27
Fakulteit Ingenieurswese Faculty of Engineering Numerical simulation of the flow field in the vicinity of an axial flow fan F.G . Louw, S.J. van der Spuy, T.W. von Backström STERG Symposium 2014 Stellenbosch, South Africa 17-18 July 2014

Numerical simulation of the flow field in the vicinity of ...sterg.sun.ac.za/wp-content/uploads/2014/03/... · National Research Foundation (NRF) Solar thermal energy research group

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Numerical simulation of the flow field in the vicinity of ...sterg.sun.ac.za/wp-content/uploads/2014/03/... · National Research Foundation (NRF) Solar thermal energy research group

Fakulteit Ingenieurswese

Faculty of Engineering

Numerical simulation of the flow field in the

vicinity of an axial flow fan

F.G. Louw, S.J. van der Spuy, T.W. von Backström

STERG Symposium 2014

Stellenbosch, South Africa

17-18 July 2014

Page 2: Numerical simulation of the flow field in the vicinity of ...sterg.sun.ac.za/wp-content/uploads/2014/03/... · National Research Foundation (NRF) Solar thermal energy research group

Question

2

Can the flow field in the vicinity of an axial fan be

modeled, using a RANS/U-RANS approach?

If we can, how does it look?

(especially at low flow rates)

Page 3: Numerical simulation of the flow field in the vicinity of ...sterg.sun.ac.za/wp-content/uploads/2014/03/... · National Research Foundation (NRF) Solar thermal energy research group

Question

3

Why?

Impress people with colorful CFD pictures…

RANS is computationally cheap

If successful: Advantages for development of simplified

fan models

Implementation: Modeling of large scale fan systems

(ACHEs)

Page 4: Numerical simulation of the flow field in the vicinity of ...sterg.sun.ac.za/wp-content/uploads/2014/03/... · National Research Foundation (NRF) Solar thermal energy research group

Introduction: ACHEs

4

Page 5: Numerical simulation of the flow field in the vicinity of ...sterg.sun.ac.za/wp-content/uploads/2014/03/... · National Research Foundation (NRF) Solar thermal energy research group

Introduction: Present study

Numerical modelling of flow for a range of flow rates

Test subject: 8 bladed, ACHE fan (B2a-fan)

5

Page 6: Numerical simulation of the flow field in the vicinity of ...sterg.sun.ac.za/wp-content/uploads/2014/03/... · National Research Foundation (NRF) Solar thermal energy research group

Numerical: Computational technique

1/8th sector modeled (assume rotational symmetry)

Solving: ANSYS Fluent 14

Realizable k-ε model with Standard wall function

Steady simulations for φ > 0.137 (13 m3/s)

[φD = 0.168 (16 m3/s)]

Unsteady simulations for φ < 0.137

6

Page 7: Numerical simulation of the flow field in the vicinity of ...sterg.sun.ac.za/wp-content/uploads/2014/03/... · National Research Foundation (NRF) Solar thermal energy research group

Numerical: Computational domain

7

Page 8: Numerical simulation of the flow field in the vicinity of ...sterg.sun.ac.za/wp-content/uploads/2014/03/... · National Research Foundation (NRF) Solar thermal energy research group

Numerical: Results verification

8

φD

= 0

.168

φD

= 0

.168

φ=

0.0

42

φ=

0.0

42

RψFs2=0.996

RηFs2=0.966

Page 9: Numerical simulation of the flow field in the vicinity of ...sterg.sun.ac.za/wp-content/uploads/2014/03/... · National Research Foundation (NRF) Solar thermal energy research group

Results: φD = 0.168 (16 m3/s)

9

Pressure sideSuction side

Page 10: Numerical simulation of the flow field in the vicinity of ...sterg.sun.ac.za/wp-content/uploads/2014/03/... · National Research Foundation (NRF) Solar thermal energy research group

Results: φD = 0.168 (16 m3/s)

10

Page 11: Numerical simulation of the flow field in the vicinity of ...sterg.sun.ac.za/wp-content/uploads/2014/03/... · National Research Foundation (NRF) Solar thermal energy research group

Results: φ = 0.042 (4 m3/s)

11

Pressure sideSuction side

Page 12: Numerical simulation of the flow field in the vicinity of ...sterg.sun.ac.za/wp-content/uploads/2014/03/... · National Research Foundation (NRF) Solar thermal energy research group

Results: φ = 0.042 (4 m3/s)

12

Page 13: Numerical simulation of the flow field in the vicinity of ...sterg.sun.ac.za/wp-content/uploads/2014/03/... · National Research Foundation (NRF) Solar thermal energy research group

Results: Lift/Drag coefficients

13

Page 14: Numerical simulation of the flow field in the vicinity of ...sterg.sun.ac.za/wp-content/uploads/2014/03/... · National Research Foundation (NRF) Solar thermal energy research group

Results: Lift/Drag coefficients

14

Page 15: Numerical simulation of the flow field in the vicinity of ...sterg.sun.ac.za/wp-content/uploads/2014/03/... · National Research Foundation (NRF) Solar thermal energy research group

Conclusions

Can the flow field in the vicinity of an axial fan be modeled, using a

RANS/U-RANS approach?

Depends…

“Everything should be made as simple as possible,

but not simpler” - Albert Einstein

15

Page 16: Numerical simulation of the flow field in the vicinity of ...sterg.sun.ac.za/wp-content/uploads/2014/03/... · National Research Foundation (NRF) Solar thermal energy research group

Conclusions

Yes

Comparison between experimental and numerical results are fair

with RψFS2=0.996 and RηFs

2=0.966.

Practical engineering estimation

Further development of simplified fan model

But also, no…

No solution for φ < 0.042 (maybe due to symmetry assumption)

Scientific view: Some flow phenomena are ‘missed’ due to RA

approach

16

Page 17: Numerical simulation of the flow field in the vicinity of ...sterg.sun.ac.za/wp-content/uploads/2014/03/... · National Research Foundation (NRF) Solar thermal energy research group

Thank you

Supervisors/Other personel

Late Prof. D.G. Kröger

Funding:

Department of M&M Engineering, Dr. vd Spuy (Eskom, GEA)

National Research Foundation (NRF)

Solar thermal energy research group (STERG)

17

Page 18: Numerical simulation of the flow field in the vicinity of ...sterg.sun.ac.za/wp-content/uploads/2014/03/... · National Research Foundation (NRF) Solar thermal energy research group

ACHEs

18

Page 19: Numerical simulation of the flow field in the vicinity of ...sterg.sun.ac.za/wp-content/uploads/2014/03/... · National Research Foundation (NRF) Solar thermal energy research group

Low flow problem

19

Page 20: Numerical simulation of the flow field in the vicinity of ...sterg.sun.ac.za/wp-content/uploads/2014/03/... · National Research Foundation (NRF) Solar thermal energy research group

Numerical: Computational technique

Solver settings:

20

SettingSteady state

simulationsTransient simulations

Discretization scheme (Gradient) Least squares cell based Least squares cell based

Discretization scheme (Pressure) PRESTO! PRESTO!

Discretization scheme (Other) QUICK QUICK

Pressure-velocity coupling SIMPLE PISO

Convergence 10-5 10−3

Page 21: Numerical simulation of the flow field in the vicinity of ...sterg.sun.ac.za/wp-content/uploads/2014/03/... · National Research Foundation (NRF) Solar thermal energy research group

Numerical: Computational domain

Combination of three domains: Inlet, Rotor and Outlet

Grid size: 2.5(10)6 cells (y+>30)

21

Page 22: Numerical simulation of the flow field in the vicinity of ...sterg.sun.ac.za/wp-content/uploads/2014/03/... · National Research Foundation (NRF) Solar thermal energy research group

Numerical: Boundary proximity analyses

22

Page 23: Numerical simulation of the flow field in the vicinity of ...sterg.sun.ac.za/wp-content/uploads/2014/03/... · National Research Foundation (NRF) Solar thermal energy research group

Numerical: Time step independence analyses

23

φ Δt, (10)-3s ψFs ηFs

0.168 0.5 No result No result

0.2 0.084 0.617

0.1 0.084 0.618

0.05 0.084 0.618

0.025 0.084 0.618

0.042 0.2 No result No result

0.1 0.174 0.313

0.05 0.173 0.313

0.025 0.174 0.314

Page 24: Numerical simulation of the flow field in the vicinity of ...sterg.sun.ac.za/wp-content/uploads/2014/03/... · National Research Foundation (NRF) Solar thermal energy research group

Numerical: Grid independence

24

Cell count

Fan static

pressure

coefficient,

ψFs240(10)3 0.119

500(10)3 0.101

990(10)3 0.106

2000(10)3 0.106

φ Cell count ψFs ηFs

0.168 2.5(10)6 0.084 0.627

5.5(10)6 0.084 0.617

0.042 2.5(10)6 0.174 0.313

5.5(10)6 0.175 0.307

Conducted at φD = 0.168

Rotor domain axial length: zr = 0.1dc

Convergence obtained between1(10)6 and 2(10)6 cells

Page 25: Numerical simulation of the flow field in the vicinity of ...sterg.sun.ac.za/wp-content/uploads/2014/03/... · National Research Foundation (NRF) Solar thermal energy research group

Numerical: Convergence

φD = 0.168 φ = 0.042

25

Page 26: Numerical simulation of the flow field in the vicinity of ...sterg.sun.ac.za/wp-content/uploads/2014/03/... · National Research Foundation (NRF) Solar thermal energy research group

Results: φD = 0.168 (16 m3/s)

26

Page 27: Numerical simulation of the flow field in the vicinity of ...sterg.sun.ac.za/wp-content/uploads/2014/03/... · National Research Foundation (NRF) Solar thermal energy research group

Results: φ = 0.042 (4 m3/s)

27