18
Numerical activities in COSMO; Physics interface; LM- z Zurich 2006 J. Steppeler (DWD)

Numerical activities in COSMO; Physics interface; LM-z Zurich 2006 J. Steppeler (DWD)

Embed Size (px)

Citation preview

Page 1: Numerical activities in COSMO; Physics interface; LM-z Zurich 2006 J. Steppeler (DWD)

Numerical activities in COSMO;Physics interface; LM-z

Zurich 2006

J. Steppeler (DWD)

Page 2: Numerical activities in COSMO; Physics interface; LM-z Zurich 2006 J. Steppeler (DWD)

Is there a vision towards 2010?

•Energy and Mass conservation

•Approximation order 3

•avoiding violation of approximation conditions:

• Rational physics interface

•Terrain intersecting grid (cut cell method)

•Serendipidity grids

•Grids on the sphere

Page 3: Numerical activities in COSMO; Physics interface; LM-z Zurich 2006 J. Steppeler (DWD)

NP=3 NP=4 NP=5

Cube 4-body Isocahedron

Rhomboidal divisions of the sphere

Page 4: Numerical activities in COSMO; Physics interface; LM-z Zurich 2006 J. Steppeler (DWD)

Third order convergence of shallow water model at day 3

Page 5: Numerical activities in COSMO; Physics interface; LM-z Zurich 2006 J. Steppeler (DWD)

Numerical activities in COSMO

•Semi-Implicit method on distributed memory computers using Green functions

•Two main projects

•LM_RK: Runge Kutta time integration, Order 3

•LM_Z: Cut cell terrain intersecting discretisation

Page 6: Numerical activities in COSMO; Physics interface; LM-z Zurich 2006 J. Steppeler (DWD)

• Finite Volumes: 1

• Baumgardner Order2: 1

• Baumgardner Order3: 1

• Great circle grids: RK, SI, SL1 now 3 seem possible

• Tiled grids: 1.5

• Serendipidity grids 3

• Unstructured 1/1.3

• Conservation 1/2

Saving factors of Discretisations

Page 7: Numerical activities in COSMO; Physics interface; LM-z Zurich 2006 J. Steppeler (DWD)

Idealized 1D advection test

analytic sol.implicit 2. orderimplicit 3. orderimplicit 4. order

C=1.580 timesteps

C=2.548 timesteps

Verbesserte Vertikaladvektion für

dynamische Var. u, v, w, T, p‘

Page 8: Numerical activities in COSMO; Physics interface; LM-z Zurich 2006 J. Steppeler (DWD)

case study ‚25.06.2005, 00 UTC‘

total precipitation sum after 18 hwith vertical advection 2. order

difference total precpitation sum after 18 h‚vertical advection 3. order – 2. order‘

Improved vertical advektion for dynamic var. u, v, w, T, p‘

Page 9: Numerical activities in COSMO; Physics interface; LM-z Zurich 2006 J. Steppeler (DWD)

starting point after 1 h after 1 h

modified version:pressure gradient on z-levels, if

|metric term| > |terrain follow. term|

cold pool – problem in narrow valleys

is essentially induced by pressure gradient term

T (°C)

J. Förstner, T. Reinhardt

Page 10: Numerical activities in COSMO; Physics interface; LM-z Zurich 2006 J. Steppeler (DWD)

•Coordinates cut into mountains

•The finite volume cut cell is used for discretisation / unstructured grid

•Boundary structures are kept over mountains (vertically unstructured

•The violation of an approximation error is avoided

LM_Z

Page 11: Numerical activities in COSMO; Physics interface; LM-z Zurich 2006 J. Steppeler (DWD)

The step-orography

i - 1/2

i - 1/2

j - 1/2

j + 1/2

j - 1/2i + 1/2

i + 1/2j + 1/2

i, j

Shaved elements

•The shaved elements are mathematically more correct than step boundaries

•By shaved elements the z-coordinate is improved such that the criticism of Gallus and Klemp (2000), Mon. Wea. Rev. 128, 1153-1164 no longer applies

•New results: MWR, in print

Page 12: Numerical activities in COSMO; Physics interface; LM-z Zurich 2006 J. Steppeler (DWD)

Flow around bell shaped mountain

Atmosphere at rest

Page 13: Numerical activities in COSMO; Physics interface; LM-z Zurich 2006 J. Steppeler (DWD)
Page 14: Numerical activities in COSMO; Physics interface; LM-z Zurich 2006 J. Steppeler (DWD)
Page 15: Numerical activities in COSMO; Physics interface; LM-z Zurich 2006 J. Steppeler (DWD)
Page 16: Numerical activities in COSMO; Physics interface; LM-z Zurich 2006 J. Steppeler (DWD)

LM_Z:

RMS of Winds and temp. against radiosondes

Frequ. Bias and threat score

Page 17: Numerical activities in COSMO; Physics interface; LM-z Zurich 2006 J. Steppeler (DWD)

Precipitation

Page 18: Numerical activities in COSMO; Physics interface; LM-z Zurich 2006 J. Steppeler (DWD)

Conclusions

• Existing physics interfaces and terrain following grids violate approximation conditions

• LM_RK: High order approximation• LM_Z: Terrain intersecting method taken over from

CFD• Better flow over obstacles• Better vertical velocities and precipitation