70
1 Aalto University 2011 Hangzhou October 2016 http://www.megevh.org/ « « E E NERGY NERGY M M ANAGEMENT ANAGEMENT S S TRATEGIES TRATEGIES OF OF H H YBRID YBRID E E LECTRIC LECTRIC V V EHICLES ( EHICLES ( HEV HEV s s ) ) » » Prof. Alain BOUSCAYROL, Dr. Ali CASTAINGS L2EP, Université Lille1, MEGEVH network, [email protected] Dr. Rochdi TRIGUI, LTE, IFSTTAR Bron, MEGEVH network, [email protected]

OF HYBRID ELECTRIC EHICLES ( s) - univ-lille.frmegevh.univ-lille1.fr/uploads/documents/Tutorial-VPPC-16-HEV.pdf · (Energy management of Hybrid and Electric Vehicles) ... - Electric

  • Upload
    ngodiep

  • View
    217

  • Download
    1

Embed Size (px)

Citation preview

1

Aalto University 2011

HangzhouOctober 2016

http://www.megevh.org/

«« EENERGY NERGY MMANAGEMENT ANAGEMENT SSTRATEGIES TRATEGIES

OF OF HHYBRID YBRID EELECTRIC LECTRIC VVEHICLES (EHICLES (HEVHEVss)) »»

Prof. Alain BOUSCAYROL, Dr. Ali CASTAINGSL2EP, Université Lille1, MEGEVH network,

[email protected]

Dr. Rochdi TRIGUI,LTE, IFSTTAR Bron, MEGEVH network,

[email protected]

2

MEGEVHVPPC’16

Hangzhou, 2016

- MEGEVH network -

Coordination:Prof. A. Bouscayrol

6 projects4 PhDs in progress11 PhDs defended

8 industrial partners10 academic Labs

(Energy management ofHybrid and Electric Vehicles)

http://www.megevh.org/

3

MEGEVHVPPC’16

Hangzhou, 2016

MEGEVH-macro

MEGEVH-strategy

MEGEVH-optim

theoretical developments

MEGEVH-storeMEGEVH-FC

Development of modeling and energy management

methods

independentlyof the kind of vehicle

- MEGEVH philosophy -

Paper Prize Award of IEEE-VPPC’08

Paper Prize Award of IEEE-VPPC’12

Paper Award EPE’14 ECCE Europe

Best paper AwardIET-EST journal

2015

experimental plate-forms

Reference vehicles

4

MEGEVHVPPC’16

Hangzhou, 2016

- Common formalism: EMR -

DCM1

DCM2

EP1

EP2

Bat. RoadME1

ME2

Energetic MacroscopicRepresentation

=organizationof models of

complex systems

Systematic deductionof organization ofcontrol schemes

[Bouscayrol 00, 12]

vBat road

Strategy

vref

5

MEGEVHVPPC’16

Hangzhou, 2016

• Non-profit professional organizationfor advancing technological innovation and excellence

• 400,000 members from 160 countries (30 % students)• 38 societies on technical interest• Activities

– scientific workshop, conferences, publications, standards– database IEEE Xplore, 3.5 millions documents, etc

IEEE - Institute of Electrical & Electronics Engineers

• Technical topics– land, airborne and maritime services– mobile communication, vehicle electro-technology

• 2 publications and 4 annual conferences• Distinguished Lecturer Program

IEEE – Vehicular Technology Society (VTS)

Prof. A. Bouscayrol• HIL simulation• EMR formalism• EVs and HEVs

- VTS Distinguished Lecturer Program -

6

MEGEVHVPPC’16

Hangzhou, 2016

- Outline -

1.1. CCONTEXT OF ONTEXT OF EVsEVs AND AND HEVsHEVs

22. . DDIFFERENT IFFERENT KKINDS OF INDS OF EVsEVs AND AND HEVsHEVs

33. . KKEY EY IISSUES OF SSUES OF EVsEVs AND AND HEVsHEVs

4. E4. ENERGY NERGY MMANAGEMENT OF ANAGEMENT OF EVsEVs AND AND HEVsHEVs

5. E5. EXAMPLES OF XAMPLES OF IINNOVATIVES NNOVATIVES VVEHICLESEHICLES

RREFERENCESEFERENCES

7

Aalto University 2011

HangzhouOctober 2016

http://www.megevh.org/

1. Context of 1. Context of EVsEVs & & HEVsHEVs

• Global warming• Petroleum resources• Thermal Vehicle

8

MEGEVHVPPC’16

Hangzhou, 2016

0% 5% 10% 15% 20% 25%

waste(incl. deforestation)

Energy production

Residential / trade

Agriculture

Industrial process

Transport

http://www.statistiques.developpement-durable.gouv.fr/

Road transport 80%

- Green House Gases -France 2012

[CGDD 15]

9

MEGEVHVPPC’16

Hangzhou, 2016

0% 5% 10% 15% 20% 25%

Energy production

Residential/trade

Agricultural

Industrial Process

Transport

- Green House Gases (2) -

http://www.citepa.org/(Centre Interprofessionnel Techniques d’Etudes de la Pollution Atmosphérique)

Waste(incl. deforestation)

All GHG, World 2010

10

MEGEVHVPPC’16

Hangzhou, 2016

clutch &gearbox

Fuel tank road

ICE gearbox differential wheels chassis

accelerator steeringwheel

clutchgear ratio

- Thermal Vehicle -

IC engine

fueltanklow efficiency

pollutant emission

no energy recovery

great autonomy

fast energy charge

11

MEGEVHVPPC’16

Hangzhou, 2016

Iso specific consumption (g/kWh )

Pmax=60 ch (45 kW) @ 3750 rpm Tmax=119 Nm @ 3400 rpm

( 1700 cm3 )

Speed (rpm)

Torq

ue (

Nm

)

- Gasoline engine -

Efficiency map

12

MEGEVHVPPC’16

Hangzhou, 2016

- Future Vehicles? -

• Thermal vehicle with bio-fuels(coupling energy & food? water requirement? etc)

• Electric Vehicles(production of electricity? autonomy reduction? etc)

• Hybrid Electric vehicles(increase of prize? need of fossil fuel? etc)

• Fuel Cell Vehicle(increase of prize? hydrogen production? etc)

• Etc.

but also• A more reasonable mobility!

(reduction of travels? Increase of common transport? Etc.)

No ideal and unique

solution

13

MEGEVHVPPC’16

Hangzhou, 2016

Example of an urban drive cycleICE Power (kW)

t (s)

Pmean= 15 kW

Pmax= 60 kW

oversizing

- Power of a thermal vehicle -

P < 0

Energy loss

Interest of a system which:• delivers peak power at high efficiency• enables energy recovery

14

MEGEVHVPPC’16

Hangzhou, 2016

speed (m/s)

78% of pollutant emissions during 14 % of the cycle

Example of a highway drive cycleCO (g/s)

t (s)

- Pollution of a thermal vehicle -

P < 0

Interest of a system which:• enables transients at high efficiency and low emission

15

MEGEVHVPPC’16

Hangzhou, 2016

Speed (rpm)

Torque (Nm)

- Operation of an ICE -Urban drive cycle / iso-consumption map

mean efficiency 12%(88% of losses!!)

16

MEGEVHVPPC’16

Hangzhou, 2016

- Operation of an ICE -Extra-urban drive cycle / iso-consumption map

Speed (rpm)

Torque (Nm)

mean efficiency 20%

17

Aalto University 2011

HangzhouOctober 2016

http://www.megevh.org/

2. Different kinds of 2. Different kinds of EVsEVs & & HEVsHEVs

• Electric Vehicles• Hybrid Electric Vehicles• Fuel Cell Vehicles

18

MEGEVHVPPC’16

Hangzhou, 2016

1830 : first mini-electric-train

1890 : 3 kinds of vehicles on the automotive market thermal / electric / steam

1899 : « La Jamais contente » first vehicleto reach 100 km/h

1930 : last productions of electric vehicles “La jamais contente”

First EV?

EV in 1914

• technological reasons (autonomy, charging time)• economical reasons (reduction of the gasoline cost)• societal reasons (extension of the required range)

- EV history -

19

MEGEVHVPPC’16

Hangzhou, 2016

nogearbox

Battery road

powerelectronics

electricmachine

differential wheels chassis

switch orders steeringwheel

- Electric Vehicle -

battery

powerelectronics

electricmachine

energy recovery

high efficiency

no local emission low autonomy

long energy charge

20

MEGEVHVPPC’16

Hangzhou, 2016

thermalengine

fuel TM

Thermal Vehicle:- pollution- low efficiency

PE electricmachineBattery

Electric Vehicle:- long charge- low autonomy

- Thermal and Electric Vehicles -

http://www.nissan.com/

Nissan leaf

21

MEGEVHVPPC’16

Hangzhou, 2016

- Hybrid Electric Vehicles -

fuelHybrid vehicle:- advantage of each technology- higher cost- complex control

Battery PE

thermalengine

TMelectric

machine

Various configurations:• different power ratios PICE/PEM• different component organization

Toyota Prius 3

http://www.toyota.com/

http://www.mpsa.com

Peugeot 3008 HY4

22

MEGEVHVPPC’16

Hangzhou, 2016

fuel

Battery

ICE

electricalmachine

EM

PE

- HEVs or EVs? -

www.bmw.com/

Range extender EV= EV + ICE for

higher mileage range

BMW i3

fuelPlug-in HEV:= HEV + charger

+ plugBattery

ICengine

MTelectricalmachine

http://www.chevrolet.com//PE

Chevrolet Volt

23

MEGEVHVPPC’16

Hangzhou, 2016

H2 PEFC electricalmachine

Fuel cell vehicle := EV with battery

replaced by a fuel cell and a H2 tank

- Fuel Cell vehicles? -

http://www.honda.com/

Honda Clarity FX

FC vehicle with hybrid storage= another kind

of RE-EV

electricalmachine

Battery

H2

PE

FC

http://www.toyota.com/

Toyota Mirai

24

MEGEVHVPPC’16

Hangzhou, 2016

Nuclear

Coal

Biomass

Renewablesources

Fossil fuel

Hydrogen

ReformerCH4 +H20 C0 + 3 H2

Example (Natural Gaz)

H20

C0

Electricity Electrolysis

H20

H20H20+heat 1/202 + H2

02

02

H20+electricity 1/202 + H2

solar

4%

96%

experimental

- H2 production -

Thermo-chemistry

25

MEGEVHVPPC’16

Hangzhou, 2016

HydrogenElectricity FuelCell

H20

or Air

H20 + electricity ½ 02 + H2

Fuel cell = inverse of the electrolysis water

½ 02 + H2 H20 + electricity + heat

Electrolysis :

Fuel cell :

heat

- Fuel Cell -

Pros: no local pollutionCons: high cost, low lifetime, H2 production

… and 50% efficiency, heat production

26

MEGEVHVPPC’16

Hangzhou, 2016

- Other Electric Vehicles -

New technologies are also used in various vehicles in order to reduce the ecological footprint of transportation systems!

27

Aalto University 2011

HangzhouOctober 2016

http://www.megevh.org/

3. Key issues of 3. Key issues of EVsEVs & & HEVsHEVs

• Energy Storage Subsystems• Energy Management• Societal changes

28

MEGEVHVPPC’16

Hangzhou, 2016

Battery Ni-MHHigh energy density

High efficiencyPower electronics

Complex control

Permanent MagnetSynchronous Machines

Power split

GeneratorBattery

Motor

Mechanical power path

Electrical power path

Engine

Inverter Boost

Véhicule PRIUS IIhttp://www.toyota.com/

ECU

- Toyota Prius, a success story -

29

MEGEVHVPPC’16

Hangzhou, 2016

ICE

EM

BAT

EG

Series Parallel HEV

Fuel

- Architecture bases -

ICE

EM

BAT

Fuel

??

ICE

EM

BAT

Fuel

EG

Series HEV electrical node

ICE

EM

BAT

Fuel

Parallel HEV

mechanical node

power flows

30

MEGEVHVPPC’16

Hangzhou, 2016

• thermal traction

• internal charge of battery

• Stop & Go

• regenerative braking

• electrical boost

• electrical traction

• external charge (Plug-in HEV)

EMICE

ICE EM

ICE EM

ICE EM

ICE

EM

- Hybridization rate -

TV

EV

HEV

mild HEV

full HEV

(power ratio associated with functionalities)

31

MEGEVHVPPC’16

Hangzhou, 2016

SuperC

batteries

petrol+

ICE

H2+

FuelCell

Flywheel

- Energy and Power -

[Chan 2007]

?

unidirectionalHybridation ?

Energy density (Wh/kg)~ mileage range

Power density (W/kg)

~ acceleration,charge time

32

MEGEVHVPPC’16

Hangzhou, 2016

- Different sources -

thermal engine

fossilfuel

hydraulic machine

compressed air

FuelCellH2

Electrochemical batteries

superCapacitors

Fly wheel

non reversible reversible

mechanical interface

electrical interface

33

MEGEVHVPPC’16

Hangzhou, 2016

superC

- Series hybrid topologies -electrical coupling

thermal enginefuel

hydraulicmachine

compressedair

Fuel CellH2

Battery

electrictraction

flywheel

DC bus

+

electrical machine

power electronics

+

+

+

+

+

34

MEGEVHVPPC’16

Hangzhou, 2016

superC

thermal enginefuel

hydraulicmachine

compressedair

Fuel CellH2

Battery

flywheel

- Parallel hybrid topologies -mechanical

couplingbelts

Planetary trainsetc.

+

+

+

+

+

+

CVT / gearbox(manual, automated…)

PSAHybridAir

35

MEGEVHVPPC’16

Hangzhou, 2016

- Split hybrid topologies -

electrical AND mechanical

coupling

thermal enginefuel

Battery

DC bus

various solutions…

+

+ICE

EM1

EM2

++ optimal point for ICE

operation point pequested by the vehicle

more fuel optimization…… more complex control

36

MEGEVHVPPC’16

Hangzhou, 2016

- Well to Wheel analysis -

HEV

EV

g CO2 / km

?Coal

Coal

Natural Gas

wood

Nuclear

Wind

37

MEGEVHVPPC’16

Hangzhou, 2016

- Evolution of batteries -

but

Fossil fuel

11 000 Wh/kg

in development in researchin commerce

Most promisingTechnology forEVs and HEVs

Lead acid

38

MEGEVHVPPC’16

Hangzhou, 2016

- Energy charge -

New technologies and developments? “Smart” charge?but alsoA new way to manage our energy charge?

• slow charge at home / at work (4-8h?)(plug or induction)

• ultra-fast charge at specific station (1/2h?)

• battery swap station(5-10 min?) http://france.betterplace.com/

39

MEGEVHVPPC’16

Hangzhou, 2016

- Impact on the grid -

http://my.epri.com

V2G

G2V

New concepts for grid management?but alsoA new way to manage our energy prize?

(Vehicle to Grid)

40

MEGEVHVPPC’16

Hangzhou, 2016

- Day trip analysis -

Mileage range of a classical EV = 100 to 150 km

50%30%20%

Average values ofdaily trips inEurope in 2007

daily trip < 20 km

daily trip > 60 km

20 km < daily trip < 60 km

Possible uses of EVs?butA new way to manage our mobility?

41

MEGEVHVPPC’16

Hangzhou, 2016

- Challenge EVs and HEVs -

EVs• battery cost and lifetime• charging time, range• cabin thermal management

HEVs• ZEV mode• topology and design• energy management

FCs• topology and design• energy management• FC cost and lifetime• H2 production and distribution

Driving conditions

Energy Storage Susbsystem

balanced design

complex control

42

MEGEVHVPPC’16

Hangzhou, 2016

- Control of TVs and EVs -

EV

GB

TV control

Electricmachine

TV

Trans.power

electronicsBat.

EV control

Controls of TVs and EVs: mono-objective (no optimization)ensure the driving cycle

pedals

clucth

pedals

FuelICE

43

MEGEVHVPPC’16

Hangzhou, 2016

- Challenge of HEV Control -

parallel HEV

Electricmachine

Trans.

powerelectronicsBat.

HEV control

Controls of HEVs: • multi-objective: ensure the driving cycle AND reduce the fuel consumption• various modes: pure electric, pure thermal, hybrid, etc.

How to achieve the objectives?Which mode and when? How to switch between modes?Etc.

pedals

FuelICE

Powercoupling

44

MEGEVHVPPC’16

Hangzhou, 2016

Electricmachine

Trans.

powerelectronicsBat.

EMcontrol

FuelICE

Powercoupling

- Organization of HEV control -

ICEcontrol

Transcontrol

Energy Management Strategy EMS driver

requests

fast subsystem

controls

slow systemsupervision(subsystem

coordination)

How to split the control?How to develop efficient EMS?

45

Aalto University 2011

HangzhouOctober 2016

http://www.megevh.org/

4. Energy Management 4. Energy Management StategiesStategies (EMS)(EMS)of of EVsEVs and and HEVsHEVs

• EMS classification• ruled-based EMS• optimization-based EMS

46

MEGEVHVPPC’16

Hangzhou, 2016

- Example of a multi-sources EV-

SCs

electricalmachinePE

PE

Battery

Basic example: Battery / Supercapacitors (SCs) EVMain objective: to increase the battery lifetime

How to manage such a system?

47

MEGEVHVPPC’16

Hangzhou, 2016

Trans.

powerelectronicsSCS.

PEcontrol

- Organization of vehicle control -

PEcontrol

EMcontrol

Energy Management Strategy (EMS) driver

requests

Bat. Electricmachine

powerelectronics

48

MEGEVHVPPC’16

Hangzhou, 2016

Trans.

powerelectronicsSCS.

PEcontrol

- Organization of vehicle control -

PEcontrol

EMcontrol

Energy sources EMS Measur.

Bat. Electricmachine

powerelectronics

Traction EMSMeasur.

Energy sources power split

49

MEGEVHVPPC’16

Hangzhou, 2016

MesuresEMS

idc-ref

iL-ref udc-ref

- Organization of vehicle control -

ub

it

ub

Bat.

SCs.

ib

ub

idc

udc

m

iLusc

iL

Tract.

it-meas

ib-ref

Using EMR approach

Battery currentreference as control

variable

Focus on EMSs

50

MEGEVHVPPC’16

Hangzhou, 2016

- Classification -[Sciaretta 2007], [Salmasi 2007], [Trigui 2011]

Rule-based

Optimization-based

Deterministic rules

Fuzzyrules

Real-time optimization -

based

Global optimization

Filtering, Thermostat control …

Fuzzy logic, Neural networks …

Dynamic programming, Pontryagin’s minimum

λ-control, Predictivecontrol ,…

51

MEGEVHVPPC’16

Hangzhou, 2016

- Classification -

Rule-based

Deterministic rules

Fuzzyrules

Filtering, Thermostat control …

Fuzzy logic, Neural networks …

No optimal performances

Real-time implementation

52

MEGEVHVPPC’16

Hangzhou, 2016

- Classification -

Optimization-based

Real-time optimization -

based

Global optimization

Optimal performancesReal-time implementation

Benchmarking use

Compromise between performances and real-

time implementation

53

MEGEVHVPPC’16

Hangzhou, 2016

-Application: Filtering –(Rule-based)

0 100 200 300 400-0.5

0

0.5

1

1.5

t(s)

Courant batterie VE (p.u)

Traction current

Current (p.u)

(t)

Low dynamics for the battery

High dynamic for the SCs

54

MEGEVHVPPC’16

Hangzhou, 2016

-Application: Filtering –(Rule-based)

Energy sources EMS

Traction current

ib-ref

it-meas

f0

Low-pass filter

ib-ref

Real-time Driving cycle not required

No optimal

Performance criterion:

Battery current RMS value

(lifetime)

55

MEGEVHVPPC’16

Hangzhou, 2016

- Application: Dynamic programming –(global optimization)

Bellman’s optimality principle –If a-b-e is an optimal way from a to e, then b-e is the optimal way from b to e.

Dynamic programming –

Recurrence relationship

   , min , 1 1,    

[Kirk 2004]

To find the optimal trajectory

ab

e

c

Max limit

Min limit

k

56

MEGEVHVPPC’16

Hangzhou, 2016

- Application: Dynamic programming –(global optimization)

Energy sources EMS

Driving cycle

ib-ref

Optimal Off-line

SCs voltage

Backward simplfied model

DP algorithm

Driving cycle requested

57

MEGEVHVPPC’16

Hangzhou, 2016

- Application: Calculus of variations-(Real-time optimisation-based)

Criterion System to optimizeState variables constraints

Minimization of a Hamiltonian funtion:

Control variable expression by solving :

58

MEGEVHVPPC’16

Hangzhou, 2016

- Application: Calculus of Variations-(Real-time optimization-based)

-

Energy sources EMS

Driving cycle

ib-ref

Optimal Real-time

SCs voltage

Driving cycle requested

Control variable expression

59

MEGEVHVPPC’16

Hangzhou, 2016

- Application: λ-control -(Real-time optimisation-based)

Criterion System to optimizeState variables constraints

Minimization of a Hamiltonian funtion:

Control variable expression by solving :

Based on Calculus of Variations

Feedback control to face driving conditions

vrariations

60

MEGEVHVPPC’16

Hangzhou, 2016

- Application: Calculus of Variations-(Real-time optimization-based)

Energy sources EMS

ib-ref

Suboptimal Real-time

SCs voltage

Driving cycle not requested

usc-meas

it-meas

Limitations of usc

ib-ref ib-ref

Controller +

+0

rb ηg

OCV

‐+

usc-ref

61

MEGEVHVPPC’16

Hangzhou, 2016

0 100 200 300 4000

10

20

30

40

50

t(s)

Vitesse (km/h)

- Simulations results -B-EV case

0 100 200 300 400-0.5

0

0.5

1

1.5

t(s)

Courant batterie VE (p.u)

Real driving cycle

Battery current

Velocity (km/h)

(t)

Current (p.u)

(t)

62

MEGEVHVPPC’16

Hangzhou, 2016

- Simulation results -Battery-SCs vehicle

Battery current

B-EV0 100 200 300 4000

0.5

1

1.5

t(s)

Courants batterie VE mixte (p.u)

ib CDVib filtrageib Prg dyn

Current (p.u)

(t)

λ-ctrl

Filter.

DP.

63

MEGEVHVPPC’16

Hangzhou, 2016

- Simulation results -Battery-SCs vehicle

0

0.1

0.2

0.3

0.4Valeur efficace de ib

DPλ-ctrl Filter

B-EV

(theoretical optimal i.e. benchmark)

Performance criterion

Criterion:

λ-control: -25 %

Filtering: -20 %

Purebattery

EVDP

strategy-controlstrategy

filteringstrategy

RMS value of battery current

64

MEGEVHVPPC’16

Hangzhou, 2016

- More complex system -

Battery

Front

Rear

FC

SCs

Fuel Cell (FC) – Battery –Supercapacitors (SCs) vehicle

Experimental implementation

0 200 400 6000

20

40

60

t(s)

Vehicle velocity (km/h)

WLTC driving cycle (low speed)

0 200 400 600-0.5

0

0.5

1

t(s)

Currents (p.u)

FC convTraction

0 200 400 600-2

-1

0

1

2

t(s)

Battery and SCs currents (p.u)

SCsBat

Decomposedλ-control

More details inSpecial session SS5

65

Aalto University 2011

HangzhouOctober 2016

http://www.megevh.org/

5. Examples of Innovative Vehicles5. Examples of Innovative Vehicles

Non available on the pdf version

66

Aalto University 2011

HangzhouOctober 2016

http://www.megevh.org/

HEVs and EVs could be valuable alternative vehicles

butDesign and Energy Management Strategies

are key issues for their development…

ConclusionConclusion

67

MEGEVHVPPC’16

Hangzhou, 2016

- MEGEVH at IEEE-VPPC’16 -tutorial « Energy Management of Evs and HEVs »Monday October 17, 14:00-16:00, room EProf. Alain BOUSCAYROL, Dr. Ali CASTAINGS (Univ. Lille1, MEGEVH, France)Dr. Rochdi TRIGUI (IFSTTAR, MEGEVH, France)

tutorial « Will Hydrogen Fuel Cells Power Next Vehicle Generation? »Monday October 17, 14:00-16:00, room FProf. Daniel HISSEL, Prof. Marie-Cécile PERA (Univ. Bourgogne Franche-Comté, MEGEVH, France)

SS « Energy Management of Electrical Hybrid Energy Sources »Wednesday October 19, 10:30-11:30, room DDr. Ronan GERMAN, Dr. Walter LHOMME (Univ. Lille1, MEGEVH, France)Dr. Joao TROVAO (Univ. Sherbrooke, Canada)

SS « Energetic Macroscopic Representation and other graphicaldescriptions »Wednesday October 19, 14:00-15:30, room DDr. Clément MAYET (Univ. Lille1, MEGEVH, France)Prof. MINH C. TA (Hanoi Univ. Of Science and Tech., Vietnam)

68

Aalto University 2011

HangzhouOctober 2016

http://www.megevh.org/

ReferencesReferences

69

MEGEVHVPPC’16

Hangzhou, 2016

- References (1) -

[Boulon 13] L. Boulon, A. Bouscayrol, D. Hissel, O. Pape, M-C Péra, “Inversion-based control of a highly redundant military HEV", IEEE trans. on Vehicular Technology, vol. 62, no. 2, Feb. 2013, pp. 500-5010 (Univ Trois-Rivières, L2EP Lille, FEMTO-ST and Nexter within MEGEVH network)

[Bouscayrol 00] A. Bouscayrol, B. Davat, B. de Fornel, B. François, J. P. Hautier, F. Meibody-Tabar, M. Pietrzak-David, "Multimachine Multiconverter System: application for electromechanical drives", European Physics Journal - Applied Physics, vol. 10, no. 2, pp. 131-147, May 2000.

[Bouscayrol 12] A. Bouscayrol, J. P. Hautier, B. Lemaire-Semail, "Graphic Formalisms for the Control of Multi-Physical Energetic Systems", Systemic Design Methodologies for Electrical Energy, Chap. 3, ISTE Willey ed., Oct.2012, ISBN: 9781848213883.

[Castaings 2016] A. Castaings, W. Lhomme, R. Trigui, A. Bouscayrol ” Comparison of energy management strategiesof a battery/supercapacitors system for electric vehicle under real-time constraints “, Applied Energy, vol. 163, p. 190-200, February 2016 (L2EP Lille and LTE-IFSTTAR, MEGEVH network).

[Chan 09] C.C. Chan, Y. S. Wong, A. Bouscayrol, K. Chen, "Powering Sustainable Mobility: Roadmaps of Electric,Hybrid and Fuel Cell Vehicles", Proceedings of the IEEE, vol. 97, no. 4, April 2009, (Hong-Kong Univ. and L2EP).

[Chan 10] C. C. Chan, A. Bouscayrol, K. Chen, “Electric, Hybrid and Fuel Cell Vehicles: Architectures and Modeling", IEEE trans. on Vehicular Technology, vol. 59, no. 2, February 2010, pp. 589-598 (L2EP Lille and Honk-Kong Univ.).

[Cheng 13] Y. Cheng, A. Bouscayrol, R. Trigui, C. Espanet, S. Cui, “Field weakening control of a PM electric variable transmission for HEV", Journal of Electrical Engineering and Technology, Vol. 8, no. 5, September 2013, pp. 1096-1106 (L2EP Lille, LTE-IFSTTAR, FEMTO-ST and Harbin Inst. of Tech within MEGEVH network)

[Chouhou 13] M. Chouhou, F. Gree, C. Jivan, A. Bouscayrol, T. Hofman, “Energetic Macroscopic Representation and Inversion-Based control of a CVT-based HEV”, EVS’27, Barcelona (Spain), November 2013 (L2EP Lille and Tech. Univ. Eindhoven)

70

MEGEVHVPPC’16

Hangzhou, 2016

- References (2) -

[Horrein 15] L. Horrein, A. Bouscayrol, Y. Cheng, M. El-Fassi, “Dynamical and quasi-static multi-physical models of a diesel internal combustion engine using Energetic Macroscopic Representation", Energy Conversion and Management, Vol. 91, February 2015, pp. 280–291 (L2EP Lille and PSA Peugeot Citroen, within MEGEVH network).

[Kirk 2004] D. E. Kirk, Optimal Control Theory: An Introduction. Dover Publications, 2004[Letrouvé 13] T. Letrouvé, W. Lhomme, A. Bouscayrol, N. Dollinger, “Control validation of Peugeot 3∞8

Hybrid4 vehicle using a reduced-scale power HIL simulation", Journal of Electrical Engineering and Technology, Vol. 8, no. 5, September 2013, pp. 1227-1233 (L2EP Lille, and PSA Peugeot Citroën within MEGEVH network)

[Mayet 12] C. Mayet, J. Pouget, A. Bouscayrol, W. Lhomme, “Influence of an energy storage system on the energy consumption of a diesel-electric locomotive", IEEE trans. on Vehicular Technology, Vol. 63, no. 3, March 2014, pp. 1032-1040 (L2EP Lille and SNCF, within MEGEVH network).

[Trigui 11 ] R. Trigui, “Systelic appraoch for modeling, energy management and design of hybrid electric vehicles”, HDR report, IFSTTAR-Université de Lille1, September 2011.

[Salmasi 07] F. R. Salmasi, "Control strategies for Hybrid Electric Vehicles: evolution, classification, comparison and future trends", IEEE Trans. on Vehicular Technology, September 2007, Vol. 56, No. 3, pp. 2393-2404.

[Sciaretta 2007] A. Sciarretta et L. Guzzella, « Control of hybrid electric vehicles », IEEE Control Syst., vol. 27, no 2, p. 60-70, April 2007.

[Vinot 14] E. Vinnot, R. Trigui, Y. Cheng, C. Espanet, A. Bouscayrol, V. Reinbold, “Improvement of an EVT-based HEV using dynamic programming", IEEE trans. on Vehicular Technology, Vol. 63, no. 1, January 2014, pp. 40-49 (LTE-IFSTTAR, FEMTO-ST and L2EP Lille, within MEGEVH network)