1
Chronic inflammation Nutritional Immunology & Nathan Cash, Sandy Bensaci, Meaghan Wards & Madison Marsden University of The Sunshine Coast Abstract Akin to most systems in the human body, the immune system needs to be carefully balanced to ensure that it functions at its utmost capacity. A careful equilibrium of the factors that make up and fuel the immune system is required in longterm homeostasis. A great deal of these factors are obtained through what we eat, such as many vitamins and minerals that cannot be synthesized by our cells. Slight imbalances in the makeup of our immune system, based on the nutrients we do or do not consume, can begin to take its toll over time. Dietary induced damage to adipocytes, which is now proven to be a major endocrine organ [1] [2], can lead to an overall state of chronic inflammation. Subsequent disorders as a result of chronic inflammation may follow. Correspondingly certain foods and plant based nutrients have the power to reverse or slow such inflammation and help in long term treatment of people suffering from chronic inflammatory associated diseases such as Type2 Diabetes Mellitus, arthritis and vascular diseases [3]. Obesity and inflammation References Normal Inflammatory response Inflammation is an innate immune response whereby the body reacts to harmful stimuli, such as toxins, pathogens and physical stresses and proceeds to help fight infection and heal.[4] Acute inflammation is short term, and aims for the resolution of complete healing [Figure 1]. Chronic inflammation is longterm and destructive, and is a contributing factor to autoimmune diseases. Inflammation is a signal mediated response and follows a complex sequence of events. Symptoms such as redness, edema, heat and pain are exhibited[4][5] Once stimulated, bloodclotting proteins are released from platelets in the blood to promote healing.[4][5] Vasodilation increases, causing an increase in blood flow to the impacted site, resulting in redness[4][5] Increased metabolic activity of cells in the site of inflammation causes increased heat[4][5] The swelling of the tissue is due to an increase in vascular permeability; this produces a buildup of fluid to the impacted site, as it allows more fluid to flow through the blood vessels.[4][5] Leukocytes flood the area of damaged tissue, phagocytosis and cytotoxicity effects are initiated by macrophages, neutrophils, and dendritic cells. The activation of these resident cells also allow for the release of mediators such as proinflammatory cytokines TNFα, IL1, and IL6; chemokines; prostaglandins and histamine.[4][5] Endothelial gaps allow extravasation of antimicrobial proteins to enter the affected tissue and help promote healing. [4][5] These processes assist in the removal of harmful invading cells, dead cells, and damaged tissue, they endorse healing, and the stimulation of other physiological responses such as fever. [4][5] If acute inflammation is not resolved, there is the possibility of entering a chronic inflammatory state, having detrimental effects to not only the affected tissue, but to the systemic state of the individual.[4][5] Disease state chronic Inflammation Dietary treatments of inflammation A study on genetically modified mice was conducted whereby the mice expressed little to no white adipose tissue. This showed a number of unfavourable conditions including insulin resistance, hyperglycaemia, hyperlipidaemia and fatty liver. Transplantation of healthy white adipose tissue showed a reversal of all conditions back to a healthy state, demonstrating the importance of adipose tissue as an endocrine organ [8]. This chronic activation of inflammatory mediators leads to an overall state of chronic inflammation. Reduced production of adiponectin by adipocytes leads to peripheral insulin resistance further adding to the proinflammatory state and can cause many other chronic inflammatory diseases, such as type 2 diabetes mellitus, atherosclerosis and coronary heart disease as well as many types of cancer[11] [2] Figure 1.Events occuring in an acute inflammatory response Retrieved from <http://bio100.class.uic.edu/lect uresf04am/inflammation01a.jpg > Figure 2. Adipocyte induced macrophage activation and recruitment [3] It is suggested that a diet rich in these antioxidant vitamins can help prevent the inflammatory actions of reactive oxygen species in chronic inflammatory disorders[29] An active ingredient of sweet potato has been shown to significantly reduce blood glucose levels in patients with type 2 diabetes, although the mechanism of action is unknown[3] Proteolytic enzymes, many of which can be obtained through diet, have been shown to decrease swelling and overall inflammation[30] These proteolytic enzymes help to break down various proteins involved in the formation of immune complexes, and breakdown cellular debris involved in chronic inflammatory disorders [30] Furthermore, Bromelain, a mixture of proteolytic enzymes obtained from pineapple, has been shown to significantly decrease neutrophil migration to chronic inflammatory sites by interfering with IL33 and IL8 chemotaxis pathways[31] IL33 suppression or reduced expression using this proteolytic therapy has been link to the reduction of neutrophil migration involved in rheumatoid arthritis[32] Conclusions Figure 3. Cycle of events that leads to chronic inflammatory disorders. In conclusion inflammation is a vital immune response for the healing of wounds and infections, if unresolved, acute inflammation can progress to chronic inflammation leading to diseases such as rheumatoid arthritis and type 2 diabetes. Diet has been found to impact and even induce the state of inflammation, for example diets high in sugars and saturated fats can initiate a state of inflammation by causing a dysfunction in adipocytes. This correlation can ultimately lead to chronic inflammatory diseases. Studies have shown that diets rich in antioxidants and fatty acids can help reduce inflammation and thus assist in the treatment of inflammatory conditions. Although this relationship has been extensively studied, in order to benefit entirely from these findings and therefore obtain a greater depth of knowledge regarding this relationship, further study into the mechanisms that initiate this cycle are needed. 1.Kershaw, E. E., & Flier, J. S. (2004). Adipose Tissue as an Endocrine Organ. The Journal of Clinical Endocrinology & Metabolism, 89(6), 25482556. 2. Bruun, J., Lihn, A., Verdich, C., Pedersen, S., Toubro, S., Astrup, A., & Richelsen, B. (2003). Regulation of adiponectin by adipose tissue derived cytokines: In vivo and in vitro investigations in humans. American Journal of Physiology. Endocrinology and Metabolism, 285(3), E52733. 3. Ludvik, B., Hanefeld, M., & Pacini, G. (2008). Improved metabolic control by Ipomoea batatas (Caiapo) is associated with increased adiponectin and decreased fibrinogen levels in type 2 diabetic subjects. Diabetes, Obesity and Metabolism, 10(7), 586592. 4. Owen, J.A., Punt, J., Stranford. S.A., Jones, P.P., & Kuby, J. (2013). Kuby Immunology. W.H Freeman and Company, New York. 7. 5. Hall, A., & Yates, C. (2010). Immunology. Oxford University Press. 6. Greenberg, Andrew S, & Obin, Martin S. (2006). Obesity and the role of adipose tissue in inflammation and metabolism. American Journal of Clinical Nutrition, 83(2), 461S465S. 7. Klöting, N., & Blüher, M. (2014). Adipocyte dysfunction, inflammation and metabolic syndrome. Reviews in Endocrine and Metabolic Disorders, 15(4), 277287. 8. Gavrilova, O., MarcusSamuels, B., Graham, D., Kim, J., Shulman, G., Castle, A., . . . Reitman, M. (2000). Surgical implantation of adipose tissue reverses diabetes in lipoatrophic mice. The Journal of Clinical Investigation, 105(3), 2718. 9. Xu, Hy, Barnes, Gt, Yang, Q, Tan, Q, Yang, Ds, Chou, CJ. Chen, H. (2003). Chronic inflammation in fat plays a crucial role in the development of obesityrelated insulin resistance. Journal Of Clinical Investigation, 112(12), 18211830. 10. Forsythe, L., Wallace, J., & Livingstone, M. (2008). Obesity and inflammation: The effects of weight loss. Nutrition Research Reviews, 21(2), 117133. 11. Popa, C., Netea, M., Van Riel, P., Van Der Meer, J., & Stalenhoef, A. (2007). The role of TNFalpha in chronic inflammatory conditions, intermediary metabolism, and cardiovascular risk. Journal Of Lipid Research, 48(4), 751762. 12. Deeks, Steven G. (20110101). "HIV infection, inflammation, immunosenescence, and aging". Annual Review of Medicine 62: 141– doi:10.1146/annurevmed042909093756. ISSN 1545326X.PMC3759035.PMID21090961. 13. Ipp, Hayley; Zemlin, Annalise (20130201). "The paradox of the immune response in HIV infection: when inflammation becomes harmful". Clinica Chimica Acta; International Journal of Clinical Chemistry 416: 96–99.doi:10.1016/j.cca.2012.11.025. ISSN 18733492.PMID 23228847. 14. Eming, S. A.; Krieg, T.; Davidson, J. M. (2007). "Inflammation in wound repair: molecular and cellular mechanisms". Journal of Investigative Dermatology 127(3): 514–525. doi:10.1038/sj.jid.5700701. PMID 17299434. 15. Parimisetty A, Dorsemans AC, Awada R, Ravanan P, Diotel N, Lefebvre d'Hellencourt C (Mar 24, 2016)."Secret talk between adipose tissue and central nervous system via secreted factorsan emerging frontier in the neurodegenerative research". J Neuroinflammation(Review) 13 (1).doi:10.1186/s129740160530x.PMC 4806498. PMID 27012931 16.Meera Swami. (2012). IL26: Inducing inflammation. Nature medicine 18, 1629, doi: 10.1038/nm.3006 17. Corvaisier M, Delneste Y, Jeanvoine H, Preisser L, Blanchard S, Garo E, Hoppe E, Barre B, Audran M, Bouvard B, SaintAndre JP, Jeannin P. 2012.IL26 is overexpressed in rheumatoid arthritis and induces proinflammatory cytokine production and Th17 cell generation. PLoS Biology 10(9) doi:10.317/journal.pbio.1001395 18. Haiyan Xu, Glenn T. Barnes, Qing Yang, Guo Tan, Daseng Yang, Chieh J. Chou, Jason Sole, Andrew Nichols, Jeffrey S. Ross, Louis A. Tartaglia, and Hong Chen. (2003). Chronic inflammation in fat plays a crucial role in the development of obesityrelated insulin resistance. The journal of clinical investigation. 112(12), . 18211830 19. piero Marchetti. (2016). Islet inflammation in type 2 diabetes. Diabetologia 59 (4), pp. 688672 20.Carl De Luca & Jerrold M Olefsky. 2008. Inflammation and insulin resistance. FEBS Lett 582(1), pp. 97105 21. Devasagayam, T., Tilak, J., Boloor, K., Sane, S., Ghaskadbi, R., & Lele. (2004). Free radicals and antioxidants in human health: Current status and future prospects. Journal of Association of Physicians of India, 52, 794804. 22. Kim, Hj, Kim, Ch, Ryu, Jh, Kim, Mj, Park, Cy, Lee, Jm, . . . Yoon, Jh. (2013). Reactive Oxygen Species Induce Antiviral Innate Immune Response through IFNlambda Regulation in Human Nasal Epithelial Cells.American Journal Of Respiratory Cell And Molecular Biology, 49(5), 855865. 23. Marseglia, Manti, D'Angelo, Nicotera, Parisi, Rosa, . . . Arrigo. (2015). Oxidative Stress in Obesity: A Critical Component in Human Diseases.International Journal of Molecular Sciences, 16(1), 378400. 24. Darlington, L., & Stone, T. (2001). Antioxidants and fatty acids in the amelioration of rheumatoid arthritis and related disorders. BJN, 85(03), 251. DOI:10.1079/BJN2000239. 25. Karunakaran, U., & Park, K. (2013). A Systematic Review of Oxidative Stress and Safety of Antioxidants in Diabetes: Focus on Islets and Their Defense Diabetes & Metabolism Journal, 37(2), 106112. 26. Galland, L. (2010). Diet and inflammation. Nutrition in Clinical Practice : Official Publication of the American Society for Parenteral and Enteral Nutrition,25(6), 63440. 27. Sarita Bajaj, & Afreen Khan. (2012). Antioxidants and diabetes. Indian Journal of Endocrinology and Metabolism, 16(8), 267271. 28. Mangge, H., Becker, K., Fuchs, D., & Gostner, J. (2014). Antioxidants, inflammation and cardiovascular disease. World Journal of Cardiology,6(6), 462 77. 29. Padayatty, Sebastian J., Katz, Arie, Wang, Yaohui, Eck, Peter, Kwon, Oran, Lee, JeHyuk, . . . Levine, Mark. (2003). Vitamin C as an Antioxidant: Evaluation of Its Role in Disease Prevention. Journal of the American College of Nutrition, 22(1), 1835. 30. Viswanatha Swamy, A., & Patil, P. (2008). Effect of some clinically used proteolytic enzymes on inflammation in rats. Indian Journal of Pharmaceutical Sciences, 70(1), 114117. 31. Fitzhugh, Shan, Dewhirst, & Hale. (2008). Bromelain treatment decreases neutrophil migration to sites of inflammation. Clinical Immunology,128(1), 66 74. 32. Verri, Waldiceu A, Souto, Fabrício O, Vieira, Silvio M, Almeida, Sergio C L, Fukada, Sandra Y, Xu, Damo, . . . Cunha, Fernando Q. (2010). IL 33 induces neutrophil migration in rheumatoid arthritis and is a target of antiTNF therapy. Annals of the Rheumatic Diseases, 69(9), 1697. It has been well established that adipose tissue is an active endocrine organ that has many effects on overall metabolism [1]. A diet that is high in saturated fats and sugars can damage adipocytes and lead to overall dysfunction in adipose tissue which ultimately induces a state of inflammation [6][7][Figure 3]. Multiple studies have shown that adipose tissue plays a pivotal role as an endocrine organ in healthy and diseased states[8] [1] The discovery of many different cytokines/hormones released from adipocytes, including; TNFa, IL6, IL8, adiponectin and leptin, has led to many studies indicating the role of adipose tissue in inflammatory responses [2] [1]. The release of two major adipokines, adiponectin and leptin, from adipocytes are chief contributors to overall metabolic state and have been shown to play a major role in insulin sensitivity [9]. During prolonged amounts of fat storage, adipocytes become enlarged and dysfunctional[6] Due to excess lipid storage, adipocytes become hypertrophied leading to increased release of proinflammatory molecules such as TNFa, IL6 and leptin. Also, Hypertrophied adipocytes demonstrate a marked decrease in release of adiponectin, an antiinflammatory hormone [10]. A necrotic state in adipose tissue follows as the dysfunctional adipocytes abnormally release cytokines such as IL6, a potent activator of macrophages[2] Activated macrophages have been found to produce almost all TNFa and IL 6 in adipose tissue[9][1] TNFa, IL6 and other signals from dysfunctional adipocytes are thought to activate tissue macrophages, which attract more and more macrophages to the adipose tissue contributing to chronic inflammation[2][9] [Figure 2]. Certain compounds obtained through diet can have significant effects on reducing chronic inflammatory states. Reactive oxygen species (ROS) are a normal product of cellular respiration[21] It has been shown that an immune response triggers increased production of ROS which are involved in a ROSdependent signalling pathway producing an antiviral antimicrobial state[22] However sustained increased levels of ROS produced by over activated macrophages and natural killer cells in chronically inflamed tissues can have severe adverse effects over time[23] Studies show that there is growing evidence of the function that free radicals have on the treatment of inflammatory diseases, insinuating antioxidant therapy, from antioxidant rich diets, as an alternative therapy to antiinflammatory drug treatment. Evidence also suggests that dietary fatty acids can alter the generation of cytokines and eicosanoids in particular ways that can influence both the patient's symptoms and the disease pathway.[24] Antioxidant compounds are vital antiinflammatory agents [21] The site of inflammation is full of ROS and free radicals[25] When the antioxidant status is low, it leads to greater perpetuation of the inflammatory response[25] The antioxidant system in the human body requires vitamins C and E, zinc, selenium and flavonoid[26] Flavonoids are plant based metabolites that have antioxidant effects in human cells[27] Diets supplemented with flavonoids such as those found in turmeric may contribute to reducing ROS[28] Vitamin C and vitamin E have been shown to have significant antioxidant functions reducing reactive oxygen and nitrogen species[29] Chronic inflammation is characterized as persistent long term acute inflammation[12] with delayed onset and effects that can last years. While acute inflammation plays a pivotal and unavoidable function to tissue injury and maintenance of homeostasis, chronic inflammation is a critical driver of immune dysfunctions and immune deficiencies[13][14]. A wide range of chronic inflammatory diseases are resultant of autoimmunity. Furthermore, increased levels interleukin 26 (IL26) of the IL10 family induces production of proinflammatory cytokines[15], these include TNFα, IL6 and IL1[16]. IL26 has been linked to the pathophysiology of chronic inflammatory disorders: Rheumatoid arthritis[17][18], obesity and type 2 diabetes[19]. Type 2 Diabetes (T2DM) and obesity Proinflammatory cytokines causes insulin resistance in tissues throughout the body although the most affected are: adipose tissue, skeletal muscle and liver[20] [Figure 3]. Insulin resistance is a decreased response of tissues to the actions of insulin Results in high risk of disease development due to inability to uptake and store sugars and fatty acids TNFα, a proinflammatory cytokine, is linked to insulin resistance in T2DM and obesity (over expressed in white adipose tissue)[18] Rheumatoid Arthritis (RA) Long lasting chronic inflammation, primarily the joints but also affecting the whole body Initiation of RA nonspecific inflammation followed by amplification due to T cell activation Chronic inflammation that follows linked to IL1, TNFα and IL6 In all of the autoimmune disorders mentioned, symptoms and progression, is driven by chronic inflammation and demonstrate the importance for further study and treatment of inflammation in the body. Nutritional based solutions have proven to be highly effective in the treatment of many autoimmune diseases. Many components of food can have a wide variety of healthy effects on the body and treatment of inflammation.

Nutritional immunology informational poster

Embed Size (px)

Citation preview

Page 1: Nutritional immunology informational poster

Chronic inflammation

Nutritional Immunology &

Nathan Cash, Sandy Bensaci, Meaghan Wards & Madison MarsdenUniversity of The Sunshine Coast

Abstract Akin to most systems in the human body, the immune system needs tobe carefully balanced to ensure that it functions at its utmost capacity. Acareful equilibrium of the factors that make up and fuel the immunesystem is required in long­term homeostasis. A great deal of these factorsare obtained through what we eat, such as many vitamins and mineralsthat cannot be synthesized by our cells. Slight imbalances in the makeupof our immune system, based on the nutrients we do or do not consume,can begin to take its toll over time. Dietary induced damage to adipocytes,which is now proven to be a major endocrine organ [1] [2], can lead to anoverall state of chronic inflammation. Subsequent disorders as a result ofchronic inflammation may follow. Correspondingly certain foods and plantbased nutrients have the power to reverse or slow such inflammation andhelp in long term treatment of people suffering from chronic inflammatoryassociated diseases such as Type­2 Diabetes Mellitus, arthritis andvascular diseases [3].

Obesity and inflammation

References

Normal Inflammatoryresponse

Inflammation is an innate immune response whereby the body reacts toharmful stimuli, such as toxins, pathogens and physical stresses andproceeds to help fight infection and heal.[4]Acute inflammation ­ is short term, and aims for the resolution of completehealing [Figure 1].Chronic inflammation  ­ is long­term and destructive, and is a contributingfactor to autoimmune diseases.Inflammation is a signal mediated response and follows a complexsequence of events. Symptoms such as redness, edema, heat and painare exhibited[4][5]

Once stimulated, blood­clotting proteins are released from platelets inthe blood to promote healing.[4][5]Vasodilation increases, causing an increase in blood flow to theimpacted site, resulting in redness[4][5]Increased metabolic activity of cells in the site of inflammation causesincreased heat[4][5]The swelling of the tissue is due to an increase in vascularpermeability; this produces a build­up of fluid to the impacted site, as itallows more fluid to flow through the blood vessels.[4][5]Leukocytes flood the area of damaged tissue, phagocytosis andcytotoxicity effects are initiated by macrophages, neutrophils, anddendritic cells.  The activation of these resident cells also allow for therelease of mediators such as pro­inflammatory cytokines TNF­α, IL­1,and IL­6; chemokines; prostaglandins and histamine.[4][5]Endothelial gaps allow extravasation of anti­microbial proteins to enterthe affected tissue and help promote healing. [4][5]These processes assist in the removal of harmful invading cells, deadcells, and damaged tissue, they endorse healing, and the stimulation ofother physiological responses such as fever. [4][5]If acute inflammation is not resolved, there is the possibility of enteringa chronic inflammatory state, having detrimental effects to not only theaffected tissue, but to the systemic state of the individual.[4][5]

Disease state chronicInflammation

Dietary treatments ofinflammation

A study on genetically modified mice was conducted whereby the miceexpressed little to no white adipose tissue. This showed a number ofunfavourable conditions including insulin resistance, hyperglycaemia,hyperlipidaemia and fatty liver. Transplantation of healthy white adiposetissue showed a reversal of all conditions back to a healthy state,demonstrating the importance of adipose tissue as an endocrine organ [8].This chronic activation of inflammatory mediators leads to an overall stateof chronic inflammation.Reduced production of adiponectin by adipocytes leads to peripheralinsulin resistance further adding to the pro­inflammatory state and cancause many other chronic inflammatory diseases, such as type 2 diabetesmellitus, atherosclerosis and coronary heart disease as well as manytypes of cancer[11] [2]

Figure 1.Events occuring in an

acute inflammatory response

Retrieved from

<http://bio100.class.uic.edu/lect

uresf04am/inflammation01a.jpg

>

Figure 2. Adipocyte induced macrophage activation and recruitment [3]

It is suggested that a diet rich in these antioxidant vitamins can help prevent theinflammatory actions of reactive oxygen species in chronicinflammatory disorders[29]

An active ingredient of sweet potato has been shown to significantlyreduce blood glucose levels in patients with type 2 diabetes, althoughthe mechanism of action is unknown[3]

Proteolytic enzymes, many of which can be obtained through diet, have beenshown to decrease swelling and overall inflammation[30]These proteolytic enzymes help to break down various proteins involved in theformation of immune complexes, and breakdown cellular debris involved inchronic inflammatory disorders [30]Furthermore, Bromelain, a mixture of proteolytic enzymes obtainedfrom pineapple, has been shown to significantly decrease neutrophil migrationto chronic inflammatory sites by interfering with IL­33 and IL­8chemotaxis pathways[31]IL­33 suppression or reduced expression using this proteolytic therapyhas been link to the reduction of neutrophil migration involved inrheumatoid arthritis[32]

Conclusions

Figure 3. Cycle of events that leads to chronic inflammatory disorders.

In conclusion inflammation is a vital immune response for the healing ofwounds and infections, if unresolved, acute inflammation can progress tochronic inflammation leading to diseases such as rheumatoid arthritis andtype 2 diabetes.  Diet has been found to impact and even induce the state ofinflammation, for example diets high in sugars and saturated fats can initiatea state of inflammation by causing a dysfunction in adipocytes. Thiscorrelation can ultimately lead to chronic inflammatory diseases. Studieshave shown that diets rich in antioxidants and fatty acids can help reduceinflammation and thus assist in the treatment of inflammatory conditions.Although this relationship has been extensively studied, in order to benefitentirely from these findings and therefore obtain a greater depth ofknowledge regarding this relationship, further study into the mechanismsthat initiate this cycle are needed.

1.Kershaw, E. E., & Flier, J. S. (2004). Adipose Tissue as an Endocrine Organ. The Journal of Clinical Endocrinology & Metabolism, 89(6), 2548­2556.

2. Bruun, J., Lihn, A., Verdich, C., Pedersen, S., Toubro, S., Astrup, A., & Richelsen, B. (2003). Regulation of adiponectin by adipose tissue

derived cytokines: In vivo and in vitro investigations in humans. American Journal of Physiology. Endocrinology and Metabolism, 285(3), E527­33.

3. Ludvik, B., Hanefeld, M., & Pacini, G. (2008). Improved metabolic control by Ipomoea batatas (Caiapo) is associated with increased adiponectin

and decreased fibrinogen levels in type 2 diabetic subjects. Diabetes, Obesity and Metabolism, 10(7), 586­592.

4. Owen, J.A., Punt, J., Stranford. S.A., Jones, P.P., & Kuby, J. (2013). Kuby Immunology. W.H Freeman and Company, New York. 7.

5. Hall, A., & Yates, C. (2010). Immunology. Oxford University Press.

6. Greenberg, Andrew S, & Obin, Martin S. (2006). Obesity and the role of adipose tissue in inflammation and metabolism. American Journal of

Clinical Nutrition, 83(2), 461S­465S.

7. Klöting, N., & Blüher, M. (2014). Adipocyte dysfunction, inflammation and metabolic syndrome. Reviews in Endocrine and Metabolic Disorders,

15(4), 277­287.

8. Gavrilova, O., Marcus­Samuels, B., Graham, D., Kim, J., Shulman, G., Castle, A., . . . Reitman, M. (2000). Surgical implantation of adipose

tissue reverses diabetes in lipoatrophic mice. The Journal of Clinical Investigation, 105(3), 271­8.

9. Xu, Hy, Barnes, Gt, Yang, Q, Tan, Q, Yang, Ds, Chou, CJ. Chen, H. (2003). Chronic inflammation in fat plays a crucial role in the development

of obesity­related insulin resistance. Journal Of Clinical Investigation, 112(12), 1821­1830.

10. Forsythe, L., Wallace, J., & Livingstone, M. (2008). Obesity and inflammation: The effects of weight loss. Nutrition Research Reviews, 21(2), 117­133.

11. Popa, C., Netea, M., Van Riel, P., Van Der Meer, J., & Stalenhoef, A. (2007). The role of TNF­alpha in chronic inflammatory conditions,

intermediary metabolism, and cardiovascular risk. Journal Of Lipid Research, 48(4), 751­762.

12. Deeks, Steven G. (2011­01­01). "HIV infection, inflammation, immunosenescence, and aging". Annual Review of Medicine 62:

141– doi:10.1146/annurev­med­042909­093756. ISSN 1545­326X.PMC3759035.PMID21090961.

13. Ipp, Hayley; Zemlin, Annalise (2013­02­01). "The paradox of the immune response in HIV infection: when inflammation becomes harmful".

Clinica Chimica Acta; International Journal of Clinical Chemistry 416: 96–99.doi:10.1016/j.cca.2012.11.025. ISSN 1873­3492.PMID 23228847.

14. Eming, S. A.; Krieg, T.; Davidson, J. M. (2007). "Inflammation in wound repair: molecular and cellular mechanisms". Journal of

Investigative Dermatology 127(3): 514–525. doi:10.1038/sj.jid.5700701. PMID 17299434.

15. Parimisetty A, Dorsemans AC, Awada R, Ravanan P, Diotel N, Lefebvre d'Hellencourt C (Mar 24, 2016)."Secret talk between adipose tissue and

central nervous system via secreted factors­an emerging frontier in the neurodegenerative research". J Neuroinflammation(Review) 13

(1).doi:10.1186/s12974­016­0530­x.PMC 4806498. PMID 27012931

16.Meera Swami. (2012). IL­26: Inducing inflammation. Nature medicine 18, 1629, doi: 10.1038/nm.3006

17. Corvaisier M, Delneste Y, Jeanvoine H, Preisser L, Blanchard S,  Garo E, Hoppe E, Barre B, Audran M, Bouvard B, Saint­Andre JP, Jeannin P.

2012.IL­26 is overexpressed in rheumatoid arthritis and induces pro­inflammatory cytokine production and Th17 cell generation. PLoS Biology 10(9)

doi:10.317/journal.pbio.1001395

18. Haiyan Xu, Glenn T. Barnes, Qing Yang, Guo Tan, Daseng Yang, Chieh J. Chou, Jason Sole, Andrew Nichols, Jeffrey S. Ross, Louis A. Tartaglia,

and Hong Chen. (2003). Chronic inflammation in fat plays a crucial role in the development of obesity­related insulin resistance. The journal of

clinical investigation. 112(12), . 1821­1830

19. piero Marchetti. (2016). Islet inflammation in type 2 diabetes. Diabetologia 59 (4), pp. 688­672  

20.Carl De Luca & Jerrold M Olefsky. 2008. Inflammation and insulin resistance. FEBS Lett 582(1), pp. 97­105

21. Devasagayam, T., Tilak, J., Boloor, K., Sane, S., Ghaskadbi, R., & Lele. (2004). Free radicals and antioxidants in human health: Current status

and future prospects. Journal of Association of Physicians of India, 52, 794­804.

22. Kim, Hj, Kim, Ch, Ryu, Jh, Kim, Mj, Park, Cy, Lee, Jm, . . . Yoon, Jh. (2013). Reactive Oxygen Species Induce Antiviral Innate Immune

Response through IFN­lambda Regulation in Human Nasal Epithelial Cells.American Journal Of Respiratory Cell And Molecular Biology, 49(5), 855­865.

23. Marseglia, Manti, D'Angelo, Nicotera, Parisi, Rosa, . . . Arrigo. (2015). Oxidative Stress in Obesity: A Critical Component in

Human Diseases.International Journal of Molecular Sciences, 16(1), 378­400.

24. Darlington, L., & Stone, T. (2001). Antioxidants and fatty acids in the amelioration of rheumatoid arthritis and related disorders. BJN, 85(03), 251.

DOI:10.1079/BJN2000239.

25. Karunakaran, U., & Park, K. (2013). A Systematic Review of Oxidative Stress and Safety of Antioxidants in Diabetes: Focus on Islets and Their

Defense Diabetes & Metabolism Journal, 37(2), 106­112.

26. Galland, L. (2010). Diet and inflammation. Nutrition in Clinical Practice : Official Publication of the American Society for Parenteral and Enteral

Nutrition,25(6), 634­40.

27. Sarita Bajaj, & Afreen Khan. (2012). Antioxidants and diabetes. Indian Journal of Endocrinology and Metabolism, 16(8), 267­271.

28. Mangge, H., Becker, K., Fuchs, D., & Gostner, J. (2014). Antioxidants, inflammation and cardiovascular disease. World Journal of Cardiology,6(6), 462­

77.

29. Padayatty, Sebastian J., Katz, Arie, Wang, Yaohui, Eck, Peter, Kwon, Oran, Lee, Je­Hyuk, . . . Levine, Mark. (2003). Vitamin C as an

Antioxidant: Evaluation of Its Role in Disease Prevention. Journal of the American College of Nutrition, 22(1), 18­35.

30. Viswanatha Swamy, A., & Patil, P. (2008). Effect of some clinically used proteolytic enzymes on inflammation in rats. Indian Journal of

Pharmaceutical Sciences, 70(1), 114­117.

31. Fitzhugh, Shan, Dewhirst, & Hale. (2008). Bromelain treatment decreases neutrophil migration to sites of inflammation. Clinical Immunology,128(1), 66­

74.

32. Verri, Waldiceu A, Souto, Fabrício O, Vieira, Silvio M, Almeida, Sergio C L, Fukada, Sandra Y, Xu, Damo, . . . Cunha, Fernando Q. (2010). IL­

33 induces neutrophil migration in rheumatoid arthritis and is a target of anti­TNF therapy. Annals of the Rheumatic Diseases, 69(9), 1697.

It has been well established that adipose tissue is an active endocrineorgan that has many effects on overall metabolism [1]. A diet that is high insaturated fats and sugars can damage adipocytes and lead to overalldysfunction in adipose tissue which ultimately induces a state ofinflammation [6][7][Figure 3].Multiple studies have shown that adipose tissue plays a pivotal role as anendocrine organ in healthy and diseased states[8] [1]The discovery of many different cytokines/hormones released fromadipocytes, including; TNF­a, IL­6, IL­8, adiponectin and leptin, has led tomany studies indicating the role of adipose tissue in inflammatory responses[2] [1].The release of two major adipokines, adiponectin and leptin, from adipocytesare chief contributors to overall metabolic state and have been shown to playa major role in insulin sensitivity [9].During prolonged amounts of fat storage, adipocytes become enlarged anddysfunctional[6]Due to excess lipid storage, adipocytes become hypertrophied leading toincreased release of pro­inflammatory molecules such as TNF­a, IL­6 andleptin. Also, Hypertrophied adipocytes demonstrate a marked decrease inrelease of adiponectin, an anti­inflammatory hormone [10].A necrotic state in adipose tissue follows as the dysfunctional adipocytesabnormally release cytokines such as IL­6, a potent activator ofmacrophages[2]Activated macrophages have been found to produce almost all TNF­a and IL­6 in adipose tissue[9][1]TNF­a, IL­6 and other signals from dysfunctional adipocytes are thought toactivate tissue macrophages, which attract more and more macrophagesto the adipose tissue contributing to chronic inflammation[2][9] [Figure 2].

Certain compounds obtained through diet can have significant effects onreducing chronic inflammatory states.Reactive oxygen species (ROS) are a normal product of cellularrespiration[21]It has been shown that an immune response triggers increasedproduction of ROS which are involved in a ROS­dependent signallingpathway producing an antiviral antimicrobial state[22]  However sustained increased levels of ROS produced by over activatedmacrophages and natural killer cells in chronically inflamed tissues canhave severe adverse effects over time[23]Studies show that there is growing evidence of the function that freeradicals have on the treatment of inflammatory diseases, insinuatingantioxidant therapy, from antioxidant rich diets, as an alternative therapyto anti­inflammatory drug treatment. Evidence also suggests that dietaryfatty acids can alter the generation of cytokines and eicosanoids inparticular ways that can influence both the patient's symptoms and thedisease pathway.[24]Antioxidant compounds are vital anti­inflammatory agents [21]The site of inflammation is full of ROS and free radicals[25]  When the antioxidant status is low, it leads to greater perpetuation of theinflammatory response[25]The antioxidant system in the human body requires vitamins C and E,zinc, selenium and flavonoid[26]Flavonoids are plant based metabolites that have antioxidant effects inhuman cells[27]Diets supplemented with flavonoids such as those found in turmeric maycontribute to reducing ROS[28]Vitamin C and vitamin E have been shown to have significant antioxidantfunctions reducing reactive oxygen and nitrogen species[29]

Chronic inflammation is characterized as persistent long term acuteinflammation[12] with delayed onset and effects that can last years. Whileacute inflammation plays a pivotal and unavoidable function to tissue injuryand maintenance of homeostasis, chronic inflammation is a critical driver ofimmune dysfunctions and immune deficiencies[13][14].  A wide range ofchronic inflammatory diseases are resultant of autoimmunity. Furthermore,increased levels interleukin­ 26 (IL­26) of the IL­10 family induces productionof pro­inflammatory cytokines[15], these include TNFα, IL­6 and IL­1[16]. IL­26 has been linked to the pathophysiology of chronic inflammatorydisorders:Rheumatoid arthritis[17][18],obesity and type 2 diabetes[19].  Type 2 Diabetes (T2DM) and obesityPro­inflammatory cytokines causes insulin resistance in tissues throughoutthe body although the most affected are: adipose tissue, skeletal muscle andliver[20] [Figure 3].Insulin resistance is a decreased response of tissues to the actions of insulinResults in high risk of disease development due to inability to uptake andstore sugars and fatty acidsTNFα, a proinflammatory cytokine, is linked to insulin resistance in T2DM andobesity (over expressed in white adipose tissue)[18]Rheumatoid Arthritis (RA)Long lasting chronic inflammation, primarily the joints but also affecting thewhole body  Initiation of RA non­specific inflammation followed by amplification due to Tcell activationChronic inflammation that follows linked to IL­1, TNFα and IL­6In all of the autoimmune disorders mentioned, symptoms and progression, isdriven by chronic inflammation and demonstrate the importance for furtherstudy and treatment of inflammation in the body. Nutritional based solutionshave proven to be highly effective in the treatment of many autoimmunediseases. Many components of food can have a wide variety of healthyeffects on the body and treatment of inflammation.