Numerical Methods for Scientific and Eng

Embed Size (px)

Citation preview

  • 7/26/2019 Numerical Methods for Scientific and Eng

    1/152

    Scilab Textbook Companion for

    Numerical Methods For Scientific And

    Engineering Computation

    by M. K. Jain, S. R. K. Iyengar And R. K.Jain1

    Created byM Vamsi KrishanB.Tech (pursuing)

    Electronics Engineering

    Visvesvaraya National Institute of TechnologyCollege TeacherMr. Nagarajun

    Cross-Checked bySantosh Kumar, IITB

    July 4, 2014

    1Funded by a grant from the National Mission on Education through ICT,http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilabcodes written in it can be downloaded from the Textbook Companion Projectsection at the website http://scilab.in

  • 7/26/2019 Numerical Methods for Scientific and Eng

    2/152

  • 7/26/2019 Numerical Methods for Scientific and Eng

    3/152

    Scilab numbering policy used in this document and the relation to theabove book.

    Exa Example (Solved example)

    Eqn Equation (Particular equation of the above book)

    AP Appendix to Example(Scilab Code that is an Appednix to a particularExample of the above book)

    For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 meansa scilab code whose theory is explained in Section 2.3 of the book.

    2

  • 7/26/2019 Numerical Methods for Scientific and Eng

    4/152

    Contents

    List of Scilab Codes 4

    2 TRANSCENDENTAL AND POLINOMIAL EQUATIONS 9

    3 SYSTEM OF LINEAR ALGEBRIC EQUATIONS AND

    EIGENVALUE PROBLEMS 46

    4 INTERPOLATION AND APPROXIMATION 59

    5 DIFFERENTIATION AND INTEGRATION 77

    6 ORDINARY DIFFERENTIAL EQUATIONS INNITIAL VALUE

    PROBLEMS 91

    7 ORDINARY DIFFERENTIAL EQUATIONS BOUNDARY

    VALUE PROBLEM 102

    3

  • 7/26/2019 Numerical Methods for Scientific and Eng

    5/152

  • 7/26/2019 Numerical Methods for Scientific and Eng

    6/152

    Exa 3.9 solution using the inverse of the matrix . . . . . . . . 50

    Exa 3.10 decomposition method . . . . . . . . . . . . . . . . . . 51Exa 3.11 inverse using LU decoposition . . . . . . . . . . . . . . 51Exa 3.12 solution by decomposition method . . . . . . . . . . . 52Exa 3.13 LU decomposition . . . . . . . . . . . . . . . . . . . . 53Exa 3.14 cholesky method . . . . . . . . . . . . . . . . . . . . . 54Exa 3.15 cholesky method . . . . . . . . . . . . . . . . . . . . . 55Exa 3.21 jacobi iteration method . . . . . . . . . . . . . . . . . 56Exa 3.22 solution by gauss siedal method. . . . . . . . . . . . . 57Exa 3.27 eigen vale and eigen vector . . . . . . . . . . . . . . . 57Exa 4.3 linear interpolation polinomial . . . . . . . . . . . . . 59Exa 4.4 linear interpolation polinomial . . . . . . . . . . . . . 60

    Exa 4.6 legrange linear interpolation polinomial . . . . . . . . 61Exa 4.7 polynomial of degree two . . . . . . . . . . . . . . . . 61Exa 4.8 solution by quadratic interpolation . . . . . . . . . . . 62Exa 4.9 polinomial of degree two. . . . . . . . . . . . . . . . . 63Exa 4.15 forward and backward difference polynomial . . . . . . 63Exa 4.20 hermite interpolation . . . . . . . . . . . . . . . . . . 64Exa 4.21 piecewise linear interpolating polinomial . . . . . . . . 65Exa 4.22 piecewise quadratic interpolating polinomial . . . . . . 66Exa 4.23 piecewise cubical interpolating polinomial . . . . . . . 67Exa 4.31 linear approximation . . . . . . . . . . . . . . . . . . . 68

    Exa 4.32 linear polinomial approximation . . . . . . . . . . . . 69Exa 4.34 least square straight fit . . . . . . . . . . . . . . . . . 70Exa 4.35 least square approximation . . . . . . . . . . . . . . . 71Exa 4.36 least square fit . . . . . . . . . . . . . . . . . . . . . . 71Exa 4.37 least square fit . . . . . . . . . . . . . . . . . . . . . . 72Exa 4.38 gram schmidt orthogonalisation . . . . . . . . . . . . . 73Exa 4.39 gram schmidt orthogonalisation . . . . . . . . . . . . . 74Exa 4.41 chebishev polinomial . . . . . . . . . . . . . . . . . . . 76Exa 5.1 linear interpolation. . . . . . . . . . . . . . . . . . . . 77Exa 5.2 quadratic interpolation . . . . . . . . . . . . . . . . . 78Exa 5.10 jacobian matrix of the given system . . . . . . . . . . 78

    Exa 5.11 solution by trapizoidal and simpsons . . . . . . . . . . 79Exa 5.12 integral approximation by mid point and two point . . 79Exa 5.13 integral approximation by simpson three eight rule . . 80Exa 5.15 quadrature formula. . . . . . . . . . . . . . . . . . . . 81Exa 5.16 gauss legendary three point method . . . . . . . . . . 82

    5

  • 7/26/2019 Numerical Methods for Scientific and Eng

    7/152

    Exa 5.17 gauss legendary method . . . . . . . . . . . . . . . . . 82

    Exa 5.18 integral approximation by gauss chebishev . . . . . . . 83Exa 5.20 integral approximation by gauss legurre method. . . . 84Exa 5.21 integral approximation by gauss legurre method. . . . 85Exa 5.22 integral approximation by gauss legurre method. . . . 85Exa 5.26 composite trapizoidal and composite simpson . . . . . 86Exa 5.27 integral approximation by gauss legurre method. . . . 87Exa 5.29 double integral using simpson rule . . . . . . . . . . . 88Exa 5.30 double integral using simpson rule . . . . . . . . . . . 89Exa 6.3 solution to the system of equations . . . . . . . . . . . 91Exa 6.4 solution ti the IVP . . . . . . . . . . . . . . . . . . . . 92Exa 6.9 euler method to solve the IVP . . . . . . . . . . . . . 93

    Exa 6.12 solution ti IVP by back euler method . . . . . . . . . 93Exa 6.13 solution ti IVP by euler mid point method. . . . . . . 94Exa 6.15 solution ti IVP by taylor expansion. . . . . . . . . . . 94Exa 6.17 solution ti IVP by modified euler cauchy and heun . . 95Exa 6.18 solution ti IVP by fourth order range kutta method. . 96Exa 6.20 solution to the IVP systems . . . . . . . . . . . . . . . 96Exa 6.21 solution ti IVP by second order range kutta method . 97Exa 6.25 solution ti IVP by third order adamsbashfort meth . . 98Exa 6.27 solution ti IVP by third order adams moult method . 99Exa 6.32 solution by numerov method . . . . . . . . . . . . . . 100

    Exa 7.1 solution to the BVP by shooting method. . . . . . . . 102Exa 7.3 solution to the BVP by shooting method. . . . . . . . 103Exa 7.4 solution to the BVP by shooting method. . . . . . . . 104Exa 7.5 solution to the BVP . . . . . . . . . . . . . . . . . . . 105Exa 7.6 solution to the BVP by finite differences . . . . . . . . 107Exa 7.11 solution to the BVP by finite differences . . . . . . . . 108AP 1 shooting method for solving BVP. . . . . . . . . . . . 110AP 2 euler method . . . . . . . . . . . . . . . . . . . . . . . 111AP 3 eigen vectors and eigen values. . . . . . . . . . . . . . 111AP 4 adams bashforth third order method . . . . . . . . . . 113AP 5 newton raphson method . . . . . . . . . . . . . . . . . 113

    AP 6 euler cauchy solution to the simultanioys equations . . 114AP 7 simultaneous fourth order range kutta . . . . . . . . . 115AP 8 fourth order range kutta method . . . . . . . . . . . . 116AP 9 modified euler method . . . . . . . . . . . . . . . . . . 117AP 10 euler cauchy or heun . . . . . . . . . . . . . . . . . . . 118

    6

  • 7/26/2019 Numerical Methods for Scientific and Eng

    8/152

    AP 11 taylor series. . . . . . . . . . . . . . . . . . . . . . . . 118

    AP 12 factorial . . . . . . . . . . . . . . . . . . . . . . . . . . 119AP 13 mid point nmethod. . . . . . . . . . . . . . . . . . . . 119AP 14 back euler method . . . . . . . . . . . . . . . . . . . . 120AP 15 composite trapizoidal rule . . . . . . . . . . . . . . . . 121AP 16 simpson rule . . . . . . . . . . . . . . . . . . . . . . . 122AP 17 simpson rule . . . . . . . . . . . . . . . . . . . . . . . 123AP 18 approximation to the integral by simpson method. . . 124AP 19 integration by trapizoidal method. . . . . . . . . . . . 124AP 20 jacobian of a given matrix . . . . . . . . . . . . . . . . 124AP 21 linear interpolating polinomial . . . . . . . . . . . . . 125AP 22 iterated interpolation . . . . . . . . . . . . . . . . . . 125

    AP 23 newton divided differences interpolation order two . . 125AP 24 legrange fundamental polynomial . . . . . . . . . . . . 125AP 25 legrange interpolation . . . . . . . . . . . . . . . . . . 126AP 26 quadratic approximation. . . . . . . . . . . . . . . . . 127AP 27 straight line approximation . . . . . . . . . . . . . . . 127AP 28 aitken interpolation . . . . . . . . . . . . . . . . . . . 128AP 29 newton divided differences interpolation . . . . . . . . 128AP 30 hermite interpolation . . . . . . . . . . . . . . . . . . 128AP 31 newton backward differences polinomial . . . . . . . . 129AP 32 gauss jorden . . . . . . . . . . . . . . . . . . . . . . . 131

    AP 33 gauss elimination with pivoting . . . . . . . . . . . . . 131AP 34 gauss elimination . . . . . . . . . . . . . . . . . . . . . 132AP 35 eigen vector and eigen value. . . . . . . . . . . . . . . 134AP 36 gauss siedel method . . . . . . . . . . . . . . . . . . . 135AP 37 jacobi iteration method . . . . . . . . . . . . . . . . . 136AP 38 back substitution . . . . . . . . . . . . . . . . . . . . . 136AP 39 cholesky method . . . . . . . . . . . . . . . . . . . . . 137AP 40 forward substitution . . . . . . . . . . . . . . . . . . . 137AP 41 L and U matrices. . . . . . . . . . . . . . . . . . . . . 138AP 42 newton raphson method . . . . . . . . . . . . . . . . . 138AP 43 four itterations of newton raphson method. . . . . . . 139

    AP 44 secant method . . . . . . . . . . . . . . . . . . . . . . 139AP 45 regula falsi method. . . . . . . . . . . . . . . . . . . . 140AP 46 four iterations of regula falsi method . . . . . . . . . . 140AP 47 four iterations of secant method . . . . . . . . . . . . 140AP 48 five itterations by bisection method. . . . . . . . . . . 141

    7

  • 7/26/2019 Numerical Methods for Scientific and Eng

    9/152

    AP 49 bisection method . . . . . . . . . . . . . . . . . . . . . 142

    AP 50 solution by newton method given in equation 2.63 . . 143AP 51 solution by secant method given in equation 2.64 . . . 144AP 52 solution by secant method given in equation 2.65 . . . 144AP 53 solution to the equation having multiple roots . . . . . 145AP 54 solution by two iterations of general iteration . . . . . 145AP 55 solution by aitken method . . . . . . . . . . . . . . . . 146AP 56 solution by general iteration. . . . . . . . . . . . . . . 146AP 57 solution by multipoint iteration given in equation 33 . 147AP 58 solution by multipoint iteration given in equation 31 . 148AP 59 solution by chebeshev method. . . . . . . . . . . . . . 148AP 60 solution by five iterations of muller method . . . . . . 149

    AP 61 solution by three iterations of muller method . . . . . 150

    8

  • 7/26/2019 Numerical Methods for Scientific and Eng

    10/152

    Chapter 2

    TRANSCENDENTAL AND

    POLINOMIAL EQUATIONS

    Scilab code Exa 2.1 intervals containing the roots of the equation

    1 / / The e q u a t i on8x 3 12x

    22x+3==0ha s t h re e r e a l

    r o o t s .2 // t he gr a ph o f

    t h i s f u n c t io nc an b eo b s e r v e d h e r e .

    3 xset ( window ,0);4 x = - 1 : . 0 1 : 2 . 5 ;

    //

    d e f i n i n g t h e r an ge o f x .5 deff ( [ y]= f (x ) , y=8x 312x22x+3 ) ;// d e f i n i n g t he c u n ct i o n

    6 y = feval ( x , f ) ;

    7

    9

  • 7/26/2019 Numerical Methods for Scientific and Eng

    11/152

    8 a = gca () ;

    910 a . y _ l o c at i o n = o r i g i n ;11

    12 a . x _ l o c at i o n = o r i g i n ;13 plot ( x , y )

    // i n s t r u c t i o n t o p l o t t he gr ap h14

    15 t i t l e ( y = 8x 3 12x 22x+3 )16

    17 // from t he abov e p l o t we c an i n f r e t ha t t he

    f u n c t i o n h as r o o t s b et we en18 / / t h e i n t e r v a l s ( 1 , 0 ) , ( 0 , 1 ) , ( 1 , 2 ) .

    Scilab code Exa 2.2 interval containing the roots

    1 / / The e q u a t i on

    c o s ( x )x%ex==0 h as r e a lr o o t s .

    2 // t he gr a ph o f t h i s f u n c t io nc an b eo b s e r v e d h e r e .

    3 xset ( window ,1);4 x = 0 : . 0 1 : 2 ;

    //

    d e f i n i n g t h e r an ge o f x .5 deff ( [ y]= f (x ) , y= c os ( x )x%ex ) ;// d e f i n i n g t he c u n ct i o n .

    6 y = feval ( x , f ) ;

    7

    10

  • 7/26/2019 Numerical Methods for Scientific and Eng

    12/152

    8 a = gca () ;

    910 a . y _ l o c at i o n = o r i g i n ;11

    12 a . x _ l o c at i o n = o r i g i n ;13 plot ( x , y )

    // i n s t r u c t i o n t o p l o t t he gr ap h14 t i t l e ( y = c os ( x )x%ex )15

    16 // from t he abov e p l o t we c an i n f r e t ha t t hef u n c t i o n h as r o o t b etw een

    17 / / t he i n t e r v a l ( 0 , 1 )

    check AppendixAP 49for dependency:

    Vbisection.sce

    check AppendixAP 48for dependency:

    Vbisection5.sce

    Scilab code Exa 2.3 solution to the eq by bisection method

    1 // The e q ua t i on x35x+1==0ha s r e a lr o o t s .

    2 // t he gr a ph o f t h i s f u n c t io nc an b e

    o b s e r v e d h e r e .3 xset ( window ,2);4 x = - 2 : . 0 1 : 4 ;

    //d e f i n i n g t h e r an ge o f x .

    11

  • 7/26/2019 Numerical Methods for Scientific and Eng

    13/152

    5 deff ( [ y]= f (x ) ,y=x35x+1 ) ; //

    d e f i n i n g t he c u nc t io n .6 y = feval ( x , f ) ;7

    8 a = gca () ;

    9

    10 a . y _ l o c at i o n = o r i g i n ;11

    12 a . x _ l o c at i o n = o r i g i n ;13 plot ( x , y )

    // i n s t r u c t i o n t o p l o t t he gr ap h

    14 t i t l e ( y = x35x+1 )15

    16 // from t he abov e p l o t we c an i n f r e t ha t t hef u n c t i o n h as r o o t s b et we en

    17 // t he i n t e r v a l s ( 0 , 1 ) , ( 2 , 3 ) .18 // s i n c e we h ave be en a sk ed f o r t he s m a l l e s t

    p o s i t i v e r oo t o f t h e e q ua ti on ,19 / / we a re i n t r e s t e d on t h e i n t e r v a l ( 0 , 1 )20 / / a = 0; b =1 ,21

    22 // we c a l l a u se r

    d e fi n e d f u nc t i o n b i s e c t i o n s o a st o f i n d t he a pp ro xi ma te23 / / r o o t o f t h e e qu at i o n w i t h a d e f i ne d p e r m i s s i b l e

    e r r o r .24

    25 b i s e c t i o n ( 0 , 1 , f )

    26

    27 / / s i n c e i n t he ex ampl e 2 . 3 we h ave bee n a sk ed t op er f o rm 5 i t t e r a t i o n s

    28 // t h e a p p r o x i m a t e r oo t a f t e r 5 i t e r a t i o n s can b eo b s e r v e d .

    2930

    31

    32 b i s e c t i o n 5 ( 0 , 1 , f )

    33

    12

  • 7/26/2019 Numerical Methods for Scientific and Eng

    14/152

    34

    35 // h e n ce t h e a p p ro xi m a te r o o t a f t e r 5 i t e r a t i o n s i s0 . 2 03 12 5 w i t i n t he p e r m i s s i b l e e r r o r o f 104 ,

    check AppendixAP 49for dependency:

    Vbisection.sce

    check AppendixAP 48for dependency:

    Vbisection5.sce

    Scilab code Exa 2.4 solution to the eq by bisection method

    1 / / The e q u a t i onc o s ( x )x%ex==0 h as r e a lr o o t s .

    2 // t he gr a ph o f

    t h i s f u n c t io nc an b eo b s e r v e d h e r e .

    3 xset ( window ,3);4 x = 0 : . 0 1 : 2 ;

    //d e f i n i n g t h e r an ge o f x .

    5 deff ( [ y]= f (x ) , y= c os ( x )x%ex ) ;// d e f i n i n g t he c u n ct i o n .

    6 y = feval ( x , f ) ;

    7

    8 a = gca () ;9

    10 a . y _ l o c at i o n = o r i g i n ;11

    12 a . x _ l o c at i o n = o r i g i n ;

    13

  • 7/26/2019 Numerical Methods for Scientific and Eng

    15/152

    13 plot ( x , y )

    // i n s t r u c t i o n t o p l o t t he gr ap h14 t i t l e ( y = c os ( x )x%ex )15

    16 // from t he abov e p l o t we c an i n f r e t ha t t hef u n c t i o n h as r o o t b etw een

    17 / / t he i n t e r v a l ( 0 , 1 )18

    19

    20 / / a = 0; b =1 ,21

    22 // we c a l l a u se rd e fi n e d f u nc t i o n b i s e c t i o n s o a st o f i n d t he a pp ro xi ma te

    23 / / r o o t o f t h e e qu at i o n w i t h a d e f i ne d p e r m i s s i b l ee r r o r .

    24

    25 b i s e c t i o n ( 0 , 1 , f )

    26

    27 / / s i n c e i n t he ex ampl e 2 . 4 we h ave bee n a sk ed t op e r f o r m 5 i t t e r a t i o n s ,

    28

    29 b i s e c t i o n 5 ( 0 , 1 , f )

    30

    31

    32 // h e n ce t h e a p p ro xi m a te r o o t a f t e r 5 i t e r a t i o n s i s0 . 5 15 62 5 w i t i n t he p e r m i s s i b l e e r r o r o f 104 ,

    check AppendixAP 46for dependency:

    regulafalsi4.sce

    check AppendixAP 47for dependency:

    secant4.sce

    Scilab code Exa 2.5 solution to the given equation

    14

  • 7/26/2019 Numerical Methods for Scientific and Eng

    16/152

    1 // The e q ua t i on x

    3

    5

    x+1==0ha s r e a lr o o t s .

    2 // t he gr a ph o f t h i s f u n c t io nc an b eo b s e r v e d h e r e .

    3 xset ( window ,4);4 x = - 2 : . 0 1 : 4 ;

    //d e f i n i n g t h e r an ge o f x .

    5 deff ( [ y]= f (x ) ,y=x35x+1 ) ; //d e f i n i n g t he c u nc t io n .

    6 y = feval ( x , f ) ;

    7

    8 a = gca () ;

    9

    10 a . y _ l o c at i o n = o r i g i n ;11

    12 a . x _ l o c at i o n = o r i g i n ;13 plot ( x , y )

    // i n s t r u c t i o n t o p l o t t he gr ap h14 t i t l e ( y = x35x+1 )15

    16 // from t he abov e p l o t we c an i n f r e t ha t t hef u n c t i o n h as r o o t s b et we en

    17 // t he i n t e r v a l s ( 0 , 1 ) , ( 2 , 3 ) .18 // s i n c e we have be en g iv en t h e i n t e r v a l t o be

    c o n si d e r e d a s ( 0 , 1 )19 / / a = 0; b =1 ,20

    2122 // S o l u ti o n by

    s e c a n t m et ho d23

    24

    15

  • 7/26/2019 Numerical Methods for Scientific and Eng

    17/152

  • 7/26/2019 Numerical Methods for Scientific and Eng

    18/152

    check AppendixAP 44for dependency:

    Vsecant.sce

    check AppendixAP 45for dependency:

    regulafalsi.sce

    Scilab code Exa 2.6 solution by secant and regula falsi

    1 / / The e q u a t i o nc o s ( x )x%ex==0 ha s r e a l

    r o o t s .2 // t he gr a ph o f

    t h i s f u n c t io nc an b eo b s e r v e d h e r e .

    3 xset ( window ,3);4 x = 0 : . 0 1 : 2 ;

    //d e f i n i n g t h e r an ge o f x .

    5 deff ( [ y]= f (x ) , y= c os ( x )x%ex ) ;// d e f i n i n g t he c u n ct i o n .

    6 y = feval ( x , f ) ;

    7

    8 a = gca () ;

    9

    10 a . y _ l o c at i o n = o r i g i n ;11

    12 a . x _ l o c at i o n = o r i g i n ;13 plot ( x , y )

    // i n s t r u c t i o n t o p l o t t he gr ap h14 t i t l e ( y = c os ( x )x%ex )

    17

  • 7/26/2019 Numerical Methods for Scientific and Eng

    19/152

    15

    16 // from t he abov e p l o t we c an i n f r e t ha t t hef u n c t i o n h as r o o t b etw een17 / / t he i n t e r v a l ( 0 , 1 )18

    19

    20 / / a = 0; b =1 ,21

    22

    23 // S o l u ti o n bys e c a n t m et ho d

    24

    2526

    27

    28

    29 / / s i n c e i n t h e ex ampl e 2 . 6 we h ave no s p e c i f i c a t i o no f t h e no . o f i t t e r a t i o n s ,

    30 // we d e f i n e a f u n c t i o n s ec an t and e x e c u t e i t .31

    32

    33

    34 s e c a n t ( 0 , 1 , f ) // we c a l l a u se r

    d e f i n e df u n c ti o n s ec an t s o a s t o f i n d t he a pp ro xi ma te35 / / r o o t o f t h e e qu at i o n w i t h a d e f i ne d p e r m i s s i b l e

    e r r o r .36

    37

    38

    39 // h en ce t he a pp ro xi ma te r o o t o c cu r ed i n s e c a ntmethod w i t i n t he p e r m i s s i b l e e r r o r o f 105 i s ,

    40

    41

    4243 // s o l u t i o n by r e g u l a r

    f a l s i met hod44

    45

    18

  • 7/26/2019 Numerical Methods for Scientific and Eng

    20/152

    46

    4748

    49 / / s i n c e i n t h e ex ampl e 2 . 6 we h ave no s p e c i f i c a t i o no f t h e no . o f i t t e r a t i o n s ,

    50

    51

    52 r e g u l a f a l s i ( 0 , 1 , f ) // we c a l l a u se rd e f i n e d f u n c t i o n r e g u l a r f a l s i s o a s t o f i n d t h e

    a p p r o x i m a t e53 / / r o o t o f t h e e qu at i o n w i t h a d e f i ne d p e r m i s s i b l e

    e r r o r .

    check AppendixAP 43for dependency:

    Vnewton4.sce

    Scilab code Exa 2.7 solution to the equation by newton raphson method

    1 // The e q ua t i on x35x+1==0ha s r e a lr o o t s .

    2 // t he gr a ph o f t h i s f u n c t io nc an b eo b s e r v e d h e r e .

    3 xset ( window ,6);4 x = - 2 : . 0 1 : 4 ;

    //d e f i n i n g t h e r an ge o f x .

    5 deff ( [ y]= f (x ) ,y=x35x+1 ) ; //d e f i n i n g t he f u n c t i o n .

    6 deff ( [ y ] = f p ( x ) , y=3x25 ) ;

    19

  • 7/26/2019 Numerical Methods for Scientific and Eng

    21/152

    7 y = feval ( x , f ) ;

    89 a = gca () ;

    10

    11 a . y _ l o c at i o n = o r i g i n ;12

    13 a . x _ l o c at i o n = o r i g i n ;14 plot ( x , y )

    // i n s t r u c t i o n t o p l o t t he gr ap h15 t i t l e ( y = x35x+1 )16

    17 // from t he abov e p l o t we c an i n f r e t ha t t hef u n c t i o n h as r o o t s b et we en

    18 // t he i n t e r v a l s ( 0 , 1 ) , ( 2 , 3 ) .19 // s i n c e we h ave be en a sk ed f o r t he s m a l l e s t

    p o s i t i v e r oo t o f t h e e q ua ti on ,20 / / we a re i n t r e s t e d on t h e i n t e r v a l ( 0 , 1 )21 / / a = 0; b =1 ,22

    23 / / s i n c e i n t he ex ampl e 2 . 7 we h ave bee n a sk ed t op e r f o r m 4 i t t e r a t i o n s ,

    24 // t h e a p p r o x i m a t e r oo t a f t e r 4 i t e r a t i o n s can b eo b s e r v e d .

    25

    26

    27 n e w t o n 4 ( 0 . 5 , f , f p )

    28

    29

    30 // h e n ce t h e a p p ro xi m a te r o o t a f t e r 4 i t e r a t i o n s i s0 . 2 01 64 0 w i t i n t he p e r m i s s i b l e e r r o r o f 10 15 ,

    check AppendixAP 43for dependency:

    Vnewton4.sce

    20

  • 7/26/2019 Numerical Methods for Scientific and Eng

    22/152

    Scilab code Exa 2.8 solution to the equation by newton raphson method

    1 // The e q ua t i on x317==0 ha st h r e e r e a lr o o t s .

    2 // t he gr a ph o f t h i s f u n c t io nc an b eo b s e r v e d h e r e .

    3 xset ( window ,7);4 x = - 5 : . 0 0 1 : 5 ;

    //d e f i n i n g t h e r an ge o f x .

    5 deff ( [ y]= f (x ) ,y=x317 ) ; //d e f i n i n g t he c u nc t io n .

    6 deff ( [ y ] = f p ( x ) , y=3x2 ) ;7 y = feval ( x , f ) ;8

    9 a = gca () ;

    10

    11 a . y _ l o c at i o n = o r i g i n ;12

    13 a . x _ l o c at i o n = o r i g i n ;14 plot ( x , y )

    // i n s t r u c t i o n t o p l o t t he gr ap h

    15 t i t l e ( y = x3

    17 )1617 / / from t he abov e p l o t we c an i n f r e t ha t t h e

    f u n c t i o n h as r o o t b etw een18 // t he i n t e r v a l ( 2 , 3 ) .

    21

  • 7/26/2019 Numerical Methods for Scientific and Eng

    23/152

    19

    2021

    22 / / s o l u t i o n by n ew to n r a ph s o n s m et ho d23

    24

    25

    26 // s i n c e i n exa mp le no . 2 . 8 we h ave b ee n a sk ed t op e r f o r m 4 i t e r a t i o n s , we d e f i n e a f u c t i o nn ew to n4 w h ic h d o e s n ew to n r a p hs o n s m et ho d o f f i n d i n g a pp ro xi ma te r o ot upto 4 i t e r a t i o n s ,

    27

    2829

    30 n e w t o n 4 ( 2 , f , f p ) // c a l l i n g t he pred e f i n e d f u n c t i o n n ewton4 .

    check AppendixAP 42for dependency:

    Vnewton.sce

    Scilab code Exa 2.9 solution to the equation by newton raphson method

    1 / / The e q u a t i onc o s ( x )x%ex==0 h as r e a lr o o t s .

    2 // t he gr a ph o f t h i s f u n c t io nc an b e

    o b s e r v e d h e r e .3 xset ( window ,8);4 x = - 1 : . 0 0 1 : 2 ;

    //d e f i n i n g t h e r an ge o f x .

    22

  • 7/26/2019 Numerical Methods for Scientific and Eng

    24/152

    5 deff ( [ y]= f (x ) , y= c os ( x )x%ex ) ;

    // d e f i n i n g t he c u n ct i o n .6 deff ( [ y ] = f p ( x ) , y=s i n ( x )x%ex%ex ) ;7 y = feval ( x , f ) ;

    8

    9 a = gca () ;

    10

    11 a . y _ l o c at i o n = o r i g i n ;12

    13 a . x _ l o c at i o n = o r i g i n ;14 plot ( x , y )

    // i n s t r u c t i o n t o p l o t t he gr ap h15 t i t l e ( y = c os ( x )x%ex )16

    17 // from t he abov e p l o t we c an i n f r e t ha t t hef u n c t i o n h as r o o t b etw een

    18 / / t he i n t e r v a l ( 0 , 1 )19

    20

    21 / / a = 0; b =1 ,22

    23

    24

    25 / / s o l u t i o n by n ew to n r a ph so n s m ethodw i t h a p e r m i s s i b l e e r r o r o f 10 8.

    26

    27

    28 // we c a l l a u se rd e f i n e d f u n c t i o n newton s o a s t of i n d t h e a p pr o xi m at e

    29 / / r o o t o f t h e e qu at i o n w it hi n t h e d e f i n e dp e r m i s s i b l e e r r o r l i m i t .

    30

    31 n e w t o n ( 1 , f , f p )32

    33

    34

    35

    23

  • 7/26/2019 Numerical Methods for Scientific and Eng

    25/152

    36

    37 / / h en ce t he a pp ro xi ma te r o ot w i t i n t he p e r m i s s i b l ee r r o r o f 1 08 i s 0 . 5 1 7 7 5 7 4 .

    check AppendixAP 61for dependency:

    muller3.sce

    Scilab code Exa 2.11 solution to the given equation by muller method

    1 // The e q ua t i on x35x+1==0 h asr e a l r o o t s .

    2 // t h e g r aph o f t h i sf u n c t i o n can beo b s e r v e d h e r e .

    3 xset ( window ,10);4 x = - 2 : . 0 1 : 4 ; //

    d e f i n i n g t he r a ng e o f x .5 deff ( [ y]= f (x ) ,y=x35x+1 ) ; //

    d e f i n i n g t he c u nc t io n .6 y = feval ( x , f ) ;7

    8 a = gca () ;

    9

    10 a . y _ l o c at i o n = o r i g i n ;11

    12 a . x _ l o c at i o n = o r i g i n ;13 plot ( x , y ) //

    i n s t r u c t i o n t o p l o t t he g r ap h14 t i t l e ( y = x35x+1 )

    1516 // from t he abov e p l o t we c an i n f r e t ha t t he

    f u n c t i o n h as r o o t s b et we en17 // t he i n t e r v a l s ( 0 , 1 ) , ( 2 , 3 ) .

    24

  • 7/26/2019 Numerical Methods for Scientific and Eng

    26/152

    18 // s i n c e we h ave be en a sk ed f o r t he s m a l l e s t

    p o s i t i v e r oo t o f t h e e q ua ti on ,19 / / we a re i n t r e s t e d on t h e i n t e r v a l ( 0 , 1 )20

    21

    22 // s o l l u t i o n by m u ll e r method t o 3 i t e r a t i o n s.

    23

    24 m u l l e r 3 ( 0 , . 5 , 1 , f )

    check AppendixAP 60for dependency:

    muller5.sce

    Scilab code Exa 2.12 solution by five itrations of muller method

    1 / / The e q u a t i onc o s ( x )x%ex

    ==0 h as r e a lr o o t s .2 // t he gr a ph o f

    t h i s f u n c t io nc an b eo b s e r v e d h e r e .

    3 xset ( window ,8);4 x = - 1 : . 0 0 1 : 2 ;

    //d e f i n i n g t h e r an ge o f x .

    5 deff ( [ y]= f (x ) , y= c os ( x )x%ex ) ;

    // d e f i n i n g t he c u n ct i o n .6 deff ( [ y ] = f p ( x ) , y=s i n ( x )x%ex%ex ) ;7 y = feval ( x , f ) ;

    8

    9 a = gca () ;

    25

  • 7/26/2019 Numerical Methods for Scientific and Eng

    27/152

    10

    11 a . y _ l o c at i o n = o r i g i n ;1213 a . x _ l o c at i o n = o r i g i n ;14 plot ( x , y )

    // i n s t r u c t i o n t o p l o t t he gr ap h15 t i t l e ( y = c os ( x )x%ex )16

    17 // from t he abov e p l o t we c an i n f r e t ha t t hef u n c t i o n h as r o o t b etw een

    18 / / t he i n t e r v a l ( 0 , 1 )

    1920

    21 // s o l l u t i o n by m u ll e r method t o 5 i t e r a t i o n s.

    22

    23

    24 m u l l e r 5 ( - 1 , 0 , 1 , f )

    check AppendixAP 59for dependency:

    chebyshev.sce

    Scilab code Exa 2.13 solution by chebeshev method

    1 // The e q ua t i on x35x+1==0ha s r e a l

    r o o t s .2 // t he gr a ph o f

    t h i s f u n c t io nc an b eo b s e r v e d h e r e .

    26

  • 7/26/2019 Numerical Methods for Scientific and Eng

    28/152

    3 xset ( window ,12);

    4 x = - 2 : . 0 1 : 4 ; //d e f i n i n g t h e r an ge o f x .

    5 deff ( [ y]= f (x ) ,y=x35x+1 ) ; //d e f i n i n g t he f u n c t i o n .

    6 deff ( [ y ] = f p ( x ) , y=3x25 ) ;7 deff ( [ y]= fpp (x ) , y=6x ) ;8 y = feval ( x , f ) ;

    9

    10 a = gca () ;

    11

    12 a . y _ l o c at i o n = o r i g i n ;13

    14 a . x _ l o c at i o n = o r i g i n ;15 plot ( x , y )

    // i n s t r u c t i o n t o p l o t t he gr ap h16 t i t l e ( y = x35x+1 )17

    18 // from t he abov e p l o t we c an i n f r e t ha t t hef u n c t i o n h as r o o t s b et we en

    19 // t he i n t e r v a l s ( 0 , 1 ) , ( 2 , 3 ) .20 // s i n c e we h ave be en a sk ed f o r t he s m a l l e s t

    p o s i t i v e r oo t o f t h e e q ua ti on ,21 / / we a re i n t r e s t e d on t h e i n t e r v a l ( 0 , 1 )22 / / a = 0; b =1 ,23

    24

    25 // s o l u t i o n by c h e b y s h e v method26

    27 // t h e a p p r o x i m a t e r oo t a f t e r 4 i t e r a t i o n s can b eo b s e r v e d .

    2829

    30 c h e b y s h e v ( 0 . 5 , f , f p )

    31

    32

    27

  • 7/26/2019 Numerical Methods for Scientific and Eng

    29/152

    33 // h en ce t he a pp ro xi ma te r o ot w i t i n t he p e r m i s s i b l e

    e r r o r o f 10

    15 i s . 2 01 6 40 2 ,check AppendixAP 59for dependency:

    chebyshev.sce

    Scilab code Exa 2.14 solution by chebeshev method

    12

    3 / / The e q u a t i on1/ x7==0 has a

    r e a l r o ot .4 // t he gr a ph o f

    t h i s f u n c t io nc an b eo b s e r v e d h e r e .

    5 xset ( window ,13);6 x = 0 . 0 0 1 : . 0 0 1 : . 2 5 ;

    //d e f i n i n g t h e r an ge o f x .

    7 deff ( [ y]= f (x ) , y=1/x7 ) ; //d e f i n i n g t he f u n c t i o n .

    8 deff ( [ y ] = f p ( x ) , y=1/x2 ) ;9 y = feval ( x , f ) ;

    10

    11 a = gca () ;

    12

    13 a . y _ l o c at i o n = o r i g i n ;

    1415 a . x _ l o c at i o n = o r i g i n ;16 plot ( x , y )

    // i n s t r u c t i o n t o p l o t t he gr ap h

    28

  • 7/26/2019 Numerical Methods for Scientific and Eng

    30/152

    17 t i t l e ( y =1/ x7 )

    1819 // from t he abov e p l o t we c an i n f r e t ha t t he

    f u n c t i o n h as r o o t s b et we en20 // t he i n t e r v a l ( 0 , 2 / 7 )21

    22

    23 / / s o l u t i o n by c h eb y s he v metho d24

    25

    26 c h e b y s h e v ( 0 . 1 , f , f p ) // c a l l i n g t hepred e f i n e d f u n c t i o n c h eby s he v t o f i n d t he

    a pp ro xi ma te r o o t i n t he r an ge o f ( 0 , 2 / 7 ) .

    check AppendixAP 59for dependency:

    chebyshev.sce

    Scilab code Exa 2.15 solution by chebeshev method

    1 / / The e q u a t i onc o s ( x )x%ex==0 h as r e a lr o o t s .

    2 // t he gr a ph o f t h i s f u n c t io nc an b eo b s e r v e d h e r e .

    3 xset ( window ,8);

    4 x = - 1 : . 0 0 1 : 2 ;//

    d e f i n i n g t h e r an ge o f x .5 deff ( [ y]= f (x ) , y= c os ( x )x%ex ) ;

    // d e f i n i n g t he c u n ct i o n .

    29

  • 7/26/2019 Numerical Methods for Scientific and Eng

    31/152

    6 deff ( [ y ] = f p ( x ) , y=s i n ( x )x%ex%ex ) ;

    7 deff ( [ y]= fpp (x ) , y=

    c o s ( x )

    x

    %ex

    2

    %ex ) ;8 y = feval ( x , f ) ;9

    10 a = gca () ;

    11

    12 a . y _ l o c at i o n = o r i g i n ;13

    14 a . x _ l o c at i o n = o r i g i n ;15 plot ( x , y )

    // i n s t r u c t i o n t o p l o t t he gr ap h

    16 t i t l e ( y = c os ( x )x%ex )17

    18 // from t he abov e p l o t we c an i n f r e t ha t t hef u n c t i o n h as r o o t b etw een

    19 / / t he i n t e r v a l ( 0 , 1 )20

    21

    22 / / a = 0; b =1 ,23

    24

    25

    26 // s o l u t i o n by c he by sh ev w it h ap e r m i s s i b l e e r r o r o f 10 15.

    27

    28 // we c a l l a u se rd e f i n e d f u n c t i o n c he by sh ev s o a st o f i n d t he a pp ro xi ma te

    29 / / r o o t o f t h e e qu at i o n w it hi n t h e d e f i n e dp e r m i s s i b l e e r r o r l i m i t .

    30

    31 c h e b y s h e v ( 1 , f , f p )

    32

    3334

    35 / / h en ce t he a pp ro xi ma te r o ot w i t i n t he p e r m i s s i b l ee r r o r o f 1015 i s

    30

  • 7/26/2019 Numerical Methods for Scientific and Eng

    32/152

    check AppendixAP 58for dependency:

    multipoint_iteration31.sce

    check AppendixAP 57for dependency:

    multipoint_iteration33.sce

    Scilab code Exa 2.16 multipoint iteration

    1 // The e q ua t i on x35x+1==0ha s r e a lr o o t s .

    2 // t he gr a ph o f t h i s f u n c t io nc an b eo b s e r v e d h e r e .

    3 xset ( window ,15);

    4 x = - 2 : . 0 1 : 4 ;//

    d e f i n i n g t h e r an ge o f x .5 deff ( [ y]= f (x ) ,y=x35x+1 ) ; //

    d e f i n i n g t he f u n c t i o n .6 deff ( [ y ] = f p ( x ) , y=3x25 ) ;7 deff ( [ y]= fpp (x ) , y=6x ) ;8 y = feval ( x , f ) ;

    9

    10 a = gca () ;

    11

    12 a . y _ l o c at i o n = o r i g i n ;13

    14 a . x _ l o c at i o n = o r i g i n ;

    31

  • 7/26/2019 Numerical Methods for Scientific and Eng

    33/152

    15 plot ( x , y )

    // i n s t r u c t i o n t o p l o t t he gr ap h16 t i t l e ( y = x35x+1 )17

    18 // from t he abov e p l o t we c an i n f r e t ha t t hef u n c t i o n h as r o o t s b et we en

    19 // t he i n t e r v a l s ( 0 , 1 ) , ( 2 , 3 ) .20 // s i n c e we h ave be en a sk ed f o r t he s m a l l e s t

    p o s i t i v e r oo t o f t h e e q ua ti on ,21 / / we a re i n t r e s t e d on t h e i n t e r v a l ( 0 , 1 )22 / / a = 0; b =1 ,

    2324

    25 // s o l u t i o n by m u l t i p o i n t i t e r a t i o nmethod

    26

    27 // t h e a p p r o x i m a t e r oo t a f t e r 3 i t e r a t i o n s can b eo b s e r v e d .

    28

    29

    30 m u l t i p o i n t _ i t e r a t i o n 3 1 ( 0 . 5 , f , f p )

    31

    32 // h en ce t he a pp ro xi ma te r o ot w i t i n t he p e r m i s s i b l ee r r o r o f 1015 i s . 2 01 6 40 ,

    33

    34

    35

    36 m u l t i p o i n t _ i t e r a t i o n 3 3 ( 0 . 5 , f , f p )

    37

    38 // h en ce t he a pp ro xi ma te r o ot w i t i n t he p e r m i s s i b l ee r r o r o f 1015 i s . 2 01 6 40 ,

    check AppendixAP 57for dependency:multipoint_iteration33.sce

    32

  • 7/26/2019 Numerical Methods for Scientific and Eng

    34/152

    Scilab code Exa 2.17 multipoint iteration

    1 / / The e q u a t i onc o s ( x )x%ex==0 h as r e a lr o o t s .

    2 // t he gr a ph o f t h i s f u n c t io nc an b eo b s e r v e d h e r e .

    3 xset ( window ,8);4 x = - 1 : . 0 0 1 : 2 ;

    //d e f i n i n g t h e r an ge o f x .

    5 deff ( [ y]= f (x ) , y= c os ( x )x%ex ) ;// d e f i n i n g t he f u n c t i o n .

    6 deff ( [ y ] = f p ( x ) , y=s i n ( x )x%ex%ex ) ;7 deff ( [ y]= fpp (x ) , y=c o s ( x )x%ex2%ex ) ;8 y = feval ( x , f ) ;

    9

    10 a = gca () ;

    11

    12 a . y _ l o c at i o n = o r i g i n

    ;

    13

    14 a . x _ l o c at i o n = o r i g i n ;15 plot ( x , y )

    // i n s t r u c t i o n t o p l o t t he gr ap h16 t i t l e ( y = c os ( x )x%ex )17

    18 / / from t he abov e p l o t we c an i n f r e t ha t t h ef u n c t i o n h as r o o t b etw een

    19 / / t he i n t e r v a l ( 0 , 1 )

    2021

    22 / / a = 0; b =1 ,23

    24

    33

  • 7/26/2019 Numerical Methods for Scientific and Eng

    35/152

    25

    26 // s o l u t i o n by m u l t i p o i n t i t e r a t i o nmethod u s i ng t he f or m ul a g i ve n i neq ua ti on no . 2 . 3 3 .

    27

    28 // we c a l l a u se rd e fi n e d f u nc t i o n m u l t i p o i n t i t e r a t i o n 3 3 s o a s t o f i n d t h ea p p r o x i m a t e

    29 / / r o o t o f t h e e qu at i o n w it hi n t h e d e f i n e dp e r m i s s i b l e e r r o r l i m i t .

    30

    31 m u l t i p o i n t _ i t e r a t i o n 3 3 ( 1 , f , f p )

    3233

    34 / / h en ce t he a pp ro xi ma te r o ot w i t i n t he p e r m i s s i b l ee r r o r o f 1 05 i s 0 . 5 1 7 7 5 7 4 .

    check AppendixAP 56for dependency:

    generaliteration.sce

    Scilab code Exa 2.23 general iteration

    1 / / The e q u a t i on3x3+4x2+4x+1==0 ha st h r e e r e a lr o o t s .

    2 // t he gr a ph o f t h i s f u n c t io nc an b e

    o b s e r v e d h e r e .3 xset ( window ,22);4 x = - 1 . 5 : . 0 0 1 : 1 . 5 ;

    //d e f i n i n g t h e r an ge o f x .

    34

  • 7/26/2019 Numerical Methods for Scientific and Eng

    36/152

    5 deff ( [ y]= f (x ) , y=3x3+4x2+4x+1 ) ;

    // d e f i n i n g t he c u n ct i o n6 y = feval ( x , f ) ;7

    8 a = gca () ;

    9

    10 a . y _ l o c at i o n = o r i g i n ;11

    12 a . x _ l o c at i o n = o r i g i n ;13 plot ( x , y )

    // i n s t r u c t i o n t o p l o t t he gr ap h

    1415 t i t l e ( y =3x3+4x2+4x+1 )16

    17 // from t he abov e p l o t we c an i n f r e t ha t t hef u n c t i o n h as r o o t b etw een

    18 / / t h e i n t e r v a l ( 1 ,0 ) ,19

    20 x 0 = - . 5 ; / / i n i t i a l a p p r o x i m a t i o n21

    22

    23 // l e t t h e i t e r a t i v e f u nc t i o n g ( x ) b e x+A

    ( 3

    x3+4

    x2+4x + 1) =g ( x ) ;24

    25 // gp ( x )=(1+A ( 9 x2+8x +4) )26 / / we need t o c ho os e a v al ue f o r A , whi ch makes ab s

    ( g p ( x 0 ) )

  • 7/26/2019 Numerical Methods for Scientific and Eng

    37/152

    abs ( gp( x 0) ) ,

    36 / / we c an i n f e r t h at f o r t h e v a l e s o f A i n t h er an ge ( . 8 , 0) g ( x ) w i l l be g i v i n g a c on ve rg i n gs o l u t i o n ,

    37

    38 / / h en ce d e l i b e r a t e l e we c ho os e a t o be 0 . 5 ,39

    40 A = - 0 . 5 ;

    41

    42 deff ( [ y ] = g ( x ) , y= x 0 . 5( 3 x3+4x2+4x+1) ) ;43 deff ( [ y ] = gp( x ) , y= 1 0. 5( 9 x2+8x+4) ) ; //

    h en ce d e f i n i n g g ( x ) and gp ( x ) ,

    44 g e n e r a l i t e r a t i o n ( x 0 , g , g p )

    check AppendixAP 55for dependency:

    aitken.sce

    Scilab code Exa 2.24.1 solution by general iteration and aitken method

    1 // The e q ua t i on x35x+1==0 h asr e a l r o o t s .

    2 // t h e g r aph o f t h i sf u n c t i o n can beo b s e r v e d h e r e .

    3 xset ( window ,2);4 x = - 2 : . 0 1 : 4 ; //

    d e f i n i n g t he r a ng e o f x .

    5 deff ( [ y]= f (x ) ,y=x35x+1 ) ; //d e f i n i n g t he f u n c t i o n .

    6 y = feval ( x , f ) ;

    7

    8 a = gca () ;

    36

  • 7/26/2019 Numerical Methods for Scientific and Eng

    38/152

    9

    10 a . y _ l o c at i o n = o r i g i n ;1112 a . x _ l o c at i o n = o r i g i n ;13 plot ( x , y ) //

    i n s t r u c t i o n t o p l o t t he g r ap h14 t i t l e ( y = x35x+1 )15

    16 // from t he abov e p l o t we c an i n f r e t ha t t hef u n c t i o n h as r o o t s b et we en

    17 // t he i n t e r v a l s ( 0 , 1 ) , ( 2 , 3 ) .18 // s i n c e we h ave be en a sk ed f o r t he s m a l l e s t

    p o s i t i v e r oo t o f t h e e q ua ti on ,19 / / we a re i n t r e s t e d on t h e i n t e r v a l ( 0 , 1 )20

    21 x 0 = . 5 ;

    22

    23 // s o l u t i o n u s in g l i n e a r i t e r a t i o n methodf o r t he f i r s t two i t e r a t i o n s and a it ke n s p r oc e ss two t im es f o r t he t h i r di t e r a t i o n .

    24

    25 deff ( [ y ] = g ( x )

    , y = 1 /5

    (x 3+1) ) ;

    26 deff ( [ y ] = gp( x ) , y = 1 /5(3x 2 ) ) ;27

    28

    29 g e n e r a l i t e r a t i o n 2 ( x 0 , g , g p )

    30

    31

    32 / / f rom t he abov e i t e r a t i o n s p er fo rm ed we c an i n f e rt h a t

    33 x 1 = 0 . 2 2 5 ;

    34 x 2 = 0 . 2 0 2 2 7 8 ;

    3536

    37

    38

    39 a i t k e n ( x 0 , x 1 , x 2 , g ) // c a l l i n g t h e a i t k e n

    37

  • 7/26/2019 Numerical Methods for Scientific and Eng

    39/152

    method f o r one i t e r a t i o n

    check AppendixAP 54for dependency:

    generaliteration2.sce

    check AppendixAP 55for dependency:

    aitken.sce

    Scilab code Exa 2.24.2 solution by general iteration and aitken method

    1 / / The e q u a t i on x%ex==0 ha s r e a l r o o t s .

    2 // t h e g r aph o f t h i sf u n c t i o n can beo b s e r v e d h e r e .

    3 xset ( window ,24);4 x = - 3 : . 0 1 : 4 ;

    //d e f i n i n g t h e r an ge o f x .5 deff ( [ y]= f (x ) , y=x%ex ) ; //

    d e f i n i n g t he c u nc t io n .6 y = feval ( x , f ) ;

    7

    8 a = gca () ;

    9

    10 a . y _ l o c at i o n = o r i g i n ;11

    12 a . x _ l o c at i o n = o r i g i n ;

    13 plot ( x , y )

    // i n s t r u c t i o n t o p l o t t he gr ap h14 t i t l e ( y = x%ex )15

    38

  • 7/26/2019 Numerical Methods for Scientific and Eng

    40/152

    16 // from t he abov e p l o t we c an i n f r e t ha t t he

    f u n c t i o n h as r o o t b etw een17 / / t he i n t e r v a l ( 0 , 1 )18

    19 x 0 = 1 ;

    20

    21 // s o l u t i o n u s in g l i n e a r i t e r a t i o n methodf o r t he f i r s t two i t e r a t i o n s and a i t ke n s p r o c e s s two t im es f o r t he t h i r di t e r a t i o n .

    22

    23

    2425 deff ( [ y ] = g ( x ) , y=%ex ) ;26 deff ( [ y ] = gp( x ) , y=%ex ) ;27

    28

    29 g e n e r a l i t e r a t i o n 2 ( x 0 , g , g p )

    30

    31

    32 / / f rom t he abov e i t e r a t i o n s p er fo rm ed we c an i n f e rt h a t

    33 x 1 = 0 . 3 6 7 8 7 9 ;

    34 x 2 = 0 . 6 9 2 2 0 1 ;

    35

    36

    37

    38

    39 a i t k e n ( x 0 , x 1 , x 2 , g ) // c a l l i n g t h e a i t k e nmethod f o r one i t e r a t i o n

    check AppendixAP 54for dependency:

    generaliteration2.sce

    check AppendixAP 55for dependency:

    aitken.sce

    check AppendixAP 54for dependency:

    39

  • 7/26/2019 Numerical Methods for Scientific and Eng

    41/152

    generaliteration2.sce

    Scilab code Exa 2.25 solution by general iteration and aitken method

    1 / / The e q u a t i onc o s ( x )x%ex==0 h as r e a lr o o t s .

    2 // t he gr a ph o f t h i s f u n c t io nc an b eo b s e r v e d h e r e .

    3 xset ( window ,25);4 x = 0 : . 0 1 : 2 ;

    //d e f i n i n g t h e r an ge o f x .

    5 deff ( [ y]= f (x ) , y= c os ( x )x%ex ) ;// d e f i n i n g t he c u n ct i o n .

    6 y = feval ( x , f ) ;

    7

    8 a = gca () ;

    9

    10 a . y _ l o c at i o n = o r i g i n ;11

    12 a . x _ l o c at i o n = o r i g i n ;13 plot ( x , y )

    // i n s t r u c t i o n t o p l o t t he gr ap h14 t i t l e ( y = c os ( x )x%ex )

    1516 / / from t he abov e p l o t we c an i n f r e t ha t t h e

    f u n c t i o n h as r o o t b etw een17 / / t he i n t e r v a l ( 0 , 1 )18

    40

  • 7/26/2019 Numerical Methods for Scientific and Eng

    42/152

    19 x 0 = 0 ;

    2021 // s o l u t i o n u s in g l i n e a r i t e r a t i o n method

    f o r t he f i r s t two i t e r a t i o n s and a it ke n s p r oc e ss two t im es f o r t he t h i r di t e r a t i o n .

    22

    23 deff ( [ y ] = g ( x ) , y=x +1/2( c o s ( x )x%ex ) ) ;24 deff ( [ y ] = gp( x ) , y=1+1/2( s i n ( x )x%ex

    %ex ) ) ;25

    26

    27 g e n e r a l i t e r a t i o n 2 ( x 0 , g , g p )28

    29

    30 / / f rom t he abov e i t e r a t i o n s p er fo rm ed we c an i n f e rt h a t

    31 x 1 = 0 . 5 0 0 0 0 0 0 0 ;

    32 x 2 = 0 . 5 2 6 6 1 1 0 ;

    33

    34

    35

    36 a i t k e n ( x 0 , x 1 , x 2 , g ) // c a l l i n g t h e a i t k e nmethod f o r one i t e r a t i o n

    check AppendixAP 42for dependency:

    Vnewton.sce

    check AppendixAP 53for dependency:

    modified_newton.sce

    Scilab code Exa 2.26 solution to the eq with multiple roots

    41

  • 7/26/2019 Numerical Methods for Scientific and Eng

    43/152

    1 // The e q ua t i on x

    3

    7

    x2+16

    x12==0 ha sr e a l r o o t s .

    2 // t he gr a ph o f t h i s f u n c t io nc an b eo b s e r v e d h e r e .

    3 xset ( window ,25);4 x = 0 : . 0 0 1 : 4 ;

    //d e f i n i n g t h e r an ge o f x .

    5 deff ( [ y]= f (x ) ,y=x37x2+16x12 ) ;// d e f i n i n g t he c u n ct i o n .

    6 deff ( [ y ] = f p ( x ) , y=3x 2 14x+16 ) ;7 y = feval ( x , f ) ;

    8

    9 a = gca () ;

    10

    11 a . y _ l o c at i o n = o r i g i n ;12

    13 a . x _ l o c at i o n = o r i g i n ;14 plot ( x , y )

    // i n s t r u c t i o n t o p l o t t he gr ap h15 t i t l e ( y = x37x2+16x12 )16

    17

    18

    19

    20 / / g i v e n t ha t t he e q u a ti o n ha s d ou bl e r o o t s a t x=2he nc e m= 2;

    21

    22 m = 2 ;23

    24 // s o l u t i o n by newton r ap hs onmethod

    25

    42

  • 7/26/2019 Numerical Methods for Scientific and Eng

    44/152

    26

    27 n e w t o n ( 1 , f , f p ) // c a l l i n g t h e u se rd e f i n e d f u n c t i o n28

    29

    30

    31

    32 // s o l u t i o n by m o d if i edn ew to n r a p h s o n s m at ho d

    33

    34

    35

    36 m o d i f i e d _ n e w t o n ( 1 , f , f p )

    check AppendixAP 42for dependency:

    Vnewton.sce

    check AppendixAP 43for dependency:

    Vnewton4.sce

    check AppendixAP 50for dependency:

    newton63.sce

    check AppendixAP 51for dependency:

    secant64.sce

    check AppendixAP 52for dependency:

    secant65.sce

    Scilab code Exa 2.27 solution to the given transcendental equation

    43

  • 7/26/2019 Numerical Methods for Scientific and Eng

    45/152

    1 / / The e q u a t i on

    27

    x5+27

    x4+36x3+28x2+9x+1==0ha s r e a lr o o t s .

    2 // t he gr a ph o f t h i s f u n c t io nc an b eo b s e r v e d h e r e .

    3 xset ( window ,26);4 x = - 2 : . 0 0 1 : 3 ;

    //d e f i n i n g t h e r an ge o f x .

    5 deff ( [ y]= f (x ) , y=27x5+27x4+36x3+28x2+9x+1 ) ; // d e f i n i n g t he c u n ct i o n .

    6 deff ( [ y ] = f p ( x ) , y = 275x4+274x3+363x2+282x+9 ) ;

    7 deff ( [ y]= fpp (x ) , y = 2754x 3+ 2743x2+3632x+2 82 ) ;

    8 y = feval ( x , f ) ;

    9

    10 a = gca () ;

    11

    12 a . y _ l o c at i o n = o r i g i n ;13

    14 a . x _ l o c at i o n = o r i g i n ;15 plot ( x , y )

    // i n s t r u c t i o n t o p l o t t he gr ap h16 t i t l e ( y = 27x5+27x4+36x3+28x2+9x+1 )17

    18

    1920

    21 // s o l u t i o n by newton r ap hs onmethod a s p e r t h e e q u a t i o n no .

    2 . 1 4

    44

  • 7/26/2019 Numerical Methods for Scientific and Eng

    46/152

    22

    2324 n e w t o n ( - 1 , f , f p ) // c a l l i n g t h e u se r

    d e f i n e d f u n c t i o n25

    26

    27 n e w t o n 4 ( - 1 , f , f p )

    28

    29

    30 // s o l u t i o n by newtonr a ph s on method a s p e r t h e

    e qu at i o n no . 2 . 6 3

    3132 n e w t o n 6 3 ( - 1 , f , f p , f p p ) // c a l l i n g

    t h e u se r d e f i ne d f u nc t i o n33 // s o l u t i o n by t he s e c a n t

    method d e f i n e d t os a t i s f y t he e qu at io nno . 2 . 6 4 .

    34

    35

    36 s e c a n t 6 4 ( 0 , - 1 , f , f p )

    37

    38

    39

    40

    41

    42

    43 // s o l u t i o n by t he s e c a n tmethod d e f i n e d t o

    s a t i s f y t he e qu at io nno . 2 . 6 5 .

    44

    4546 s e c a n t 6 5 ( 0 , - . 5 , f )

    45

  • 7/26/2019 Numerical Methods for Scientific and Eng

    47/152

    Chapter 3

    SYSTEM OF LINEAR

    ALGEBRIC EQUATIONS

    AND EIGENVALUE

    PROBLEMS

    Scilab code Exa 3.1 determinent

    1 / / e xa mp le 3 . 12 // P o s i t i v e d e f i n i t e3

    4 A =[12 4 -1;4 7 1; -1 1 6];

    5 // c he ck i f t he d et er mi na nt o f t he l e a d i ng m in or s i sa p o s i t i v e v a lu e

    6

    7 A 1 = A ( 1 ) ;

    8 det ( A 1 )

    9 A 2 = A ( 1 : 2 , 1 : 2 ) ;

    10 det ( A 2 )11 A 3 = A ( 1 : 3 , 1 : 3 ) ;

    12 det ( A 3 )

    13

    14 / /we o b se rv e t ha t t he d et er mi na nt o f t he l e a d i ng

    46

  • 7/26/2019 Numerical Methods for Scientific and Eng

    48/152

    m i n o r s i s a p o s i t i v e , h e n c e t he g i v en m at r i x A i s

    a p o s i t i v e d e f i n i t e .

    Scilab code Exa 3.2 property A in the book

    1 / / e xa mp le no . 3 . 22 // show i f a g i v e n m at ri x A p o s s e s s e s p r op e r t y A3

    4 A = [2 -1 0 -1; -1 2 -1 0;0 -1 2 0;0 0 -1 2 ]

    56 P = [ 0 0 0 1 ; 0 1 0 0 ; 0 0 1 0 ; 1 0 0 0 ] //l e t us t ak e t he p em ut at io n m at ri x a s P

    7

    8 / / t h en we f i n d t ha t9

    10 P * A * P

    11

    12 / / i s o f t h e form ( 3 . 2 ) . h e n c e t h e m a t r i x A ha sp r o p e r t y A

    Scilab code Exa 3.4 solution to the system of equations

    1 / / e xa mp le no . 3 . 42 // s o l v e t he s ys te m o f e q ua t i on s3

    4 / / ( a ) . by u s i n g cr am er s r u l e ,5

    6 A =[1 2 -1;3 6 1;3 3 2]

    78 B1 =[2 2 -1;1 6 1;3 3 2]

    9

    10 B2 =[1 2 -1;3 1 1;3 3 2]

    11

    47

  • 7/26/2019 Numerical Methods for Scientific and Eng

    49/152

    12 B 3 = [ 1 2 2 ; 3 6 1 ; 3 3 3 ]

    1314

    15 //we know ;16

    17 X1 = det ( B 1 ) / det ( A )

    18 X2 = det ( B 2 ) / det ( A )

    19 X3 = det ( B 3 ) / det ( A )

    20

    21

    22 / / ( b ) . by d e t e m i n in g t h e i n v e r s e o f t h e c o e f f i c i e n tm a t r i x

    2324 A =[1 2 -1;3 6 1;3 3 2]

    25

    26 b =[2 ;1 ; 3]

    27

    28 //we know ;29

    30 X = inv ( A ) * b

    check AppendixAP 34for dependency:

    Vgausselim.sce

    Scilab code Exa 3.5 solution by gauss elimination method

    1 //e x ampl e 3.52 // c ap t i o n s o l u t i o n by g a us s e l i m i b n a t i o n method3

    4 A = [1 0 -1 2;1 10 -1;2 3 2 0] / / m a t r i c e s

    A and b f ro m t h e a bo ve5 //

    s y s t e m

    o f

    48

  • 7/26/2019 Numerical Methods for Scientific and Eng

    50/152

    e q u a t i o n s

    6 b = [ 4 ; 3 ; 7 ]

    7

    8 g a u s s e l i m ( A , b ) // c a l l g au ss e l i m i n a t i o nf u n c t i o n t o s o l v e t he

    9 // m a t r i c e s A and b

    check AppendixAP 33for dependency:

    pivotgausselim.sci

    Scilab code Exa 3.6 solution by pivoted gauss elimination method

    1 //e x ampl e 3.62 // c ap t i o n s o l u t i o n by g a us s e l i m i b n a t i o n method3

    4 A = [ 1 1 1 ; 3 3 4 ; 2 1 3 ] / / m a t r i c e s A andb fro m t he a bo ve

    5 //

    s y s t e m

    o f

    e q u a t i o n s

    6

    7 b = [ 6 ; 2 0 ; 1 3 ]

    8

    9 p i v o t g a u s s e l i m ( A , b ) // c a l l g a us s

    e l i m i n a t i o n f u nc t i o n t o s o l v e t he10 // m a t r i c e s A and b

    check AppendixAP 33for dependency:

    pivotgausselim.sci

    49

  • 7/26/2019 Numerical Methods for Scientific and Eng

    51/152

    Scilab code Exa 3.8 solution by pivoted gauss elimination method

    1 / / e xa mp le no . 3 . 82 / / s o l v i n g t h e m at r i x e qu at i o n w i t h p a r t i a l p i v o t i n g

    i n g au ss e l i m i n a t i o n3

    4 A =[2 1 1 -2;4 0 2 1;3 2 2 0;1 3 2 -1]

    5

    6 b = [ - 1 0 ; 8 ; 7 ; - 5 ]7

    8 p i v o t g a u s s e l i m ( A , b )

    check AppendixAP 32for dependency:

    jordan.sce

    Scilab code Exa 3.9 solution using the inverse of the matrix

    1 / / e xa mp le no . 3 . 92 / / s o l v i n g t h e s ys te m u s i n g i n v e r s e o f t h e c o f f i c i e n t

    m a t r i x3

    4 A = [1 1 1;4 3 -1;3 5 3]

    5

    6 I = [ 1 0 0 ; 0 1 0 ; 0 0 1 ]

    7

    8 b =[1 ;6 ; 4]

    9

    10 M = j o r d e n ( A , I )11

    12 I A = M ( 1 : 3 , 4 : 6 )

    13

    14 X = I A * b

    50

  • 7/26/2019 Numerical Methods for Scientific and Eng

    52/152

    check AppendixAP 41for dependency:

    LandU.sce

    check AppendixAP 38for dependency:

    back.sce

    check AppendixAP 40for dependency:

    fore.sce

    Scilab code Exa 3.10 decomposition method

    1 / / e xa mp le no . 3 . 1 02 / / s o l v e s y st em by d e c o m p o s i t i o n metho d3

    4 A = [1 1 1;4 3 -1;3 5 3]

    5 n = 3 ;

    6

    7 b = [ 1 ; 6 ; 4 ]8

    9 [ U , L ] = L a n d U ( A , 3 )

    10

    11 Z = f o r e ( L , b )

    12

    13 X = b a c k ( U , Z )

    check AppendixAP 41for dependency:

    LandU.sce

    Scilab code Exa 3.11 inverse using LU decoposition

    51

  • 7/26/2019 Numerical Methods for Scientific and Eng

    53/152

    1 / / e xa mp le no . 3 . 1 1

    2 / / c a p t i o n : I n v e r s e u s i n g LU d e c o mp o s i t i on34 A = [ 3 2 1 ; 2 3 2 ; 1 2 2 ]

    5

    6 [ U , L ] = L a n d U ( A , 3 ) // c a l l LandU f u n c t i o n t oe v a l u a t e U , L o f A ,

    7

    8 / / s i n c e A=LU ,9 // in v (A)=in v (U) i nv ( L)

    10 / / l e t i n v (A)=AI11

    12 A I = U ^ - 1 * L ^ - 1

    check AppendixAP 41for dependency:

    LandU.sce

    check AppendixAP 38for dependency:

    back.sce

    check AppendixAP 40for dependency:

    fore.sce

    Scilab code Exa 3.12 solution by decomposition method

    1 / / e xa mp le no . 3 . 1 22 / / s o l v e s y st em by d e c o m p o s i t i o n metho d3

    4 A = [1 1 -1;2 2 5;3 2 -3]

    56 b = [ 2 ; - 3 ; 6 ]

    7

    8

    9

    52

  • 7/26/2019 Numerical Methods for Scientific and Eng

    54/152

    10 // h en ce we c an o b s e r v e t h a t LU d e c o m po s i t i on

    method f a i l s t o s o l v e t h i s s ys te m s i n c et h e p i v o t L ( 2 , 2 ) =0;11

    12

    13 / / we n o t e t h a t t h e c o e f f i c i e n t m a t r i x i s n o ta p o s i t i v e d e f i n i t e m a tr ix and h e n ce i t sLU d e c o m po s i t i on i s n ot g u ar a nt ee d ,

    14

    15

    16 // i f we i n t e r ch a n g e t h e r ow s o f A a s shownb el o w t h e LU d e c o m p o s i t i o n w ou ld work ,

    1718 A =[3 2 -3;2 2 5;1 1 -1]

    19

    20 b = [ 6 ; - 3 ; 2 ]

    21

    22 [ U , L ] = L a n d U ( A , 3 ) / / c a l l LandUf u nc t i o n t o e v a l ua t e U, L o f A ,

    23

    24 n = 3 ;

    25 Z = f o r e ( L , b ) ;

    26

    27 X = b a c k ( U , Z )

    check AppendixAP 41for dependency:

    LandU.sce

    check AppendixAP 38for dependency:

    back.sce

    check AppendixAP 40for dependency:

    fore.sce

    Scilab code Exa 3.13 LU decomposition

    53

  • 7/26/2019 Numerical Methods for Scientific and Eng

    55/152

    1 / / e xa mp le no . 3 . 1 3

    2 / / s o l v e s y st em by LU d e c o m p o s i t i o n metho d34 A =[2 1 1 -2;4 0 2 1;3 2 2 0;1 3 2 -1]

    5

    6 b = [ - 1 0 ; 8 ; 7 ; - 5 ]

    7

    8 [ U , L ] = L a n d U ( A , 4 )

    9 n = 4 ;

    10 Z = f o r e ( L , b ) ;

    11

    12 X = b a c k ( U , Z )

    1314 / / s i n c e A=LU ,15 // in v (A)=in v (U) i nv ( L)16 / / l e t i n v (A)=AI17

    18 A I = U ^ - 1 * L ^ - 1

    check AppendixAP 38for dependency:

    back.sce

    check AppendixAP 39for dependency:

    cholesky.sce

    check AppendixAP 12for dependency:

    fact.sci

    Scilab code Exa 3.14 cholesky method

    1 / / e xa mp le no . 3 . 1 42 / / s o l v e s ys te m by c h o l e s k y method3

    4 A =[1 2 3;2 8 22;3 22 82]

    54

  • 7/26/2019 Numerical Methods for Scientific and Eng

    56/152

    5

    6 b = [ 5 ; 6 ; - 1 0 ]7

    8 L = c h o l e s ky ( A , 3 ) // c a l l c ho l es k y f u nc t i o n t oe v al u a t e t he r o ot o f t he s yst em

    9 n = 3 ;

    10 Z = f o r e ( L , b ) ;

    11

    12 X = b a c k ( L , Z )

    check AppendixAP 38for dependency:

    back.sce

    check AppendixAP 39for dependency:

    cholesky.sce

    check AppendixAP 40for dependency:

    fore.sce

    Scilab code Exa 3.15 cholesky method

    1 / / e xa mp le no . 3 . 1 52 / / s o l v e s ys te m by c h o l e s k y method3

    4 A =[4 -1 0 0; -1 4 -1 0;0 -1 4 -1;0 0 -1 4]

    5

    6 b = [ 1 ; 0 ; 0 ; 0 ]

    7

    8 L = c h o l e s ky ( A , 4 ) // c a l l c ho l es k y f u nc t i o n t o

    e v al u a t e t he r o ot o f t he s yst em9

    10 n = 4 ;

    11 Z = f o r e ( L , b ) ;

    12

    55

  • 7/26/2019 Numerical Methods for Scientific and Eng

    57/152

    13 X = b a c k ( L , Z )

    1415 / / s i n c e A=LL ,16 / / i n v ( A)=i n v ( L ) i nv ( L)17 / / l e t i n v (A)=AI18

    19 A I = L ^ - 1 * L ^ - 1

    check AppendixAP 37for dependency:

    jacobiiteration.sce

    Scilab code Exa 3.21 jacobi iteration method

    1 / / e xa mp le no . 3 . 2 12 // s o l v e t he s ys te m by j a c o b i i t e r a t i o n method3

    4 A = [ 4 1 1 ; 1 5 2 ; 1 2 3 ]

    5

    6 b = [2 ; - 6; - 4]

    7

    8 N = 3 ; // no . o f i e r a t i o n s9 n = 3 ; // o rd er o f t h e m a t r i x i s nn

    10

    11 X = [ . 5 ; - . 5 ; - . 5 ] // i n i t i a l app r ox i ma t i o n12

    13

    14 j a c o b i i t e r a t i o n ( A , n , N , X , b ) // c a l l t hef u n c ti o n which p er fo rm s j a c o b i i t e r a t i o n methodt o s o l v e t he s ys te m

    check AppendixAP 36for dependency:Vgaussseidel.sce

    56

  • 7/26/2019 Numerical Methods for Scientific and Eng

    58/152

    Scilab code Exa 3.22 solution by gauss siedal method

    1 / / e xa mp le no . 3 . 2 22 // s o l v e t he s ys te m by g a us s s e i d e l method3

    4 A = [2 -1 0; -1 2 -1;0 -1 2]

    5

    6 b = [ 7 ; 1 ; 1 ]

    7

    8 N = 3 ; // no . o f i e r a t i o n s9 n = 3 ; // o rd er o f t h e m a t r i x i s nn

    10

    11 X = [ 0 ; 0 ; 0 ] // i n i t i a l app r ox i ma t i o n12

    13

    14 g a u s s s e i d e l ( A , n , N , X , b ) // c a l l t hef u n c t i o n wh ich p e rf o rm s g a us s s e i d e l method t os o l v e t he s ys te m

    check AppendixAP 35for dependency:

    geigenvectors.sci

    Scilab code Exa 3.27 eigen vale and eigen vector

    1 / / e xa mp le 3 . 2 72 // a ) f i n d e i ge n v a l u e and e i g e n v e c t o r ;3 // b ) v e r i f y i nv ( S )AS i s a d i ag o na l m at r i x ;4

    5 / / 1 )6 A =[1 2 -2 ;1 1 1;1 3 -1];

    78 B = [ 1 0 0 ; 0 1 0 ; 0 0 1 ] ;

    9

    10 [ x , l a m ] = g ei g e n ve c t o rs ( A , B ) ;

    11

    57

  • 7/26/2019 Numerical Methods for Scientific and Eng

    59/152

    12 inv ( x ) * A * x

    1314 // 2)15 A =[3 2 2;2 5 2;2 2 3];

    16

    17 B = [ 1 0 0 ; 0 1 0 ; 0 0 1 ] ;

    18

    19

    20 [ x , l a m ] = g ei g e n ve c t o rs ( A , B ) ;

    21

    22 inv ( x ) * A * x

    58

  • 7/26/2019 Numerical Methods for Scientific and Eng

    60/152

    Chapter 4

    INTERPOLATION AND

    APPROXIMATION

    check AppendixAP 29for dependency:

    NDDinterpol.sci

    check AppendixAP 28for dependency:

    aitkeninterpol.sci

    check AppendixAP 25for dependency:

    legrangeinterpol.sci

    Scilab code Exa 4.3 linear interpolation polinomial

    1 / / ex am pl e 4 . 32 // f i n d t h e l i n e a r i n t e r p o l a t i o n p o l i n o m i a l3 // u s in g

    45 disp ( f (2 ) =4 ) ;6 disp ( f ( 2 . 5 ) = 5. 5 ) ;7 // 1 ) l a g ra n ge i n t e r p o l a t i o n ,8

    59

  • 7/26/2019 Numerical Methods for Scientific and Eng

    61/152

    9 P 1 = l e g r a ng e i n te r p o l ( 2 , 2 . 5 , 4 , 5 .5 )

    10 // 2 ) a it ke n s i t e r a t e d i n t e r p o l a t i o n ,1112 P 1 = a i t k en i n t e rp o l ( 2 , 2 . 5 , 4 , 5 . 5)

    13

    14 // 3 ) n ewton d ev id ed d i f f e r a n c e i n t e r p o l a t i o n ,15

    16 P 1 = N D D i nt e r po l ( 2 , 2 . 5 , 4 , 5 . 5)

    17

    18 // h en ce a pp ro xi ma te v al u e o f f ( 2 . 2 ) = 4 . 6 ;

    check AppendixAP 25for dependency:

    legrangeinterpol.sci

    Scilab code Exa 4.4 linear interpolation polinomial

    1 / / ex am pl e 4 . 42 // f i n d t h e l i n e a r i n t e r p o l a t i o n p o l i n o m i a l3 // u s in g l a g ra n g e i n t e r p o l a t i o n ,

    45 disp ( s i n ( . 1 ) =. 0 9 9 8 3 ; s i n ( . 2 ) = .1 9 86 7 ) ;6

    7

    8 P 1 = l e g r a ng e i n te r p o l ( . 1 , . 2 , . 0 99 8 3 , . 1 98 6 7)

    9

    10 / / h e n c e ;11 disp ( P ( . 1 5 ) = .0 0 0 9 9 +. 9 8 8 4 . 1 5 )12 disp ( P ( 0 . 1 5 ) = 0. 1 4 9 25 ) ;

    check AppendixAP 25for dependency:

    legrangeinterpol.sci

    60

  • 7/26/2019 Numerical Methods for Scientific and Eng

    62/152

    Scilab code Exa 4.6 legrange linear interpolation polinomial

    1 // ex ampl e : 4 . 62 // c ap ti on : o bt ai n t he l e g r a n g e l i n e a r

    i n t e r p o l a t i n g p o l i n om i al3

    4

    5 // 1 ) o bt a in t h e l e g r a n g e l i n e a r i n t e r p o l a t i n gp o l i n om i a l i n t h e i n t e r v a l [ 1 , 3 ] and o bt ai na p pr o xi m at e v a l u e o f f ( 1 . 5 ) , f ( 2 . 5 ) ;

    6 x 0 = 1 ; x 1 = 2 ; x 2 = 3 ; f 0 = . 8 4 1 5 ; f 1 = . 9 0 9 3 ; f 2 = . 1 4 1 1 ;

    7

    8 P 13 = l e g r an g e i nt e r p o l ( x 0 , x2 , f 0 , f 2 ) // int h e r a n g e [ 1 , 3 ]

    9

    10

    11 P 12 = l e g r an g e i nt e r p o l ( x 0 , x1 , f 0 , f 1 ) //i n t h e r a ng e [ 1 , 2 ]

    12

    13 P 23 = l e g r an g e i nt e r p o l ( x 1 , x2 , f 1 , f 2 )

    // i n th e r a ng e [ 2 , 3 ]14

    15 / / from P23 we f i n d t ha t ; where a s e xa ct v al ue i ss i n ( 2 . 5 ) =0 . 5 9 8 5 ;

    16 disp ( P ( 1 . 5 ) = 0 . 87 5 4 ) ;17 disp ( e x a c t v a l u e o f s i n ( 1 . 5 ) = .9 97 5 )18 disp ( P ( 2 . 5 ) = 0 . 52 5 2 ) ;

    check AppendixAP 24for dependency:

    lagrangefundamentalpoly.sci

    Scilab code Exa 4.7 polynomial of degree two

    1 / / ex am pl e 4 . 72 // p o l i no m i a l o f d e g r ee 2 ;

    61

  • 7/26/2019 Numerical Methods for Scientific and Eng

    63/152

    3

    4 // f (0 ) =1; f (1 ) =3; f (3 ) =55;56 // u s i ng l e g r a n g e f un da me nt al p o l i n o m i a l r u le ,7

    8 x =[0 1 3 ]; // a r r a i n g i n g t h ei n p ut s o f t h e f u n c t i o n a s e le me nt s o f a row ,

    9 f =[1 3 5 5] ; // a r r a i n g i ng t h eo ut pu ts o f t he f u n c ti o n a s e l e me nt s o f a r ow ,

    10 n = 2 ; // d eg re e o f t h ep o l i n o m i a l ;

    11

    1213 P 2 = l a g r a n g e f u n d a m e n t a l p o l y ( x , f , n )

    check AppendixAP 24for dependency:

    lagrangefundamentalpoly.sci

    Scilab code Exa 4.8 solution by quadratic interpolation

    1

    2 / / ex am pl e 4 . 83 // c ap t i o n : s o l u t i o n by q u a d r a ti c i n t e r p o l a t i o n ;4

    5 // xd e g re e s : [ 1 0 20 3 0 ]6 // h en c e x i n r ad i a n s i s7 x = [ 3 . 1 4/ 1 8 3 . 1 4 /9 3 . 1 4 / 6 ];

    8 f = [ 1 . 1 58 5 1 . 2 8 17 1 . 3 66 0 ] ;

    9 n = 2 ;

    10

    1112 P 2 = l a g r a n g e f u n d a m e n t a l p o l y ( x , f , n )

    13

    14 // h en ce from P2 , t he e xa c t v al u e o f f ( 3 . 1 4 /1 2 ) i s1 . 2 2 4 6 ;

    62

  • 7/26/2019 Numerical Methods for Scientific and Eng

    64/152

    15 // w here a s e xa ct v al ue i s 1 . 2 2 4 7 ;

    check AppendixAP 23for dependency:

    NDDinterpol2.sci

    check AppendixAP 22for dependency:

    iteratedinterpol.sci

    Scilab code Exa 4.9polinomial of degree two

    1 / / e xa mp le 4 . 92 // c a p t i o n : o bt ai n t h e p o l i n om i al o f d eg re e 23

    4 x = [0 1 3];

    5 f = [1 3 5 5] ;

    6 n = 2 ;

    7

    8 // 1 ) i t e r a t e d i n t e r p o l a t i o n ;9

    1011 [ L 01 2 , L 0 2 , L 0 1 ] = i t e r a te d i n t er p o l ( x , f , n )

    12

    13 // 2 ) newton d i v i d e d d i f f r e n c e s i n t e r p o l a t i o n ;14

    15

    16 P 2 = N D D i nt e r p ol 2 ( x , f )

    check AppendixAP 31for dependency:

    NBDP.sci

    Scilab code Exa 4.15 forward and backward difference polynomial

    63

  • 7/26/2019 Numerical Methods for Scientific and Eng

    65/152

    1 / / exa mp le 4 . 1 5 :

    2 / / o bt ai n t he i n t e r p o l a t e u si ng backward d i f f e r e n c e sp o l i n o m i a l3

    4

    5 xL =[.1 .2 .3 .4 .5 ]

    6

    7 f = [ 1. 4 1 .5 6 1 .7 6 2 2 .2 8]

    8 n = 2 ;

    9

    10

    11 / / h e n c e ;

    12 disp (P=1.4+(x . 1) ( . 1 6 / . 1 ) +(x . 5 ) ( x . 4 ) ( . 0 4 / . 0 2 ) )

    13 disp (P=2x2+x +1. 28 ) ;14

    15 // 1 ) o bt ai n t h e i n t e r p o l a t e a t x = 0 .2 5;16 x = 0 . 2 5 ;

    17 [ P ] = N B D P ( x , n , x L , f ) ;

    18 P

    19 disp ( f ( . 2 5 ) = 1 . 6 5 5 ) ;20

    21

    22 // 2 ) o bt ai n t h e i n t e r p o l a t e a t x = 0 .3 5;23 x = 0 . 3 5 ;

    24 [ P ] = N B D P ( x , n , x L , f ) ;

    25 P

    26 disp ( f ( . 3 5 ) = 1 . 8 7 5 ) ;

    check AppendixAP 30for dependency:

    hermiteinterpol.sci

    Scilab code Exa 4.20 hermite interpolation

    1 / / exa mp le 4 . 2 0 ;

    64

  • 7/26/2019 Numerical Methods for Scientific and Eng

    66/152

    2 // h er mi te i n t e r p o l a t i o n :

    34 x =[ -1 0 1 ];

    5

    6 f=[1 1 3];

    7

    8 f p = [ -5 1 7 ];

    9

    10 P = h e r m i te i n t er p o l ( x , f , fp ) ;

    11

    12 / / h e n c e ;13 disp ( f ( 0.5)=3/8 ) ;

    14 disp ( f (0 . 5 ) =11/8 ) ;

    check AppendixAP 25for dependency:

    legrangeinterpol.sci

    Scilab code Exa 4.21 piecewise linear interpolating polinomial

    1 / / e xa mp le : 4 . 2 1 ;2 // p i e c e w i s e l i n e a r i n t e r p o l a t i n g p o l i n o m i a l s :

    3

    4 x 1 = 1 ; x 2 = 2 ; x 3 = 4; x 4 = 8 ;

    5 f 1 = 3 ; f 2 =7 ; f 3 = 21 ; f 4 = 73 ;

    6 // we ne ed t o a pp ly l e g r a n g e s i n t e r p o l a t i o n i n subra n g es [ 1 , 2 ] ; [ 2 , 4 ] , [ 4 , 8 ] ;

    7

    8 x = poly (0 , x ) ;9

    10 P 1 = l e g r a ng e i n t er p o l ( x1 , x 2 , f 1 , f 2 ) ; // i n t h e

    r an ge [ 1 , 2 ]11 P1

    12

    13 P 1 = l e g r a ng e i n t er p o l ( x2 , x 3 , f 2 , f 3 ) ; // i n t h er an ge [ 2 , 4 ]

    65

  • 7/26/2019 Numerical Methods for Scientific and Eng

    67/152

    14 P1

    1516 P 1 = l e g r a ng e i n t er p o l ( x3 , x 4 , f 3 , f 4 ) ; // i n t h e

    r an ge [ 4 , 8 ]17 P1

    check AppendixAP 24for dependency:

    lagrangefundamentalpoly.sci

    Scilab code Exa 4.22 piecewise quadratic interpolating polinomial

    1 / / e xa mp le : 4 . 2 2 ;2 // p i e c e w i s e q u a d r a ti c i n t e r p o l a t i n g p o l i n o m i a l s :3

    4 X =[ -3 -2 -1 1 3 6 7];

    5 F = [ 36 9 2 22 1 71 1 65 2 07 9 90 1 77 9] ;

    6 // we ne ed t o a pp ly l e g r a n g e s i n t e r p o l a t i o n i n subr an g es [3 , 1 ] ; [ 1 , 3 ] , [ 3 , 7 ] ;

    7

    8 x = poly (0 , x

    ) ;

    9

    10 // 1 ) i n t he r an g e [ 3 , 1]11 x = [ -3 -2 -1 ];

    12 f = [ 36 9 2 22 17 1] ;

    13 n = 2 ;

    14 P 2 = l a g r a n g e f u n d a m e n t a l p o l y ( x , f , n ) ;

    15

    16 // 2 ) i n t he r a n g e [ 1 ,3 ]17 x =[ -1 1 3];

    18 f = [ 17 1 1 6 5 2 07 ];

    19 n = 2 ;20 P 2 = l a g r a n g e f u n d a m e n t a l p o l y ( x , f , n )

    21

    22 // 3 ) i n t h e r a n g e [ 3 , 7 ]23 x =[3 6 7];

    66

  • 7/26/2019 Numerical Methods for Scientific and Eng

    68/152

    24 f = [ 20 7 9 9 0 1 7 79 ] ;

    25 n = 2 ;26 P 2 = l a g r a n g e f u n d a m e n t a l p o l y ( x , f , n )

    27

    28

    29

    30 // hence , we o b ta i n t he v a l ue s o f f ( 2 .5 ) =48 ; f ( 6 . 5 ) = 1 3 5 1 . 5 ;

    check AppendixAP 24for dependency:

    lagrangefundamentalpoly.sci

    Scilab code Exa 4.23 piecewise cubical interpolating polinomial

    1 / / e xa mp le : 4 . 2 3 ;2 / / p i e c e w i s e c u b i c a l i n t e r p o l a t i n g p o l i n o m i a l s :3

    4 X =[ -3 -2 -1 1 3 6 7];

    5 F = [ 36 9 2 22 1 71 1 65 2 07 9 90 1 77 9] ;

    6 // we ne ed t o a pp ly l e g r a n g e s i n t e r p o l a t i o n i n sub

    r an g es [3 , 1 ] ; [ 1 , 7 ] ;7

    8

    9 x = poly (0 , x ) ;10

    11 // 1 ) i n t he r an g e [ 3 ,1 ]12 x =[ -3 -2 -1 1];

    13 f = [ 36 9 22 2 1 71 1 65 ];

    14 n = 3 ;

    15 P 2 = l a g r a n g e f u n d a m e n t a l p o l y ( x , f , n ) ;

    1617 // 2 ) i n t h e r a n g e [ 1 , 7 ]18 x =[1 3 6 7];

    19 f = [ 16 5 2 0 7 9 9 0 1 7 79 ];

    20 n = 3 ;

    67

  • 7/26/2019 Numerical Methods for Scientific and Eng

    69/152

    21 P 2 = l a g r a n g e f u n d a m e n t a l p o l y ( x , f , n )

    2223

    24

    25 / / h en c e ,26 disp ( f ( 6 . 5 ) = 1 3 3 9 . 2 5 ) ;

    Scilab code Exa 4.31 linear approximation

    1 / / e xa mp le 4 . 3 12 // o b ta i n t he l i n e a r p o l i no m i a l a pp ro xi ma ti on t o t he

    f u n c t i o n f ( x ) =x 33

    4 / / l e t P ( x )=a0x+a15

    6 / / h en ce I ( a 0 , a1 )= i n t e g r a l ( x 3( a0x+a1 ) ) 2 i n t hei n t e r v a l [ 0 , 1 ]

    7

    8 printf ( I =1/72(a0 /5+a1 /4)+a0 2/3+a 0a1+a12 )9 printf ( d I / d a 0 = 2/5+2/3a0+a1=0 )

    1011 printf ( d I / d a 1 = 1/2+a0+2a1 =0 )12

    13 / / h e nc e14

    15 printf ( [ 2/ 3 1 ; 1 2 ] [ a 0 ; a 1 ] = [ 2 / 5 ; 1 / 2 ] )16

    17 // s o l v i n g f o r a0 and a1 ;18

    19 a 0 = 9 / 1 0 ;

    20 a 1 = - 1 / 5 ;21 // h en ce c o n s i d e r i n g t he p o l i n om i al w i t h i n t e r c e p tP 1 ( x ) = ( 9x2 ) / 1 0 ;

    22

    23 // c o n s i d e r i n g t he p o l i n o m i a l a p pr ox im a ti o n t hr ou gh

    68

  • 7/26/2019 Numerical Methods for Scientific and Eng

    70/152

  • 7/26/2019 Numerical Methods for Scientific and Eng

    71/152

    28

    29 printf ( d I / d c 0 = ( 2/ 3

    c0

    c1/2

    c2 /2 )=0 )3031 printf ( dI /dc 1 =(2/5 c0/2c1/3c2 /4 ) =0 )32

    33 printf ( dI /dc 2 =(2/7 c0/3c1/4c2 /5 ) =0 )34

    35

    36 / / h e nc e37

    38 printf ( [ 1 1/2 1 / 2; 1 /2 1/3 1 /4 ; 1/ 3 1/4 1 / 5 ] [ c 0 ; c 1 ;c2 ]=[ 2 / 3 ; 2/5; 2/7] )

    3940 // h en ce s o l v i n g f o r c0 , c1 and c 2 ;41

    42

    43 / / t h e f i r s t d e g r e e s q u a r e a p p r o x im a t i o n P ( x ) = (6+48x20x 2 ) / 3 5 ;

    check AppendixAP 27for dependency:

    straightlineapprox.sce

    Scilab code Exa 4.34 least square straight fit

    1 / / e xa mp le 4 . 3 42

    3 // o bt ai n l e a s t s qu ar e s t r a i g h t l i n e f i t4

    5 x = [. 2 .4 .6 .8 1] ;

    6 f = [. 44 7 . 63 2 . 77 5 . 89 4 1 ];

    78

    9 [ P ] = s t r a i g h t l i n e a p p r o x ( x , f ) // c a l l o f t h ef u n c t i o n t o g et t h e d e s i r e d s o l u t i o n

    70

  • 7/26/2019 Numerical Methods for Scientific and Eng

    72/152

    check AppendixAP 26for dependency:

    quadraticapprox.sci

    Scilab code Exa 4.35 least square approximation

    1 / / e xa mp le 4 . 3 52

    3 / / o b ta i n l e a s t s qu ar e a pp ro xi ma ti on o f s ec on dd e g r e e ;

    4 x =[ -2 -1 0 1 2];5 f = [15 1 1 3 19];

    6

    7 [ P ] = q u a d r a t i c a p p r o x ( x , f ) // c a l l o f t h ef u n c t i o n t o g et t h e d e s i r e d s o l u t i o n

    Scilab code Exa 4.36 least square fit

    1 / / e xa mp le 4 . 3 62 // method o f l e a s t s q u a r e s t o f i t t h e d a t a t o t h e

    c u r v e P ( x ) =c 0X+c1 / s q u r t (X)3

    4 x =[.2 .3 .5 1 2];

    5 f =[16 14 11 6 3];

    6

    7 / / I ( c 0 , c 1 )= s um m at io n o f ( f ( x )( c0 X+c1 / sq r t (X) ) ) 28

    9 / / h en ce on p a r c i a l l y d e r i v a t i n g t he summation ,

    1011 n = length ( x ) ; m = length ( f ) ;

    12 if m < > n then

    13 error ( l i n r e g Ve ct or s x and f a re no t o f t h es am e l e n g t h . ) ;

    71

  • 7/26/2019 Numerical Methods for Scientific and Eng

    73/152

    14 abort ;

    15 end ;16

    17 s 1 = 0 ; / / s 1= s um ma ti on o f x ( i) f ( i )

    18 s 2 = 0 ; / / s 2= s um ma ti on o f f ( i) / sq r t ( x ( i ) )

    19 s 3 = 0 ;

    20 for i = 1 : n

    21 s 1 = s 1 + x ( i ) * f ( i ) ;

    22 s 2 = s 2 + f ( i ) / sqrt ( x ( i ) ) ;

    23 s 3 = s 3 + 1 / x ( i ) ;

    24 end25

    26 c0 = det ([s1 sum ( sqrt ( x ) ); s 2 s 3 ]) / det ([ sum ( x ^ 2 ) sum (

    sqrt ( x ) ) ; sum ( sqrt ( x ) ) s 3 ])

    27

    28 c1 = det ([ sum ( x ^ 2) s 1 ;sum ( sqrt ( x ) ) s 2 ]) / det ([ sum ( x ^ 2 )

    sum ( sqrt ( x ) ) ; sum ( sqrt ( x ) ) s 3 ])

    29 X = poly (0 , X ) ;30 P = c 0 * X + c 1 / X ^ 1 / 2

    31 // h e n ce c o n s i d e r i n g t he p o l i no m i a l P( x ) =7 .5 96 1X

    1/2

    1. 1836

    X

    Scilab code Exa 4.37 least square fit

    1 / / e xa mp le 4 . 3 72 // method o f l e a s t s q u a r e s t o f i t t h e d a t a t o t h e

    c u r v e P ( x ) =a%e(3 t )+b%e(2 t ) ;3

    4 t = [. 1 .2 .3 . 4] ;5 f = [ .7 6 . 58 . 44 . 35 ];

    6

    7 / / I ( c 0 , c 1 )= s um m at io n o f ( f ( x )a%e(3 t )+b%e(2 t ) )

    72

  • 7/26/2019 Numerical Methods for Scientific and Eng

    74/152

    8

    9 / / h en ce on p a r c i a l l y d e r i v a t i n g t he summation ,1011 n = length ( t ) ; m = length ( f ) ;

    12 if m < > n then

    13 error ( l i n r e g V ec to rs t and f a re no t o f t h es am e l e n g t h . ) ;

    14 abort ;

    15 end ;

    16

    17 s 1 = 0 ; / / s 1= s um ma ti on o f f ( i) %e(3 t ( i ) ) ;

    18 s 2 = 0 ; / / s 2= s um ma ti on o f f ( i) %e(2 t ( i ) ) ;

    19

    20 for i = 1 : n

    21 s 1 = s 1 + f ( i ) * % e ^ ( - 3 * t ( i ) ) ;

    22 s 2 = s 2 + f ( i ) * % e ^ ( - 2 * t ( i ) ) ;

    23

    24 end

    25

    26 a = det ([s1 sum ( % e ^ ( - 5* t ) ) ; s 2 sum ( % e ^ ( - 4 * t ) ) ] ) / det ([

    sum ( % e ^ ( - 6 * t ) ) sum ( % e ^ ( - 5 * t ) ) ; sum ( % e ^ ( - 5 * t ) ) sum

    ( % e ^ ( - 4 * t ) ) ] )

    27

    28 b = det ([ sum ( % e ^( - 6* t ) ) s 1 ; sum ( % e ^ ( - 5* t ) ) s 2 ] ) /det ([

    sum ( % e ^ ( - 6 * t ) ) sum ( % e ^ ( - 5 * t ) ) ; sum ( % e ^ ( - 5 * t ) ) sum

    ( % e ^ ( - 4 * t ) ) ] )

    29

    30 // h en ce c o n s i d e r i n g t he p o l i no m i a l P( t ) =. 06 85 3%e(3 t ) +0. 305 8%e(2 t )

    Scilab code Exa 4.38 gram schmidt orthogonalisation

    1 / / e xa mp le 4 . 3 8

    73

  • 7/26/2019 Numerical Methods for Scientific and Eng

    75/152

    2 / / g ram s ch mi dt o r t h o g o n a l i s a t i o n

    34 W = 1 ;

    5 x = poly (0 , x ) ;6 P 0 = 1 ;

    7 p h i 0 = P 0 ;

    8 a 1 0 = i n t e g r a t e (Wx p h i 0 , x ,0,1)/ i n t e g r a t e (W1p h i 0 , x ,0,1)

    9 P 1 = x - a 1 0 * p h i 0

    10 p h i 1 = P 1 ;

    11

    12 a 2 0 = i n t e g r a t e (Wx 2p h i 0 , x ,0,1)/ i n t e g r a t e (

    W1p h i 0 , x ,0,1)13

    14 a 2 1 = i n t e g r a t e ( ( x 2 ) ( x1/2) , x ,0,1)/ i n t e g r a t e( ( x1/2)2 , x ,0,1)

    15

    16 P 2 = x ^ 2 - a 2 0 * x - a 2 1 * p h i 1

    17

    18 // s i n c e , I= i n t g r a l [ x ( 1 /2 )c0 P0c1 P1c 2 P 2 ] 2i n t h e r an ge [ 0 , 1 ]

    19

    20 // h e n c e p a r t i a l l y d e r i v a t i n g I21

    22 c0 = i n t e g r a t e ( x ( 1 / 2 ) , x ,0,1)/ i n t e g r a t e ( 1 , x ,0,1)

    23 c1 = i n t e g r a t e ( ( x ( 1 / 2 ) ) ( x (1/2 ) ) , x ,0,1)/i n t e g r a t e ( ( x(1/ 2) ) 2 , x ,0,1)

    24 c1 = i n t e g r a t e ( ( x ( 1 / 2 ) ) ( x 24x/3+1/2) , x ,0,1)/i n t e g r a t e ( (x24x /3+ 1/2) 2 , x ,0,1)

    Scilab code Exa 4.39 gram schmidt orthogonalisation

    1 / / e xa mp le 4 . 3 92 / / g ram s ch mi dt o r t h o g o n a l i s a t i o n

    74

  • 7/26/2019 Numerical Methods for Scientific and Eng

    76/152

    3

    4 / / 1 )5 W = 1 ;6 x = poly (0 , x ) ;7 P0=1

    8 p h i 0 = P 0 ;

    9 a10=0;

    10 P 1 = x - a 1 0 * p h i 0

    11 p h i 1 = P 1 ;

    12

    13 a 2 0 = i n t e g r a t e ( x 2 , x ,-1,1)/ i n t e g r a t e (W1p h i 0 , x ,-1,1);

    1415 a 2 1 = i n t e g r a t e ( ( x 3 ) , x ,-1,1)/ i n t e g r a t e ( (x ) 2

    , x ,-1,1);16

    17 P 2 = x ^ 2 - a 2 0 * x - a 2 1 * p h i 1

    18

    19

    20 / / 2 )21 disp ( W=1/(1x 2 ) ( 1 / 2 ) ) ;22 x = poly (0 , x ) ;23 P0=1

    24 p h i 0 = P 0 ;

    25 a10=0;

    26 P 1 = x - a 1 0 * p h i 0

    27 p h i 1 = P 1 ;

    28

    29 a 2 0 = i n t e g r a t e ( x 2/( 1x 2 ) ( 1 / 2 ) , x ,-1,1)/i n t e g r a t e ( 1/(1x 2 ) ( 1 / 2 ) , x ,-1,1);

    30

    31 a21=0; // s i n c e x 3 i san odd f u n c t i o n ;

    3233 P 2 = x ^ 2 - a 2 0 * x - a 2 1 * p h i 1

    75

  • 7/26/2019 Numerical Methods for Scientific and Eng

    77/152

    Scilab code Exa 4.41 chebishev polinomial

    1 / / e xa mp le 4 . 4 12 // u s in g c he by sh ev p o l i n o m i al s o b ta i n l e a s t s q ua r es

    a p pr o x im a t io n o f s e co n d d e g r e e ;3

    4 // t he c he be sh ev p o l i n o m i a l s ;5 x = poly (0 , x ) ;6 T 0 = 1 ;

    7 T 1 = x ;

    8 T 2 = 2 * x ^ 2 - 1 ;

    9

    10

    11 / / I= i n t e g r a t e ( 1/ (1 x 2 ) ( 1 / 2 ) (x4c0 T0c 1 T1c2T2) 2 , x , 1 ,1 )

    12

    13 // s i n c e ;14 c0 = i n t e g r a t e ( ( 1 / 3 . 1 4 ) ( x 4 ) / ( 1x 2 ) ( 1 / 2 ) , x

    ,-1,1)

    1516 c1 = i n t e g r a t e ( ( 2 / 3 . 1 4 ) ( x 5 ) / ( 1x 2 ) ( 1 / 2 ) , x

    ,-1,1)

    17

    18 c2 = i n t e g r a t e ( ( 2 / 3 . 1 4 ) ( x 4 ) ( 2 x 21)/(1x 2 ) ( 1 / 2 ) , x ,-1,1)

    19

    20 f = ( 3 / 8 ) * T 0 + ( 1 / 2 ) * T 2 ;

    76

  • 7/26/2019 Numerical Methods for Scientific and Eng

    78/152

    Chapter 5

    DIFFERENTIATION AND

    INTEGRATION

    check AppendixAP 21for dependency:

    linearinterpol.sci

    Scilab code Exa 5.1 linear interpolation

    1 / / e xa mp le : 5 . 12 // l i n e a r and q u a d ra t i c i n t e r p o l a t i o n :3

    4 / / f ( x ) =l n x ;5

    6 x L = [2 2 .2 2 .6 ];

    7 f = [ . 6 9 31 5 . 7 8 84 6 . 9 5 55 1 ] ;

    8

    9 // 1 ) f p ( 2 ) w i t h l i n e a r i n t e r p o l a t i o n ;10

    11 f p = l i n e a r i n t e r p o l ( x L , f ) ;12 disp ( f p ) ;

    77

  • 7/26/2019 Numerical Methods for Scientific and Eng

    79/152

  • 7/26/2019 Numerical Methods for Scientific and Eng

    80/152

    15 disp ( J ) ;

    check AppendixAP 18for dependency:

    simpson.sci

    check AppendixAP 19for dependency:

    trapezoidal.sci

    Scilab code Exa 5.11solution by trapizoidal and simpsons

    1 // exa mp le : 5 . 1 12 // s o l v e t h e d e f i n i t e i n t e g r a l by 1 ) t r a p e z o i d a l

    r u l e , 2 ) s i mp s on s r u l e3 / / e xa ct v al ue o f t h e i n t e g r a l i s l n 2= 0 . 6 93 1 4 7 ,4

    5 deff ( [ y]=F(x ) , y=1/(1+x ) )6

    7 / / 1 ) t r a p e z o i d a l r u l e ,8

    9 a = 0 ;10 b = 1 ;

    11 I = t r a p e z oi d a l ( 0 ,1 , F )

    12 disp ( error = . 7 5 - . 6 9 3 1 4 7 )

    13

    14 / / s im ps on s r u l e15

    16 I = s i m p s o n ( a , b , F )

    17

    18 disp ( error = . 6 9 4 4 4 4 - . 6 9 3 1 4 7 )

    Scilab code Exa 5.12 integral approximation by mid point and two point

    79

  • 7/26/2019 Numerical Methods for Scientific and Eng

    81/152

  • 7/26/2019 Numerical Methods for Scientific and Eng

    82/152

    10 [ I ] = s i mp so n 38 ( x , f )

    Scilab code Exa 5.15 quadrature formula

    1 / / exa mp le : 5 . 1 52 / / f i n d t he q ua dr at ur e f or mu la o f 3 / / i n t e g r a l o f f ( x ) ( 1 / s q r t ( x (1+ x ) ) ) i n t h e r a n g e

    [ 0 , 1 ] = a1f (0 )+a2f ( 1 /2 ) +a3f (1)=I4 // h en ce f i n d i n t e g r a l 1/ s q r t ( xx 3 ) i n t he r an ge

    [ 0 , 1 ]5

    6 // making t he method e x ac t f o r p o l i n o m i a l s o f d e g re eu p to 2 ,

    7 // I=I1=a1+a2+a38 // I=I2 = ( 1/2) a2+a39 // I=I3 = ( 1/4) a2+a3

    10

    11 / / A=[ a 1 a 2 a 3 ] 12

    13 I1 = i n t e g r a t e ( 1 / s q r t ( x(1x ) ) , x ,0,1)

    14 I2 = i n t e g r a t e ( x / s q r t ( x(1x ) ) , x ,0,1)15 I3 = i n t e g r a t e ( x 2 / s q r t ( x(1x ) ) , x ,0,1)16

    17 / / h e n c e18 // [ 1 1 1 ; 0 1/2 1 ; 0 1/4 1 ]A=[ I 1 I 2 I 3 ] 19

    20 A = inv ([ 1 1 1;0 1/2 1 ;0 1/4 1 ]) *[ I1 I2 I3 ]

    21 / / I = ( 3 . 1 4 / 4 ) ( f (0 ) +2 f ( 1/ 2) + f ( 1) ) ;22

    23 / / h ence , f o r s o l v i n g t h e i n t e g r a l 1/ s q r t ( xx 3 )

    i n t he r an ge [ 0 , 1 ] = I2425 deff ( [ y]= f (x ) , y =1/ sq r t (1+ x ) ) ;26 I = ( 3 . 1 4 / 4 ) * [ 1 + 2 * sqrt ( 2 / 3 ) + sqrt ( 2 ) / 2 ]

    81

  • 7/26/2019 Numerical Methods for Scientific and Eng

    83/152

    Scilab code Exa 5.16 gauss legendary three point method

    1 / / e xa mp le 5 . 1 62 // c a p t io n : g au ssl e g e n d r e t h r e e p o i n t method3 // I= i n t e g r a l 1/(1+ x ) i n t he r an ge [ 0 , 1 ] ;4 // f i r s t we ne ed t i t ra ns fo rm t he i n t e r v a l [ 0 , 1 ] t o

    [ 1 , 1 ] , s i n c e g au ssl e g e n d r e t h r e e p o i n t methodi s a p p l i c a b l e i n t h e r a ng e [ 1 ,1] ,

    5

    6 / / l e t t=a x+b ;7 // s o l v i n g f o r a , b fr om t he two r an ge s , we g e t a =2;

    b=1; t=2x1;8

    9 / / h en ce I= i n t e g r a l 1/(1+ x ) i n t he r an ge [ 0 , 1 ] =i n t e g r a l 1 /( t +3) i n t he r an ge [ 1 , 1 ] ;

    10

    11

    12 deff ( [ y ]= f ( t ) , y = 1/( t +3) ) ;13 / / s i n c e , from g au ss l e