23
Universität Dortmund Fakultät für Mathematik IAM technische universität dortmund Numerical Benchmarking of Fluid-Structure Interaction between elastic object and laminar incompressible flow S. Turek, J. Hron, M. Razzaq, H. Wobker TU Dortmund with support by M.Schäfer, M. Heck, M. Krafczyk, J. Tölke, S. Geller, H.-J. Bungartz, M. Brenk, R. Rannacher, T. Dunne, W. Wall, A. Gerstenberger, E. Rank, A. Düster, S. Kollmannsberger K.-U. Bletzinger, R. Wüchner, A.Kupzok, T. Gallinger, U. Israel

Numerical Benchmarking of Fluid-Structure Interaction ... · 5 Boundary and initial conditions Numerical benchmarking of fluid-structure interaction between elastic object and laminar

  • Upload
    others

  • View
    6

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Numerical Benchmarking of Fluid-Structure Interaction ... · 5 Boundary and initial conditions Numerical benchmarking of fluid-structure interaction between elastic object and laminar

Universität DortmundFakultät für Mathematik

IAMtechnische universität dortmund

Numerical Benchmarking of Fluid-Structure Interaction between elastic object and laminar incompressible flow

S. Turek, J. Hron, M. Razzaq, H. WobkerTU Dortmund

with support by

M.Schäfer, M. Heck, M. Krafczyk, J. Tölke, S. Geller, H.-J. Bungartz, M. Brenk, R. Rannacher, T. Dunne, W. Wall, A. Gerstenberger, E. Rank, A. Düster, S. Kollmannsberger

K.-U. Bletzinger, R. Wüchner, A.Kupzok, T. Gallinger, U. Israel

Page 2: Numerical Benchmarking of Fluid-Structure Interaction ... · 5 Boundary and initial conditions Numerical benchmarking of fluid-structure interaction between elastic object and laminar

2

Key questionAccurate and robust description of the interaction mechanisms w.r.t. highly dynamical and nonlinear behaviour and significant geometry changes?

That includes: Quality of different discretization techniques (FEM, FV, FD, LBM, resp., beam, shell, volume elements) for FSI?Robustness and numerical efficiency of the integrated solvercomponents?Coupling mechnisms?

1st step: Identification of appropriate FSI setting for numerical benchmarking

2nd step: FSI benchmark setting due to experimental studies3rd step: Extension to FSI-Optimisation benchmark

Numerical benchmarking of fluid-structure interaction between elastic object and laminar incompressible flow

Page 3: Numerical Benchmarking of Fluid-Structure Interaction ... · 5 Boundary and initial conditions Numerical benchmarking of fluid-structure interaction between elastic object and laminar

Requirements for numerical FSI benchmarking

3Numerical benchmarking of fluid-structure interaction between elastic object and laminar incompressible flow

Mainly based on the successful DFG flow around cylinder benchmarkRealistic materials

Incompressible Newtonian fluid, laminar flow regimeElastic solid, large deformations

Comparative evaluationSetup with periodical oscillationsNon-graphically based quantities

Computable configurationsLaminar flowReasonable aspect ratiosSimple geometry (2D)

Page 4: Numerical Benchmarking of Fluid-Structure Interaction ... · 5 Boundary and initial conditions Numerical benchmarking of fluid-structure interaction between elastic object and laminar

4

Computational domainDomain dimensions

Detail of the submerged structure

Numerical benchmarking of fluid-structure interaction between elastic object and laminar incompressible flow

( ) ( ) ( ) ( )0.20.2,,0.2 0.15, ,0.20.6,0 ==== CBtA

Page 5: Numerical Benchmarking of Fluid-Structure Interaction ... · 5 Boundary and initial conditions Numerical benchmarking of fluid-structure interaction between elastic object and laminar

5

Boundary and initial conditions

Numerical benchmarking of fluid-structure interaction between elastic object and laminar incompressible flow

Inflow Parabolic velocity profile is prescribed at the left end of the channelOutflow Condition can be chosen by the user, assuming zero reference pressure

(stress free or do nothing) otherwise The no-slip condition is prescribed for the fluid on the other boundary parts. i.e.

top and bottom wall and cylinderInitial Zero velocity in the fluid and no deformation of the structure + smooth increase

of the inflow profile

Page 6: Numerical Benchmarking of Fluid-Structure Interaction ... · 5 Boundary and initial conditions Numerical benchmarking of fluid-structure interaction between elastic object and laminar

6

Fluid and structure propertiesIncompressible fluid with density

Elastic material with density : St. Venant –Kirchhoff material

Numerical benchmarking of fluid-structure interaction between elastic object and laminar incompressible flow

( ) fffff

f

tσρρ div vv v

=∇+∂∂

0 vdiv =f

( ) vv I Tffffff p ∇+∇+−= νρσ

Fdet ,u I F , =∇+= Jssρ

( )T2

2

Fdiv u −=∂∂ s

ss

tσρ

( )( ) TFE2 ItrEF1 sss

Jμλσ +=

( )I FF21 E T −=

ftΩin

sΩin

Page 7: Numerical Benchmarking of Fluid-Structure Interaction ... · 5 Boundary and initial conditions Numerical benchmarking of fluid-structure interaction between elastic object and laminar

7

Suggested material parameterssolid fluid

density densityPoisson ratio kinematic viscosityshear modulus

Numerical benchmarking of fluid-structure interaction between elastic object and laminar incompressible flow

Parameter polybutadiene & glycerine polypropylene & glycerine

0.910.500.53

1.10.42317

1.26

1.13

1.26

1.13

Parameter FSI1 FSI2 FSI31

0.40.5

10.40.5

10.42.0

11

11

11

0.2 1 2

Parameter FSI1 FSI2 FSI310.4

10.4

10.4

20

0.2

100

1

200

2

sρ fρsν fνsμ

]kg/ms10[ 26sμ

sν]kg/m10[ 33sρ

]kg/m10[ 33fρ]/m10[ 23 sf −ν

]kg/ms10[ 26sμ

sν]kg/m10[ 33sρ

]kg/m10[ 33fρ]/m10[ 23 sf −ν

]m/[ sU

f

s

ρρβ =

2

E AeUf

s

ρ=

]m/s[U

f

dUν

Re =

4105.3 × 3104.1 × 3104.1 ×

Page 8: Numerical Benchmarking of Fluid-Structure Interaction ... · 5 Boundary and initial conditions Numerical benchmarking of fluid-structure interaction between elastic object and laminar

8

Quantities of interestThe position of the end of the structure\item pressure difference between the points A(t) and B

Forces exerted by the fluid on the whole body, i.e. lift and drag forces acting on the cylinder and the structure together

Frequency and maximum amplitudeCompare results for one full period and 3 different levels of spatial discretization h and 3 time step sizes

Numerical benchmarking of fluid-structure interaction between elastic object and laminar incompressible flow

( ) ( ) ( )( )tytxtA ,=

( ) ( ) ( )( )tptptp tABAB −=Δ

( ) ∫ ∫=∫ +=∫=2 01

, |

S S

Sf

S

f

SLD dSnndSndSdSnFF σσσσ

Page 9: Numerical Benchmarking of Fluid-Structure Interaction ... · 5 Boundary and initial conditions Numerical benchmarking of fluid-structure interaction between elastic object and laminar

9

1.Step: CFD tests for validation

Numerical benchmarking of fluid-structure interaction between elastic object and laminar incompressible flow

CFD1 CFD2 CFD31

1

1

1

1

10.2 1 220

0.2

100

1

200

2

Test Drag LiftCFD1 14.29 1.119

CFD2 136.7 10.53

CFD3[4.395] [4.395]

]kg/m10[ 33fρ

]s/m10[ 23−fν]s/m[U

]s/m[Uf

dUν

=Re

618.54.439 ± 8.43789.11 ±−

Page 10: Numerical Benchmarking of Fluid-Structure Interaction ... · 5 Boundary and initial conditions Numerical benchmarking of fluid-structure interaction between elastic object and laminar

2.Step: CSM tests for validationCSM1 CSM2 CSM310.40.5

10.42.0

10.40.5

2 2 210.41.4

10.45.6

10.41.4

2 2 2

test ux of A [ m] uy of A [ m]

CSM1CSM2CSM3

[1.0995] [1.0995]

310−× 310−×]kg/m10[ 33sρ

sν187.7−

4690.0−

305.14305.14 ±−

10.66−

97.16−

160.65607.63 ±−

]kg/ms10[ 26sμ

sνf

s

ρρβ =

]m/s[ 2g

]m/s[ 2g

]kg/ms10[E 26s

Numerical benchmarking of fluid-structure interaction between elastic object and laminar incompressible flow10

Page 11: Numerical Benchmarking of Fluid-Structure Interaction ... · 5 Boundary and initial conditions Numerical benchmarking of fluid-structure interaction between elastic object and laminar

FSI1: steady, small deformations

11Numerical benchmarking of fluid-structure interaction between elastic object and laminar incompressible flow

parameter FSI1 FSI2 FSI3

10.40.5

10.40.5

10.42.0

11

11

11

0.2 1 2

parameter FSI1 FSI2 FSI3

10.4

10.4

10.4

200.2

1001

2002

ux of A [ m] uy of A [ m] drag lift310−×310−×

]kg/m10[ 33sρsν

]kg/ms10[ 26sμ

]kg/m10[ 33sρ]s/m10[ 23−sν

]s/m[U

f

s

ρρβ =

sν2

E AeUf

s

ρ=

f

dUν

Re =

]s/m[U

4105.3 × 3104.1 × 3104.1 ×

0.02270493 0.8208773 14.29426 0.763746FSI1

Page 12: Numerical Benchmarking of Fluid-Structure Interaction ... · 5 Boundary and initial conditions Numerical benchmarking of fluid-structure interaction between elastic object and laminar

12

FSI2: large deformations, periodical oscillations

Test ux of A [ m] uy of A [ m] drag lift

FSI2

Numerical benchmarking of fluid-structure interaction between elastic object and laminar incompressible flow

310 −× 310−×]86.3[70.1285.14 ±− ]93.1[7.8130.1 ± ]86.3[65.7706.215 ± ]93.1[8.23761.0 ±

Page 13: Numerical Benchmarking of Fluid-Structure Interaction ... · 5 Boundary and initial conditions Numerical benchmarking of fluid-structure interaction between elastic object and laminar

13

FSI3: large deformations, complex oscillations

Test ux of A [ m] ux of A [ m] drag lift

FSI3

Numerical benchmarking of fluid-structure interaction between elastic object and laminar incompressible flow

310−×310 −×

]93.10[72.288.2 ±− ]46.5[99.3447.1 ± ]93.10[74.275.460 ± ]46.5[91.15350.2 ±

Page 14: Numerical Benchmarking of Fluid-Structure Interaction ... · 5 Boundary and initial conditions Numerical benchmarking of fluid-structure interaction between elastic object and laminar

14

Status of numerical benchmarkingSubtests for validating CFD and CSM components are available:

CSM1-3: "OK"CFD1: "easy" → Re=20CFD2: (also) "easy" → Re=100CFD3: "non-trivial" → Re=200

FSI settings with desired properties: FSI1: "simple" → for validation onlyFSI3: "hard" → due to CFD3 FSI2: fully oscillating while CFD2 (≈same Re number!) is steady

Excellent check for interaction mechanismsEvaluation and comparison of mathematical and algorithmiccomponents - everybody is invited to participate.

Numerical benchmarking of fluid-structure interaction between elastic object and laminar incompressible flow

Page 15: Numerical Benchmarking of Fluid-Structure Interaction ... · 5 Boundary and initial conditions Numerical benchmarking of fluid-structure interaction between elastic object and laminar

Numerical benchmarking of fluid-structure interaction between elastic object and laminar incompressible flow

FSI4: Benchmarking of experimental data

15

Flustruc experiment, Erlangen, http://www.lstm.uni-erlangen.de/flustruc/

fluid parameters

density of the fluidkinematic viscosity

1.05e-6 [kg/mm^3]164.0

solid parameters

density of the beam (steel)density of the rear massshear moduluspoisson ratio

7.85e-6[kg/mm^3]7.8e-6 [kg/mm^3]7.58e130.3

geometry parameter value [mm]

channel lengthchannel widthcylinder center positioncylinder radiuselastic structure lengthelastic structure thicknessrear mass lengthrear mass thicknessreference point (at t=0)reference point

LWCRlw

w‘h‘

AB

338.0240.0(0.0, 0.0)11.0500.0410.04.0(71.0, 0.0)(11.0, 0.0)

Page 16: Numerical Benchmarking of Fluid-Structure Interaction ... · 5 Boundary and initial conditions Numerical benchmarking of fluid-structure interaction between elastic object and laminar

Numerical benchmarking of fluid-structure interaction between elastic object and laminar incompressible flow 16

FSI4: New configuration+ Laminar Flow (glycerine)+ “2D‘‘ flow and deformation- Rotational degree of freedom- Large aspect ratio (thin structure),- Corners

Flustruc experiment, Erlangen Computation

Laminar: Velocity=1.07 m/s, Re=140

Zoomed

Page 17: Numerical Benchmarking of Fluid-Structure Interaction ... · 5 Boundary and initial conditions Numerical benchmarking of fluid-structure interaction between elastic object and laminar

Numerical benchmarking of fluid-structure interaction between elastic object and laminar incompressible flow 17

FSI4: PlotsFront body angle

Period of motion

Trailing edge displacement

Page 18: Numerical Benchmarking of Fluid-Structure Interaction ... · 5 Boundary and initial conditions Numerical benchmarking of fluid-structure interaction between elastic object and laminar

Numerical benchmarking of fluid-structure interaction between elastic object and laminar incompressible flow 18

FSI4: Experiment and numerical simulations

Experiment Numerical

Laminar: Velocity=1.07 m/s, Re=140

Page 19: Numerical Benchmarking of Fluid-Structure Interaction ... · 5 Boundary and initial conditions Numerical benchmarking of fluid-structure interaction between elastic object and laminar

Numerical benchmarking of fluid-structure interaction between elastic object and laminar incompressible flow

FSI4: Experiment and numerical simulations

19

Experiment Numerical

Laminar: Velocity=1.45 m/s, Re=190

Page 20: Numerical Benchmarking of Fluid-Structure Interaction ... · 5 Boundary and initial conditions Numerical benchmarking of fluid-structure interaction between elastic object and laminar

Numerical benchmarking of fluid-structure interaction between elastic object and laminar incompressible flow 20

FSI OptimizationThe main design aims could beI) Drag/Lift minimizationII) Minimal pressure lossIII) Minimal nonstationary oscillations

To reach these aims, we might allow1. Boundary control of inflow section2. Change of geometry: elastic channel walls or length/thickness of

elastic beam3. Optimal control of volume forces

Optimal control of nonstationary flow might be hard for the starting

Results for the moment are combination of I)-III) with 1)-3)

Page 21: Numerical Benchmarking of Fluid-Structure Interaction ... · 5 Boundary and initial conditions Numerical benchmarking of fluid-structure interaction between elastic object and laminar

Numerical benchmarking of fluid-structure interaction between elastic object and laminar incompressible flow 21

FSI OPT 1Uncontrolled flow

Lift 0 Aim:

w.r.t V1, V2. V1 velocity from topV2 velocity from below

≠( )22 minimize Vlift α+

ux of A [ m] uy of A [ m] drag lift310−×310−×

FSI1 0.0227 0.8209 14.295 0.7638

h=0.04

Page 22: Numerical Benchmarking of Fluid-Structure Interaction ... · 5 Boundary and initial conditions Numerical benchmarking of fluid-structure interaction between elastic object and laminar

Numerical benchmarking of fluid-structure interaction between elastic object and laminar incompressible flow 22

TESTS for FSI 1 (Boundary control)Level 1 Level 2

FSI OPT 1

Itersteps

extreme point drag Lift

1e0 57 (3.74e-1,3.88e-1) 1.5471e+01 8.1904e-1

1e-2 60 (1.04e0,1.06e0) 1.5474e+01 2.2684e-2

1e-4 73 (1.06e0,1.08e0) 1.5474e+01 2.3092e-4

1e-6 81 (1.06e0,1.08e0) 1.5474e+01 2.3096e-6

Itersteps

extreme point drag Lift

59 (3.66e-1,3.79e-1) 1.5550e+01 7.8497e-1

59 (1.02e0,1.04e0) 1.5553e+01 2.1755e-2

71 (1.04e0,1.05e0) 1.5553e+01 2.2147e-4

86 (1.04e0,1.05e0) 1.5553e+01 2.2151e-6

α

Level 1 Level 2

Page 23: Numerical Benchmarking of Fluid-Structure Interaction ... · 5 Boundary and initial conditions Numerical benchmarking of fluid-structure interaction between elastic object and laminar

Numerical benchmarking of fluid-structure interaction between elastic object and laminar incompressible flow 23

Outlook

( )22 minimize Vlift α+( )outin pp - minimize