59
1 Numerical simulation of two phase porous media flow models with application to oil recovery Roland Masson IFP New energies ENSG course 2011 18/04 - 19/04 -20/04 -21/04

Numerical simulation of two phase porous media flow models

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Numerical simulation of two phase porous media flow models

1

Numerical simulation of two phase porous media flow models with

application to oil recovery

Roland MassonIFP New energies

ENSG course 201118/04 - 19/04 -20/04 -21/04

Page 2: Numerical simulation of two phase porous media flow models

2

Outline: 18-19/04

• Discretization of single phase flows

– Two Point Flux Finite Volume Approximation of Darcy Fluxes

• Homogeneous case• Heterogeneous case

– Exercise: single phase incompressible Darcy flow in 1D (using Scilab)

Page 3: Numerical simulation of two phase porous media flow models

3

Outline: 19-20/04

• Discretization of two phase immiscible incompressible Darcy flows

– Hyperbolic scalar conservation laws– IMPES discretization of water oil two phase flow

– Exercise: Impes discretization of water oil twophase flow in 1D (using Scilab)

Page 4: Numerical simulation of two phase porous media flow models

4

Outline: 20-21/04

• Discretization of wells• Exercise: Five spots water oil simulation

– Description of the Research Project

Page 5: Numerical simulation of two phase porous media flow models

5

Examination: 15/06

• By binoms• Written report on the Project• Oral examination

– Presentation of the report– Run tests of the prototype code– Questions on numerical methods used in the

simulation

Page 6: Numerical simulation of two phase porous media flow models

6

Finite Volume Discretization of single phase Darcy flows

• Darcy law and conservation equation

• Two Point Flux Discretization (TPFA) of diffusion fluxes on admissible meshes

• Exercice: single phase incompressible Darcy flow in 1D

Page 7: Numerical simulation of two phase porous media flow models

7

Oil recovery by water injection

( )

( )

−∇+∇−=

−∇−=

gSPPKSk

V

gPKSk

V

owcwo

ooro

www

wwrw

ρµ

ρµ

)()(

)(

,

,

( ) ( )( ) ( )

=+∂

=+∂

0

0

oooo

wwww

VdivtS

VdivtS

ρφρρφρ

1=+ ow SS Capillary pressure PcRelative permeabilities kr,w and kr,o

Page 8: Numerical simulation of two phase porous media flow models

8

1D test caseInjection of water in a reservoir

prodpp =inj

w

pp

S

==1

Page 9: Numerical simulation of two phase porous media flow models

9

Water injection in a 1D reservoir

Page 10: Numerical simulation of two phase porous media flow models

10

Five Spots simulation in 2D

1000 m

1000 m

Pressure

Water front

Page 11: Numerical simulation of two phase porous media flow models

11

Heterogeneities

Water front Pressure

Permeability

Page 12: Numerical simulation of two phase porous media flow models

12

Heterogeneities

Page 13: Numerical simulation of two phase porous media flow models

13

Coning: aquifer and vertical well

PressureWater front

1000 m

100 m

50 m

Aquifer

Page 14: Numerical simulation of two phase porous media flow models

14

Coning: stratified reservoir

Permeability

Water frontPressure

Page 15: Numerical simulation of two phase porous media flow models

15

SINGLE PHASE DARCY FLOWSINGLE PHASE DARCY FLOW

( ) ( ) qVdivt

=+∂

∂ ρφρ

)( gPK

V

ρµ

−∇−=

φKρµ

Page 16: Numerical simulation of two phase porous media flow models

16

Incompressible Darcy single phase flow

• Diffusion equation

Ω∂=∇−

Ω∂=

Ω=∇−

N

DD

ongnpK

onpp

onfpK

div

.

)(

µρ

µρ

!

"!#

!

Page 17: Numerical simulation of two phase porous media flow models

17

Compressible Darcy single phase flow

• Parabolic equation(linearized)

Ω=

×Ω∂=∇−

×Ω∂=

×Ω=∇−+∂

= onpp

TongnpK

Tonpp

TonpK

divpdpd

t

N

DD

t

00

0

000

),0(.

),0(

),0(0)()1

(

µρ

µρρρ

ρ

$%

!

"!#

00 pp t ==

Page 18: Numerical simulation of two phase porous media flow models

18

NOTATIONS

objectlgeometrica & "

σ

!'(!)(" !*κ

21xx

!)(" !*(*

" !*

Page 19: Numerical simulation of two phase porous media flow models

19

Finite Volume Discretization• Finite volume mesh

– Cells– Cell centers– Faces

• Degrees of freedom:

• Discrete conservation law

=∇−=∆−= κκκσ σ

κκκ

fdxdsnudxu'

'.

'κκ κκσ ′=

κx 'κx

κu

'κκn

Page 20: Numerical simulation of two phase porous media flow models

20

Two Point Flux Approximation (TPFA)

• TPFA

• Flux Conservativity

• Flux Consistency

),(. ''' κκκκσ

κκ uuFdsnu ≈∇−

0),(),( '''' =+ κκκκκκκκ uuFuuF

( ) +∇−=−=σ

κκκκκκ

κκκκ σσ

)(.),( '''

'' hOdsnuuuxx

uuF

''' κκκκ ⊥xx'κxκx

'κκn

Page 21: Numerical simulation of two phase porous media flow models

21

Two Point Flux Approximation• Boundary faces

σσκ ⊥xx '

( ) +∇−=−=σ

σσκσκ

σκσ σσ

)(.),( hOdsnuuuxx

uuF

σx

κxσn

Page 22: Numerical simulation of two phase porous media flow models

22

Two Point Flux Approximation• Finite Volume Scheme

''

'

κκκκ

κκxx

T =

( ) ( ) κκσ

σκσκκκκσ

κκκκ

κσσ

fguxx

uuxx

bord

=−+− Σ∩∂∈Σ∩∂∈= int'

''

Ω∂=Ω=∆−

surgu

surfu

σκκσ

σxx

T =

Page 23: Numerical simulation of two phase porous media flow models

23

Exemples of admissible meshes

" " 2/π≤

+

Page 24: Numerical simulation of two phase porous media flow models

24

Corner Point Geometries and TPFA

Assumption that the directions of the CPG are aligned with the principal directions of the permeability field

Page 25: Numerical simulation of two phase porous media flow models

25

Corner Point GeometriesStratigraphic grids with erosions

Examples of degenerate cells(erosions)

• Hexahedra

• Topologicaly Cartesian

• Dead cells

• Erosions

• Local Grid Refinement (LGR)

Page 26: Numerical simulation of two phase porous media flow models

26

CPG faults

Page 27: Numerical simulation of two phase porous media flow models

27

Cell Centered FV: MultiPoint Flux Approximation (MPFA)

• Example of the "O" scheme– Exact on piecewise linear functions– Account for discontinuous diffusion tensors– Account for anisotropic diffusion tensors

LL

L uTF = '' κκκκκ

LL

L

L TTT κκκκκκ ''' ,0 −==

Page 28: Numerical simulation of two phase porous media flow models

28

2D example

Ω∂=Ω=∆−

surgu

surfu

( )yxeu += sin

, "

-

Page 29: Numerical simulation of two phase porous media flow models

29

Comparison of MPFA "O" scheme and TPFA

order 2

+ $

Non convergent

Page 30: Numerical simulation of two phase porous media flow models

30

Cell-Face data structure

• List of cells: m=1,...,N– Volume(m)– Cell center X(m)

• List of interior faces: i=1,...,Nint– cellint(i,1) = m1, cellint(i,2)=m2– surfaceint(i)– Xint(i)

• List of boundary faces: i=1,...,Nbound– cellbound(i)– surfacebound(i)– Xbound(i)

'κκ σσx

σxσκ

κxκ

Page 31: Numerical simulation of two phase porous media flow models

31

Computation of interior and boundary face transmissibilities

• Interior faces: i=1,...,Nint– m1 = cellint(i,1)– m2 = cellint(i,2) – Tint(i) = surfaceint(i)/|X(m2)-X(m1)|

• Boundary faces: i=1,...,Nbound– m = cellbound(i)– Tbound(i) = surfacebound(i)/|X(m)-Xbound(i)|

Page 32: Numerical simulation of two phase porous media flow models

32

Computation of the Jacobian sparsematrix and the right hand side JU = B

( ) ( ) κκσ

σκκκκσ

κκκκ κσ

fguTuuTbound

=−+− Σ∩∂∈Σ∩∂∈= int'

''

( )( )

−−

=

=

κκκκσ

κκκκσ

κκ

uuTline

uuTline

''

''

:':

.

( )σκσκ guTline −:

.

'κuκu

σσ

κuκκκ fline :

.

Page 33: Numerical simulation of two phase porous media flow models

33

Computation of the Jacobian sparsematrix and the right hand side: JU = B

( ) ( ) κκσ

σκκκκσ

κκκκ κσ

fguTuuTbound

=−+− Σ∩∂∈Σ∩∂∈= int'

''

• Cell loop: m=1,...,N– B(m) = Volume(m)*f(X(m))

• Interior face loop: i=1,...,Nint– m1 = cellint(i,1), m2 = cellint(i,2) – J(m1,m1) = J(m1,m1) +Tint(i) – J(m2,m2) = J(m2,m2) +Tint(i) – J(m1,m2) = J(m1,m2) -Tint(i) – J(m2,m1) = J(m2,m1) -Tint(i)

• Boundary face loop: i=1,...,Nbound– m = cellbound(i)– J(m,m) = J(m,m) +Tbound(i)– B(m) = B(m) + Tbound(i)*g(Xbound(i))

Page 34: Numerical simulation of two phase porous media flow models

34

TPFAIsotropic Heterogeneous media

• FV scheme

)()('

)('

''''

'' κκκκκσσκ

κσκσκ

κκκκκκκ

uuTuuxx

Kuuxx

KF −=−=−=

Ω∂=Ω=∇−

surgu

surfuKdiv )(

'κxκxσx

κK'κK

κu

'κuσu

''1

'

'

' κκκκ κ

σκ

κ

σκ

κκ K

xx

K

xx

T+=

Page 35: Numerical simulation of two phase porous media flow models

35

TPFAIsotropic heterogeneous permeability

κu

'κuσu

''1

'

'

' κκκκ κ

σκ

κ

σκ

κκ K

xx

K

xx

T+=

''

'

'

'

''

''

κκκκ

κκ

κ

σκ

κ

σκ

κκκκ

κκκκxx

Kxx

Kxx

Kxx

xxT =

+=

'κxκx σxκK'κK

Page 36: Numerical simulation of two phase porous media flow models

36

Well discretization

• Radial stationary analytical solution for vertical wells in homogeneous porous media

• Numerical Peaceman well index for well discretization withimposed pressure

• Proof of Peaceman formula for uniform cartesian meshes

• Pressure drop for vertical single phase wells

Page 37: Numerical simulation of two phase porous media flow models

37

Stationary radial analytical solution in homegeneous media

=∇−

==>=∆−

= wrr

ww

ww

w

qdsnpK

rrpp

rrpK

).(

0

)/ln(2

)( ww

w rrK

qprp

π=−

wp

wq

wrr =

wn

rq

nrpKrq wr π2

).()( =∇−=

)(rp

wrr /1 100

Page 38: Numerical simulation of two phase porous media flow models

38

Numerical well index

• Cartesian mesh∆x,∆y >> rw

( ) ( ) 0int'

'' =+−+− =Σ∩∂∈Σ∩∂∈= κκκσ

σκσκκκσ

κκκκwbord w

wqppTppT

Well w

Well cell

)/ln(2 0 w

ww rr

Kq

ppw πκ =−

2/1220 )(14.0 yxr ∆+∆≈

y∆x∆

Pressure Numerical computation with specified well flow rate and pressure boundary condition given by the analytical solution

with

analytical solution

Page 39: Numerical simulation of two phase porous media flow models

39

Well flow rate with specified pressure

( ) ( ) 0)(,

,'

''int

=−+− =Π∈Σ∩∂∈= κκ

κκκκσ

κκκκii

iwi ppWIppT

/ 0

)()/ln(

2

0w

ww pp

rrK

qw

−= κπ

)/ln(2

0 wrrK

WIπ= Well index

Page 40: Numerical simulation of two phase porous media flow models

40

Computation of the Jacobian matrix and right hand side JU = B with wells

( ) ( ) 0)(,

,'

''int

=−+− =Π∈Σ∩∂∈= κκ

κκκκσ

κκκκii

iwi ppWIppT

• Loop on interior faces: i=1,...,Nint– m1 = cellint(i,1), m2 = cellint(i,2) – J(m1,m1) = J(m1,m1) +Tint(i) – J(m2,m2) = J(m2,m2) +Tint(i) – J(m1,m2) = J(m1,m2) -Tint(i) – J(m2,m1) = J(m2,m1) -Tint(i)

• Loop on wells: i=1,...,Nwell– m = cellwell(i)– J(m,m) = J(m,m) + WI(i)– B(m) = B(m) + WI(i)*pw(i)

Page 41: Numerical simulation of two phase porous media flow models

41

Exercice: convergence of the schemeto an analytical well solution

≥+

≤≤=−

112

11

11

)/ln(2

)/ln(2

)/ln(2)(

rrifrrK

qrr

Kq

rrrifrrK

q

prpw

ww

www

w

ππ

π

rq

nrprKrq wr π2

).()()( =∇−=

)(rp

wrr /1 1000

)/ln(2

)( ww

w rrK

qprp

π=−

rq

nrpKrq wr π2

).()( =∇−=

)(rp

wrr /1 1000

wrr1

10/)( 12 KKrK ==

1)( KrK =

K

Page 42: Numerical simulation of two phase porous media flow models

42

Proof of Peaceman well index: uniformcartesian mesh, well at the center of the cell

)(wprp=−pqr=npKrq)(∇−=

wrxy >>∆=∆

<=>−=

w

w

rru

rrppu

0

ruK ∀=∆− 0

κκp

=

∇−=wrr

ww dsnpKq .

wp

1

2

$

0.' '

' =+∇− =

wqdsnpKκ κκσ

κκ

κ

κ)/ln(

2)( w

ww rr

Kq

prpπ

=−

wp

wq

wrr =

wn

rq

nrpKrq wr π2

).()( =∇−=

κ 'κwp

Page 43: Numerical simulation of two phase porous media flow models

43

Proof of Peaceman well index formula

===

−+∇−=∇−'

''

''

' .2

..κκσ

κκκκσ

κκκκσ

κκ πdsnn

rq

dsnuKdsnpK rw

κpκ κnnκ

4)(. '

'''

wquu

xxdsnpK +−≈∇−

=κκ

κκκκσκκ

σ

4))/ln(

2(0. '

'''

ww

ww

qrx

Kq

ppxx

dsnpK +

∆−−−≈∇−= π

σκ

κκκκσκκ

( )'''

'. κκκκκκσ

κκσ

ppxx

dsnpK −≈∇−=

" ( )ww

w rxK

qpp /)2/exp(ln

2∆−+= π

πκ

'κwp

'κκn

rnκ

Page 44: Numerical simulation of two phase porous media flow models

44

Vertical well with hydrostatic pressure drop

( ))1()()1()( 2/1 −−−−= − iZiZgipip iww ρ

220

0

14.0),()/ln(

))((2)( yxriH

rr

imKiWI

w

∆+∆==π

!*(3334

• List of well perforations from bottom to top: i=1,...,Np– m(i) = cell of perforation i– WI(i) = Well index of perforation i– pw(i) = pressure of perforation i

BHPw pp =)1(1 5

6 !*

-

1

Page 45: Numerical simulation of two phase porous media flow models

45

Analysis of TPFA discretization

– Discrete norms: on each cell

– Discrete Poincaré Inequality

κuu h =2/1

22

= Κ∈

κκ

κ uulh

2/1

2

)()(

2'

' ')(

int

10

+−=

Σ∈Σ∈=σκ

σ σσκκκ

κκσ κκ

σσu

xxuu

xxu

boundhThh

10

2 )(hhlh uDu Ω≤

'κxκx

Page 46: Numerical simulation of two phase porous media flow models

46

Analysis of TPFA discretization

• A priori estimate:

210

)()( lhThh fDu

hΩ≤

( ) ( ) =

−+−

Σ∩∂∈= κκκ

κ κσκ

σκκκσκκ

κκκ κ

σσufu

xxuu

xxu

bound

0'

''

( )2/1

22/1

222

''

'

≤+− Σ∈=

κκ

κκσ

κσκκκσ

κκκκ

κκσσ

ufuxx

uuxx

bound

, (%(

Ω∂=Ω=∆−

suru

surfu

0

Page 47: Numerical simulation of two phase porous media flow models

47

Analysis of TPFA discretization• Error estimate κκκ uxue −= )(

0')('

'''

'

=

+−

κκκκκ

κκ

κκκκ

Reexx

dsnuxx

xuxuR '

''

'' .

'1)()(

κκκκκκ

κκκκ κκ ∇−−−=

)(, ''' hORRR =−= κκκκκκ

( ) κκκσ

κκκκ

κσ

fuuxx

=−= '

''

κκκσ

κκκκ

κ fdsnu =∇− = '

''

.

Page 48: Numerical simulation of two phase porous media flow models

48

Analysis of TPFA discretization• Error estimate κκκ uxue −= )(

0')('

'''

'

=

+−

κκκκκ

κκ

κκκκ

Reexx

)(, ''' hORRR =−= κκκκκκ

ChehThh ≤

)(10

( ) '''

'2

)(''1

0κκ

σκκ

κκκ

κκ κκκκ ReeRee

hThh −−=−=

hxxeCehh ThhThh

≤ ')(

2

)('1

010

κκσ

κκ

Page 49: Numerical simulation of two phase porous media flow models

49

TPFA discretization

• Discrete linear system:

– Coercivity:

– Symmetry:

– Monotonicity: ( Ah=M-Matrice)

hhh FUA =

Thh AA =

01 ≥−hA

2

)(min 10

),(hThhhhh uKUUA ≥

Page 50: Numerical simulation of two phase porous media flow models

50

M- Matrice monotonicity

01 ≥−A

>∃

≥≤> ≠

jji

jji

ijiii

Athatsuchi

A

AA

0

00,0

,

,

,,

0≥=+≠

iij

jijiii SUAUA

0min0

<= iii UUif

0

0

0000)( i

ijjijii

jji SUUAUA +−=

" " "" #

0>

jijA

( )

( ) κκσ

σσκσσκ

κκσκκ

κκ

κσ

σ

fguxx

uuxx

bord

=−

+−

Σ∩∂∈

=

)()(

''

'

7 8 " %

Page 51: Numerical simulation of two phase porous media flow models

51

Finite volume schemes

• Parabolic Equations: time discretization– Implicit Euler integration in time– Stability analysis

Page 52: Numerical simulation of two phase porous media flow models

52

Parabolic model

Ω=×Ω∂=∇−

×Ω=∇−+∂

= onuu

TonnuK

TonfuKdivu

t

t

00

),0(0.),0()(

Page 53: Numerical simulation of two phase porous media flow models

53

Finite volume space and time discretizations

( )[ ] 0)(1

=−∇−∂ +n

n

t

t

t dxdtftuKdivuκ

0).()()()(1

''

1 =

∇−++−

+

=

+ dtdsntuKtfdxtudxtun

n

t

t

nn

κκσ σκκ

κ κ

)()( 1

1

+∆≈+

nt

t

ttYdttYn

n

/ $ "

)(tY

tttt nn ∆=−= +10 ,0

+ ∆

Page 54: Numerical simulation of two phase porous media flow models

54

Finite volume space and time discretizations

( ) κκκσ

κκκκκκ κκ fuuT

tuu nn

nn

=−+∆

−=

+++

'

1'

1'

1

Page 55: Numerical simulation of two phase porous media flow models

55

Stability analysis: discrete energyestimate

( ) ( )

=−+

∆−

=

+++

κκσκκκκ

κκ

κκ κκ fuuT

tuu

u nnnn

n

'

1'

1'

11

22

10

222

1

2121221

2

2

l

nhlh

h

nhl

nh

nhl

nhl

nh

uft

utuuuu

+

+++

≤∆+−+−

222 )()(2 bababaa −+−=−

Page 56: Numerical simulation of two phase porous media flow models

56

Stability: discrete energy estimate

2212212222 lhl

nh

nhl

nhl

nh ftuuuu ∆≤−+− ++ γ

2202222 lh

N

lhl

Nh ftuu γ+≤

, L2

Page 57: Numerical simulation of two phase porous media flow models

57

Stability analysis: discrete maximum principle(f=0, zero flux BC)

nnn uuTt

Tt

u κκκκσ

κκκκσ

κκκ κκ+∆=

∆+ +

==

+ 1'

''

''

1 1

κκ allforMum n ≤≤

Then κκ allforMum n ≤≤ +1

Page 58: Numerical simulation of two phase porous media flow models

58

Stability analysis: discrete maximum principle(f=0, zero flux BC)

Muuif nn >= ++ 11 sup0 κ

κκProof:

lead to a contradiction

( ) ( )MuuuTt

Mu nnnn −+−∆=− ++

=

+ 00

0

00

11'

''

0

1κκκ

κκσκκκ κ

Page 59: Numerical simulation of two phase porous media flow models

59

Exercize: well test withcompressible Darcy single phase flow

• Parabolic equation(linearized)

Ω=

×Ω∂=∇−

×Ω∂=

×Ω=∇−+∂

= onpp

TongnpK

Tonpp

TonpK

divpdpd

t

N

DD

t

00

0

000

),0(.

),0(

),0(0)()1

(

µρ

µρρρ

ρ

$%

!

"!#

00 pp t ==