68
Priestley Duality and Nelson Lattices Sergei Odintsov 1 1 Sobolev Institute of Mathematics [email protected] Logic, Algebra and Truth Degrees 2010, 07.09.10 Sergei Odintsov ( Sobolev Institute of Mathematics odints[email protected]. ru ) Priestley Duality LA TD 2010 1 / 19

Odintsov

Embed Size (px)

Citation preview

Page 1: Odintsov

8/8/2019 Odintsov

http://slidepdf.com/reader/full/odintsov 1/68

Priestley Duality and Nelson Lattices

Sergei Odintsov1

1Sobolev Institute of [email protected]

Logic, Algebra and Truth Degrees 2010, 07.09.10

Sergei Odintsov ( Sobolev Institute of Mathematics [email protected] )

Priestley Duality LATD 2010 1 / 19

Page 2: Odintsov

8/8/2019 Odintsov

http://slidepdf.com/reader/full/odintsov 2/68

Historical remarks

[M. Stone 1936]Duality of Boolean algebras and Stone spaces

(compact totally disconnected spaces)

[M. Stone 1937]

“Less satisfactory” duality for distributive lattices[H. Priestley 1970]

Duality of distributive lattices and Priestley spaces

(compact totally order-disconnected spaces)

[R. Cignoli 1986, A. Sendlewski 1990]Priestley duality for N3-Lattices (models of explosive Nelson’s

logic N3) based on interpolation property [Monteiro 1963]

Sergei Odintsov ( Sobolev Institute of Mathematics [email protected] )

Priestley Duality LATD 2010 2 / 19

Page 3: Odintsov

8/8/2019 Odintsov

http://slidepdf.com/reader/full/odintsov 3/68

Historical remarks

[M. Stone 1936]Duality of Boolean algebras and Stone spaces

(compact totally disconnected spaces)

[M. Stone 1937]

“Less satisfactory” duality for distributive lattices[H. Priestley 1970]

Duality of distributive lattices and Priestley spaces

(compact totally order-disconnected spaces)

[R. Cignoli 1986, A. Sendlewski 1990]Priestley duality for N3-Lattices (models of explosive Nelson’s

logic N3) based on interpolation property [Monteiro 1963]

Sergei Odintsov ( Sobolev Institute of Mathematics [email protected] )

Priestley Duality LATD 2010 2 / 19

Page 4: Odintsov

8/8/2019 Odintsov

http://slidepdf.com/reader/full/odintsov 4/68

Historical remarks

[M. Stone 1936]Duality of Boolean algebras and Stone spaces

(compact totally disconnected spaces)

[M. Stone 1937]

“Less satisfactory” duality for distributive lattices[H. Priestley 1970]

Duality of distributive lattices and Priestley spaces

(compact totally order-disconnected spaces)

[R. Cignoli 1986, A. Sendlewski 1990]Priestley duality for N3-Lattices (models of explosive Nelson’s

logic N3) based on interpolation property [Monteiro 1963]

Sergei Odintsov ( Sobolev Institute of Mathematics [email protected] )Priestley Duality LATD 2010 2 / 19

Page 5: Odintsov

8/8/2019 Odintsov

http://slidepdf.com/reader/full/odintsov 5/68

Historical remarks

[M. Stone 1936]Duality of Boolean algebras and Stone spaces

(compact totally disconnected spaces)

[M. Stone 1937]

“Less satisfactory” duality for distributive lattices[H. Priestley 1970]

Duality of distributive lattices and Priestley spaces

(compact totally order-disconnected spaces)

[R. Cignoli 1986, A. Sendlewski 1990]Priestley duality for N3-Lattices (models of explosive Nelson’s

logic N3) based on interpolation property [Monteiro 1963]

Sergei Odintsov ( Sobolev Institute of Mathematics [email protected] )Priestley Duality LATD 2010 2 / 19

Page 6: Odintsov

8/8/2019 Odintsov

http://slidepdf.com/reader/full/odintsov 6/68

Priestley Spaces

X  = (X , ≤, τ ) is an ordered topological space if ≤ is a partial

order on X  and τ  a topology on X .

X  is a totally order-disconnected topological space if for any

x , y ∈ X  with x ≤ y , there is a clopen cone U  such that x ∈ U and

y ∈ U .

Priestley space is a compact totally order-disconnected

topological space.

T   is the category of Priestley spaces and order preservingcontinuous functions.

Sergei Odintsov ( Sobolev Institute of Mathematics [email protected] )Priestley Duality LATD 2010 3 / 19

Page 7: Odintsov

8/8/2019 Odintsov

http://slidepdf.com/reader/full/odintsov 7/68

Priestley Spaces

X  = (X , ≤, τ ) is an ordered topological space if ≤ is a partial

order on X  and τ  a topology on X .

X  is a totally order-disconnected topological space if for any

x , y ∈ X  with x ≤ y , there is a clopen cone U  such that x ∈ U and

y ∈ U .

Priestley space is a compact totally order-disconnected

topological space.

T   is the category of Priestley spaces and order preservingcontinuous functions.

Sergei Odintsov ( Sobolev Institute of Mathematics [email protected] )Priestley Duality LATD 2010 3 / 19

Page 8: Odintsov

8/8/2019 Odintsov

http://slidepdf.com/reader/full/odintsov 8/68

Priestley Spaces

X  = (X , ≤, τ ) is an ordered topological space if ≤ is a partial

order on X  and τ  a topology on X .

X  is a totally order-disconnected topological space if for any

x , y ∈ X  with x ≤ y , there is a clopen cone U  such that x ∈ U and

y ∈ U .

Priestley space is a compact totally order-disconnected

topological space.

T   is the category of Priestley spaces and order preservingcontinuous functions.

Sergei Odintsov ( Sobolev Institute of Mathematics [email protected] )Priestley Duality LATD 2010 3 / 19

Page 9: Odintsov

8/8/2019 Odintsov

http://slidepdf.com/reader/full/odintsov 9/68

Priestley Spaces

X  = (X , ≤, τ ) is an ordered topological space if ≤ is a partial

order on X  and τ  a topology on X .

X  is a totally order-disconnected topological space if for any

x , y ∈ X  with x ≤ y , there is a clopen cone U  such that x ∈ U and

y ∈ U .

Priestley space is a compact totally order-disconnected

topological space.

T   is the category of Priestley spaces and order preservingcontinuous functions.

Sergei Odintsov ( Sobolev Institute of Mathematics [email protected] )Priestley Duality LATD 2010 3 / 19

Page 10: Odintsov

8/8/2019 Odintsov

http://slidepdf.com/reader/full/odintsov 10/68

Distributive lattices → Priestley spaces

D is the category of bounded distributive lattices and their

homomorphisms.

For A ∈ Ob (D) define

X(A) = (X , ⊆, τ ), where

1 X  is the set of prime filters on A;2 ⊆ is the set inclusion;3 τ  is given by the subbase:

σA(a ) := {P ∈ X  | a ∈ P } and X \ σA(a ), where a ∈ A

For f  : A → B, define X(f ) : X(B) → X(A) by:

X(f )(P ) := f −1(P )

Sergei Odintsov ( Sobolev Institute of Mathematics [email protected] )Priestley Duality LATD 2010 4 / 19

Page 11: Odintsov

8/8/2019 Odintsov

http://slidepdf.com/reader/full/odintsov 11/68

Distributive lattices → Priestley spaces

D is the category of bounded distributive lattices and their

homomorphisms.

For A ∈ Ob (D) define

X(A) = (X , ⊆, τ ), where

1 X  is the set of prime filters on A;2 ⊆ is the set inclusion;3 τ  is given by the subbase:

σA(a ) := {P ∈ X  | a ∈ P } and X \ σA(a ), where a ∈ A

For f  : A → B, define X(f ) : X(B) → X(A) by:

X(f )(P ) := f −1(P )

Sergei Odintsov ( Sobolev Institute of Mathematics [email protected] )Priestley Duality LATD 2010 4 / 19

Page 12: Odintsov

8/8/2019 Odintsov

http://slidepdf.com/reader/full/odintsov 12/68

Distributive lattices → Priestley spaces

D is the category of bounded distributive lattices and their

homomorphisms.For A ∈ Ob (D) define

X(A) = (X , ⊆, τ ), where

1 X  is the set of prime filters on A;2 ⊆ is the set inclusion;3 τ  is given by the subbase:

σA(a ) := {P ∈ X  | a ∈ P } and X \ σA(a ), where a ∈ A

For f  : A → B, define X(f ) : X(B) → X(A) by:

X(f )(P ) := f −1(P )

Sergei Odintsov ( Sobolev Institute of Mathematics [email protected] )Priestley Duality LATD 2010 4 / 19

Page 13: Odintsov

8/8/2019 Odintsov

http://slidepdf.com/reader/full/odintsov 13/68

Priestley spaces → Distributive lattices

For X ∈ Ob (T  ), D(X ) is the lattice of clopen cones in X .

For a T  -morphism f  : X → X 

,

D(f ) : D(X ) → D(X )

is given by the prescription D(f )(U ) := f −1(U ).

Sergei Odintsov ( Sobolev Institute of Mathematics [email protected] )Priestley Duality LATD 2010 5 / 19

Page 14: Odintsov

8/8/2019 Odintsov

http://slidepdf.com/reader/full/odintsov 14/68

Priestley spaces → Distributive lattices

For X ∈ Ob (T  ), D(X ) is the lattice of clopen cones in X .

For a T  -morphism f  : X → X 

,

D(f ) : D(X ) → D(X )

is given by the prescription D(f )(U ) := f −1(U ).

Sergei Odintsov ( Sobolev Institute of Mathematics [email protected] )Priestley Duality LATD 2010 5 / 19

P i l D li

Page 15: Odintsov

8/8/2019 Odintsov

http://slidepdf.com/reader/full/odintsov 15/68

Priestley Duality

X : D → T   and D : T → D are contravariant functors.

For X ∈ Ob (T  ), εX  : X → XD(X ) is a T  -isomorphism.

εX (x ) := {U ∈ D(X ) | x ∈ U }

For A ∈ Ob (D), σA : A → DX(A) is a lattice isomorphism.

σA(a ) := {P ∈ X  | a ∈ P }

Sergei Odintsov ( Sobolev Institute of Mathematics [email protected] )Priestley Duality LATD 2010 6 / 19

P i tl D lit

Page 16: Odintsov

8/8/2019 Odintsov

http://slidepdf.com/reader/full/odintsov 16/68

Priestley Duality

X : D → T   and D : T → D are contravariant functors.

For X ∈ Ob (T  ), εX  : X → XD(X ) is a T  -isomorphism.

εX (x ) := {U ∈ D(X ) | x ∈ U }

For A ∈ Ob (D), σA : A → DX(A) is a lattice isomorphism.

σA(a ) := {P ∈ X  | a ∈ P }

Sergei Odintsov ( Sobolev Institute of Mathematics [email protected] )Priestley Duality LATD 2010 6 / 19

P i tl D lit

Page 17: Odintsov

8/8/2019 Odintsov

http://slidepdf.com/reader/full/odintsov 17/68

Priestley Duality

X : D → T   and D : T → D are contravariant functors.

For X ∈ Ob (T  ), εX  : X → XD(X ) is a T  -isomorphism.

εX (x ) := {U ∈ D(X ) | x ∈ U }

For A ∈ Ob (D), σA : A → DX(A) is a lattice isomorphism.

σA(a ) := {P ∈ X  | a ∈ P }

Sergei Odintsov ( Sobolev Institute of Mathematics [email protected] )Priestley Duality LATD 2010 6 / 19

P i tl d lit

Page 18: Odintsov

8/8/2019 Odintsov

http://slidepdf.com/reader/full/odintsov 18/68

Priestley duality

Moreover σ : 1D ∼= D ◦ X and ε : 1T   ∼= X ◦ D are naturalisomorphisms, i.e., for any D-morphism f  : A → B and

T  -morphism g  : X → Y , the diagrams below are commutative.

B

A DX(A)

DX(B) c c

E

E

f  DX(f )

σA

σB Y 

X  XD(X )

XD(Y ) c c

E

E

g  XD(f )

εX 

εY 

Thus, the categories D and T   are dually equivalent via functors X

and D.

Sergei Odintsov ( Sobolev Institute of Mathematics [email protected] )Priestley Duality LATD 2010 7 / 19

Priestley duality

Page 19: Odintsov

8/8/2019 Odintsov

http://slidepdf.com/reader/full/odintsov 19/68

Priestley duality

Moreover σ : 1D ∼= D ◦ X and ε : 1T   ∼= X ◦ D are naturalisomorphisms, i.e., for any D-morphism f  : A → B and

T  -morphism g  : X → Y , the diagrams below are commutative.

B

A DX(A)

DX(B) c c

E

E

f  DX(f )

σA

σB Y 

X  XD(X )

XD(Y ) c c

E

E

g  XD(f )

εX 

εY 

Thus, the categories D and T   are dually equivalent via functors X

and D.

Sergei Odintsov ( Sobolev Institute of Mathematics [email protected] )Priestley Duality LATD 2010 7 / 19

Duality for Heyting algebras (folklore)

Page 20: Odintsov

8/8/2019 Odintsov

http://slidepdf.com/reader/full/odintsov 20/68

Duality for Heyting algebras (folklore)

Heyting space is a Priestley space X  s. t. U  ↓ is open for any U 

open in X .

For a Heyting space X , DH (X ) is the lattice D(X ) with the

operation ⊃:

U ⊃ V  := X \ (U \ V ) ↓ for any U ,V  ∈ D(X ).

DH (X ) is a Heyting algebra.

T  -morphism f  : X → Y  is a Heyting function if

f −1(U  ↓) = (f −1(U )) ↓ for any U open in Y .

Categories H∗ of Heyting spaces and functions and H of Heytingalgebras and their homomorphisms are dually equivalent via XH 

and DH .

Sergei Odintsov ( Sobolev Institute of Mathematics [email protected] )Priestley Duality LATD 2010 8 / 19

Duality for Heyting algebras (folklore)

Page 21: Odintsov

8/8/2019 Odintsov

http://slidepdf.com/reader/full/odintsov 21/68

Duality for Heyting algebras (folklore)

Heyting space is a Priestley space X  s. t. U  ↓ is open for any U 

open in X .

For a Heyting space X , DH (X ) is the lattice D(X ) with the

operation ⊃:

U ⊃ V  := X \ (U \ V ) ↓ for any U ,V  ∈ D(X ).

DH (X ) is a Heyting algebra.

T  -morphism f  : X → Y  is a Heyting function if

f −1(U  ↓) = (f −1(U )) ↓ for any U open in Y .

Categories H∗ of Heyting spaces and functions and H of Heytingalgebras and their homomorphisms are dually equivalent via XH 

and DH .

Sergei Odintsov ( Sobolev Institute of Mathematics [email protected] )Priestley Duality LATD 2010 8 / 19

Duality for Heyting algebras (folklore)

Page 22: Odintsov

8/8/2019 Odintsov

http://slidepdf.com/reader/full/odintsov 22/68

Duality for Heyting algebras (folklore)

Heyting space is a Priestley space X  s. t. U  ↓ is open for any U 

open in X .

For a Heyting space X , DH (X ) is the lattice D(X ) with the

operation ⊃:

U ⊃ V  := X \ (U \ V ) ↓ for any U ,V  ∈ D(X ).

DH (X ) is a Heyting algebra.

T  -morphism f  : X → Y  is a Heyting function if

f −1(U  ↓) = (f −1(U )) ↓ for any U open in Y .

Categories H∗ of Heyting spaces and functions and H of Heytingalgebras and their homomorphisms are dually equivalent via XH 

and DH .

Sergei Odintsov ( Sobolev Institute of Mathematics [email protected] )Priestley Duality LATD 2010 8 / 19

Duality for Heyting algebras (folklore)

Page 23: Odintsov

8/8/2019 Odintsov

http://slidepdf.com/reader/full/odintsov 23/68

Duality for Heyting algebras (folklore)

Heyting space is a Priestley space X  s. t. U  ↓ is open for any U 

open in X .

For a Heyting space X , DH (X ) is the lattice D(X ) with the

operation ⊃:

U ⊃ V  := X \ (U \ V ) ↓ for any U ,V  ∈ D(X ).

DH (X ) is a Heyting algebra.

T  -morphism f  : X → Y  is a Heyting function if

f −1(U  ↓) = (f −1(U )) ↓ for any U open in Y .

Categories H∗ of Heyting spaces and functions and H of Heytingalgebras and their homomorphisms are dually equivalent via XH 

and DH .

Sergei Odintsov ( Sobolev Institute of Mathematics [email protected] )Priestley Duality LATD 2010 8 / 19

Priestley duality for De Morgan algebras

Page 24: Odintsov

8/8/2019 Odintsov

http://slidepdf.com/reader/full/odintsov 24/68

Priestley duality for De Morgan algebras

[Cornish & Fowler 77]

A De Morgan space is a pair (X ,g ), whereX  is a Priestley space;g  : X → X  is an antimonotonic homeomorphism s.t. g 2 = id X .

f  : (X ,g ) → (X ,g ) is a De Morgan function if fg = g f .

For a De Morgan space (X ,g ), put:

M(X ,g ) := D(X ), ∩, ∪, ∼,∅,X , where

∼ U  := X  \ g (U ).

For a De Morgan algebra A, put S(A) := (X(A),g ), where

g (P ) := A \ P , P  := {∼ a | a ∈ P }.

Sergei Odintsov ( Sobolev Institute of Mathematics [email protected] )Priestley Duality LATD 2010 9 / 19

Priestley duality for De Morgan algebras

Page 25: Odintsov

8/8/2019 Odintsov

http://slidepdf.com/reader/full/odintsov 25/68

Priestley duality for De Morgan algebras

[Cornish & Fowler 77]

A De Morgan space is a pair (X ,g ), whereX  is a Priestley space;g  : X → X  is an antimonotonic homeomorphism s.t. g 2 = id X .

f  : (X ,g ) → (X ,g ) is a De Morgan function if fg = g f .

For a De Morgan space (X ,g ), put:

M(X ,g ) := D(X ), ∩, ∪, ∼,∅,X , where

∼ U  := X  \ g (U ).

For a De Morgan algebra A, put S(A) := (X(A),g ), where

g (P ) := A \ P , P  := {∼ a | a ∈ P }.

Sergei Odintsov ( Sobolev Institute of Mathematics [email protected] )Priestley Duality LATD 2010 9 / 19

Priestley duality for De Morgan algebras

Page 26: Odintsov

8/8/2019 Odintsov

http://slidepdf.com/reader/full/odintsov 26/68

Priestley duality for De Morgan algebras

[Cornish & Fowler 77]

A De Morgan space is a pair (X ,g ), whereX  is a Priestley space;g  : X → X  is an antimonotonic homeomorphism s.t. g 2 = id X .

f  : (X ,g ) → (X ,g ) is a De Morgan function if fg = g f .

For a De Morgan space (X ,g ), put:

M(X ,g ) := D(X ), ∩, ∪, ∼,∅,X , where

∼ U  := X  \ g (U ).

For a De Morgan algebra A, put S(A) := (X(A),g ), where

g (P ) := A \ P , P  := {∼ a | a ∈ P }.

Sergei Odintsov ( Sobolev Institute of Mathematics [email protected] )Priestley Duality LATD 2010 9 / 19

Priestley duality for De Morgan algebras

Page 27: Odintsov

8/8/2019 Odintsov

http://slidepdf.com/reader/full/odintsov 27/68

Priestley duality for De Morgan algebras

[Cornish & Fowler 77]

A De Morgan space is a pair (X ,g ), whereX  is a Priestley space;g  : X → X  is an antimonotonic homeomorphism s.t. g 2 = id X .

f  : (X ,g ) → (X ,g ) is a De Morgan function if fg = g f .

For a De Morgan space (X ,g ), put:

M(X ,g ) := D(X ), ∩, ∪, ∼,∅,X , where

∼ U  := X  \ g (U ).

For a De Morgan algebra A, put S(A) := (X(A),g ), where

g (P ) := A \ P , P  := {∼ a | a ∈ P }.

Sergei Odintsov ( Sobolev Institute of Mathematics [email protected] )Priestley Duality LATD 2010 9 / 19

Axiomatics of N4

Page 28: Odintsov

8/8/2019 Odintsov

http://slidepdf.com/reader/full/odintsov 28/68

Axiomatics of N4

Language ∨, ∧, →, ∼, where ∼ is a strong negation.

Axioms of positive intuitionistic logic:P1. α → (β → α) P2. (α ∧ β) → αP3. (α → (β → γ )) → ((α → β) → (α → γ )) P4. (α ∧ β) → βP5. (α → β) → ((α → γ ) → (α → (β ∧ γ ))) P6. α → (α ∨ β)

P7. (α → γ ) → ((β → γ ) → ((α ∨ β) → γ )) P8. β → (α ∨ β)

Strong negation axioms:N1. ∼ (α → β) ↔ α∧ ∼ β N2. ∼ (α ∧ β) ↔∼ α∨ ∼ βN3. ∼∼ α ↔ α N4. ∼ (α ∨ β) ↔∼ α∧ ∼ β.

Inference rule:

MP α, α → β

β

Sergei Odintsov ( Sobolev Institute of Mathematics [email protected] )Priestley Duality LATD 2010 10 / 19

Axiomatics of N4

Page 29: Odintsov

8/8/2019 Odintsov

http://slidepdf.com/reader/full/odintsov 29/68

Axiomatics of N4

Language ∨, ∧, →, ∼, where ∼ is a strong negation.

Axioms of positive intuitionistic logic:P1. α → (β → α) P2. (α ∧ β) → αP3. (α → (β → γ )) → ((α → β) → (α → γ )) P4. (α ∧ β) → βP5. (α → β) → ((α → γ ) → (α → (β ∧ γ ))) P6. α → (α ∨ β)

P7. (α → γ ) → ((β → γ ) → ((α ∨ β) → γ )) P8. β → (α ∨ β)

Strong negation axioms:N1. ∼ (α → β) ↔ α∧ ∼ β N2. ∼ (α ∧ β) ↔∼ α∨ ∼ βN3. ∼∼ α ↔ α N4. ∼ (α ∨ β) ↔∼ α∧ ∼ β.

Inference rule:

MP α, α → β

β

Sergei Odintsov ( Sobolev Institute of Mathematics [email protected] )Priestley Duality LATD 2010 10 / 19

Axiomatics of N4

Page 30: Odintsov

8/8/2019 Odintsov

http://slidepdf.com/reader/full/odintsov 30/68

Language ∨, ∧, →, ∼, where ∼ is a strong negation.

Axioms of positive intuitionistic logic:P1. α → (β → α) P2. (α ∧ β) → αP3. (α → (β → γ )) → ((α → β) → (α → γ )) P4. (α ∧ β) → βP5. (α → β) → ((α → γ ) → (α → (β ∧ γ ))) P6. α → (α ∨ β)

P7. (α → γ ) → ((β → γ ) → ((α ∨ β) → γ )) P8. β → (α ∨ β)

Strong negation axioms:N1. ∼ (α → β) ↔ α∧ ∼ β N2. ∼ (α ∧ β) ↔∼ α∨ ∼ βN3. ∼∼ α ↔ α N4. ∼ (α ∨ β) ↔∼ α∧ ∼ β.

Inference rule:

MP α, α → β

β

Sergei Odintsov ( Sobolev Institute of Mathematics [email protected] )Priestley Duality LATD 2010 10 / 19

Axiomatics of N4

Page 31: Odintsov

8/8/2019 Odintsov

http://slidepdf.com/reader/full/odintsov 31/68

Language ∨, ∧, →, ∼, where ∼ is a strong negation.

Axioms of positive intuitionistic logic:P1. α → (β → α) P2. (α ∧ β) → αP3. (α → (β → γ )) → ((α → β) → (α → γ )) P4. (α ∧ β) → βP5. (α → β) → ((α → γ ) → (α → (β ∧ γ ))) P6. α → (α ∨ β)

P7. (α → γ ) → ((β → γ ) → ((α ∨ β) → γ )) P8. β → (α ∨ β)

Strong negation axioms:N1. ∼ (α → β) ↔ α∧ ∼ β N2. ∼ (α ∧ β) ↔∼ α∨ ∼ βN3. ∼∼ α ↔ α N4. ∼ (α ∨ β) ↔∼ α∧ ∼ β.

Inference rule:

MP α, α → β

β

Sergei Odintsov ( Sobolev Institute of Mathematics [email protected] )Priestley Duality LATD 2010 10 / 19

Logics N3 and N4⊥

Page 32: Odintsov

8/8/2019 Odintsov

http://slidepdf.com/reader/full/odintsov 32/68

g

N3 := N4 + {∼ p → (p → q )}

N4⊥ in the language ∨, ∧, →, ∼, ⊥ with additional axioms

⊥ → p  and p →∼ ⊥

Put ⊥ :=∼ (p 0 → p 0). Then N3 ⊥ → p , p →∼ ⊥

Constructive Negation Property

N4 ∼ (ϕ ∧ ψ) ⇒ N4 ∼ ϕ or N4 ∼ ψ

Weak Replacement for Nelson logic

ϕ ↔ ψ ∼ ϕ →∼ ψ

χ(ϕ) ↔ χ(ψ)

Sergei Odintsov ( Sobolev Institute of Mathematics [email protected] )Priestley Duality LATD 2010 11 / 19

Logics N3 and N4⊥

Page 33: Odintsov

8/8/2019 Odintsov

http://slidepdf.com/reader/full/odintsov 33/68

g

N3 := N4 + {∼ p → (p → q )}

N4⊥ in the language ∨, ∧, →, ∼, ⊥ with additional axioms

⊥ → p  and p →∼ ⊥

Put ⊥ :=∼ (p 0 → p 0). Then N3 ⊥ → p , p →∼ ⊥

Constructive Negation Property

N4 ∼ (ϕ ∧ ψ) ⇒ N4 ∼ ϕ or N4 ∼ ψ

Weak Replacement for Nelson logic

ϕ ↔ ψ ∼ ϕ →∼ ψ

χ(ϕ) ↔ χ(ψ)

Sergei Odintsov ( Sobolev Institute of Mathematics [email protected] )Priestley Duality LATD 2010 11 / 19

Logics N3 and N4⊥

Page 34: Odintsov

8/8/2019 Odintsov

http://slidepdf.com/reader/full/odintsov 34/68

g

N3 := N4 + {∼ p → (p → q )}

N4⊥ in the language ∨, ∧, →, ∼, ⊥ with additional axioms

⊥ → p  and p →∼ ⊥

Put ⊥ :=∼ (p 0 → p 0). Then N3 ⊥ → p , p →∼ ⊥

Constructive Negation Property

N4 ∼ (ϕ ∧ ψ) ⇒ N4 ∼ ϕ or N4 ∼ ψ

Weak Replacement for Nelson logic

ϕ ↔ ψ ∼ ϕ →∼ ψ

χ(ϕ) ↔ χ(ψ)

Sergei Odintsov ( Sobolev Institute of Mathematics [email protected] )Priestley Duality LATD 2010 11 / 19

Logics N3 and N4⊥

Page 35: Odintsov

8/8/2019 Odintsov

http://slidepdf.com/reader/full/odintsov 35/68

N3 := N4 + {∼ p → (p → q )}

N4⊥ in the language ∨, ∧, →, ∼, ⊥ with additional axioms

⊥ → p  and p →∼ ⊥

Put ⊥ :=∼ (p 0 → p 0). Then N3 ⊥ → p , p →∼ ⊥

Constructive Negation Property

N4 ∼ (ϕ ∧ ψ) ⇒ N4 ∼ ϕ or N4 ∼ ψ

Weak Replacement for Nelson logic

ϕ ↔ ψ ∼ ϕ →∼ ψ

χ(ϕ) ↔ χ(ψ)

Sergei Odintsov ( Sobolev Institute of Mathematics [email protected] )Priestley Duality LATD 2010 11 / 19

Logics N3 and N4⊥

Page 36: Odintsov

8/8/2019 Odintsov

http://slidepdf.com/reader/full/odintsov 36/68

N3 := N4 + {∼ p → (p → q )}

N4⊥ in the language ∨, ∧, →, ∼, ⊥ with additional axioms

⊥ → p  and p →∼ ⊥

Put ⊥ :=∼ (p 0 → p 0). Then N3 ⊥ → p , p →∼ ⊥

Constructive Negation Property

N4 ∼ (ϕ ∧ ψ) ⇒ N4 ∼ ϕ or N4 ∼ ψ

Weak Replacement for Nelson logic

ϕ ↔ ψ ∼ ϕ →∼ ψ

χ(ϕ) ↔ χ(ψ)

Sergei Odintsov ( Sobolev Institute of Mathematics [email protected] )Priestley Duality LATD 2010 11 / 19

N4⊥-lattices [Odintsov05]

Page 37: Odintsov

8/8/2019 Odintsov

http://slidepdf.com/reader/full/odintsov 37/68

A = A, ∨, ∧, →, ∼, ⊥, 1 is an N4⊥-lattice if:

1 A, ∨, ∧, ∼, ⊥, 1 is a De Morgan algebra;

2 , where a  b denotes (a → b ) → (a → b ) = a → b , is a

preordering on A;

3 ≈:= ∩ −1 is a congruence wrt ∨, ∧, → andA := A, ∨, ∧, →, ⊥, 1/ ≈ is a Heyting algebra;

4 ∼ (a → b ) ≈ a ∧ ∼ b ;

5

a ≤ b  if and only if a  b and ∼ b ∼ a .

A |= ϕ iff ϕ → ϕ = ϕ is an identity on A

Sergei Odintsov ( Sobolev Institute of Mathematics [email protected] )Priestley Duality LATD 2010 12 / 19

N4⊥-lattices [Odintsov05]

Page 38: Odintsov

8/8/2019 Odintsov

http://slidepdf.com/reader/full/odintsov 38/68

A = A, ∨, ∧, →, ∼, ⊥, 1 is an N4⊥-lattice if:

1 A, ∨, ∧, ∼, ⊥, 1 is a De Morgan algebra;

2 , where a  b denotes (a → b ) → (a → b ) = a → b , is a

preordering on A;

3 ≈:= ∩ −1 is a congruence wrt ∨, ∧, → andA := A, ∨, ∧, →, ⊥, 1/ ≈ is a Heyting algebra;

4 ∼ (a → b ) ≈ a ∧ ∼ b ;

5

a ≤ b  if and only if a  b and ∼ b ∼ a .

A |= ϕ iff ϕ → ϕ = ϕ is an identity on A

Sergei Odintsov ( Sobolev Institute of Mathematics [email protected] )Priestley Duality LATD 2010 12 / 19

N4⊥-lattices [Odintsov05]

Page 39: Odintsov

8/8/2019 Odintsov

http://slidepdf.com/reader/full/odintsov 39/68

A = A, ∨, ∧, →, ∼, ⊥, 1 is an N4⊥-lattice if:

1 A, ∨, ∧, ∼, ⊥, 1 is a De Morgan algebra;

2 , where a  b denotes (a → b ) → (a → b ) = a → b , is a

preordering on A;

3 ≈:= ∩ −1 is a congruence wrt ∨, ∧, → andA := A, ∨, ∧, →, ⊥, 1/ ≈ is a Heyting algebra;

4 ∼ (a → b ) ≈ a ∧ ∼ b ;

5

a ≤ b  if and only if a  b and ∼ b ∼ a .

A |= ϕ iff ϕ → ϕ = ϕ is an identity on A

Sergei Odintsov ( Sobolev Institute of Mathematics [email protected] )Priestley Duality LATD 2010 12 / 19

N4⊥-lattices [Odintsov05]

Page 40: Odintsov

8/8/2019 Odintsov

http://slidepdf.com/reader/full/odintsov 40/68

A = A, ∨, ∧, →, ∼, ⊥, 1 is an N4⊥-lattice if:

1 A, ∨, ∧, ∼, ⊥, 1 is a De Morgan algebra;

2 , where a  b denotes (a → b ) → (a → b ) = a → b , is a

preordering on A;

3 ≈:= ∩ −1 is a congruence wrt ∨, ∧, → andA := A, ∨, ∧, →, ⊥, 1/ ≈ is a Heyting algebra;

4 ∼ (a → b ) ≈ a ∧ ∼ b ;

5

a ≤ b  if and only if a  b and ∼ b ∼ a .

A |= ϕ iff ϕ → ϕ = ϕ is an identity on A

Sergei Odintsov ( Sobolev Institute of Mathematics [email protected] )Priestley Duality LATD 2010 12 / 19

N4⊥-lattices [Odintsov05]

Page 41: Odintsov

8/8/2019 Odintsov

http://slidepdf.com/reader/full/odintsov 41/68

A = A, ∨, ∧, →, ∼, ⊥, 1 is an N4⊥-lattice if:

1 A, ∨, ∧, ∼, ⊥, 1 is a De Morgan algebra;

2 , where a  b denotes (a → b ) → (a → b ) = a → b , is a

preordering on A;

3 ≈:= ∩ −1 is a congruence wrt ∨, ∧, → andA := A, ∨, ∧, →, ⊥, 1/ ≈ is a Heyting algebra;

4 ∼ (a → b ) ≈ a ∧ ∼ b ;

5

a ≤ b  if and only if a  b and ∼ b ∼ a .

A |= ϕ iff ϕ → ϕ = ϕ is an identity on A

Sergei Odintsov ( Sobolev Institute of Mathematics [email protected] )Priestley Duality LATD 2010 12 / 19

N4⊥-lattices [Odintsov05]

Page 42: Odintsov

8/8/2019 Odintsov

http://slidepdf.com/reader/full/odintsov 42/68

A = A, ∨, ∧, →, ∼, ⊥, 1 is an N4⊥-lattice if:

1 A, ∨, ∧, ∼, ⊥, 1 is a De Morgan algebra;

2 , where a  b denotes (a → b ) → (a → b ) = a → b , is a

preordering on A;

3 ≈:= ∩ −1 is a congruence wrt ∨, ∧, → andA := A, ∨, ∧, →, ⊥, 1/ ≈ is a Heyting algebra;

4 ∼ (a → b ) ≈ a ∧ ∼ b ;

5

a ≤ b  if and only if a  b and ∼ b ∼ a .

A |= ϕ iff ϕ → ϕ = ϕ is an identity on A

Sergei Odintsov ( Sobolev Institute of Mathematics [email protected] )Priestley Duality LATD 2010 12 / 19

N4⊥-lattices [Odintsov05]

Page 43: Odintsov

8/8/2019 Odintsov

http://slidepdf.com/reader/full/odintsov 43/68

A = A, ∨, ∧, →, ∼, ⊥, 1 is an N4⊥-lattice if:

1 A, ∨, ∧, ∼, ⊥, 1 is a De Morgan algebra;

2 , where a  b denotes (a → b ) → (a → b ) = a → b , is a

preordering on A;

3 ≈:= ∩ −1 is a congruence wrt ∨, ∧, → andA := A, ∨, ∧, →, ⊥, 1/ ≈ is a Heyting algebra;

4 ∼ (a → b ) ≈ a ∧ ∼ b ;

5

a ≤ b  if and only if a  b and ∼ b ∼ a .

A |= ϕ iff ϕ → ϕ = ϕ is an identity on A

Sergei Odintsov ( Sobolev Institute of Mathematics [email protected] )Priestley Duality LATD 2010 12 / 19

N3-lattices [Rasiowa58]

Page 44: Odintsov

8/8/2019 Odintsov

http://slidepdf.com/reader/full/odintsov 44/68

1 An N3-lattice A is an N4⊥-lattice s.t. a ∧ ∼ a  b  for a ,b ∈ A

2 in which case a  b ⇔ a → b = 1

3 A |= ϕ iff ϕ = 1 is an identity on A

4 weak implication via relative pseudo complement in N3-lattices

a → b = a ⊃ (∼ a ∨ b ), where a ⊃ b  := sup{x  | a ∧ x ≤ b }

5 similar formula for N4⊥-lattices

a → b =∼ ¬a ⊃ (¬a ∨ b ), where ¬a = a → ⊥

Sergei Odintsov ( Sobolev Institute of Mathematics [email protected] )Priestley Duality LATD 2010 13 / 19

N3-lattices [Rasiowa58]

Page 45: Odintsov

8/8/2019 Odintsov

http://slidepdf.com/reader/full/odintsov 45/68

1 An N3-lattice A is an N4⊥-lattice s.t. a ∧ ∼ a  b  for a ,b ∈ A

2 in which case a  b ⇔ a → b = 1

3 A |= ϕ iff ϕ = 1 is an identity on A

4 weak implication via relative pseudo complement in N3-lattices

a → b = a ⊃ (∼ a ∨ b ), where a ⊃ b  := sup{x  | a ∧ x ≤ b }

5 similar formula for N4⊥-lattices

a → b =∼ ¬a ⊃ (¬a ∨ b ), where ¬a = a → ⊥

Sergei Odintsov ( Sobolev Institute of Mathematics [email protected] )Priestley Duality LATD 2010 13 / 19

N3-lattices [Rasiowa58]

Page 46: Odintsov

8/8/2019 Odintsov

http://slidepdf.com/reader/full/odintsov 46/68

1 An N3-lattice A is an N4⊥

-lattice s.t. a ∧ ∼ a  b  for a ,b ∈ A

2 in which case a  b ⇔ a → b = 1

3 A |= ϕ iff ϕ = 1 is an identity on A

4 weak implication via relative pseudo complement in N3-lattices

a → b = a ⊃ (∼ a ∨ b ), where a ⊃ b  := sup{x  | a ∧ x ≤ b }

5 similar formula for N4⊥-lattices

a → b =∼ ¬a ⊃ (¬a ∨ b ), where ¬a = a → ⊥

Sergei Odintsov ( Sobolev Institute of Mathematics [email protected] )Priestley Duality LATD 2010 13 / 19

N3-lattices [Rasiowa58]

Page 47: Odintsov

8/8/2019 Odintsov

http://slidepdf.com/reader/full/odintsov 47/68

1 An N3-lattice A is an N4⊥

-lattice s.t. a ∧ ∼ a  b  for a ,b ∈ A

2 in which case a  b ⇔ a → b = 1

3 A |= ϕ iff ϕ = 1 is an identity on A

4 weak implication via relative pseudo complement in N3-lattices

a → b = a ⊃ (∼ a ∨ b ), where a ⊃ b  := sup{x  | a ∧ x ≤ b }

5 similar formula for N4⊥-lattices

a → b =∼ ¬a ⊃ (¬a ∨ b ), where ¬a = a → ⊥

Sergei Odintsov ( Sobolev Institute of Mathematics [email protected] )Priestley Duality LATD 2010 13 / 19

N3-lattices [Rasiowa58]

Page 48: Odintsov

8/8/2019 Odintsov

http://slidepdf.com/reader/full/odintsov 48/68

1 An N3-lattice A is an N4⊥

-lattice s.t. a ∧ ∼ a  b  for a ,b ∈ A

2 in which case a  b ⇔ a → b = 1

3 A |= ϕ iff ϕ = 1 is an identity on A

4 weak implication via relative pseudo complement in N3-lattices

a → b = a ⊃ (∼ a ∨ b ), where a ⊃ b  := sup{x  | a ∧ x ≤ b }

5 similar formula for N4⊥-lattices

a → b =∼ ¬a ⊃ (¬a ∨ b ), where ¬a = a → ⊥

Sergei Odintsov ( Sobolev Institute of Mathematics [email protected] )Priestley Duality LATD 2010 13 / 19

Special filters [Rasiowa58] on N4⊥-lattices

Page 49: Odintsov

8/8/2019 Odintsov

http://slidepdf.com/reader/full/odintsov 49/68

Let A be an N4⊥-lattice and ∅ = F  ⊆ A.

F  is a special filter of the first kind (sffk ) on A if:1 a ∧ b ∈ F  for any a ,b ∈ F ,2 a ∈ F  and a → b ∈ F  (a  b ) implies b ∈ F .

The lattice of sffk  is isomorphic to the lattice of filters of A

F  is a special filter of the second kind (sfsk ) on A if:

1 a ∧ b ∈ F  for any a ,b ∈ F ,2 a ∈ F  and ∼ b →∼ a ∈ F  (∼ b ∼ a ) implies b ∈ F .

The lattice of sfsk  is isomorphic to the lattice of ideals of A

Every prime (lattice) filter on A is either sffk or sfsk .

Sergei Odintsov ( Sobolev Institute of Mathematics [email protected] )Priestley Duality LATD 2010 14 / 19

Special filters [Rasiowa58] on N4⊥-lattices

Page 50: Odintsov

8/8/2019 Odintsov

http://slidepdf.com/reader/full/odintsov 50/68

Let A be an N4⊥-lattice and ∅ = F  ⊆ A.

F  is a special filter of the first kind (sffk ) on A if:1 a ∧ b ∈ F  for any a ,b ∈ F ,2 a ∈ F  and a → b ∈ F  (a  b ) implies b ∈ F .

The lattice of sffk  is isomorphic to the lattice of filters of A

F  is a special filter of the second kind (sfsk ) on A if:

1 a ∧ b ∈ F  for any a ,b ∈ F ,2 a ∈ F  and ∼ b →∼ a ∈ F  (∼ b ∼ a ) implies b ∈ F .

The lattice of sfsk  is isomorphic to the lattice of ideals of A

Every prime (lattice) filter on A is either sffk or sfsk .

Sergei Odintsov ( Sobolev Institute of Mathematics [email protected] )Priestley Duality LATD 2010 14 / 19

Special filters [Rasiowa58] on N4⊥-lattices

Page 51: Odintsov

8/8/2019 Odintsov

http://slidepdf.com/reader/full/odintsov 51/68

Let A be an N4⊥-lattice and ∅ = F  ⊆ A.

F  is a special filter of the first kind (sffk ) on A if:1 a ∧ b ∈ F  for any a ,b ∈ F ,2 a ∈ F  and a → b ∈ F  (a  b ) implies b ∈ F .

The lattice of sffk  is isomorphic to the lattice of filters of A

F  is a special filter of the second kind (sfsk ) on A if:

1 a ∧ b ∈ F  for any a ,b ∈ F ,2 a ∈ F  and ∼ b →∼ a ∈ F  (∼ b ∼ a ) implies b ∈ F .

The lattice of sfsk  is isomorphic to the lattice of ideals of A

Every prime (lattice) filter on A is either sffk or sfsk .

Sergei Odintsov ( Sobolev Institute of Mathematics [email protected] )Priestley Duality LATD 2010 14 / 19

Special filters [Rasiowa58] on N4⊥-lattices

Page 52: Odintsov

8/8/2019 Odintsov

http://slidepdf.com/reader/full/odintsov 52/68

Let A be an N4⊥-lattice and ∅ = F  ⊆ A.

F  is a special filter of the first kind (sffk ) on A if:1 a ∧ b ∈ F  for any a ,b ∈ F ,2 a ∈ F  and a → b ∈ F  (a  b ) implies b ∈ F .

The lattice of sffk  is isomorphic to the lattice of filters of A

F  is a special filter of the second kind (sfsk ) on A if:

1 a ∧ b ∈ F  for any a ,b ∈ F ,2 a ∈ F  and ∼ b →∼ a ∈ F  (∼ b ∼ a ) implies b ∈ F .

The lattice of sfsk  is isomorphic to the lattice of ideals of A

Every prime (lattice) filter on A is either sffk or sfsk .

Sergei Odintsov ( Sobolev Institute of Mathematics [email protected] )Priestley Duality LATD 2010 14 / 19

Special filters [Rasiowa58] on N4⊥-lattices

Page 53: Odintsov

8/8/2019 Odintsov

http://slidepdf.com/reader/full/odintsov 53/68

Let A be an N4⊥-lattice and ∅ = F  ⊆ A.

F  is a special filter of the first kind (sffk ) on A if:1 a ∧ b ∈ F  for any a ,b ∈ F ,2 a ∈ F  and a → b ∈ F  (a  b ) implies b ∈ F .

The lattice of sffk  is isomorphic to the lattice of filters of A

F  is a special filter of the second kind (sfsk ) on A if:

1 a ∧ b ∈ F  for any a ,b ∈ F ,2 a ∈ F  and ∼ b →∼ a ∈ F  (∼ b ∼ a ) implies b ∈ F .

The lattice of sfsk  is isomorphic to the lattice of ideals of A

Every prime (lattice) filter on A is either sffk or sfsk .

Sergei Odintsov ( Sobolev Institute of Mathematics [email protected] )Priestley Duality LATD 2010 14 / 19

Special filters [Rasiowa58] on N4⊥-lattices

Page 54: Odintsov

8/8/2019 Odintsov

http://slidepdf.com/reader/full/odintsov 54/68

Let A be an N4⊥-lattice and ∅ = F  ⊆ A.

F  is a special filter of the first kind (sffk ) on A if:1 a ∧ b ∈ F  for any a ,b ∈ F ,2 a ∈ F  and a → b ∈ F  (a  b ) implies b ∈ F .

The lattice of sffk  is isomorphic to the lattice of filters of A

F  is a special filter of the second kind (sfsk ) on A if:

1 a ∧ b ∈ F  for any a ,b ∈ F ,2 a ∈ F  and ∼ b →∼ a ∈ F  (∼ b ∼ a ) implies b ∈ F .

The lattice of sfsk  is isomorphic to the lattice of ideals of A

Every prime (lattice) filter on A is either sffk or sfsk .

Sergei Odintsov ( Sobolev Institute of Mathematics [email protected] )Priestley Duality LATD 2010 14 / 19

De Morgan space of an N4⊥-lattice A

Page 55: Odintsov

8/8/2019 Odintsov

http://slidepdf.com/reader/full/odintsov 55/68

1 Since A is a De Morgan algebra,

(X(A),g ), where g (P ) = A \˜P ,

˜P = {∼ a  | a ∈ P }, is a DeMorgan space.

2 Put

X1(A) = {P ∈ X(A) | P  is a sffk }

X2

(A) = {P ∈ X(A) | P  is a sfsk }X+(A) = {P ∈ X(A) | P ⊆ g (P )}

X−(A) = {P ∈ X(A) | g (P ) ⊆ P }

3 g (X1(A)) = X2(A) and g (X+(A)) = X−(A)4 A is an N3-lattice iff

X1(A) = X+(A) and X2(A) = X−(A)

Sergei Odintsov ( Sobolev Institute of Mathematics [email protected] )Priestley Duality LATD 2010 15 / 19

De Morgan space of an N4⊥-lattice A

Page 56: Odintsov

8/8/2019 Odintsov

http://slidepdf.com/reader/full/odintsov 56/68

1 Since A is a De Morgan algebra,

(X(A),g ), where g (P ) = A \˜P ,

˜P = {∼ a  | a ∈ P }, is a DeMorgan space.

2 Put

X1(A) = {P ∈ X(A) | P  is a sffk }

X2

(A) = {P ∈ X(A) | P  is a sfsk }X+(A) = {P ∈ X(A) | P ⊆ g (P )}

X−(A) = {P ∈ X(A) | g (P ) ⊆ P }

3 g (X1(A)) = X2(A) and g (X+(A)) = X−(A)4 A is an N3-lattice iff

X1(A) = X+(A) and X2(A) = X−(A)

Sergei Odintsov ( Sobolev Institute of Mathematics [email protected] )Priestley Duality LATD 2010 15 / 19

De Morgan space of an N4⊥-lattice A

Page 57: Odintsov

8/8/2019 Odintsov

http://slidepdf.com/reader/full/odintsov 57/68

1 Since A is a De Morgan algebra,

(X(A),g ), where g (P ) = A \˜P ,

˜P = {∼ a  | a ∈ P }, is a DeMorgan space.

2 Put

X1(A) = {P ∈ X(A) | P  is a sffk }

X2

(A) = {P ∈ X(A) | P  is a sfsk }X+(A) = {P ∈ X(A) | P ⊆ g (P )}

X−(A) = {P ∈ X(A) | g (P ) ⊆ P }

3 g (X1(A)) = X2(A) and g (X+(A)) = X−(A)4 A is an N3-lattice iff

X1(A) = X+(A) and X2(A) = X−(A)

Sergei Odintsov ( Sobolev Institute of Mathematics [email protected] )Priestley Duality LATD 2010 15 / 19

N 3-spaces [Cignoli 86, Sendlewski 90]

Page 58: Odintsov

8/8/2019 Odintsov

http://slidepdf.com/reader/full/odintsov 58/68

X  = (X , ≤, τ, g ), where X  is a set, ≤ a partial order on X , g  : X  → X ,

and τ  is a topology on X , is an N 4-space if:

1 (X , ≤, τ, g ) is a De Morgan space;

2 (X +, ≤X +, τ  X +) is a Heyting space, where

X + := {x  | x ≤ g (x )};

3 (Monteiro Interpolation Property) for any x ∈ X + and y ∈ X −, ifx ≤ y , then there exists z ∈ X  s.t. x ,g (y ) ≤ z ≤ g (x ), y 

g (x ) y 

z

g (y )  

  

 d  d 

   

 d  d 

Sergei Odintsov ( Sobolev Institute of Mathematics [email protected] )Priestley Duality LATD 2010 16 / 19

N 4-spaces

Page 59: Odintsov

8/8/2019 Odintsov

http://slidepdf.com/reader/full/odintsov 59/68

Consider a tuple X  = (X ,X 1, ≤, τ,g ), where X  is a set, X 1 ⊆ X , ≤ is a

partial order on X , g  : X  → X , and τ  is a topology on X . Put

X 2 := g (X 1), X + := {x ∈ X  | x ≤ g (x )}, X − := {x ∈ X  | g (x ) ≤ x }.

X  is said to be an N 4-space if:

1 (X , ≤, τ, g ) is a De Morgan space;2 X 1 is closed in τ , X  = X 1 ∪ X 2, and X 1 ∩ X 2 = X + ∩ X −;

3 (X 1, ≤X 1 , τ  X 1 ) is a Heyting space;

4 for any x ∈ X 1 and y ∈ X 2, if x ≤ y , then x ∈ X +, y ∈ X −, and

there exists z ∈ X  s.t. x , g (y ) ≤ z ≤ g (x ), y ;5 for any x ∈ X 2 and y ∈ X 1, if x ≤ y , then x ∈ X +, y ∈ X −, and

x ≤ g (y ).

Sergei Odintsov ( Sobolev Institute of Mathematics [email protected] )Priestley Duality LATD 2010 17 / 19

N 4-spaces

Page 60: Odintsov

8/8/2019 Odintsov

http://slidepdf.com/reader/full/odintsov 60/68

Consider a tuple X  = (X ,X 1, ≤, τ,g ), where X  is a set, X 1 ⊆ X , ≤ is a

partial order on X , g  : X  → X , and τ  is a topology on X . Put

X 2 := g (X 1), X + := {x ∈ X  | x ≤ g (x )}, X − := {x ∈ X  | g (x ) ≤ x }.

X  is said to be an N 4-space if:

1 (X , ≤, τ, g ) is a De Morgan space;2 X 1 is closed in τ , X  = X 1 ∪ X 2, and X 1 ∩ X 2 = X + ∩ X −;

3 (X 1, ≤X 1 , τ  X 1 ) is a Heyting space;

4 for any x ∈ X 1 and y ∈ X 2, if x ≤ y , then x ∈ X +, y ∈ X −, and

there exists z ∈ X  s.t. x , g (y ) ≤ z ≤ g (x ), y ;5 for any x ∈ X 2 and y ∈ X 1, if x ≤ y , then x ∈ X +, y ∈ X −, and

x ≤ g (y ).

Sergei Odintsov ( Sobolev Institute of Mathematics [email protected] )Priestley Duality LATD 2010 17 / 19

N 4-spaces

Page 61: Odintsov

8/8/2019 Odintsov

http://slidepdf.com/reader/full/odintsov 61/68

Consider a tuple X  = (X ,X 1, ≤, τ,g ), where X  is a set, X 1 ⊆ X , ≤ is a

partial order on X , g  : X  → X , and τ  is a topology on X . Put

X 2 := g (X 1), X + := {x ∈ X  | x ≤ g (x )}, X − := {x ∈ X  | g (x ) ≤ x }.

X  is said to be an N 4-space if:

1 (X , ≤, τ, g ) is a De Morgan space;2 X 1 is closed in τ , X  = X 1 ∪ X 2, and X 1 ∩ X 2 = X + ∩ X −;

3 (X 1, ≤X 1 , τ  X 1 ) is a Heyting space;

4 for any x ∈ X 1 and y ∈ X 2, if x ≤ y , then x ∈ X +, y ∈ X −, and

there exists z ∈ X  s.t. x , g (y ) ≤ z ≤ g (x ), y ;5 for any x ∈ X 2 and y ∈ X 1, if x ≤ y , then x ∈ X +, y ∈ X −, and

x ≤ g (y ).

Sergei Odintsov ( Sobolev Institute of Mathematics [email protected] )Priestley Duality LATD 2010 17 / 19

N 4-spaces

Page 62: Odintsov

8/8/2019 Odintsov

http://slidepdf.com/reader/full/odintsov 62/68

Consider a tuple X  = (X ,X 1, ≤, τ,g ), where X  is a set, X 1 ⊆ X , ≤ is a

partial order on X , g  : X  → X , and τ  is a topology on X . Put

X 2 := g (X 1), X + := {x ∈ X  | x ≤ g (x )}, X − := {x ∈ X  | g (x ) ≤ x }.

X  is said to be an N 4-space if:

1 (X , ≤, τ, g ) is a De Morgan space;2 X 1 is closed in τ , X  = X 1 ∪ X 2, and X 1 ∩ X 2 = X + ∩ X −;

3 (X 1, ≤X 1 , τ  X 1 ) is a Heyting space;

4 for any x ∈ X 1 and y ∈ X 2, if x ≤ y , then x ∈ X +, y ∈ X −, and

there exists z ∈ X  s.t. x , g (y ) ≤ z ≤ g (x ), y ;5 for any x ∈ X 2 and y ∈ X 1, if x ≤ y , then x ∈ X +, y ∈ X −, and

x ≤ g (y ).

Sergei Odintsov ( Sobolev Institute of Mathematics [email protected] )Priestley Duality LATD 2010 17 / 19

N 4-spaces

Page 63: Odintsov

8/8/2019 Odintsov

http://slidepdf.com/reader/full/odintsov 63/68

Consider a tuple X  = (X ,X 1, ≤, τ,g ), where X  is a set, X 1 ⊆ X , ≤ is a

partial order on X , g  : X  → X , and τ  is a topology on X . Put

X 2 := g (X 1), X + := {x ∈ X  | x ≤ g (x )}, X − := {x ∈ X  | g (x ) ≤ x }.

X  is said to be an N 4-space if:

1 (X , ≤, τ, g ) is a De Morgan space;2 X 1 is closed in τ , X  = X 1 ∪ X 2, and X 1 ∩ X 2 = X + ∩ X −;

3 (X 1, ≤X 1 , τ  X 1 ) is a Heyting space;

4 for any x ∈ X 1 and y ∈ X 2, if x ≤ y , then x ∈ X +, y ∈ X −, and

there exists z ∈ X  s.t. x , g (y ) ≤ z ≤ g (x ), y ;5 for any x ∈ X 2 and y ∈ X 1, if x ≤ y , then x ∈ X +, y ∈ X −, and

x ≤ g (y ).

Sergei Odintsov ( Sobolev Institute of Mathematics [email protected] )Priestley Duality LATD 2010 17 / 19

N 4-spaces

Page 64: Odintsov

8/8/2019 Odintsov

http://slidepdf.com/reader/full/odintsov 64/68

Consider a tuple X  = (X ,X 1, ≤, τ,g ), where X  is a set, X 1 ⊆ X , ≤ is a

partial order on X , g  : X  → X , and τ  is a topology on X . Put

X 2 := g (X 1), X + := {x ∈ X  | x ≤ g (x )}, X − := {x ∈ X  | g (x ) ≤ x }.

X  is said to be an N 4-space if:

1 (X , ≤, τ, g ) is a De Morgan space;2 X 1 is closed in τ , X  = X 1 ∪ X 2, and X 1 ∩ X 2 = X + ∩ X −;

3 (X 1, ≤X 1 , τ  X 1 ) is a Heyting space;

4 for any x ∈ X 1 and y ∈ X 2, if x ≤ y , then x ∈ X +, y ∈ X −, and

there exists z ∈ X  s.t. x , g (y ) ≤ z ≤ g (x ), y ;5 for any x ∈ X 2 and y ∈ X 1, if x ≤ y , then x ∈ X +, y ∈ X −, and

x ≤ g (y ).

Sergei Odintsov ( Sobolev Institute of Mathematics [email protected] )Priestley Duality LATD 2010 17 / 19

N 4-spaces

1 1

Page 65: Odintsov

8/8/2019 Odintsov

http://slidepdf.com/reader/full/odintsov 65/68

Consider a tuple X  = (X ,X 1, ≤, τ,g ), where X  is a set, X 1 ⊆ X , ≤ is a

partial order on X , g  : X  → X , and τ  is a topology on X . Put

X 2 := g (X 1), X + := {x ∈ X  | x ≤ g (x )}, X − := {x ∈ X  | g (x ) ≤ x }.

X  is said to be an N 4-space if:

1 (X , ≤, τ, g ) is a De Morgan space;2 X 1 is closed in τ , X  = X 1 ∪ X 2, and X 1 ∩ X 2 = X + ∩ X −;

3 (X 1, ≤X 1 , τ  X 1 ) is a Heyting space;

4 for any x ∈ X 1 and y ∈ X 2, if x ≤ y , then x ∈ X +, y ∈ X −, and

there exists z ∈ X  s.t. x , g (y ) ≤ z ≤ g (x ), y ;5 for any x ∈ X 2 and y ∈ X 1, if x ≤ y , then x ∈ X +, y ∈ X −, and

x ≤ g (y ).

Sergei Odintsov ( Sobolev Institute of Mathematics [email protected] )Priestley Duality LATD 2010 17 / 19

Duality

1 Let A be an N4⊥-lattice Then

Page 66: Odintsov

8/8/2019 Odintsov

http://slidepdf.com/reader/full/odintsov 66/68

1 Let A be an N4 -lattice. Then

O(A) := (X(A), X

1

(A), ⊆, τ A,g A),where

X(A) are all prime filters on AX1(A) are all sffk  in X(A)τ A and g A as for De Morgan algebras

is an N 4-space.

2 Let X  = (X ,X 1, ≤, τ, g ) be an N 4-space. Then

N(X ) = D(X ), ∪, ∩, →, ∼,∅,X , where

∼ U  := X  \ g (U ),

U → V  := (X 1 \ ((U \ V ) ∩ X 1) ↓) ∪ (X 2 \ (g (U ) \ V )),

is an N4⊥-lattice.

Sergei Odintsov ( Sobolev Institute of Mathematics [email protected] )Priestley Duality LATD 2010 18 / 19

Duality

1 Let A be an N4⊥-lattice Then

Page 67: Odintsov

8/8/2019 Odintsov

http://slidepdf.com/reader/full/odintsov 67/68

1 Let A be an N4 -lattice. Then

O(A) := (X(A), X

1

(A), ⊆, τ A,g A),where

X(A) are all prime filters on AX1(A) are all sffk  in X(A)τ A and g A as for De Morgan algebras

is an N 4-space.

2 Let X  = (X ,X 1, ≤, τ, g ) be an N 4-space. Then

N(X ) = D(X ), ∪, ∩, →, ∼,∅,X , where

∼ U  := X  \ g (U ),

U → V  := (X 1 \ ((U \ V ) ∩ X 1) ↓) ∪ (X 2 \ (g (U ) \ V )),

is an N4⊥-lattice.

Sergei Odintsov ( Sobolev Institute of Mathematics [email protected] )Priestley Duality LATD 2010 18 / 19

N 4-function

Page 68: Odintsov

8/8/2019 Odintsov

http://slidepdf.com/reader/full/odintsov 68/68

f  : (X ,X 1, ≤, τ,g ) → (Y ,Y 1, ≤, τ ,g ) is an N 4-function if:

1 f  : (X  ≤, τ,g ) → (Y , ≤, τ ,g ) is a De Morgan function, i.e., an

order preserving continuous mapping s. t. fg = g f ;

2 f (X 1) ⊆ Y 1;

3 f  X 1 is a Heyting function.

Sergei Odintsov ( Sobolev Institute of Mathematics [email protected] )Priestley Duality LATD 2010 19 / 19