79
1 The Commutative Algebra of Highly Symmetric Data Jan Draisma TU Eindhoven Utrecht, Nov 2013

of Highly Symmetric Data The Commutative Algebrajdraisma/talks/cashd.pdf · The Commutative Algebra of Highly Symmetric Data Jan Draisma TU Eindhoven Utrecht, Nov 2013. 1 3 0 3 1

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: of Highly Symmetric Data The Commutative Algebrajdraisma/talks/cashd.pdf · The Commutative Algebra of Highly Symmetric Data Jan Draisma TU Eindhoven Utrecht, Nov 2013. 1 3 0 3 1

1

The Commutative Algebraof Highly Symmetric Data

Jan DraismaTU Eindhoven Utrecht, Nov 2013

Page 2: of Highly Symmetric Data The Commutative Algebrajdraisma/talks/cashd.pdf · The Commutative Algebra of Highly Symmetric Data Jan Draisma TU Eindhoven Utrecht, Nov 2013. 1 3 0 3 1

1

630313036 0 6 2 6 0 1 2

036 0

The Commutative Algebraof Highly Symmetric Data

Jan DraismaTU Eindhoven Utrecht, Nov 2013

Page 3: of Highly Symmetric Data The Commutative Algebrajdraisma/talks/cashd.pdf · The Commutative Algebra of Highly Symmetric Data Jan Draisma TU Eindhoven Utrecht, Nov 2013. 1 3 0 3 1

1

630313036 0 6 2 6 0 1 2

300 6

The Commutative Algebraof Highly Symmetric Data

Jan DraismaTU Eindhoven Utrecht, Nov 2013

Page 4: of Highly Symmetric Data The Commutative Algebrajdraisma/talks/cashd.pdf · The Commutative Algebra of Highly Symmetric Data Jan Draisma TU Eindhoven Utrecht, Nov 2013. 1 3 0 3 1

1

630313036 0 6 2 6 0 1 2

136 2

The Commutative Algebraof Highly Symmetric Data

Jan DraismaTU Eindhoven Utrecht, Nov 2013

Page 5: of Highly Symmetric Data The Commutative Algebrajdraisma/talks/cashd.pdf · The Commutative Algebra of Highly Symmetric Data Jan Draisma TU Eindhoven Utrecht, Nov 2013. 1 3 0 3 1

1

630313036 0 6 2 6 0 1 2

312 6

The Commutative Algebraof Highly Symmetric Data

Jan DraismaTU Eindhoven Utrecht, Nov 2013

Page 6: of Highly Symmetric Data The Commutative Algebrajdraisma/talks/cashd.pdf · The Commutative Algebra of Highly Symmetric Data Jan Draisma TU Eindhoven Utrecht, Nov 2013. 1 3 0 3 1

1

630313036 0 6 2 6 0 1 2

036 0

The Commutative Algebraof Highly Symmetric Data

Jan DraismaTU Eindhoven Utrecht, Nov 2013

Page 7: of Highly Symmetric Data The Commutative Algebrajdraisma/talks/cashd.pdf · The Commutative Algebra of Highly Symmetric Data Jan Draisma TU Eindhoven Utrecht, Nov 2013. 1 3 0 3 1

1

630313036 0 6 2 6 0 1 2

300 1

The Commutative Algebraof Highly Symmetric Data

Jan DraismaTU Eindhoven Utrecht, Nov 2013

Page 8: of Highly Symmetric Data The Commutative Algebrajdraisma/talks/cashd.pdf · The Commutative Algebra of Highly Symmetric Data Jan Draisma TU Eindhoven Utrecht, Nov 2013. 1 3 0 3 1

1

630313036 0 6 2 6 0 1 2 G30

0 1

The Commutative Algebraof Highly Symmetric Data

Jan DraismaTU Eindhoven Utrecht, Nov 2013

What global data properties can be tested locally?

Page 9: of Highly Symmetric Data The Commutative Algebrajdraisma/talks/cashd.pdf · The Commutative Algebra of Highly Symmetric Data Jan Draisma TU Eindhoven Utrecht, Nov 2013. 1 3 0 3 1

1

630313036 0 6 2 6 0 1 2

rank one?

G300 1

The Commutative Algebraof Highly Symmetric Data

Jan DraismaTU Eindhoven Utrecht, Nov 2013

What global data properties can be tested locally?

Page 10: of Highly Symmetric Data The Commutative Algebrajdraisma/talks/cashd.pdf · The Commutative Algebra of Highly Symmetric Data Jan Draisma TU Eindhoven Utrecht, Nov 2013. 1 3 0 3 1

1

630313036 0 6 2 6 0 1 2

rank one? no!

G 630313036 0 6 2 6 0 1 2

300 1

336 1

The Commutative Algebraof Highly Symmetric Data

Jan DraismaTU Eindhoven Utrecht, Nov 2013

What global data properties can be tested locally?

Page 11: of Highly Symmetric Data The Commutative Algebrajdraisma/talks/cashd.pdf · The Commutative Algebra of Highly Symmetric Data Jan Draisma TU Eindhoven Utrecht, Nov 2013. 1 3 0 3 1

1

630313036 0 6 2 6 0 1 2

rank one? no!

G 630313036 0 6 2 6 0 1 2

300 1

336 1

The Commutative Algebraof Highly Symmetric Data

Jan DraismaTU Eindhoven Utrecht, Nov 2013

alg geometryalg statistics combinatorics

What global data properties can be tested locally?

multilin alg

Page 12: of Highly Symmetric Data The Commutative Algebrajdraisma/talks/cashd.pdf · The Commutative Algebra of Highly Symmetric Data Jan Draisma TU Eindhoven Utrecht, Nov 2013. 1 3 0 3 1

2History: Hilbert’s Basis Theorem

David HilbertAny polynomial systemf1(x1, . . . , xn) = 0,f2(x1, . . . , xn) = 0, . . .reduces to a finite system( Noetherianity of K[x1, . . . , xn])

Page 13: of Highly Symmetric Data The Commutative Algebrajdraisma/talks/cashd.pdf · The Commutative Algebra of Highly Symmetric Data Jan Draisma TU Eindhoven Utrecht, Nov 2013. 1 3 0 3 1

2History: Hilbert’s Basis Theorem

David HilbertAny polynomial systemf1(x1, . . . , xn) = 0,f2(x1, . . . , xn) = 0, . . .reduces to a finite system( Noetherianity of K[x1, . . . , xn])

Paul GordanDas ist nicht Mathematik,das ist Theologie!

Page 14: of Highly Symmetric Data The Commutative Algebrajdraisma/talks/cashd.pdf · The Commutative Algebra of Highly Symmetric Data Jan Draisma TU Eindhoven Utrecht, Nov 2013. 1 3 0 3 1

2History: Hilbert’s Basis Theorem

David HilbertAny polynomial systemf1(x1, . . . , xn) = 0,f2(x1, . . . , xn) = 0, . . .reduces to a finite system( Noetherianity of K[x1, . . . , xn])

Paul GordanDas ist nicht Mathematik,das ist Theologie!

Bruno BuchbergerGrobner bases, algorithmic methods

Page 15: of Highly Symmetric Data The Commutative Algebrajdraisma/talks/cashd.pdf · The Commutative Algebra of Highly Symmetric Data Jan Draisma TU Eindhoven Utrecht, Nov 2013. 1 3 0 3 1

3Three-step approach

1. Modelhigh-dim data ∞-dim data spacedata property ∞-dim subvarietysmall window finite window leave fin-dim commutative algebra

1

dim→ ∞

Page 16: of Highly Symmetric Data The Commutative Algebrajdraisma/talks/cashd.pdf · The Commutative Algebra of Highly Symmetric Data Jan Draisma TU Eindhoven Utrecht, Nov 2013. 1 3 0 3 1

3Three-step approach

1. Modelhigh-dim data ∞-dim data spacedata property ∞-dim subvarietysmall window finite window leave fin-dim commutative algebra

2. Prove∞-dim property finitely definedup to symmetry? generalise Basis Theorem to∞ variables

1

2

dim→ ∞

Page 17: of Highly Symmetric Data The Commutative Algebrajdraisma/talks/cashd.pdf · The Commutative Algebra of Highly Symmetric Data Jan Draisma TU Eindhoven Utrecht, Nov 2013. 1 3 0 3 1

3Three-step approach

1. Modelhigh-dim data ∞-dim data spacedata property ∞-dim subvarietysmall window finite window leave fin-dim commutative algebra

2. Prove∞-dim property finitely definedup to symmetry? generalise Basis Theorem to∞ variables

3. Computeactual windows for fin-dim data generalise Buchberger alg to∞ variables

1

2

dim→ ∞

3

3

Page 18: of Highly Symmetric Data The Commutative Algebrajdraisma/talks/cashd.pdf · The Commutative Algebra of Highly Symmetric Data Jan Draisma TU Eindhoven Utrecht, Nov 2013. 1 3 0 3 1

4Noetherianity up to symmetry

ExampleK[x1, x2, . . .] is not Noetherian, e.g. x1 = 0, x2 = 0, . . .does not reduce to a finite system.

Page 19: of Highly Symmetric Data The Commutative Algebrajdraisma/talks/cashd.pdf · The Commutative Algebra of Highly Symmetric Data Jan Draisma TU Eindhoven Utrecht, Nov 2013. 1 3 0 3 1

4Noetherianity up to symmetry

ExampleK[x1, x2, . . .] is not Noetherian, e.g. x1 = 0, x2 = 0, . . .does not reduce to a finite system.

Cohen [J Algebra, 1967]K[x1, x2, . . .] is Sym(N)-Noetherian, i.e., every Sym(N)-stablesystem reduces to finitely many equations up to Sym(N).

Page 20: of Highly Symmetric Data The Commutative Algebrajdraisma/talks/cashd.pdf · The Commutative Algebra of Highly Symmetric Data Jan Draisma TU Eindhoven Utrecht, Nov 2013. 1 3 0 3 1

4Noetherianity up to symmetry

ExampleK[x1, x2, . . .] is not Noetherian, e.g. x1 = 0, x2 = 0, . . .does not reduce to a finite system.

Cohen [J Algebra, 1967]K[x1, x2, . . .] is Sym(N)-Noetherian, i.e., every Sym(N)-stablesystem reduces to finitely many equations up to Sym(N).

Notion of G-Noetherianity generalises to G-actions on rings ortopological spaces.

Page 21: of Highly Symmetric Data The Commutative Algebrajdraisma/talks/cashd.pdf · The Commutative Algebra of Highly Symmetric Data Jan Draisma TU Eindhoven Utrecht, Nov 2013. 1 3 0 3 1

4Noetherianity up to symmetry

ExampleK[x1, x2, . . .] is not Noetherian, e.g. x1 = 0, x2 = 0, . . .does not reduce to a finite system.

Cohen [J Algebra, 1967]K[x1, x2, . . .] is Sym(N)-Noetherian, i.e., every Sym(N)-stablesystem reduces to finitely many equations up to Sym(N).

Notion of G-Noetherianity generalises to G-actions on rings ortopological spaces.

EamplesK[xi j | i ∈ {1, . . . , k}, j ∈ N] is Sym(N)-Noetherian, butK[xi j | i, j ∈ N] is not Sym(N) × Sym(N)-Noetherian, but(KN×N)p with Zariski topology is GLN × GLN-Noetherian.

Page 22: of Highly Symmetric Data The Commutative Algebrajdraisma/talks/cashd.pdf · The Commutative Algebra of Highly Symmetric Data Jan Draisma TU Eindhoven Utrecht, Nov 2013. 1 3 0 3 1

5

The Commutative Algebraof Highly Symmetric Data

alg statistics

Page 23: of Highly Symmetric Data The Commutative Algebrajdraisma/talks/cashd.pdf · The Commutative Algebra of Highly Symmetric Data Jan Draisma TU Eindhoven Utrecht, Nov 2013. 1 3 0 3 1

6Gaussian factor analysis

SettingX1, . . . , Xn jointly Gaussian, mean 0 explained well by k � n factors?i.e., is Xi =

∑j si jZk + tiεi, with Z1, . . . ,Zk,

ε1, . . . , εn independent standard normals?

Page 24: of Highly Symmetric Data The Commutative Algebrajdraisma/talks/cashd.pdf · The Commutative Algebra of Highly Symmetric Data Jan Draisma TU Eindhoven Utrecht, Nov 2013. 1 3 0 3 1

6Gaussian factor analysis

SettingX1, . . . , Xn jointly Gaussian, mean 0 explained well by k � n factors?i.e., is Xi =

∑j si jZk + tiεi, with Z1, . . . ,Zk,

ε1, . . . , εn independent standard normals?

⇔ Σ(X1, . . . , Xn) = S S T + diag(t21, . . . , t

2n)

S

S T

t2i

Page 25: of Highly Symmetric Data The Commutative Algebrajdraisma/talks/cashd.pdf · The Commutative Algebra of Highly Symmetric Data Jan Draisma TU Eindhoven Utrecht, Nov 2013. 1 3 0 3 1

6Gaussian factor analysis

SettingX1, . . . , Xn jointly Gaussian, mean 0 explained well by k � n factors?i.e., is Xi =

∑j si jZk + tiεi, with Z1, . . . ,Zk,

ε1, . . . , εn independent standard normals?

⇔ Σ(X1, . . . , Xn) = S S T + diag(t21, . . . , t

2n)

DefinitionFk,n := {S S T + diag(t2

1, . . . , t2n) | S ∈ Rn×k, ti ∈ R}

algebraic variety in Rn×n called Gaussian k-factor model

S

S T

t2i

Page 26: of Highly Symmetric Data The Commutative Algebrajdraisma/talks/cashd.pdf · The Commutative Algebra of Highly Symmetric Data Jan Draisma TU Eindhoven Utrecht, Nov 2013. 1 3 0 3 1

6Gaussian factor analysis

SettingX1, . . . , Xn jointly Gaussian, mean 0 explained well by k � n factors?i.e., is Xi =

∑j si jZk + tiεi, with Z1, . . . ,Zk,

ε1, . . . , εn independent standard normals?

⇔ Σ(X1, . . . , Xn) = S S T + diag(t21, . . . , t

2n)

DefinitionFk,n := {S S T + diag(t2

1, . . . , t2n) | S ∈ Rn×k, ti ∈ R}

algebraic variety in Rn×n called Gaussian k-factor model

S

S T

t2i

ExampleF2,5 is zero set of {σij − σ ji | i, j = 1, . . . , 5} and the pentad∑π∈Sym(5) sgn(π)σπ(1)π(2)σπ(2)π(3)σπ(3)π(4)σπ(4)π(5)σπ(5)π(1)

Page 27: of Highly Symmetric Data The Commutative Algebrajdraisma/talks/cashd.pdf · The Commutative Algebra of Highly Symmetric Data Jan Draisma TU Eindhoven Utrecht, Nov 2013. 1 3 0 3 1

7Finiteness for the Gaussian k-factor model

Drton-Sturmfels-Sullivant [Prob Th Rel Fields 2007]If Σ ∈ Fk,n then any principal n0 × n0 submatrix Σ′ ∈ Fk,n0 . Is there an n0 = n0(k) such that the converse holds for n ≥ n0?

S

S T

t2i

k

n n0

Page 28: of Highly Symmetric Data The Commutative Algebrajdraisma/talks/cashd.pdf · The Commutative Algebra of Highly Symmetric Data Jan Draisma TU Eindhoven Utrecht, Nov 2013. 1 3 0 3 1

7Finiteness for the Gaussian k-factor model

Drton-Sturmfels-Sullivant [Prob Th Rel Fields 2007]If Σ ∈ Fk,n then any principal n0 × n0 submatrix Σ′ ∈ Fk,n0 . Is there an n0 = n0(k) such that the converse holds for n ≥ n0?

S

S T

t2i

k

n n0

De Loera-Sturmfels-Thomas [Combinatorica 1995]yes for k = 1 (n0 = 4)

Page 29: of Highly Symmetric Data The Commutative Algebrajdraisma/talks/cashd.pdf · The Commutative Algebra of Highly Symmetric Data Jan Draisma TU Eindhoven Utrecht, Nov 2013. 1 3 0 3 1

7Finiteness for the Gaussian k-factor model

Drton-Sturmfels-Sullivant [Prob Th Rel Fields 2007]If Σ ∈ Fk,n then any principal n0 × n0 submatrix Σ′ ∈ Fk,n0 . Is there an n0 = n0(k) such that the converse holds for n ≥ n0?

S

S T

t2i

k

n n0

De Loera-Sturmfels-Thomas [Combinatorica 1995]yes for k = 1 (n0 = 4)

Draisma [Adv Math 2010]yes for all k (n0 =?) uses Fk,∞ and Noetherianity up to Sym(N)

Page 30: of Highly Symmetric Data The Commutative Algebrajdraisma/talks/cashd.pdf · The Commutative Algebra of Highly Symmetric Data Jan Draisma TU Eindhoven Utrecht, Nov 2013. 1 3 0 3 1

7Finiteness for the Gaussian k-factor model

Drton-Sturmfels-Sullivant [Prob Th Rel Fields 2007]If Σ ∈ Fk,n then any principal n0 × n0 submatrix Σ′ ∈ Fk,n0 . Is there an n0 = n0(k) such that the converse holds for n ≥ n0?

S

S T

t2i

k

n n0

De Loera-Sturmfels-Thomas [Combinatorica 1995]yes for k = 1 (n0 = 4)

Draisma [Adv Math 2010]yes for all k (n0 =?) uses Fk,∞ and Noetherianity up to Sym(N)

Brouwer-Draisma [Math Comp 2011]yes for k = 2: pentads and 3 × 3-minors define F2,n, n ≥ n0 := 6 uses Sym(N)-Buchberger algorithm (+ a weekend on 20 computers) a single computation proves this for all n

Page 31: of Highly Symmetric Data The Commutative Algebrajdraisma/talks/cashd.pdf · The Commutative Algebra of Highly Symmetric Data Jan Draisma TU Eindhoven Utrecht, Nov 2013. 1 3 0 3 1

8

The Commutative Algebraof Highly Symmetric Data

multilin alg

Page 32: of Highly Symmetric Data The Commutative Algebrajdraisma/talks/cashd.pdf · The Commutative Algebra of Highly Symmetric Data Jan Draisma TU Eindhoven Utrecht, Nov 2013. 1 3 0 3 1

9Tensor rank

A wrong-titled movietensor T=multi-indexed array of numbersmatrices=two-way tensorsthis picture=three-way tensor, . . .

Page 33: of Highly Symmetric Data The Commutative Algebrajdraisma/talks/cashd.pdf · The Commutative Algebra of Highly Symmetric Data Jan Draisma TU Eindhoven Utrecht, Nov 2013. 1 3 0 3 1

9Tensor rank

A wrong-titled movietensor T=multi-indexed array of numbersmatrices=two-way tensorsthis picture=three-way tensor, . . .

Pure tensor Phas entries Pi, j,...,k = xiy j · · · zk

for vectors x, . . . , z for a matrix: xyT , rank one

Page 34: of Highly Symmetric Data The Commutative Algebrajdraisma/talks/cashd.pdf · The Commutative Algebra of Highly Symmetric Data Jan Draisma TU Eindhoven Utrecht, Nov 2013. 1 3 0 3 1

9Tensor rank

A wrong-titled movietensor T=multi-indexed array of numbersmatrices=two-way tensorsthis picture=three-way tensor, . . .

Pure tensor Phas entries Pi, j,...,k = xiy j · · · zk

for vectors x, . . . , z for a matrix: xyT , rank one

Tensor rank of Tis minimal k in T =

∑kj=1 P( j) with each P( j) pure

generalises matrix rank useful for MRI data, communication complexity, phylogenetics etc.

Page 35: of Highly Symmetric Data The Commutative Algebrajdraisma/talks/cashd.pdf · The Commutative Algebra of Highly Symmetric Data Jan Draisma TU Eindhoven Utrecht, Nov 2013. 1 3 0 3 1

10Finiteness for bounded-rank tensors

Matrix rank Tensor rankefficiently computable NP-hardfield independent field dependentcan only go down in limit can also go up

Page 36: of Highly Symmetric Data The Commutative Algebrajdraisma/talks/cashd.pdf · The Commutative Algebra of Highly Symmetric Data Jan Draisma TU Eindhoven Utrecht, Nov 2013. 1 3 0 3 1

10Finiteness for bounded-rank tensors

Matrix rank Tensor rankefficiently computable NP-hardfield independent field dependentcan only go down in limit can also go up

Border rank of Tis smallest rank of T ′ arbitrarily close to T also extremely useful for matrices coincides with rank

Page 37: of Highly Symmetric Data The Commutative Algebrajdraisma/talks/cashd.pdf · The Commutative Algebra of Highly Symmetric Data Jan Draisma TU Eindhoven Utrecht, Nov 2013. 1 3 0 3 1

10Finiteness for bounded-rank tensors

Matrix rank Tensor rankefficiently computable NP-hardfield independent field dependentcan only go down in limit can also go up

Border rank of Tis smallest rank of T ′ arbitrarily close to T also extremely useful for matrices coincides with rank

Matrix rank < kgiven by k × k-subdetsefficiently checkable

Page 38: of Highly Symmetric Data The Commutative Algebrajdraisma/talks/cashd.pdf · The Commutative Algebra of Highly Symmetric Data Jan Draisma TU Eindhoven Utrecht, Nov 2013. 1 3 0 3 1

10Finiteness for bounded-rank tensors

Matrix rank Tensor rankefficiently computable NP-hardfield independent field dependentcan only go down in limit can also go up

Border rank of Tis smallest rank of T ′ arbitrarily close to T also extremely useful for matrices coincides with rank

Matrix rank < k Border rank < kgiven by k × k-subdets finitely many equations up to symmetry

Draisma-Kuttler [Duke 2014]

efficiently checkable polynomial-time checkable uses space of∞-way tensors

Page 39: of Highly Symmetric Data The Commutative Algebrajdraisma/talks/cashd.pdf · The Commutative Algebra of Highly Symmetric Data Jan Draisma TU Eindhoven Utrecht, Nov 2013. 1 3 0 3 1

10Finiteness for bounded-rank tensors

Matrix rank Tensor rankefficiently computable NP-hardfield independent field dependentcan only go down in limit can also go up

Border rank of Tis smallest rank of T ′ arbitrarily close to T also extremely useful for matrices coincides with rank

Matrix rank < k Border rank < kgiven by k × k-subdets finitely many equations up to symmetry

Draisma-Kuttler [Duke 2014]

efficiently checkable polynomial-time checkable uses space of∞-way tensors

aabc

abc

def

ghi

abc

def

ghi

⋃∞n=0 Sym(n) n GLn

3

Page 40: of Highly Symmetric Data The Commutative Algebrajdraisma/talks/cashd.pdf · The Commutative Algebra of Highly Symmetric Data Jan Draisma TU Eindhoven Utrecht, Nov 2013. 1 3 0 3 1

11

The Commutative Algebraof Highly Symmetric Data

alg geometry

Page 41: of Highly Symmetric Data The Commutative Algebrajdraisma/talks/cashd.pdf · The Commutative Algebra of Highly Symmetric Data Jan Draisma TU Eindhoven Utrecht, Nov 2013. 1 3 0 3 1

12Grassmannians: functoriality and duality

V a fin-dim vector space over an infinite field K Grp(V) := {v1 ∧ · · · ∧ vp | vi ∈ V} ⊆

∧p Vcone over Grassmannian(rank-one alternating tensors)

Page 42: of Highly Symmetric Data The Commutative Algebrajdraisma/talks/cashd.pdf · The Commutative Algebra of Highly Symmetric Data Jan Draisma TU Eindhoven Utrecht, Nov 2013. 1 3 0 3 1

12Grassmannians: functoriality and duality

V a fin-dim vector space over an infinite field K Grp(V) := {v1 ∧ · · · ∧ vp | vi ∈ V} ⊆

∧p Vcone over Grassmannian(rank-one alternating tensors)

Two properties:1. if ϕ : V → W linear ∧p ϕ :

∧p V →∧p W

maps Grp(V)→ Grp(W)

Page 43: of Highly Symmetric Data The Commutative Algebrajdraisma/talks/cashd.pdf · The Commutative Algebra of Highly Symmetric Data Jan Draisma TU Eindhoven Utrecht, Nov 2013. 1 3 0 3 1

12Grassmannians: functoriality and duality

V a fin-dim vector space over an infinite field K Grp(V) := {v1 ∧ · · · ∧ vp | vi ∈ V} ⊆

∧p Vcone over Grassmannian(rank-one alternating tensors)

Two properties:1. if ϕ : V → W linear ∧p ϕ :

∧p V →∧p W

maps Grp(V)→ Grp(W)

2. if dim V =: n + p with n, p ≥ 0 natural map

∧p V → (∧n V)∗ →

∧n(V∗)maps Grp(V)→ Grn(V∗)

Page 44: of Highly Symmetric Data The Commutative Algebrajdraisma/talks/cashd.pdf · The Commutative Algebra of Highly Symmetric Data Jan Draisma TU Eindhoven Utrecht, Nov 2013. 1 3 0 3 1

13Plucker varieties

DefinitionRules X0,X1,X2, . . . with

Xp : {vector spaces V} → {varieties in∧p V}

Page 45: of Highly Symmetric Data The Commutative Algebrajdraisma/talks/cashd.pdf · The Commutative Algebra of Highly Symmetric Data Jan Draisma TU Eindhoven Utrecht, Nov 2013. 1 3 0 3 1

13Plucker varieties

DefinitionRules X0,X1,X2, . . . with

Xp : {vector spaces V} → {varieties in∧p V}

form a Plucker variety if, for dim V = n + p,1. ϕ : V → W

∧p ϕ maps Xp(V)→ Xp(W)2.∧p V →

∧n(V∗) maps Xp(V)→ Xn(V∗)

Page 46: of Highly Symmetric Data The Commutative Algebrajdraisma/talks/cashd.pdf · The Commutative Algebra of Highly Symmetric Data Jan Draisma TU Eindhoven Utrecht, Nov 2013. 1 3 0 3 1

13Plucker varieties

DefinitionRules X0,X1,X2, . . . with

Xp : {vector spaces V} → {varieties in∧p V}

ConstructionsX,Y Plucker varieties so areX + Y (join), τX (tangential),X ∪ Y,X ∩ Y

form a Plucker variety if, for dim V = n + p,1. ϕ : V → W

∧p ϕ maps Xp(V)→ Xp(W)2.∧p V →

∧n(V∗) maps Xp(V)→ Xn(V∗)

Page 47: of Highly Symmetric Data The Commutative Algebrajdraisma/talks/cashd.pdf · The Commutative Algebra of Highly Symmetric Data Jan Draisma TU Eindhoven Utrecht, Nov 2013. 1 3 0 3 1

13Plucker varieties

DefinitionRules X0,X1,X2, . . . with

Xp : {vector spaces V} → {varieties in∧p V}

ConstructionsX,Y Plucker varieties so areX + Y (join), τX (tangential),X ∪ Y,X ∩ Yskew analogue of Snowden’s ∆-varieties

form a Plucker variety if, for dim V = n + p,1. ϕ : V → W

∧p ϕ maps Xp(V)→ Xp(W)2.∧p V →

∧n(V∗) maps Xp(V)→ Xn(V∗)

Page 48: of Highly Symmetric Data The Commutative Algebrajdraisma/talks/cashd.pdf · The Commutative Algebra of Highly Symmetric Data Jan Draisma TU Eindhoven Utrecht, Nov 2013. 1 3 0 3 1

14Finiteness for Plucker varieties, with Eggermont

DefinitionA Plucker variety {Xp}p is boundedif X2(V) ,

∧2 V for dim V sufficiently large.

Page 49: of Highly Symmetric Data The Commutative Algebrajdraisma/talks/cashd.pdf · The Commutative Algebra of Highly Symmetric Data Jan Draisma TU Eindhoven Utrecht, Nov 2013. 1 3 0 3 1

14Finiteness for Plucker varieties, with Eggermont

DefinitionA Plucker variety {Xp}p is boundedif X2(V) ,

∧2 V for dim V sufficiently large.

TheoremAny bounded Plucker variety is definedset-theoretically in bounded degree, byfinitely many equations up to symmetry.

Page 50: of Highly Symmetric Data The Commutative Algebrajdraisma/talks/cashd.pdf · The Commutative Algebra of Highly Symmetric Data Jan Draisma TU Eindhoven Utrecht, Nov 2013. 1 3 0 3 1

14Finiteness for Plucker varieties, with Eggermont

DefinitionA Plucker variety {Xp}p is boundedif X2(V) ,

∧2 V for dim V sufficiently large.

TheoremAny bounded Plucker variety is definedset-theoretically in bounded degree, byfinitely many equations up to symmetry.

TheoremFor any fixed bounded Plucker variety thereexists a polynomial-time membership test.

Page 51: of Highly Symmetric Data The Commutative Algebrajdraisma/talks/cashd.pdf · The Commutative Algebra of Highly Symmetric Data Jan Draisma TU Eindhoven Utrecht, Nov 2013. 1 3 0 3 1

14Finiteness for Plucker varieties, with Eggermont

DefinitionA Plucker variety {Xp}p is boundedif X2(V) ,

∧2 V for dim V sufficiently large.

TheoremAny bounded Plucker variety is definedset-theoretically in bounded degree, byfinitely many equations up to symmetry.

TheoremFor any fixed bounded Plucker variety thereexists a polynomial-time membership test.

Theorems apply, in particular, tokGr = k-th secant variety of Gr.

Page 52: of Highly Symmetric Data The Commutative Algebrajdraisma/talks/cashd.pdf · The Commutative Algebra of Highly Symmetric Data Jan Draisma TU Eindhoven Utrecht, Nov 2013. 1 3 0 3 1

15The infinite wedge

V∞ := 〈. . . , x−3, x−2, x−1, x1, x2, x3, . . .〉KVn,p := 〈x−n, . . . , x−1, x1, . . . , xp〉 ⊆ V∞

Page 53: of Highly Symmetric Data The Commutative Algebrajdraisma/talks/cashd.pdf · The Commutative Algebra of Highly Symmetric Data Jan Draisma TU Eindhoven Utrecht, Nov 2013. 1 3 0 3 1

15The infinite wedge

V∞ := 〈. . . , x−3, x−2, x−1, x1, x2, x3, . . .〉KVn,p := 〈x−n, . . . , x−1, x1, . . . , xp〉 ⊆ V∞

Diagram∧0 V00∧1 V01

∧2 V02

∧0 V10∧1 V11

∧2 V12

∧p Vn,p

∧p Vn+1,p

∧p+1 Vn,p+1

Page 54: of Highly Symmetric Data The Commutative Algebrajdraisma/talks/cashd.pdf · The Commutative Algebra of Highly Symmetric Data Jan Draisma TU Eindhoven Utrecht, Nov 2013. 1 3 0 3 1

15The infinite wedge

V∞ := 〈. . . , x−3, x−2, x−1, x1, x2, x3, . . .〉KVn,p := 〈x−n, . . . , x−1, x1, . . . , xp〉 ⊆ V∞

Diagram∧0 V00∧1 V01

∧2 V02

∧0 V10∧1 V11

∧2 V12

∧p Vn,p

∧p Vn+1,p

∧p+1 Vn,p+1t 7→ t ∧ xp+1

Page 55: of Highly Symmetric Data The Commutative Algebrajdraisma/talks/cashd.pdf · The Commutative Algebra of Highly Symmetric Data Jan Draisma TU Eindhoven Utrecht, Nov 2013. 1 3 0 3 1

15The infinite wedge

V∞ := 〈. . . , x−3, x−2, x−1, x1, x2, x3, . . .〉KVn,p := 〈x−n, . . . , x−1, x1, . . . , xp〉 ⊆ V∞

Diagram∧0 V00∧1 V01

∧2 V02

∧0 V10∧1 V11

∧2 V12

∧p Vn,p

∧p Vn+1,p

∧p+1 Vn,p+1t 7→ t ∧ xp+1

Definition∧∞/2 V∞ := lim→∧p Vn,p the infinite wedge (charge-0 part);

basis {xI := xi1 ∧ xi2 ∧ · · ·}I , I = {i1 < i2 < . . .}, ik = k for k � 0

Page 56: of Highly Symmetric Data The Commutative Algebrajdraisma/talks/cashd.pdf · The Commutative Algebra of Highly Symmetric Data Jan Draisma TU Eindhoven Utrecht, Nov 2013. 1 3 0 3 1

15The infinite wedge

V∞ := 〈. . . , x−3, x−2, x−1, x1, x2, x3, . . .〉KVn,p := 〈x−n, . . . , x−1, x1, . . . , xp〉 ⊆ V∞

Diagram∧0 V00∧1 V01

∧2 V02

∧0 V10∧1 V11

∧2 V12

∧p Vn,p

∧p Vn+1,p

∧p+1 Vn,p+1t 7→ t ∧ xp+1

Definition∧∞/2 V∞ := lim→∧p Vn,p the infinite wedge (charge-0 part);

basis {xI := xi1 ∧ xi2 ∧ · · ·}I , I = {i1 < i2 < . . .}, ik = k for k � 0

On∧∞/2 V∞ acts GL∞ :=

⋃n,p GL(Vn,p).

Page 57: of Highly Symmetric Data The Commutative Algebrajdraisma/talks/cashd.pdf · The Commutative Algebra of Highly Symmetric Data Jan Draisma TU Eindhoven Utrecht, Nov 2013. 1 3 0 3 1

16Young diagrams

Recall∧∞/2 V∞ has basis {xI := xi1 ∧ xi2 ∧ · · ·}I , whereI = {i1 < i2 < . . .} ⊆ (−N) ∪ (+N) with ik = k for k � 0

Page 58: of Highly Symmetric Data The Commutative Algebrajdraisma/talks/cashd.pdf · The Commutative Algebra of Highly Symmetric Data Jan Draisma TU Eindhoven Utrecht, Nov 2013. 1 3 0 3 1

16Young diagrams

Recall∧∞/2 V∞ has basis {xI := xi1 ∧ xi2 ∧ · · ·}I , whereI = {i1 < i2 < . . .} ⊆ (−N) ∪ (+N) with ik = k for k � 0

Bijection with Young diagramsxI with I = {−3,−2, 1, 2, 4, 6, 7, . . .} corresponds to

−1−2−3−4

1 2 3 4 5 6 7

Page 59: of Highly Symmetric Data The Commutative Algebrajdraisma/talks/cashd.pdf · The Commutative Algebra of Highly Symmetric Data Jan Draisma TU Eindhoven Utrecht, Nov 2013. 1 3 0 3 1

16Young diagrams

Recall∧∞/2 V∞ has basis {xI := xi1 ∧ xi2 ∧ · · ·}I , whereI = {i1 < i2 < . . .} ⊆ (−N) ∪ (+N) with ik = k for k � 0

Bijection with Young diagramsxI with I = {−3,−2, 1, 2, 4, 6, 7, . . .} corresponds to

−1−2−3−4

1 2 3 4 5 6 7These xI will be the coordinates of our ambient space, partiallyordered by I ≤ J if ik ≥ jk for all k (inclusion of Young diags).Unique minimum is I = {1, 2, . . .}.

Page 60: of Highly Symmetric Data The Commutative Algebrajdraisma/talks/cashd.pdf · The Commutative Algebra of Highly Symmetric Data Jan Draisma TU Eindhoven Utrecht, Nov 2013. 1 3 0 3 1

17The limit of a Plucker variety

Dual diagram∧0 V∗00∧1 V∗01∧0 V∗10∧1 V∗11

∧p V∗n,p

∧p V∗n+1,p

∧p+1 V∗n,p+1

Page 61: of Highly Symmetric Data The Commutative Algebrajdraisma/talks/cashd.pdf · The Commutative Algebra of Highly Symmetric Data Jan Draisma TU Eindhoven Utrecht, Nov 2013. 1 3 0 3 1

17The limit of a Plucker variety

{Xp}p≥0 a Plucker variety varieties Xn,p := Xp(V∗n,p)

Dual diagram∧0 V∗00∧1 V∗01∧0 V∗10∧1 V∗11

∧p V∗n,p

∧p V∗n+1,p

∧p+1 V∗n,p+1

Page 62: of Highly Symmetric Data The Commutative Algebrajdraisma/talks/cashd.pdf · The Commutative Algebra of Highly Symmetric Data Jan Draisma TU Eindhoven Utrecht, Nov 2013. 1 3 0 3 1

17The limit of a Plucker variety

{Xp}p≥0 a Plucker variety varieties Xn,p := Xp(V∗n,p)

Dual diagram∧0 V∗00∧1 V∗01∧0 V∗10∧1 V∗11

∧p V∗n,p

∧p V∗n+1,p

∧p+1 V∗n,p+1

Xn,p Xn,p+1

Xn+1,p

Page 63: of Highly Symmetric Data The Commutative Algebrajdraisma/talks/cashd.pdf · The Commutative Algebra of Highly Symmetric Data Jan Draisma TU Eindhoven Utrecht, Nov 2013. 1 3 0 3 1

17The limit of a Plucker variety

{Xp}p≥0 a Plucker variety varieties Xn,p := Xp(V∗n,p)

Dual diagram∧0 V∗00∧1 V∗01∧0 V∗10∧1 V∗11

∧p V∗n,p

∧p V∗n+1,p

∧p+1 V∗n,p+1

Xn,p Xn,p+1

Xn+1,p

X∞ := lim← Xn,p is GL∞-stable subvariety of (∧∞/2 V∞)∗

Page 64: of Highly Symmetric Data The Commutative Algebrajdraisma/talks/cashd.pdf · The Commutative Algebra of Highly Symmetric Data Jan Draisma TU Eindhoven Utrecht, Nov 2013. 1 3 0 3 1

17The limit of a Plucker variety

{Xp}p≥0 a Plucker variety varieties Xn,p := Xp(V∗n,p)

Dual diagram∧0 V∗00∧1 V∗01∧0 V∗10∧1 V∗11

∧p V∗n,p

∧p V∗n+1,p

∧p+1 V∗n,p+1

Xn,p Xn,p+1

Xn+1,p

Theorem (implies earlier)For bounded X, the limit X∞ is cut out by finitely manyGL∞-orbits of equations.

X∞ := lim← Xn,p is GL∞-stable subvariety of (∧∞/2 V∞)∗

Page 65: of Highly Symmetric Data The Commutative Algebrajdraisma/talks/cashd.pdf · The Commutative Algebra of Highly Symmetric Data Jan Draisma TU Eindhoven Utrecht, Nov 2013. 1 3 0 3 1

18Sato’s Grassmannian

ExampleThe limit Gr∞ ⊆ (

∧∞/2 V∞)∗ of (Grp)p is Sato’s Grassmanniandefined by polynomials

∑i∈I ±xI−i · xJ+i = 0

where ik = k − 1 for k � 0 and jk = k + 1 for k � 0.

Page 66: of Highly Symmetric Data The Commutative Algebrajdraisma/talks/cashd.pdf · The Commutative Algebra of Highly Symmetric Data Jan Draisma TU Eindhoven Utrecht, Nov 2013. 1 3 0 3 1

18Sato’s Grassmannian

ExampleThe limit Gr∞ ⊆ (

∧∞/2 V∞)∗ of (Grp)p is Sato’s Grassmanniandefined by polynomials

∑i∈I ±xI−i · xJ+i = 0

where ik = k − 1 for k � 0 and jk = k + 1 for k � 0.

not finitely many GL∞-orbits

Page 67: of Highly Symmetric Data The Commutative Algebrajdraisma/talks/cashd.pdf · The Commutative Algebra of Highly Symmetric Data Jan Draisma TU Eindhoven Utrecht, Nov 2013. 1 3 0 3 1

18Sato’s Grassmannian

ExampleThe limit Gr∞ ⊆ (

∧∞/2 V∞)∗ of (Grp)p is Sato’s Grassmanniandefined by polynomials

∑i∈I ±xI−i · xJ+i = 0

where ik = k − 1 for k � 0 and jk = k + 1 for k � 0.

not finitely many GL∞-orbits

But in fact the GL∞-orbit of(x−2,−1,3,... · x1,2,3,...) − (x−2,1,3,... · x−1,2,3,...) + (x−2,2,3,... · x−1,1,3,...)

defines Gr∞ set-theoretically.

Page 68: of Highly Symmetric Data The Commutative Algebrajdraisma/talks/cashd.pdf · The Commutative Algebra of Highly Symmetric Data Jan Draisma TU Eindhoven Utrecht, Nov 2013. 1 3 0 3 1

18Sato’s Grassmannian

ExampleThe limit Gr∞ ⊆ (

∧∞/2 V∞)∗ of (Grp)p is Sato’s Grassmanniandefined by polynomials

∑i∈I ±xI−i · xJ+i = 0

where ik = k − 1 for k � 0 and jk = k + 1 for k � 0.

not finitely many GL∞-orbits

But in fact the GL∞-orbit of(x−2,−1,3,... · x1,2,3,...) − (x−2,1,3,... · x−1,2,3,...) + (x−2,2,3,... · x−1,1,3,...)

defines Gr∞ set-theoretically.

Our theorems imply that also higher secant varieties of Sato’sGrassmannian are defined by finitely many GL∞-orbits ofequations. . . we just don’t know which!

Page 69: of Highly Symmetric Data The Commutative Algebrajdraisma/talks/cashd.pdf · The Commutative Algebra of Highly Symmetric Data Jan Draisma TU Eindhoven Utrecht, Nov 2013. 1 3 0 3 1

19

The Commutative Algebraof Highly Symmetric Data

combinatorics

ConjectureOver any field K, Sato’s Grassmannian Gr∞(K) is Noetherian upto Sym(−N ∪ +N) ⊆ GL∞.

Page 70: of Highly Symmetric Data The Commutative Algebrajdraisma/talks/cashd.pdf · The Commutative Algebra of Highly Symmetric Data Jan Draisma TU Eindhoven Utrecht, Nov 2013. 1 3 0 3 1

20The graph minor theorem

Graph minorsAny sequence of operations

takes a graph to a minor.and

Page 71: of Highly Symmetric Data The Commutative Algebrajdraisma/talks/cashd.pdf · The Commutative Algebra of Highly Symmetric Data Jan Draisma TU Eindhoven Utrecht, Nov 2013. 1 3 0 3 1

20The graph minor theorem

Graph minorsAny sequence of operations

takes a graph to a minor.and

Robertson-Seymour [JCB 1983–2004, 669pp]Any network property preserved undertaking minors can be characterised byfinitely many forbidden minors.

Page 72: of Highly Symmetric Data The Commutative Algebrajdraisma/talks/cashd.pdf · The Commutative Algebra of Highly Symmetric Data Jan Draisma TU Eindhoven Utrecht, Nov 2013. 1 3 0 3 1

20The graph minor theorem

Wagner [Math Ann 1937]For planarity these are

Graph minorsAny sequence of operations

takes a graph to a minor.and

and

Robertson-Seymour [JCB 1983–2004, 669pp]Any network property preserved undertaking minors can be characterised byfinitely many forbidden minors.

Page 73: of Highly Symmetric Data The Commutative Algebrajdraisma/talks/cashd.pdf · The Commutative Algebra of Highly Symmetric Data Jan Draisma TU Eindhoven Utrecht, Nov 2013. 1 3 0 3 1

21The matroid minor theorem

1

From graphs to matroids

11

1

11

1

11

−1 −1 −1−1 −1 −1

−1 −1 −1

00

00

0

0

00

00

00

000

0

0

00

0

00

0

0

0000

0

000

00

00

column independencestructure = matroid

Page 74: of Highly Symmetric Data The Commutative Algebrajdraisma/talks/cashd.pdf · The Commutative Algebra of Highly Symmetric Data Jan Draisma TU Eindhoven Utrecht, Nov 2013. 1 3 0 3 1

21The matroid minor theorem

1

From graphs to matroids

11

1

11

1

11

−1 −1 −1−1 −1 −1

−1 −1 −1

00

00

0

0

00

00

00

000

0

0

00

0

00

0

0

0000

0

000

00

00

column independencestructure = matroid

Matroid minor theorem (Geelen-Gerards-Whittle)Any minor-preserved property of matroidsover a fixed finite field K can be characterisedby finitely many forbidden minors.

Page 75: of Highly Symmetric Data The Commutative Algebrajdraisma/talks/cashd.pdf · The Commutative Algebra of Highly Symmetric Data Jan Draisma TU Eindhoven Utrecht, Nov 2013. 1 3 0 3 1

21The matroid minor theorem

1

From graphs to matroids

11

1

11

1

11

−1 −1 −1−1 −1 −1

−1 −1 −1

00

00

0

0

00

00

00

000

0

0

00

0

00

0

0

0000

0

000

00

00

column independencestructure = matroid

Matroid minor theorem (Geelen-Gerards-Whittle)Any minor-preserved property of matroidsover a fixed finite field K can be characterisedby finitely many forbidden minors.

Surprising correspondenceEquivalant to Sym(−N ∪ +N)-Noetherianity of Gr∞(K)(but Noetherianity may be true even for infinite K).

Page 76: of Highly Symmetric Data The Commutative Algebrajdraisma/talks/cashd.pdf · The Commutative Algebra of Highly Symmetric Data Jan Draisma TU Eindhoven Utrecht, Nov 2013. 1 3 0 3 1

22

theory and algorithms for highly symmetric,∞-dim varieties exciting interplay of algebra, combinatorics, statistics, and geometry

The Commutative Algebraof Highly Symmetric Data

alg geometryalg statistics combinatoricsmultilin alg

Page 77: of Highly Symmetric Data The Commutative Algebrajdraisma/talks/cashd.pdf · The Commutative Algebra of Highly Symmetric Data Jan Draisma TU Eindhoven Utrecht, Nov 2013. 1 3 0 3 1

22

theory and algorithms for highly symmetric,∞-dim varieties exciting interplay of algebra, combinatorics, statistics, and geometry

Paul Gordan

The Commutative Algebraof Highly Symmetric Data

alg geometryalg statistics combinatoricsmultilin alg

Page 78: of Highly Symmetric Data The Commutative Algebrajdraisma/talks/cashd.pdf · The Commutative Algebra of Highly Symmetric Data Jan Draisma TU Eindhoven Utrecht, Nov 2013. 1 3 0 3 1

22

theory and algorithms for highly symmetric,∞-dim varieties exciting interplay of algebra, combinatorics, statistics, and geometry

Ich habe mich davon uberzeugt, daßauch die Theologie ihre Vorzuge hat.

Paul Gordan

The Commutative Algebraof Highly Symmetric Data

alg geometryalg statistics combinatoricsmultilin alg

Page 79: of Highly Symmetric Data The Commutative Algebrajdraisma/talks/cashd.pdf · The Commutative Algebra of Highly Symmetric Data Jan Draisma TU Eindhoven Utrecht, Nov 2013. 1 3 0 3 1

22

theory and algorithms for highly symmetric,∞-dim varieties exciting interplay of algebra, combinatorics, statistics, and geometry

Ich habe mich davon uberzeugt, daßauch die Theologie ihre Vorzuge hat.

Paul Gordan

Thank you!

The Commutative Algebraof Highly Symmetric Data

alg geometryalg statistics combinatoricsmultilin alg