of 25 /25
Objectives The Inverse Sine Function The Inverse Cosine Function The Inverse Tangent Function The Inverse Secant, Cosecant, and Cotangent Functions

Objectives ► The Inverse Sine Function ► The Inverse Cosine Function ► The Inverse Tangent Function ► The Inverse Secant, Cosecant, and Cotangent Functions

Embed Size (px)

Citation preview

Page 1: Objectives ► The Inverse Sine Function ► The Inverse Cosine Function ► The Inverse Tangent Function ► The Inverse Secant, Cosecant, and Cotangent Functions

Objectives

► The Inverse Sine Function

► The Inverse Cosine Function

► The Inverse Tangent Function

► The Inverse Secant, Cosecant, and Cotangent Functions

Page 2: Objectives ► The Inverse Sine Function ► The Inverse Cosine Function ► The Inverse Tangent Function ► The Inverse Secant, Cosecant, and Cotangent Functions

Inverse Trigonometric Functions and their Graphs

The inverse of a function f is a function f –1 that reverses the rule of f.

For a function to have an inverse, it must be one-to-one. Since the trigonometric functions are not one-to-one, they do not have inverses.

It is possible, however, to restrict the domains of the trigonometric functions in such a way that the resulting functions are one-to-one.

Page 3: Objectives ► The Inverse Sine Function ► The Inverse Cosine Function ► The Inverse Tangent Function ► The Inverse Secant, Cosecant, and Cotangent Functions

The Inverse Sine Function

Page 4: Objectives ► The Inverse Sine Function ► The Inverse Cosine Function ► The Inverse Tangent Function ► The Inverse Secant, Cosecant, and Cotangent Functions

The Inverse Sine Function

Let's first consider the sine function. There are many ways to restrict the domain of sine so that the new function is one-to-one.

A natural way to do this is to restrict the domain to the interval [– /2, /2].

The reason for this choice is that sine is one-to-one on this interval and moreover attains each of the values in its range on this interval.

Page 5: Objectives ► The Inverse Sine Function ► The Inverse Cosine Function ► The Inverse Tangent Function ► The Inverse Secant, Cosecant, and Cotangent Functions

The Inverse Sine Function

From Figure 1 we see that sine is one-to-one on thisrestricted domain (by the Horizontal Line Test) and so has an inverse.

y = sin x,y = sin x

Graphs of the sine function and the restricted sine function

Page 6: Objectives ► The Inverse Sine Function ► The Inverse Cosine Function ► The Inverse Tangent Function ► The Inverse Secant, Cosecant, and Cotangent Functions

The Inverse Sine Function

We can now define an inverse sine function on this restricted domain. The graph of y = sin–1x is shown in Figure 2; it is obtained by reflecting the graph of y = sin x, – /2 x /2, in the line y = x.

Graph of y = sin–1x

Page 7: Objectives ► The Inverse Sine Function ► The Inverse Cosine Function ► The Inverse Tangent Function ► The Inverse Secant, Cosecant, and Cotangent Functions

The Inverse Sine Function

Thus, y = sin–1x is the number in the interval [– /2, /2] whose sine is x.

In other words, sin (sin–1x) = x.

Page 8: Objectives ► The Inverse Sine Function ► The Inverse Cosine Function ► The Inverse Tangent Function ► The Inverse Secant, Cosecant, and Cotangent Functions

The Inverse Sine Function

In fact, from the general properties of inverse functions, we have the following cancellation properties.

When evaluating expressions involving sin–1, we need to remember that the range of sin–1 is the interval [– /2, /2].

Page 9: Objectives ► The Inverse Sine Function ► The Inverse Cosine Function ► The Inverse Tangent Function ► The Inverse Secant, Cosecant, and Cotangent Functions

Example 3 – Evaluating Expressions with Inverse Sine

Find each value.

(a) sin–1 (b) sin–1

Solution:(a) Since /3 is in the interval [– /2, /2], we can use the above cancellation properties of inverse functions:

Cancellation property:

Page 10: Objectives ► The Inverse Sine Function ► The Inverse Cosine Function ► The Inverse Tangent Function ► The Inverse Secant, Cosecant, and Cotangent Functions

Example 3 – Solution

(b) We first evaluate the expression in the parentheses:Evaluate

Because

cont’d

Page 11: Objectives ► The Inverse Sine Function ► The Inverse Cosine Function ► The Inverse Tangent Function ► The Inverse Secant, Cosecant, and Cotangent Functions

The Inverse Cosine Function

Page 12: Objectives ► The Inverse Sine Function ► The Inverse Cosine Function ► The Inverse Tangent Function ► The Inverse Secant, Cosecant, and Cotangent Functions

The Inverse Cosine Function

If the domain of the cosine function is restricted to the interval [0, ], the resulting function is one-to-one and so has an inverse.

We choose this interval because on it, cosine attains each of its values exactly once (see Figure 3).

y = cos x,

y = cos x

Page 13: Objectives ► The Inverse Sine Function ► The Inverse Cosine Function ► The Inverse Tangent Function ► The Inverse Secant, Cosecant, and Cotangent Functions

The Inverse Cosine Function

Thus, y = cos–1x is the number in the interval [0, ] whose cosine is x. The following cancellation properties follow from the inverse function properties.

Page 14: Objectives ► The Inverse Sine Function ► The Inverse Cosine Function ► The Inverse Tangent Function ► The Inverse Secant, Cosecant, and Cotangent Functions

The Inverse Cosine Function

The graph of y = cos–1x is shown in Figure 4; it is obtainedby reflecting the graph of y = cos x, 0 x , in the line y = x.

Graph of y = cos–1x

Figure 4

Page 15: Objectives ► The Inverse Sine Function ► The Inverse Cosine Function ► The Inverse Tangent Function ► The Inverse Secant, Cosecant, and Cotangent Functions

Example 5 – Evaluating Expressions with Inverse Cosine

Find each value.

(a) cos–1 (b) cos–1

Solution:

(a) Since 2 /3 is in the interval [0, ], we can use the above cancellation properties:

Cancellation property:

Page 16: Objectives ► The Inverse Sine Function ► The Inverse Cosine Function ► The Inverse Tangent Function ► The Inverse Secant, Cosecant, and Cotangent Functions

Example 5 – Solution

(b) We first evaluate the expression in the parentheses:Evaluate

Because

cont’d

Page 17: Objectives ► The Inverse Sine Function ► The Inverse Cosine Function ► The Inverse Tangent Function ► The Inverse Secant, Cosecant, and Cotangent Functions

The Inverse Tangent Function

Page 18: Objectives ► The Inverse Sine Function ► The Inverse Cosine Function ► The Inverse Tangent Function ► The Inverse Secant, Cosecant, and Cotangent Functions

The Inverse Tangent Function

We restrict the domain of the tangent function to the interval (– /2, /2), in order to obtain a one-to-one function.

Thus, y = tan–1x is the number in the interval (– /2, /2) whose tangent is x.

Page 19: Objectives ► The Inverse Sine Function ► The Inverse Cosine Function ► The Inverse Tangent Function ► The Inverse Secant, Cosecant, and Cotangent Functions

The Inverse Tangent Function

The following cancellation properties follow from the inverse function properties.

Page 20: Objectives ► The Inverse Sine Function ► The Inverse Cosine Function ► The Inverse Tangent Function ► The Inverse Secant, Cosecant, and Cotangent Functions

The Inverse Tangent FunctionFigure 5 shows the graph of y = tan x on the interval (– /2, /2) and the graph of its inverse function, y = tan–1x.

y = tan–1xy = tan x,

Graphs of the restricted tangent function and the inverse tangent function

Figure 5

Page 21: Objectives ► The Inverse Sine Function ► The Inverse Cosine Function ► The Inverse Tangent Function ► The Inverse Secant, Cosecant, and Cotangent Functions

Example 6 – Evaluating the Inverse Tangent Function Find each value.

(a) tan–11 (b) tan–1 (c) tan–1(20)

Solution: (a) The number in the interval (– /2, /2), with

tangent 1 is /4. Thus, tan–11 = /4.

(b) The number in the interval (– /2, /2), with tangentis /3. Thus, tan–1 = /3.

(c) We use a calculator (in radian mode) to find that tan–1(20) –1.52084.

Page 22: Objectives ► The Inverse Sine Function ► The Inverse Cosine Function ► The Inverse Tangent Function ► The Inverse Secant, Cosecant, and Cotangent Functions

The Inverse Secant, Cosecant, and Cotangent FunctionsTo define the inverse functions of the secant, cosecant, and cotangent functions, we restrict the domain of each function to a set on which it is one-to-one and on which it attains all its values.

Although any interval satisfying these criteria is appropriate, we choose to restrict the domains in a way that simplifies the choice of sign in computations involving inverse trigonometric functions.

The choices we make are also appropriate for calculus. This explains the seemingly strange restriction for the domains of the secant and cosecant functions.

Page 23: Objectives ► The Inverse Sine Function ► The Inverse Cosine Function ► The Inverse Tangent Function ► The Inverse Secant, Cosecant, and Cotangent Functions

The Inverse Secant, Cosecant, and Cotangent FunctionsWe end this section by displaying the graphs of the secant, cosecant, and cotangent functions with their restricted domains and the graphs of their inverse functions(Figures 6–8).

y = sec–1xy =

The inverse secant function Figure 6

Page 24: Objectives ► The Inverse Sine Function ► The Inverse Cosine Function ► The Inverse Tangent Function ► The Inverse Secant, Cosecant, and Cotangent Functions

The Inverse Secant, Cosecant, and Cotangent Functions

y = csc–1xy =

The inverse cosecant function

Figure 7

Page 25: Objectives ► The Inverse Sine Function ► The Inverse Cosine Function ► The Inverse Tangent Function ► The Inverse Secant, Cosecant, and Cotangent Functions

The Inverse Secant, Cosecant, and Cotangent Functions

y = cot –1xy = cot x, 0 < x <

The inverse cotangent function

Figure 8