-holding capabilities, the large numbers

    of deaths blamed on incidental catch (i.e., drowning) was at first greeted with skepticism.

    However, a variety of field and laboratory studies on the effects of forced (versus volun-

    tary) submergence soon demonstrated the vulnerability of sea turtles to trawl nets. Onestudy, for example, showed that mortality was strongly dependent on trawl times: mortal-

    ity increased from 0 percent with trawl times less than 50 minutes to 70 percent after

    90 minutes. Since the enactment of turtle excluder device (TED) regulations, mortalities

    due to shrimp trawling have decreased significantly in U.S. coastal watersin South

    Carolina alone, mortalities decreased 44 percent. Regrettably, regulation, compliance,

    and enforcement are lower in other nations.In addition to trawl entanglement, sea turtles have been killed after becoming

    entangled in other types of fishing gear, such as purse seines, gill nets, longlines (hook

    and line), and lobster or crab pot lines. The longline fisheries of the Pacific are currently a

    significant source of sea turtle mortality, especially among leatherbacks. In other waters

    of the world, such as the Mediterranean, such fisheries impact other turtle species as

    well. Vessels themselves are another threat. Between 1986 and 1988, 7.3 percent of all

    sea turtle strandings documented in U.S. Atlantic and Gulf of Mexico waters sustained

    some type of propeller or collision injuries, though how much damage was post-mortem

    Fibropapilloma -a tumor-forming,

    debilitating, and often

    fatal, disease of sea

    turtles, manifested by

    formation of multiple

    fibrous masses of tissue1 mm to 30 cm in

    diameter growing from

    the eyes, flippers, neck,

    tail, and scutes and in

    the mouth.

    Figure 3.1 A green turtle with

    fibropapilloma tumors at the baseof its flippers. Photo courtesy ofPatricia Sposato, Florida AtlanticUniversity.

    Figure 3.2 Trawl-caught seaturtles off Cape Canaveral,Florida. Photo courtesy of Dr.Peter Lutz, Florida AtlanticUniversity.

  • 8/9/2019 Oil Spill and Sea Turtles

    34/116

    30

    versus cause of death could not be determined. The highest numbers of deaths occurwhere boat traffic is highest, the Florida Keys and the U.S. Virgin Islands.

    Poaching

    While the taking of adult sea turtles is rare in the continental United States andHawaii, egg poaching may be significant on some beaches, and in many other parts of

    the world the harvest of both eggs and turtles is high. In some developing countries, the

    need for protein and income generated by the sale of turtle productseven where sea

    turtles are protectedundermines conservation efforts. Breeding aggregations, nesting

    females, and eggs provide ready access to large numbers of turtles.

    Egg collection and hunting are primary causes of green and hawksbill turtlemortality worldwide (though all species are affected to some extent). Green turtles are

    exploited primarily for their meat and cartilage (called calipee), while hawksbills aretaken mainly for their beautiful shells, which are used to create a variety of tortoiseshell

    objects such as jewelry and combs. During the twentieth century, the major importers

    of sea turtle shell and other products were Japan, Hong Kong, Taiwan, and some

    European nations. Thirty years ago, more than 45 nations exported turtle prod-

    ucts: the primary exporter was Indonesia, with Panama, Cuba, Mexico, Thailand,the Philippines, Kenya, Tanzania, and other countries contributing significantly.

    Today, the market in turtle products continues, especially in Southeast Asia.

    Besides direct take, poaching activities have many indirect impacts on sea

    turtles that affect every life stage, primarily habitat degradation or destruction.

    Alteration of Nesting Beaches

    Anthropogenic impacts on nesting beaches may affect nesting females, eggs, and

    hatchlings. Beach armoring, such as seawalls, rock revetments, and sandbagging installed

    to protect oceanfront property, may prevent females from accessing nesting beaches. In

    some areas, sand may erode completely on the ocean side of structures, leaving no nest-

    ing beach at all (Figure 3.3). Where erosion is extensive, property owners or governmentagencies may try to restore the beach by replenishing the sand supply from offshore or

    inland sources. While preferable to beach armoring, such beach renourishment projects

    may cause sea turtle mortality as the result of offshore dredging, and nests already on the

    beach can be buried by the new sand. Mortalities can be reduced by monitoring dredge

    operations and relocating nests to other beach areas.

    Other effects of beach nourishment are that renourished beaches may becometoo compacted for nesting and steep, impassable escarpments may form. In addition, the

    replacement sand can have different physical properties than the original, altering criticalaspects such gas diffusion, moisture content, and temperature, which can affect hatchling

    beachrenourishment -replenishment of beach

    sand by mechanically

    dumping or pumping

    sand onto an eroded

    beach; also referred to

    as beach nourishment.

    Calipee - cartilage

    Figure 3.3 On a nesting beachin North Carolina, homeownersplaced sandbags to halt erosion,rendering previous turtle nestingsites inaccessible to sea turtles.Photo courtesy of MatthewGodfrey, North Carolina WildlifeResources Commission.

  • 8/9/2019 Oil Spill and Sea Turtles

    35/116

    31

    sex ratios. In sea turtles, like many reptiles, the sex of the hatchling is determined byincubation temperature; cooler nest temperatures produce mostly males and warmer

    temperatures produce mostly females.

    Near beaches, light from condominiums, streetlights, and swimming pools

    also affects sea turtles (Witherington and Martin, 2000). Excess lighting deters females

    from nesting, while hatchlings emerging from the nest tend to move toward the bright

    artificial lights rather than toward the surf. Disoriented, the hatchlings can succumb to

    exhaustion, dehydration, and predation; become entrapped in swimming pools; or becrushed by cars or beach vehicles.

    High levels of egg poaching, predation, erosion, artificial lighting, and heavy

    beach usage have been used to justify relocating nests to other beach sites, or in rare

    cases to hatcheries. While the practice may save threatened nests, it is important to note

    that, compared to nests left in place, relocation decreases nest success due to changes

    in incubation conditions, mortality during the move, and problems such as increasedpredation at release sites.

    Pollution and Garbage

    While direct effects on sea turtles of pollutants such as fertilizers and pesticidesare almost completely unknown, some indirect effects are more obvious, such as habitat

    degradation. Excess nutrients in coastal waters increase the outbreaks of harmful algal

    blooms (HABs), which may affect sea turtle health directly, such as during red tide events,

    or indirectly. Indirect effects include a general degradation of turtle habitat, such as the

    loss of seagrass beds due to decreased light penetration, and the (mostly unknown)

    potential for long-term effects on sea turtle health and physiology. The toxic dinoflagel-

    late Prorocentrum, for example, lives on on seagrasses so it is consumedby foraging green turtles. This dinoflagellate is of particular interest

    because it produces a tumor-promoting toxin (okadaic acid) that has

    been found in the tissues of Hawaiian green turtles with fibropapilloma

    disease.

    The effects of garbage in the water and on beaches are moredirect. Turtles ingest plastics and other debris and become entangled in

    debris such as discarded fishing line (Figure 3.4). Ingesting plastic cancause gut strangulation, reduce nutrient uptake and increase the absor-

    bance of various chemicals in plastics and other debris. The range of

    trash found in sea turtle digestive tracts is impressive: plastic bags, sheet-

    ing, beads, and pellets; rope; latex balloons; aluminum; paper and cardboard; styrofoam;

    fish hooks (Figure 3.5); charcoal; and glass. Leatherback turtles are particularly attracted

    to plastic bags, which they may mistake for their usual prey, jellyfish. Loggerheads

    indeed, any hungry turtlewill eat nearly anything that appears to be the right size.

    Figure 3.4 A hawksbill turtleentangled in plastic line andfishing net. Photo courtesy ofChris Johnson, Marinelife Center

    of Juno Beach, Florida.

    T bl 3 1 A f t l d th i i t t tl

  • 8/9/2019 Oil Spill and Sea Turtles

    36/116

    32

    Table 3.1 A summary of natural and anthropogenic impacts on sea turtles.

    Source of Mortality

    Primarily

    Anthropogenic Main Life Stage Affected Impact

    Shrimp trawling Yes Juveniles/adults High

    Predation (natural) No Eggs, hatchlings High

    Artificial lighting Yes Nesting females, hatchlings High

    Disease No Subadults High for greens

    Beach use Yes Nesting females, eggs High on some beaches

    Other fisheries Yes Juveniles/adults Medium

    Vessel-related injuries, including

    propellers

    Yes Juveniles/adults Medium

    Poaching Yes Eggs, juveniles, adults Low to medium

    Beach development Yes Nesting females, eggs Low to medium

    Cold-stunning No Juveniles, subadults Low

    Entanglement Yes Juveniles/adults Low

    Power plant entrainment Yes Juveniles/adults Low

    Oil platform removal Yes Adults Low

    Beach renourishment Yes Eggs Low with monitoring

    Debris ingestion Yes Juveniles/adults Unknown

    Toxins Yes Unknown Unknown

    Habitat degradation Yes Hatchlings through adults Unknown

    Source: Adapted from National Research Council 1990.

    For Further Reading

    Aguirre, A. A., and P. L. Lutz. In press. Marine turtles as sentinels of ecosystem health: Is fibropapillomatosis an

    indicator? Ecosystem Health.

    Balazs, G. H., and S. G. Pooley 1993. Research plan to assess marine turtle hooking mortality: Results of

    an expert workshop held in Honolulu, Hawaii. G. H. Balazs and S. G. Pooley, eds., U.S. Dept. of Commerce,Administrative Report H-93-18, Silver Spring, Md.

    Bjorndal, K. A., A. B. Bolten, and C. J. Lagueux. Ingestion of marine debris by juvenile sea turtles in coastal

    Florida habitats. Mar. Poll. Bull. 28: 154.

    Burkholder, J. M. 1998. Implications of harmful microalgae and heterotrophic dinoflagellates in management

    of sustainable marine fisheries. Ecol. Applic. 8: S37S62.

    Carminati, C. E., E. Gerle, L. L. Kiehn, and R. P. Pisciotta. Blood chemistry comparison of healthy vs. hypothermic

    juvenile Kemps ridley sea turtles (Lepidochelys kempii). In: Proc. 14th Ann. Workshop on Sea Turtles Conservation

    and Biology, K. A. Bjorndal, A. B. Bolten, and D. A. Johnson, compilers. NMFS Tech. Memo. NOAA-TM-NMFS-

    SEFSC-351, Miami, Fla., p. 203.

    Figure 3.5 This X-ray image ofa juvenile green turtle showsfishing hooks and other tacklein throat. The turtle underwentsurgery and was released after

    recovering. Photo courtesy ofChris Johnson, Marinelife Centerof Juno Beach, Florida.

    Carr A 1987 Impact of non degradable marine debris in the ecology and survival outlook of sea turtles Mar

  • 8/9/2019 Oil Spill and Sea Turtles

    37/116

    33

    Carr, A. 1987. Impact of non-degradable marine debris in the ecology and survival outlook of sea turtles. Mar.

    Poll. Bull. 18: 352356.

    Cray, C., R. Varela, G. Bossart, and P. L. Lutz. 2001. Altered in vitro immune responses in green turtles with

    fibropapillomatosis.J. Zoo. Wildl. Med. 32(4): 436440.

    Ehrhart, L. M. 1991. Fibropapillomas in green turtles of the Indian River lagoon, Florida: Distribution over time

    and area. In: Research Plan for Marine Turtle Fibropapilloma, G. H. Balazs and S. G. Pooley, eds. NMFS Tech. Memo.

    NOAA-TM-NMFS-SWFC-156, Honolulu, Hi. 59.

    George, R. H. 1997. Health problems and diseases of sea turtles. In: The Biology of Sea Turtles, Vol. I, P. L. Lutz and

    J. A. Musick, eds., CRC Press, Boca Raton, Fla. pp. 363385.

    Henwood, T. A., and W. E. Stuntz. 1987. Analysis of sea turtle captures and mortalities during commercial

    shrimp trawling. Fish. Bull. 85: 813.

    Herbst, L. H. 1994. Fibropapillomatosis of marine turtles.Ann. Rev. Fish Dis. 4: 389.

    Herbst, L. H., and P. A. Klein. 1995. Green turtle fibropapillomatosis: Challenges to assessing the role of environ-

    mental cofactors. Environ. Health Perspect. 103(Suppl. 4): 2730.

    Jacobson, E. R., J. L. Marsell, J. P. Sundberg, L. Hajjar, M. C. Reichmann, L. M. Ehrhart, M. Walsh, F. Murru. Cutaneous

    fibropapillomas of green turtles (Chelonia mydas). J. Comp. Pathol. 101(1): 3952.

    Landsberg, J. H., G. H. Balazs, K. A. Steidinger, D. G. Baden, T. H. Work, and D. J. Russell. The potential role of

    natural tumor promoters in marine turtle fibropapillomasis. J. Aquat. Anim. Health, 11: 199210.

    Lutcavage, M.E., P. Plotkin, B. Witherington, and P.L. Lutz. 1997. Human impacts on sea turtle survival. In: The

    Biology of Sea Turtles, Vol. I, P. L. Lutz and J. Musick, eds. CRC Press. Boca Raton, Fla. pp. 387410.

    Lutz, P. L., and A. A. Alfaro-Shulman. 1991. The effects of chronic plastic ingestion on green sea turtles. Report

    NOAASB21-WCH06134, U.S. Dept. of Commerce, Miami, Fla.

    Mack, D., N. Duplaix, and S. Wells. 1982. Sea turtles, animals of divisible parts: International trade in sea turtle

    products. In: Biology and Conservation of Sea Turtles, K. Bjorndal, ed. Smithsonian Institution Press, Washington,

    D.C.Meylan, A. B., and S. Sadove. 1986. Cold-stunning in Long Island Sound, New York. Mar. Turtle Newsl. 37: 78.

    Milton, S. L., A. A. Schulman, and P. L. Lutz. 1997. The effect of beach renourishment with aragonite versus

    silicate sand on beach temperature and loggerhead sea turtle nesting success.J. Coast. Res. 13(3): 904915.

    Milton, S. L., and P. L. Lutz. 2002. Physiological and genetic responses to environmental stress. In: The Biology of

    Sea Turtles, Vol. II, P. L. Lutz, J. A, Musick, and J. Wyneken, eds. CRC Press, Boca Raton, Fla. pp. 159194.

    Morreale, S. J., A. B. Meylan, S. S. Sadove, and E. A. Standora. Annual occurrence and winter mortality of marine

    turtles in New York waters.J. Herpetol. 26(3): 301308, 1992.

    National Research Council. 1990. Decline of the Sea Turtles: Causes and Prevention . National Academy Press,

    Washington, D.C. 259 p.OShea, T. J., G. B. Rathburn, R. K. Bonde, C. D. Buergelt, and D. K. Odell. 1991. An epizootic of Florida manatees

    associated with a dinoflagellate bloom. Mar. Mammal Sci. 7(2): 165179.

    Plotkin, P. T., M. K. Wicksten, and A. F. Amos. 1993. Feeding ecology of the loggerhead sea turtle Caretta caretta

    in the northwestern Gulf of Mexico. Mar. Biol. 115: 1.

    Pugh, R. S., and P. R. Becker. 2001. Sea turtle contaminants: A review with annotated bibliography. NISTIR 6700,

    Charleston, S.C.

    Redlow, T., A. Foley, and K. Singel. 2002. Sea turtle mortality associated with red tide events in Florida. In:

    Proceedings of the 22nd Annual Symposium on Sea Turtle Biology and Conservation , J. Seminoff, compiler. U.S.

    Dept. of Commerce, NOAA Tech. Memo. NMFS-SEFSC, Miami, Fla.

    Schwartz F J 1978 Behavioral and tolerance responses to cold water temperatures by three species of sea

  • 8/9/2019 Oil Spill and Sea Turtles

    38/116

    34

    Schwartz, F. J. 1978. Behavioral and tolerance responses to cold water temperatures by three species of sea

    turtles (Reptilia, Cheloniidae) in North Carolina. Florida Mar. Res. Publs. 33: 1618.

    Stabenau, E. K., T. A. Heming, and J. F. Mitchell. 1991. Respiratory, acid-base and ionic status of Kemps ridley sea

    turtles (Lepidochelys kempi) subjected to trawling, Comp. Biochem. Physiol. 99A: 107111.

    Stancyk, S. E. 1982. Non-human predators of sea turtles and their control. In: Biology and Conservation of Sea

    Turtles, K. A. Bjorndal, ed. Smithsonian Institution Press, Washington, D.C. pp. 139-152.

    Witherington, B. E., and L. M. Ehrhart. 1989. Hypothermic stunning and mortality of marine turtles in the Indian

    River lagoon system, Florida. Copeia 1989: 696703.

    Witherington, B. E., and R. E. Martin. 2000. Understanding, assessing, and resolving light-pollution problems on

    sea turtle nesting beaches, 2nd ed. Rev. Florida Marine Research Institute Technical Report TR-2. 73 p.

    Witherington, B. E., and M. Salmon. 1992. Predation on loggerhead turtle hatchlings after entering the sea.J.

    Herpetol. 26(2): 226228.

    Wyneken, J., and M. Salmon. 1996. Aquatic predation, fish densities, and potential threats to sea turtle

    hatchlings from open-beach hatcheries: Final report. Technical Report for the Broward County, Department of

    Natural Resource Protection, Tech. Report No. 96-04, Fort Lauderdale, Fla.

    Chapter 4 Oil Toxicity and Impacts on Sea Turtles

  • 8/9/2019 Oil Spill and Sea Turtles

    39/116

    35

    Chapter 4 Oil Toxicity and Impacts on Sea Turtles

    Sarah Milton, Peter Lutz, and Gary Shigenaka

    Key Points Although surprisingly robust when faced with physical damage (shark attacks, boat

    strikes), sea turtles are highly sensitive to chemical insults such as oil.

    Areas of oil and gas exploration, transportation, and processing often overlap with

    important sea turtle habitats.

    Sea turtles are vulnerable to the effects of oil at all life stageseggs, post-hatchlings,

    juveniles, and adults in nearshore waters.

    Several aspects of sea turtle biology and behavior place them at particular risk,

    including a lack of avoidance behavior, indiscriminate feeding in convergence zones,and large predive inhalations.

    Oil effects on turtles include increased egg mortality and developmental defects,

    direct mortality due to oiling in hatchlings, juveniles, and adults; and negative

    impacts to the skin, blood, digestive and immune systems, and salt glands.

    Although oil spills are the focus of this book, it would be misleading to portraythem as the most significant danger to the continued survival of sea turtles, either in

    U.S. waters or worldwide. In 1990, the National Research Council qualitatively rankedsources of sea turtle mortality by life stage. The highest mortalities on juvenile and adult

    turtles were caused by commercial fisheries, on hatchlings it was nonhuman predation

    and beach lighting, and on eggs, nonhuman predators. While toxins appeared as a

    listed source, their impact to all three turtle life stages was unknown. Oil spills were not

    considered as a specific potential impact, but their absence should not be construed as

    lack of a spill-related threat. Spills that have harmed sea turtles have been documentedand case studies of those spills are described in Chapter 6. Moreover, it is not difficult to

    imagine a large spill washing ashore on a known nesting beach for an endangered sea

    turtle species when females are converging to nest or eggs are hatching.

    Oil spills are rare events, but they have the potential to be spectacularly devas-

    tating to resources at risk. In addition, it is not simply infrequent or episodic spills that

    threaten sea turtles. Continuous low-level exposure to oil in the form of tarballs, slicks,

    or elevated background concentrations also challenge animals facing other natural andanthropogenic stresses. Chronic exposure may not be lethal by itself, but it may impair a

    turtles overall fitness so that it is less able to withstand other stressors.

    What do we know about the toxicity of oil to sea turtles? Unfortunately, not

    much. Direct experimental evidence is difficult to obtain, because all sea turtle species

    are listed as threatened or endangered under the 1973 U.S. Endangered Species Act

  • 8/9/2019 Oil Spill and Sea Turtles

    40/116

    36

    are listed as threatened or endangered under the 1973 U.S. Endangered Species Act(Table 1.1). The tenuous status of sea turtles worldwide has significantly influenced

    research activities and is a key reason that basic information about the toxicity of oil to

    turtles is scarce. According to Lutz (1989),Studies on sea turtles must take fully into

    account that all species are at risk and have either threatened or endangered species

    status. Investigation must be confined to sublethal effects that are fully reversible oncethe treatment is halted. This restricts the scope of toxicity studies that can be carried out,

    especially the study of internal effects, and investigations of natural defense mechanisms

    would be very difficult.

    Notwithstanding ethical or legal arguments over exposing organisms to poten-

    tially harmful materials in order to document effects, from a response and operational

    perspective the lack of data impairs decision-making on trade-offs during oil spills. Fritts

    et al. (1983) concluded two decades ago that the dearth of basic scientific information

    about sea turtles complicates the detection of oil-related problems and non-oil-relatedproblems. While much has been learned since then, it is still true that determining thesource of stress to sea turtles is complicated and difficult.

    Most reports of oil impact are anecdotal or based on small sample sizes, but

    there is no question that contact with oil negatively impacts sea turtles. Because they are

    highly migratoryspending different life-history stages in different habitatssea turtles

    are vulnerable to oil at all life stages: eggs on the beach, post-hatchlings and juveniles

    in the open ocean gyres, subadults in nearshore habitats, and adults migrating between

    nesting and foraging grounds. Severity, rate, and effects of exposure will thus

    vary by life stage. Unfortunately, areas of oil and gas exploration, transporta-tion, and processing often overlap with important sea turtle habitats, including

    U.S. waters off the Florida and Texas coasts and throughout the Gulf of Mexico

    and the Caribbean.

    In this chapter, research on the toxicity of oil to sea turtles is sum-

    marized, along with indirect impacts that might occur during an oil spill and

    subsequent cleanup methods.

    Toxicity Basics

    It is necessary to begin the discussion of oil toxicity by defining what we meanby oil. One universal challenge facing resource managers and spill responders when

    dealing with oil spills is that oil is a complex mixture of many chemicals. The oil spilled in

    one incident is almost certainly different from that spilled in another. In addition, broad

    categories such as crude oil or diesel oil contain vastly different ingredients, depending

    on the geologic source, refining processes, and additives incorporated for transportation.

    Even if we could somehow stipulate that all spilled oil was to be of a single fixed chemicalformulation, petroleum products released into the environment are subjected to biologi-

    Figure 4.1 A juvenile green

    turtle oiled during a spill inTampa Bay, Florida, in 1993.The turtle was rehabilitated bythe Clearwater Aquarium andeventually released. Photocourtesy of Dr. Anne Meylan,Florida Fish and WildlifeConservation Commission,Florida Marine ResearchInstitute.

    cal, physical, and chemical processescalled weathering that immediately begin Weathering -

  • 8/9/2019 Oil Spill and Sea Turtles

    41/116

    37

    p y p g y galtering the oils original characteristics. As a result, samples of oil from exactly the same

    source can be very different in composition after exposure to a differing mix of environ-

    mental influences. Thus, while we generalize about oil toxicity to sea turtles in this book,

    the reader should be aware of the limitations in doing so.

    Oil affects different turtle life stages in different ways. Unlike many other organ-isms, however, each turtle life stage frequents a habitat with notable potential to be

    impacted during an oil spill. Thus, information on oil toxicity is organized by life stage.

    The earlier life stages of living marine resources are usually at greater risk from an

    oil spill than adults. The reasons for this are many, but include simple effects of scale: for

    example, a given amount of oil may overwhelm a smaller immature organism relative to

    the larger adult. The metabolic machinery an animal uses to detoxify or cleanse itself of

    a contaminant may not be fully developed in younger life stages. Also, in early life stages

    animals may contain a proportionally higher concentration of lipids, to which manycontaminants such as petroleum hydrocarbons bind.

    Eggs and Nesting

    While eggs, embryos, and hatchlings are likely to be more vulnerable to volatileand water-soluble contaminants than adults, only one study has directly examined the

    effects of oil compounds on sea turtle eggs. Following the 1979 Ixtoc 1 blowout in the

    Bay of Campeche, Mexico, Fritts and McGehee (1981) collected both field and labora-

    tory data on the spills effects on sea turtle nests from an impacted beach. In laboratoryexperiments where fresh oil was poured on nests of eggs during the last half to last quar-

    ter of the incubation period, the researchers found a significant decrease in survival to

    hatching. Eggs oiled at the beginning of incubati