7
VIROLOGY 184, 404-410 (1991) Nucleotide Sequence of the Gene Encoding Infectious Laryngotracheitis Virus Glycoprotein B’ KRITAYA KONGSUWAN,’ C. T. PRIDEAUX, M. A. JOHNSON, M. SHEPPARD, AND K. J. FAHEY CSIRO Division of Animal Health, Animal Research Laboratory, Private Bag No. 1, Parkville, V/C 3052, Australia Received February 19, 199 1; accepted May IS, 199 1 The nucleotide sequence of the infectious laryngotracheitis virus (ILTV) gene encoding the 205K complex glycopro- tein (gp205) was determined. The gene is contained within a 3-kb EcoRl restriction fragment mapping at approximately map coordinates 0.23 to 0.25 in the U, region of the ILTV genome and is transcribed from right to left. Nucleotide sequence analysis of the DNA fragment identified a single, long open reading frame capable of encoding 873 amino acids. The predicted precursor polypeptide derived from this open reading frame would have a calculated M, of 98,895 Da and contains nine potential glycosylation sites. Hydropathic analysis indicates the presence of an amino terminal hydrophobic sequence and hydrophobic carboxyl terminal domain which may function as a signal peptide and a membrane anchor sequence, respectively. Comparison of the predicted ILTV gp205 protein sequence with those of other herpesviruses revealed a significant sequence similarity with gB-like glycoproteins. Extensive homology was observed throughout the molecule except for the amino and carboxyl termini. The high homology in predicted primary and secondary structures is consistent with the essential role of the gB family of proteins for viral infectivity and pathogenesis. 0 1991 Academic Press, Inc. Infectious latyngotracheitis virus (ILlV) is an impor- tant pathogen of chickens, causing an acute upper re- spiratory tract infection. The disease is found world- wide and may result in severe productions losses due to mortality and reduced egg production (1). The ge- nome of ILlV, an alphaherpesvirus, is linear double- stranded DNA approximately 155 kb in size and has a structure similar to that of pseudorabies virus (PRV). The genome has two covalently linked components, U, and U,, of which only the Us sequence is bounded by inverted repeats (2, 3). From random DNA sequencing of ILTV DNA, Griffin (4) was able to identify 21 ILTV genes. Of these genes 20 were identified by compari- son to varicella-zoster virus (VZV) and 19 by compari- son to herpes simplex virus type 1 (HSV-1); only 12 genes were found by comparison with the gammaher- pesvirus Epstein-Barr virus (EBV). Sequence data of the thymidine kinase gene and the upstream overlap- ping genes of ILTV also provide evidence that homol- ogy exists at the DNA level between ILTV and other alphaherpesviruses (5). As part of a research program to characterize ILTV antigens responsible for stimulating protective immu- nity in chickens, we have focused on the glycoproteins since these proteins are known to be among the pri- mary targets for both humoral and cell-mediated im- mune responses (8). The characterization of ILTV gly- ’ The nucleotide sequence data reported in this paper have been submitted to the GenBank nucleotide sequence database. ’ To whom requests for reprints should be addressed. coproteins is still at an early stage with the exact num- ber of glycoproteins expressed still unknown. York et al. (7) showed that chicken antisera to the ILTVvaccine strain and to a virulent isolate immunoprecipitated five major viral glycoproteins of 205, 160, 115, 90, and 60K. Additional glycoprotein bands were recognized by immune chicken and rabbit sera in Western blotting using a glycoprotein fraction purified from extracts of virus-infected cells (7). Further work using monoclonal antibodies defined the five major glycoproteins into two groups; the 205K complex (205, 160, 115, and 90K glycoproteins) and the 60K glycoproteins (8). To identify ILTV glycoprotein genes, we used the monoclo- nal antibodies 12-1, 22-7, 23-1, and 131-6 which reacted with the glycoprotein 205K complex in West- ern blot (kindly provided by Dr. Jenny York) to screen the library of Agtl 1-ILTV recombinant phages. Recom- binant phages encoding the desired epitope were identified with the epitope localized to the 3-kb EcoRl fragment at 0.23-0.25 map unit in the U, on the ILTV genome with reference to the previously published map (3). The nucleotide sequence of this EcoRl frag- ment revealed a single, long open reading frame en- coding a protein which shares significant amino acid sequence homology and many predicted structural features with the glycoprotein B (gB) family of proteins. The strain used in the present study is the SA-2 vac- cine strain of ILTV used in Australia. ILTV was propa- gated in monolayer cultures of primary chicken kidney cells grown in Eagle’s basal medium (Commonwealth Serum Laboratories) supplemented with 5% newborn 0042-6822191 $3.00 404 Copyright Q 1991 by Academic Press, Inc. All rights of reproduction in any form resewed.

Nucleotide sequence of the gene encoding infectious laryngotracheitis virus glycoprotein B

Embed Size (px)

Citation preview

Page 1: Nucleotide sequence of the gene encoding infectious laryngotracheitis virus glycoprotein B

VIROLOGY 184, 404-410 (1991)

Nucleotide Sequence of the Gene Encoding Infectious Laryngotracheitis Virus Glycoprotein B’

KRITAYA KONGSUWAN,’ C. T. PRIDEAUX, M. A. JOHNSON, M. SHEPPARD, AND K. J. FAHEY

CSIRO Division of Animal Health, Animal Research Laboratory, Private Bag No. 1, Parkville, V/C 3052, Australia

Received February 19, 199 1; accepted May IS, 199 1

The nucleotide sequence of the infectious laryngotracheitis virus (ILTV) gene encoding the 205K complex glycopro- tein (gp205) was determined. The gene is contained within a 3-kb EcoRl restriction fragment mapping at approximately map coordinates 0.23 to 0.25 in the U, region of the ILTV genome and is transcribed from right to left. Nucleotide sequence analysis of the DNA fragment identified a single, long open reading frame capable of encoding 873 amino acids. The predicted precursor polypeptide derived from this open reading frame would have a calculated M, of 98,895 Da and contains nine potential glycosylation sites. Hydropathic analysis indicates the presence of an amino terminal hydrophobic sequence and hydrophobic carboxyl terminal domain which may function as a signal peptide and a membrane anchor sequence, respectively. Comparison of the predicted ILTV gp205 protein sequence with those of other herpesviruses revealed a significant sequence similarity with gB-like glycoproteins. Extensive homology was observed throughout the molecule except for the amino and carboxyl termini. The high homology in predicted primary and secondary structures is consistent with the essential role of the gB family of proteins for viral infectivity and pathogenesis. 0 1991 Academic Press, Inc.

Infectious latyngotracheitis virus (ILlV) is an impor- tant pathogen of chickens, causing an acute upper re- spiratory tract infection. The disease is found world- wide and may result in severe productions losses due to mortality and reduced egg production (1). The ge- nome of ILlV, an alphaherpesvirus, is linear double- stranded DNA approximately 155 kb in size and has a structure similar to that of pseudorabies virus (PRV). The genome has two covalently linked components, U, and U,, of which only the Us sequence is bounded by inverted repeats (2, 3). From random DNA sequencing of ILTV DNA, Griffin (4) was able to identify 21 ILTV genes. Of these genes 20 were identified by compari- son to varicella-zoster virus (VZV) and 19 by compari- son to herpes simplex virus type 1 (HSV-1); only 12 genes were found by comparison with the gammaher- pesvirus Epstein-Barr virus (EBV). Sequence data of the thymidine kinase gene and the upstream overlap- ping genes of ILTV also provide evidence that homol- ogy exists at the DNA level between ILTV and other alphaherpesviruses (5).

As part of a research program to characterize ILTV antigens responsible for stimulating protective immu- nity in chickens, we have focused on the glycoproteins since these proteins are known to be among the pri- mary targets for both humoral and cell-mediated im- mune responses (8). The characterization of ILTV gly-

’ The nucleotide sequence data reported in this paper have been submitted to the GenBank nucleotide sequence database.

’ To whom requests for reprints should be addressed.

coproteins is still at an early stage with the exact num- ber of glycoproteins expressed still unknown. York et al. (7) showed that chicken antisera to the ILTVvaccine strain and to a virulent isolate immunoprecipitated five major viral glycoproteins of 205, 160, 115, 90, and 60K. Additional glycoprotein bands were recognized by immune chicken and rabbit sera in Western blotting using a glycoprotein fraction purified from extracts of virus-infected cells (7). Further work using monoclonal antibodies defined the five major glycoproteins into two groups; the 205K complex (205, 160, 115, and 90K glycoproteins) and the 60K glycoproteins (8). To identify ILTV glycoprotein genes, we used the monoclo- nal antibodies 12-1, 22-7, 23-1, and 131-6 which reacted with the glycoprotein 205K complex in West- ern blot (kindly provided by Dr. Jenny York) to screen the library of Agtl 1 -ILTV recombinant phages. Recom- binant phages encoding the desired epitope were identified with the epitope localized to the 3-kb EcoRl fragment at 0.23-0.25 map unit in the U, on the ILTV genome with reference to the previously published map (3). The nucleotide sequence of this EcoRl frag- ment revealed a single, long open reading frame en- coding a protein which shares significant amino acid sequence homology and many predicted structural features with the glycoprotein B (gB) family of proteins.

The strain used in the present study is the SA-2 vac- cine strain of ILTV used in Australia. ILTV was propa- gated in monolayer cultures of primary chicken kidney cells grown in Eagle’s basal medium (Commonwealth Serum Laboratories) supplemented with 5% newborn

0042-6822191 $3.00 404

Copyright Q 1991 by Academic Press, Inc. All rights of reproduction in any form resewed.

Page 2: Nucleotide sequence of the gene encoding infectious laryngotracheitis virus glycoprotein B

406 SHORT COMMUNICATIONS

FIG. 2. Expression of ILW “gB” gene. Total cytoplasmtc RNAs from ILTV that were infected (lane 1) and mock infected (lane 2) were fractionated on an agarose/formaldehyde gel and transferred onto a Hybond-N membrane. The membrane was hybridized to the 8g/ll- Pstl fragment (Fig. 1, region between horizontal arrows). Arrow- heads indicate the location of chicken ribosomal RNAs 28 S and 18 S which were used as size standards and were estimated to be 4.2 and 1.6 kb, respectively.

calf serum (Flow Laboratories Australasia Pty Ltd). Cell-associated viral DNA was prepared using the slightly modified method of Whalley et al. (9) from in- fected cell cultures at 24 hr postinfection. Approxi- mately 2 pg of ILTV DNA was sheared by sonication, made flush-ended with T4 DNA polymerase, methyl- ated by EcoRl methyltransferase, ligated to EcoRl linkers (Biolabs), and digested with EcoRl endonucle- ase. Fragments of 0.5-2 kb were isolated by agarose

gel electrophoresis and ligated to Xgtl 1 arms previ- ously digested with fcoRl and dephosphorylated with calf intestine alkaline phosphatase (Amersham). After ligation the DNA was packaged using Packagene ex- tract (Promega), transfected, and resulted in a library of 100,000 phages. The library was screened using the Super immunoscreening system of Amersham accord- ing to the instructions of the supplier. High titer stocks of each positive phage and phage DNA were prepared by making a plate lysate (IO) on Escherichia co/i Y 1090. All the subcloning into plasmid and M 13 vec- tors was performed using standard methods (10).

DNA sequencing was carried out by the dideoxynu- cleotide chain termination method using the Sequen- ase sequencing kit (United States Biochemical). The DNA synthesis reactions were primed with either a 17- mer oligonucleotide residue that hybridized to pUC or M 13 sequences adjacent to the insert DNA or with custom 20-mer oligonucleotides complementary to a specific region of the insert DNA. Specific oligonucleo- tides were synthesized using a Pharmacia LKB Gene Assembler Plus. DNA sequence reading and analyses were done using a HIBIO DNAsis software package (Hitachi America, Ltd.) and with the programs available through the Australian National Sequence Analysis Fa- cility (ANSAF). Searches of protein databases and com- parison of homologous sequences were performed with the FASTNiP program of Lipman and Pearson (1 I).

The complete nucleotide sequence of the region

I i 1 110 219 328 437 546 655 764 074

FIG. 3. Hydropathy plot of the predicted ILTV “gB” amino acid sequence. The plot was based on the algorithm of Kyte and Doolittle (38) using a 1 1 -amino acid window. The two most hydrophobic regions in the N- and C-termini are predicted to represent the signal sequence and the transmembrane anchor region, respectively, of the glycoprotein molecule.

Page 3: Nucleotide sequence of the gene encoding infectious laryngotracheitis virus glycoprotein B

EcoRI GMTTCGACCTCGACGGCCCGATTTTGGAAAACGGG~TTMCATTTGMGAGG --_-_

MCATCCATTAGTTGCAGTGTEG_G_GFGTCGATGA~~G~~~~~CTG~TCCAGCGTCTACTATCATAGTAG [HASLKN

AGAAAGATTTATACGCGGTCCTGTATGCAATCCTACATCCTACATCGCCGTGMCATTGACAT~CTAGCTTG~TG LICVCVAILIIPSTLSQDSHGIGW~

CTGATCTGCGTGTGCGTGGCMTCCTGATCCCATCTACCCTATCTCMGATTCACAC~MTTGGCTGGMT NSPHDTASMDVGKISFSEAIGSGA

MTAGCCCTCATGATACAGCCAGCATGGATGTTGGAAAAAA PKEPQIRNRIFACSSPTGASVARL

CCG~GMCCCCAGATTAGAAACAGAATTTTTGCGTGCGCTT AQPRHCHRHADST NMTEGIAVVFK

GCCCAGCCACGACATTGTCACCGACATGCCGATTCGATTCGACTMCATGACTGM~MTT~CGTAGTCTTCMG QNIAPYVFNVT L Y Y K H ITTVTTWA

CRAAACATTGCCCCGTACGTCTTTMTGTGACTCTATACTAT~CATATMCCACAGTTACTACGTGGGCA LFSRPQ ITNEYVTRVP IDYHEIVR

TTATTCTCMGACCCCAAATMC~TGAGTACGTGACCAG~TTCCMTAG~CTATCATG~TTGTCA~G IDRSGECSSKATYHKNFHFFEAYD

ATTGATCGATCGGGAGMTGCTCATCCAAAGCAACGTATCAT~TTTCATGTTTTTTGM~TTACGAC NDEAEKKLPLVPSLLRSTVSKAFH

MTGATGMGCAG AAAAAAAATTGCCCCTGGTTCCATCACTGTTMGATCMCTGTCTCCAAGGCGTTTCAT TTNFTKRHQTLGYRTSTSVDCVVE

ACMCTMCTTTACTMGCGACATCRAACCCCT~ATACCGMCGTCTACATC~TCGACTGTGTTGTGGM YLQAEl-SVYPYDYFGMATGDTVEIS

TATCTACAGGCTAGATCTGTATACCCGTATGATTACTTTGTTTCT P F YT K NTTGPRRHSVYRDYRFLEI

CCTTTTTATACCAAAAACACGACCGGACCAAGGCGTCACAGTGTCTACAGAGACTATAGATTTCTCG~TC ANYQVRD LETGQIRP PKKRNFLTD

GCAAATTATCMGTCAGGGATTTGGAAACCGGACAAATAAGACCCCCT MAAMAGAAACTTTCTMCAGAT E Q F T IGWDAMEEKESVCTLSKWIE

GMCMTTCACTATAGGCTGGGATGCMT~MG~~MTCTGTATGTACTCTCAGT~TGGATTGM v P EAVRVSYKNSYHFSLKDMTMTF

GTCCCGGMGCAGTTCGTGTTTCGTACAAAAACAGTTACCGTTC SSGKQPF NTSR LH LAE CVP T I AS E

TCGTCCGGAARACMCCTTTTMCATCA~A~TTCATTT~TGMT~GTTCCTACCATAGCCTCGGAG A IDGIFARKYSSTHVRSGDIEYYL

GCCATAGATGGCATCTTTGCCAGRAAGTATAGTATAGTTCGACTCATGTCCGTTCT~ACATCGMTACTATCTC GSGGFLIAFQKLHSHGLAEMYLEE

GGTAGTGGCGGATTTCTGATCGCATTTTCAG~CTCATGA~CAT~TT~TG~TGTACCTAGMGAG AQRQNHLPRGRERRQAAGRRTASL

GCACAAAGACAAAATCATCTCCCGAGAGGGAGAGAGCGTCTG QSGPQGDRI TTHSSATFANLQFAY

CAGTCTGGACCTCAGGGTGATAGMTTACTACCCACAGTTCT~MCATTT~CATGTTACMTTT~ATAC ~KIQAHvNELIGNLLEAw~ELQNR GACAAAATCCMGCCCATGTTMCGA~TTATCGGAAATTCGC

QLIVWHEMKKLNPNSLMTSLFGQP CMCTGATTGTATGGCACGAGATGMG~CTAAhCCCCGMCTCACTGATGACATCTTTGTTC~ACMCCT

VSARLLGDIVAVSKCIEIP I EN I R GTMGCGCCAGGCTATTGGGAGACATCGTAGCGGTATCAATATTAGG

HQDSHRVPGDPTMCYTRPVLIFRY ATGCAGGATTCCATGCGCGTGCCAGGGGACCCAACCATGTTAT

SSSPESQFSANST ENHNLGILGQL TCGTCCTCCCCTGAGTCACAGTTTTCTGCtAACTCAACAGCTC

GEHNEILQGRNLIEPCMINHRRYF GGAGMCATMTGRAATTTTACAAGGCCtGAATTTGATAGMC~T~ATGATCMTCACAGAC~TACTTT

LLGENYLLYEDYTFVRQVNASEIE CTGTTGGGAGAAAACTACCTTCTTTACGMGACAT

EVSTFINLNATI LEDLDFVPVEVY GMGTGAGCACATTCATCMCTTGMCGCCACTATACTAG~GATTTGGACTTTGTGCCCGTCG~GTATAC

T R E ELRDTGTLNYDDVVRYQNIYN ACTCGCGAGGMCTCAGAGATACTGGGACTTTAAACTATGC

K R F RD I D TV I R[GDRGDAIFRA I A D AAAAGGTTCAGAGACATTGACACTGTMTACGTGGAGATAGGGGAGATGC~TCTTTAGAGCMTAGCAGAT

FFGNTLGEVGKALGTVVMTAAAAV TTTTTTGGCAACACTCTTGGAGMGTAGGCATTGGCATTG~MCTGTAGTGATGACAGCCGCGGCAGCAGTA

IS TVSGIASFLSNPFAALAIGIAV ATTTCTACAGTATCTGGCATCGCCTCATTTCTTTCTAACCTTGGGATAGCGGTG

VVSIILGLLAF]KYVMNLKSNPvQV GTGGTGAGCATTATTTTAGGACTGCTGGCGTTCAAATATGTMTG~CCTG~TC~CCCAGTTCAGGTT

LFPGAVP PAGTPP RPSRRYYKDEE CTGTTCCCAGGCGCAGTTCCCCCGGCCGGAACTCCTCCACGACCCTCTAGACGTTACTAC~GGATGAGGAG

EVEEDSDEDDRI LATRVLKGLELL GAGGTTGAGGAGGATAGTGATGAGGACGACAGGATACTTGCCACCAGAGTTCTG~GGCCTTGAGCTTCTA

HKDEQKARRQKARFSAFAKNMRNL CACAAGGATGMCAGRAAGCTCGMGACAG~GCGCGGTTTTCTGCTTTTGCT~TATGAG~CCTA

FRRKPRTKEDDYP LLEYPSWAEES TTTCGCAGAAAACCCCGMCCRAGGAAGATGACTACCCCCTGCTCG~TACCCTTCGTGGGCAG~G~GC

ED E * GAAGACGMTMGTTTAAATGCAGTTTATTTAUAUA TGACATTACTATTCACATGACTCAGTCTGCCATC . . . . . . . ATTTGCGCAAATGCGGCTGCTTCTTTCTTTCTTTTCAATTGCATCTTTCAGTCGTTTTGGCATA GAAGCATCGACTGTCTCCCGAGCAGACTCTTGATTACTATTTTCTAGTTCCTCTTTTCTCTCTGMGACG~ TCGGCATTGGMGCTGATTTMGAATTC

EcoRI

59 130

6 202 30

274 54

346 78 418 102 490 126 562 150 636 174 706 198 778 222 850 246 922 270 994 294

1066 318

1138 342

1210 366

1282 390

1354 414

1426 430

1498 462

1570 406

1642 510

1714 534

1786 558

1858 582

1930 606

2002 630

2074 654

2146 678

2218 702

2290 726

2362 750

2434 744

2506 798

2578 822

2650 846

2722 870

2794 873

2866 2936 3010 3038

FIG. 1. The nucleotide sequence of the EcoRl fragment encoding the “gB” homologue of ILTV and the deduced amino acid sequence. The putative TATA box of the promoter is boxed. The polyadenylation site, AATAAA, is dotted underlined. Broken lines indicate GC-rich regions. The presumed signal sequence at the N-terminus and the membrane-spanning region at the C-terminus are indicated by italics and are bracketed. The putative N-linked glycosylation sites of the consensus N-X-S/T are underlined. Numbers at right indicate positions of nucleotides and the predicted amino acids.

405

Page 4: Nucleotide sequence of the gene encoding infectious laryngotracheitis virus glycoprotein B

SHORT COMMUNICATIONS 407

containing the putative gp205K coding sequence is shown in Fig. 1. There is a single large open reading frame within this region extending from the ATG codon beginning 185 bp 3’ of the EcoRl site (Fig. 1) to a TAA termination codon, starting at nucleotide 2804 (Fig. 1). Translation of this 2619 bp would produce a polypep- tide of 873 amino acids. There are two other possible initiation codons in the vicinity of the assigned ATG, one at position 155 to 157 and the other at nucleotides 200 to 202 (see Fig. 1). Both of these codons are in frame with the above-mentioned open reading frame. However, the assigned initiation codon ATG at 185 bp resides within the sequence GACATGG which con- forms well to the consensus sequence (A/G)CCATGG (12). It has a purine (G) at position -3, a C at -1, and a G at +4 which are considered to be the most strongly conserved features of the flanking sequence of the initi- ation codon of eukaryotic mRNAs.

Searching for the upstream cis-regulator-y sequence, two potential TATA box homologues were found. They are located 45 and 148 bp upstream of the putative start codon (at 140 and 38 bp in Fig. 1). We suggest that the TATA box position at bp 38-41 (Fig. 1, in box) is the functional TATA box of this gene for two reasons: (i) its local sequence TATAllT has some features pro- posed for the consensus TATA box sequence TATA(A/ T)A(A/T) (13) and (ii) Sl nuclease mapping indicated that the potential RNA polymerase initiation site of this gene mapped at about 144 nucleotides upstream of the ATG (C. T. Prideaux, unpublished data). Other pu- tative cis-regulatory elements found are the GC-rich regions (Fig. 1, indicated by broken lines) which are potential binding sites for the promoter-specific tran- scription factor Spl (14). A potential polyadenylation signal, AATAAA, was found 20 bp downstream from the termination codon (Fig. 1, dotted underlined). The G + C content of the sequence is 44.4%, which is close to the estimate of 45% for total ILTV DNA as determined from buoyant density measurements (15).

Northern blot analysis (Fig. 2) detected a single tran- script 2.9-3 kb in size from cells infected with ILTV. The probe used for hybridization was derived from the 632-bp Bglll-Pstl fragment (region defined by horizon- tal arrows in Fig. 1). Using the same probe, a similar result (not shown) was obtained with the poly(A)+ RNA indicating that the RNA is polyadenylated. Allowing 100 bp for polyadenylation, this transcript size is con- sistent with the predicted 5’ and 3’ ends of the mRNA (see above).

The deduced amino acid sequence for the polypep- tide encoded by the 2619-bp open reading frame is shown above the DNA sequence in Fig. 1. The molecu- lar mass of the 873 amino acids primary translation product is 98,895 Da. The predicted protein has fea- tures common to other membrane-spanning glycopro-

teins. A hydrophobicity plot (Fig. 3) identified a se- quence of 16 hydrophobic amino acids at the extreme NH2 end (Figs. 1 and 3) which may function as the signal peptide. Applying the weight matrices criteria of von Heijne (16) for the prediction of the cleavage site, the cleavage might occur at the serine residue 21. A broad hydrophobic domain at amino acids 690 to 761 near the C-terminus (Figs. 1 and 3) represents a mem- brane anchor sequence. A large extracellular domain (amino acids 17 to 689) contains nine potential N- linked glycosylation sites (underlined in Fig. 1). C-ter- minal amino acids 762 to 873 have a net positive charge and may function as the cytoplasmic domain.

To obtain the identity of the gp205 predicted trans- lated product, we searched the Swiss, NBRF, and GenBank protein databases for homologous se- quences. The results indicated high homology with the gB family of proteins in herpesviruses. Identities are scattered in the central portion of the proteins with little or no identities at the N- and C-termini. To date the amino acid sequences of the gB-type glycoproteins of 13 distinct herpesviruses have been published: HSV-1 (17, 18), HSV-2 (19) PRV (20), VZV (21), bovine herpes- virus type 1 (BHV-1) (22, 23) BHV-2 (24) EHV-1 (25), EHV-4 (26) EBV (27) human cytomegalovirus (HCMV) (28), herpesvirus saimiri (29), and MDV (30). Multiple alignments of 10 herpesvirus gBs (Fig. 4) have high- lighted several characteristics of a conserved se- quence. The common structural features of the gB-like proteins shown in Fig. 4 are (i) the conservation of 10 cysteine (C) residues which were perfectly aligned in gB of all 10 viruses. This accounts for all cysteines of the ILTV protein except for the two which occur in sig- nal sequence. This observation indicates that the pro- teins are conserved in their secondary and tertiary structures since C-C disulfide bonds are important de- terminants of the tertiary structure of the protein. (ii) Six sites of prolines occur at conserved positions (Fig. 4). (iii) The triple hydrophobic transmembrane regions were found in similar positions and consisted of three distinct peaks of hydrophobicity (positions 851 to 918 in Fig. 4). This structure is believed to enable the pro- tein to traverse the membrane three times (27). (iv) Some of the putative N-linked glycosylation sites exist in similar positions but are not strictly conserved (at positions 184, 298, 457, 486, 652, and 793 in Fig. 4). The motif CYSRP at positions 702-706 which was noted by Ross et al. (30) to be conserved in mammalian herpesviruses and in MDV has the sequence CYTRS in ILTV.

Taken togetherthe data confirmed the overall similar- ity in the primary, secondary, and tertiary structures of the proteins. These data are consistent with the notion that gB is multifunctional and essential for viral replica- tion. It is also likely that these proteins perform similar

Page 5: Nucleotide sequence of the gene encoding infectious laryngotracheitis virus glycoprotein B

408 SHORT COMMUNICATIONS

I LTV

HSV BHV-2

PRV

vzv

EHV- 1

HVS

HDV

HCHV

EBV

I LTV

HSV BHV-2

PRV

vzv

EHV- 1

HVS

MIS4

HCMV

EBV

ILTV

HSV

BHV-2 PRV

vzv

EHV- 1

HVS

MDV

HCHV

EBV

I LTV

HSV BHV-2

PRV

vzv

EHV- 1

HVS

HDV

HCMV

EBV

ILTV

HSV BHV-2

PRV

vzv

EHV- 1 HVS

MDV

HCMV

EBV

1 120 ~-------------------LKMLICVCVAILIPSTLS-----QDSHGIGUNN~HDTASMOVGKISF--------------------- ---------------------------SE

MRQCAPARGRRUFWV--------ALLCLTLGVLVASAAP---SSPGTPGVA--------------------MTaMNGGPA-----TPAPP-AP~PPT~PKPKKNRKPKPPKPPRP

H-----AISRRSLHA-----------IILTVLLLAATAAP---SPSGSRSRSRRKSERPSTNRGRDNNSIRGGVA~TPESSPLPALDLTP~PPHEKEEPDTLAPRASRDAPGTPKVP~P

MPAGG--------GLURGPRGHRPGHHG--------------GAGLGR---LUPAPHH~RGAVALALLLLALAAAPPCGAAAV-TRMSA----SPTPGTGATPNDVSAEASLEEIE ~‘-------------------------------------------------------------------FVTAVVSVS~SSF~ESL~VE~T~S--------------EO,TRSAHLGOGD

MSSGCRSVGGSTUGNWRGDGGDLRPRRVLSPVCSAPMGSUIGSQLGNVGNLLATPHPLGKPASSRVGTIVLACLLLFGSCVVRAVPTTPSPP----TSTPTSMSTHSHGT~PTLL--- H---------------------------------------------------------------Vp”KHLLL,,LSFSTAC----------- --------------------------GQ HH------------YFR-----RNC,FFL,V,LyGT”S~--------------------------------------------------------------------------------

“---------------------------------------------------------------EsR,UCLWCV”LC,VCLGAAVSSSSTSHATSSTH”-GSHTSRTTSA~TRSVyS~H

M---------------------------------------------------------------TRRRVLSWVLLAALAC----------- ------RL-GAQTP-----------EQP *

121 . . 240 AIGSCAPKEPPI-------------------RNRIFACSSPT~SVARLA9PRHCHRHADST-~lEGIAWFK~NlAPYVF~LVYKHITTVTT---UALFSRP~ITNEYVTRVPIDY A-----CDYATVMGHATLREHLRDIKAEIITDANFYVCPPPT~TVV9FEQPRRCPTRPEG~-NYTEGIAWFKENIAPYKF~TMYYKOVTVS~V---UFGHRYSOFNGIFEDRAPVPF

GVTPEPSGMSEPADPAELRADLRGLKGSSDDPNFYVCPPPT~TVVRLEEPRPCPELPKGL-NFTEGIAVTFKENLAPYKFKATMYYKAVTVASV---USGYSYNPFNNIFEDRAPIPF

AFSPGPSEAPDGEYGOLOARTAVRAAA--TERDRFYVCPPPSGSTVVRLEPEPACPEYSQGR-NFTEGIAVLFKENIAPHKF~HlYYKNVIVTTV---USGSTYMITNRFTDRVPVPV

-----------------EIREAIHKSaDAETKPTFYVCPPPTGSTIVRLEPTRTCPDYHLGK-NFTEGIAWYKENIMYKF~TVYYKDVIVSTA---UAGSSYT~ITNRYADRVPIPV

-----PTETPDP------LRLAVRESGILAEDGDFYTCPPPTGSTVVRIEPPRTCPKFDLGR-NFTEGIAVIFKENIAPYKFRANWYKOIWTRV---UKGYSHTSLSDRYNDRVPVSV

TTPTTAVEKNWTQAIYPEY-------------FKYRVCSASTTGELFRFDLDRTCPSTED-KV-HKEGILLVYKKNIVPYIFKVRRYKKITTSVRIFNGUTREG-VAITNKUELSRAVPK

------------STQNYTSREWSSVQLSEEESTFYLCPPPVGSTVIRLEPPRKCPEPR~T-EUGEGIAILFKENI~YKFKVTLYYKNII~TTT---UTGTTYRQITNRYTDRTPVSI

VTSSEAVSHRANETIYNTTLKYGDWGVYTTKYPYRVCSMA~GTDLIRFERNIICTSMKPINEDLDEGIMWYKRNIVAHTFKVRVYPKVLTFRRSYA--YIYT-TYLLGSNTEYVAPPM

APPATTVPPTATRP--PTS-------------FPFRVCELSSHGDLFRFSSDI~CPSFGT-RENHTEGLLMVFKDNIIPYSFKVRSYTKIVTNILIYNG~ADS-V--TNRHEEKFS~S

* . * . . . . . . **. . .* *. . . *.. * * .

241 . . f 360 HEIV-RIDRSGECSSKATYHKNFMFFEAYDNDE-AEKKLPLVPSLLRSTVSKAFHTTN--FTKRHaTLG----YR-TSTSVDCWEYLQARSVYPYDYFG~T~TVEISPFYT-KNTTG

EEVIDKINAKGVCRSTAKYVRNNLETTAFHRDD-HETDMELKPANMTRTSRGUHTTDLKYNP~VEAF----HRY-GTTVNCIVEEVDARSVYPYDEFVLATGDFVYNSPFYGYREG-S EEIVDRIHGRWlCLSTAKYVRNNLETTAFHNDA-DEHEMKLVPAESAPGLHRGUHTTRLKNNPTGSAUI----HRH-GTTVDCIVDEVEAKSSYPYNEFVLATWFVYASPFFGYRDG-S

QEITDVIDRRGKCVSKAEYVRNNHKVTAFDRDE-NPVEVTYTKIGAAGF----YH-TGTSVNCIVEEVEARSVYPYDSFALSTGDIVYMSPFYGLREG-A

SEITDTIDKFGKCSSKATYVRNNHKVEAFNEDK-NPPDGTPGT----YR-TGTSVNCIIEEVEARSIFPYDSFGLSTGDIIYMSPFFGLRDG-A

EEIFGLIDSKGKCSSKAEYLRDNIMHHAYHDOE-DEVELDLVPSKFATPGARA~TT~TTSYVG~PU----RHYTSTSVNCIVEEVEARSVYPYOSFALSTGDIVYASPFYGLRM-A

YEI-DIMDKTYQCHNCMQIEVNGMLNSYYDRDG-NNKTVDLKP~GLTGAITRYIS~P~FADPG--UL-UGTYR-TRTTVNCEI~MFARSADPYTYFVTALGDTVEVSPFC--D~NS

EEITDLIDGKGRCSSKARYLRNNVYVEAFDRDA-GEKQVLLKPSKFNTPESRAUHTTNETYTVWGSPUI----YR-TGTSVNCIVEEMDARSVFPYSYFAMANGDIANI~FYGLSPPEA

UEI-HHINKFAPCYSSYSRVIGGTVFVAYHRDSrEYWTMP9UHSRGSTUL---- YR-ETCNLNCMLTITTARSKYPYHFFATSTGDWYISPFY--NGTNR

YET-DPMDTIYPCYNAVKMTKDGLTRVYVDRDG-VNITVNLKPTGGLANGVRRYAS~TELYDAPG--ULIU-TYR-TRTTVNCLITDnnAKSYSPFDFFVTTTG~TVEMSPFY--DGKNK

l . . . * . . * .*. * . . *** l . * . l . *** . . . . .

361 . . 480

PRRHSVYRDYRFLEIANY-PVRDLETG-~IRPPKKR-NFLTDEPFTIGUDAMEEKESVCTLSKUIEVPEAVRVSYKNS-YHFSLKDnTnTFSSGKPPFYlSRLHLAECVPTIASEAIDGI

HTEHTSYMDRFK9VDGF-YARDLTTKARATAPTTR-NLLTTPKFTVA~~PKRPSVCTMT~E~EMLRSEY-GGSFRFSSDAISTTFTTNLTEYPLSR~L~CIGKDARDAMDRI HSEHNAYMORFKQVDGF-FPRDFGTGRRHGSPVTY-NLLTTPMFTVGUNUAPKRPSVCTMT~REVPEMLRAEY-GSSFRFTSNALSATFTTNLT~YSLSR~LGDCVGKEAREAIDRl

HGEHIGYAPGRFPPVEHY-YPIOLOSRLRASESVTR-NFLRTPHFTVAWDVAPKTRRVCSLAKUREAEEMTRDETROGSFRFTSRAL~SFVSDVTQLDL~RVHL~CVLREASEAIDAI

YREHSNYAMDRFHPFEGY-RPRDLDTR-ALLEPMR-NFLVTPHLTVGUNWKPKRTEVCSLVKUREVEDWRDEYAH-NFRFTMKTLSTTFISETNEFNLNQIHLS~CVKEEARAIINRI

RIEHNSYAPERFRQVEGY-RPRDLDSKLQAEEPVTK-NFITTPHVTVSU~EKKVEACTLTKUKEVDELVRDEFR-GSYRFTIRSISSYFISNTT~FKLESAPLTECVSKEAKEAIDSI

CP--WATDVLSVPIDLNHTW-DYGNRATSPPHKKRI-FAHTLDYSVSUEAVNKSASVCSMVFUKSFPRAIQTE-HDLTYHFIANEITAGFSTVKEPLANFTSDY-NCLMTHINTTLEOK

AAEPMGYPPDNFKPLDSY-FSMDLDKRRKASLPVKR-NFLITSHFTVGUDWAPKTTRVCSMTKUKEVTEMLRATV-NGRYRFNARELSATFISNTTEFDPNRIILGPCIKREAEMIEPI

llASYFGENADKFFIFPNYTIVSDFGRPNMPETHRLVAFLERADSVIS~I~DEK~CQLTFUEASERTIRSE-AEDSYHFSSAKMTATFLSKK~EV~~SAL-DCVROEAINKL~~I

ET--FHERADSFHVRTNYKIV-DYDNRGTNPPCERRA-FLDKGTYTLSUK-LENRTAYCPL9HU~TFOSTIATE-TGKSIHFVTOEGTSSFVTNT~GIELPDAF-KCIEE~VN~MHEK

l . * . . . . *. *. .* .*. .*. . .

481 600

FARKYSSTHVRSGD-IEYYLGSGGFLIAFPKLMSHGLAEMYLEEAQRP)(HL---------------PRGRERRQMG---------------------RRTASLQSGP~GDRIT------ FARRYIUTHIKVGP-PQYYLANGGFLIAYaPLLSNTLAELYVREHLREQS---------------------RKPPNPTPPPPGASA~~ERI---------------------------

YLEKYNNTHLRVGS-VPYYLATGGFLIAYPPLLSNNLADLYVKELNREaA------- --------------LKPEERK----- LIIATTDGKV,---------------------------

YRRRYNSTHVLAGDRPEVYLARGGFVVAFRPLISNELAPRRARRSPGPAGTPEPPAVNGTGH------------------------------L

YTTRYNSSHVRTGD-IPTYLARGGFVVVFPPLLSNSLARLYLQELVRENTN-------HSPaKHPTRNTRSRRSV-------PVELRANRT----------------------------- YKKPYESTHVFSCD-VEYYLARGGFLIAFRPMLSNELARLYLNELVRSNRTYDLKNLLNPNANNNNNTTRRRRSLLSVPEP~PT~DGVHRE~ILHRLHKRAVEATAGTDSSYYTAKPLEL

IARVNNT-HTPNGTA-EYYGTEGGHILVUQPLIAI---------- -----------------ELEEA~LEATTSpVTpSApTSSS---------- RSKR-----AIRSIRDVSAGSENNV

FRTKYNDSHVKVG-HVPYFLALGGFIVAYQPVLSKSLAHHAP---NRKITLDDTTA

FNTSYNP-TYEKYGNVSVFETSGGLWF~GIKPKSLVEL---------------------ERLANRSSLNITH---------------------RTRRST~NNTTHLSSMESVHNLVY YEAVPDR-YTKGPEAITYFITSGGLLLAULPLTPRSLATV---------------------KNLTELTTPTSSPPSSPSPPAPSMRGSTPATPVPPTAPGKSLGT

..** . . . . .

Page 6: Nucleotide sequence of the gene encoding infectious laryngotracheitis virus glycoprotein B

[LTV

HSV

BHV-2

PRV vzv

EHV-1

HVS

MDV

HCNV

EBV

ILTV

HSV BHV-2

PRV

vzv

EHV- 1

HVS MDV

HCMV

EBV

I LTV

HSV

BHV-2

PRV

vzv EHV-1

HVS

MDV

HCMV

EBV

I LTV

HSV BHV-2

PRV

vzv

EHV- 1 HVS

MDV

HCMV

EBV

SHORT COMMUNICATIONS 409

601 . . . . . 720

--lHSSAlFAIILOFAYDKlPAHVYELlGNLLEAVCELONROLl~HENKKLNPNSLMlSLFGOPVSARLL~~VAVSKClE~p~EN-IRCW)~RVP~plNCYlRPVLlFRVSSSPESP

-KlTSSIEFARLOFTYNHIORHVWDnLCRVAIAVCELONHELlLUNEARKLNPNA~ASAlVGRRVSARML~~VSlC~v~N-V~vGN~ISsRP~CYSRPLVSF~--RYEDOC -TTlSSVEFARLOFTYNHlGKHVNENFGR~VSUCELONOELlL~EAKKl~~ASVlLHRRVSACMLWVLA~SlCVAVPAEN-VI~NSNRIPSKPGlCYSRPLLSF---KH~GE

RllTGSAEFARLOFTYDHlPH~DNLGRl~UCELONKDRlLUSENSRL~VAlMLGORVSARML~~lSRCVEVRGG--WVONSnRVPGERGTCYSRPLVTF----EHNGT lTTTSSVEFAnLOFTYDHlOEHVNENLARlSSSVCOLONRERALUSGLFP~~~STILDORV~RlL~V~SVSNCPELG~TRllLQNSllRVSGSllRCYSRPLlS~V---SLNGS

lKTTSSIEFAllLOFAYDHIOSH~ENLSRlAlA~PLONKERPLUNEMVK~TPSAlVSATLDERVMRVL~VfA~THCAKIEGN--VYLONUIR-SEY)SNlCYSRPP~FTTlKNANNR

FLS----O---lOYAYDKLRPSlNNVLEELAIT~REOVROTMWElAKl~S~TAIYGKPVSR~L~VISVTEC~N~-OSSVSIHKSLKlENND-ICYSRPPVTFKFV------

lKSlSSVOFAnLOFLYDHIOlHlNDMFSRIATAYCELONRELVLUHEG~KI~TASATLGRRVMKML~VMVSSCTAIDAES-VlLON~RV~lSlNTCYSRPLVLFS---YGENO

------AO---LOFTYDTLRCYINRALAOlAEAUC~ORRTLEVFKELSKIN~lLSAIYNKPlMRFM~VLGLASCVllN-~lS~LRDMNVKESPGRCYSRPWlFNFA------ - - LNNPAlVO---IOFAYDSLRROINRHL~LARAUCLEPKRONMVLRELTKI~T~SSIYG~VMKRL~VISVSOCVPVN-OATVlLRKSNRVPGSETNCYSRPLVSFSFl------

.*. . . . c .* . . . .** *. . . ..*.. . . . l +. ..: . . . . . . **.- . .

721 . 640 FSA~ENHNLGILGOLGEHNEILO~NLlEPCM~NHRRYFLLGENYLLYEDYTF~OV~IEEVSTFINL~ILEDLDFVPVEVIlREELRDTGTLNYDDWRYONIYNKRFRDID

----------PLVEGOLGENNELRLlRDAIEPClVGHRRYFTFGGGY~FEEYAYSHOLSR~llTVSTF~DL~LEDHEF~LEWTRHEl~SGLLDYlEVORRNOLHDLRF~~D

----------ELNEGOLCENNEIRLDRDAVEPCSVGHKRYFLF~GY~FEEYTYSHOLSR~lTAVSTF~DL~LEDHEFVPLEWlROE~~SGLLDYAEVORRNOL~LRF~~D

----------GVIEGOLU)DNELLISRDLIEPCTGNHRRYFKLGSGYVYYEDYNY~H~VPET--ISTRVlL~LLEDREFLPLEVTTREELADTCLLDYSElORRNOLHALKFYDfD

----------GlVEGPLGlDNELINSRDLLEPCVANHKRYFLFGHHY~YEDYRY~EIAVHDV~lSTY~L~LL~REFNPLO~TRDELRDTGLLDYSEIORRN~HSLRFYDID

----------GSIEGOLCEENEIFTERKLlEPUILlPKRYFKFGKEY~YENYTF~~PPTE~EV~STY~L~LLEDREFLPLEWlRAELEDTGLLDYSElORRNOLHALRFYDID

-------~LFKWLGARNEILLSESLVENCHONAETFFTAKNElYHFKNYVH~TLPVN~lLDTFLAL~FIEN~DF~VELYSSGERKLANVFDLETNFREYNYYAOS~SGLR ----------CNIOGOLGENNELLPTLEAVEPCSANHRRYFLFGSGYALFENYNF~~~~OIASlFVEL~LLEDRElLPLSWlKEELRDVGVLDYAEVARRNOLHELKFYD~N

-------~VOYCOLGEDNEILLGNHRlEECOLPSLKIFlAGNSAYEYVDYLFKRMIDLSSISTVDSWlALDlDPLENTDFRVLELYSOKELRSSNVFDLEEIMREFNSYKORV----

-------Y)TKTYEGOLGTDNEIFLTKKnlEVCOATSOYYFOSGNE~HWNDYHHFKTIELDGIATLOTFlSL~lENIDFASLELYSRDEORASNVFDLEGIFREYNF~ONIAGLR l **** * t . . l l l . . l * . . . . . * . l l . . . . . . . . . . . . . . I ‘. .

841 I 1 - *I I s s 960 lVIR---GDRGDAIFRAIADFFGNTLGEVGI(ALCTVVIITAAMSIILCLLAFKYVIINLKSNPVOVLFP---------GAVPPACTPPRPSRRY

TVIH---ADANMI(FACLGAFF-EWIGDLGRAVGKWWClVGGWSAVSGVSSFNSNPF~LAVGLLVLAGL~FFAFRY~RLOSNPM~LYP---------LlTKELK~NPDAS

TVIK---ADPNMIFAGLHCFF-EGLCDVtRAVGRWLGWGGWATVSGVSSFLSNPFGALA~GLLVLGGLVMFFAFRY~RLORNPN~LYP---------LlTKDLKH-P--SECG

RWK---VDHNWLLRGIANFF-OGLCDVWUVCKWLCATCAVISAVG~VSFLSNPFGALA~GLLVLAGLVMFLAYRHlSRLRRNPN~LYP---------VTTKTLKE--------

L(WO---YDSGTAII(PWVIOFF-OGLGTAGOAVGHWLGAT~LLSTVHGFlTFLSNPF~LAVGLLVLAGLVMFFAYRYVLKLKlS~~LYP---------LTTKGLKOLPE~PF SWN---VDNTAVIIRGSPAFS-RAVVKVGRPVERS-FSARGAWSTVSGIACFLNNPFGGLA~GLLVIAGLVMFFAYRY~lRSNPM~LYP---------IlTYALKN--I(AKTSY

KDFDNSORNNRDRlIWFSEILA-DLGSICKVIVRVASCAFSLFGGlVTGILNF~KNPLG~FTFLLlGAVIlLVlLLVRRlN~APlRMIYP-------------------------

KVIE---VDTNYAFHNGLAELF-NOlCPVCQAlGKVWGAACAlVPFGALA~GLIIIAGLVMFLAYRYVNKLKSNPM~LYP---------NTTEVLYAMTRELHG

KYVEDKWDPLPPYLKGLDDLNS-GLCMGKAVGVAItAVGGAVASWEGVAlFLKNPFCAFTIILVAIAWIITYLIYlRORRLClOPLONLFPYLVSADGTTVTSGST~TSLMPPS

WDLDNAVSNCRNOFVDCLGEL~-SLGSVGOSIlNLVSlVGGLFSSLVSGFISFF~PFGGNLlLVLVAGWlLVISLTRRTRONSOOPV~LYP------------------------- L I I I I I

. l l . . . . . . . l ***et . . . . . . . . . . . . .

. . . .

FIG. 4. Homology of ILTV “gB” with those of other herpesviruses. Multiple alignment of the amino acid sequences predrcted for the “gB”-like proteins of 10 different herpesviruses. Sequences were aligned using the CLUSTAL program (39). Asterisks indicate identical amino acids and dots represent conserved amino acid substitutions. Putative N-linked glycosylation sites are shown in bold and underlined. The signal se- quences are double underlined and the triple transmembrane domains are boxed. Conserved cysteine and proline residues are shown bym and =, respectively.

functions, namely viral entry and cell fusion (31). lines constitutively expressing the gB homologue (gl) of Whether the product of ILTV gB homologue shares BHV-1 (32). these functions remains to be seen. There is evidence Finally, of special interest is the importance of ILlV that some of the proteins are functionally equivalent. gB in eliciting protective immunity in infected chickens. The gll-negative PRV mutant was able to grow on cell There is good evidence that gB, as well as other viral

Page 7: Nucleotide sequence of the gene encoding infectious laryngotracheitis virus glycoprotein B

410 SHORT COMMUNICATIONS

glycoproteins, plays an important role in the host im- mune response. HSV gB has been demonstrated, ei- ther by temperature-sensitive mutant studies (33) or as an immunopurified protein (34, to invoke circulating antibody and cell-mediated responses which pro- tected mice against lethal challenge with the virus. HSV gB expressed by the recombinant vaccinia vector (35) or by the recombinant adenovirus vector (36) pro- tected mice against lethal challenge. Vaccination of rabbits with a recombinant vaccinia virus expressing the HCMV gB homologue produced antiserum which could neutralize HCMV infectivity in vitro (28). Injection of the purified gNgB glycoprotein complex from HCMV induced both humoral and cellular immune responses in humans (37). A subunit vaccine containing essen- tially only glycoproteins of the 205K complex protected 100% of chickens against clinical disease and also against viral replication (J. J. York and K. J. Fahey, per- sonal communication). This suggests that gB could prove to be a major protective immunogen of ILlV and therefore is a prime candidate for inclusion in a subunit or recombinant vaccine.

12. 13.

14.

15.

16. 17.

18.

19.

20.

ACKNOWLEDGMENTS

21.

22.

23.

24.

25.

The authors thank Steven Rhodes for his technical assistance, Julie Harris for preparing CK cells, Peter McWaters for providing the monoclonal antibody supernates, and Sandra McAuliffe for prepara- tion of the manuscript. This work was supported by Arthur Webster Pty Ltd, Sydney, Australia.

26.

27.

28.

REFERENCES

1. HANSON, L. E., In “Diseases of Poultry” (M. S. Hofstad, H. J. Barnes, B. W. Calnek, W. M. Reid, and H. W. Yoder Jr., Eds.), 8th ed., pp. 444-451. Iowa State Univ. Press, Ames, 1984.

2. LEIB, D. A., BRADBURY, J. M., GASKELL, R. M., HUGHES, C. S., and JONES, R. C., Avian Dis. 30, 835-837 (1986).

3. JOHNSON, M. A., PRIDEAUX, C. T., KONGSUWAN, K., SHEPPARD, M., and FAHEY, K. J., Arch. Viral., in press.

4. GRIFFIN, A. M., 1. Gen. Vifol. 70, 3085-3089 (1989). 5. GRIFFIN, A. M., and BOURSNELL, M. E. G., J. Gen. Vifol. 71,841-

850 (1990).

29.

30.

31.

6. SPEAR, P. G., In “The Herpesviruses” (B. Roizman, Ed.), Vol. 3, pp. 315-356. Plenum, New York, 1985.

7. YORK, J. J., SONZA, S., and FAHEY, K. J., Virology 161, 340-347 (1987).

32.

33.

34.

35. 8. YORK, J. J., and FAHEY, K. J., Avian Pafhol. 17, 173-182 (1988). 9. WHALLEY, J. M., ROBERTSON, G. R., and DAVISION, A. J., J. Gen.

Viral. 57, 307-323 (1981). 36. 70. MANIATIS, T., FRITSCH, E. F., and SAMBROOK, J., “A Laboratory

Manual.” Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 1982.

37.

7 7. LIPMAN, D. J., and PEARSON, W. R., Science Washington, D.C.) 38. 227, 1435-1441 (1985). 39.

KOZAK, M., NUCLEIC ACIDS RES. 12, 857-872 (1984). CORDEN, J., WASYLYK, B., BUCKWALDER, A., SASSONE-CORSI, P.,

KEDINGER, C., and CHAMBON, P,, Science (Washington, D.C.) 209, 1406-1414 (1980).

BRIGGS, M. R., KADONAGA, J. T., BELL, S. P.. and TJIAN, R., Science (Washington, D.C.) 234, 47-52 (1986).

PLUMMER, G., GOODHEART, C. R., HENSON, D., and BOWLING, C. P., virology 39, 134-l 37 (1969).

VON HEIJNE, G., Nucleic Acids Res. 14, 4683-4690 (1986). BZIK, D. J., Fox, B. A., DELUCA, N. A., and PERSON, S., Vifo/ogy

133, 301-314 (1984). PELLET, P. E., KOUSOUUS, K. B., PEREIRA, L., and ROIZMAN. B.,/.

Viral. 53, 243-253 (1985). BZIK, D. J., DEBROY, C., Fox, B.A., PEDERSON, N. E., and PERSON,

S., Virology 155, 322-333 (1986). ROBBINS, A. K., DORNEY, D. J., WATHEN, M. W., WHEALY, M. E.,

GOLD, C., WATSON, R. J., HOLLAND, L. E., WEED, S. D., LEVINE, M., GLORIOSA, J. C., and ENQUIST, L. W., J. Viral. 61, 2691- 2701 (1987).

KELLER, P. M., DAVISON, A. J., LOWE, R. S., BENNET, C. D., and ELLIS, R. W., virology 152, 181-191 (1986).

MISRA, V., NELSON, R., and SMITH, M., Virology 166, 542-549 (1988).

WHITBECK, J. C., BELLO, L. J., and LAWRENCE, W. C., J. Viral. 62, 3319-3327 (1988).

HAMMERSCHMIDT, W., CONKATHS, F., MANKERTZ, J., BUHK, H.-J., PAULI, G., and LUDWIG, H., Vifology 165, 406-418 (1988).

WHALLEY, J. M., ROBERTSON; G. R., SCOTT, N. A., HUDSON, G. C., BELL, C. W., and WOODVI/ORTH, L. M., J. Gen. Virol. 70, 383- 394 (1989).

RIGGIO, M. P., CULLINANE, A. A., and ONIONS, D. E., J. Viral. 63, 1123-l 133 (1989).

PELLET, P. E., BIGGIN, M: D., BARRELL, B., and ROIZMAN, B., J. Viral. 56, 807-813 (1985).

CRANAGE, M. P., KOUZARI~ES, T., BANKIER, A. T., SATCHWELL, S., WESTON, K., TOMLINSON, P., BARRELL, B., HART, H., BELL, S. E., MINSON, A. C., and SMITH, G. L., EMBO 1. 5. 3057-3063 (1986).

ALBRECHT, J.-C., and FL~CKENSTEIN, B., virology 174, 533-542 (1990).

Ross, L. J. N., SANDERSON, M., Scorr, S. D., BINNS, M. M., DOEL, T., and MILNE, B., J. Gen. Viral. 70, 1789-1804 (1989).

ROIZMAN, B., and SEARS, A. E., In “Virology” (B. N. Fields, Ed.), 2nd ed., Vol. 2, pp. 1795-1841. Raven Press, New York, 1990.

RAUH, I., WEILAND, F., FEHLER, F., KEIL, G. M., and METTENLEITER, T. C.,J. Viral. 65, 621-631 (1991).

GLORIOSO, J., SCHR~DER, C. H., KUMEL, G., SZCZESIUL, h., and LEVINE, M., J. !&o/.,50, 805-812 (1984).

CHAN, W. L., LUKIG, M. L., and LIEW, F. Y., J. Exp. Med. 162, 1304-l 318 (1985).

CANTIN, E. M., EBERLE, R., BALDICK. J. L., Moss, B., WILLEY, D. E., NOTKINS, A. L., and OPENSHAW, H., Proc. Nat/. Acad. Sci. USA 84,5908-5912 (1987).

MCDERMO~. M. R., GRAHAM, F. L., HANKE, E. T., and JOHNSON, D. C., Virology 169, 244-247 (1989).

GONCZOL, E., IANACONE, J., Ho, W. Z., STARR, S., MEIGNIER, B., and PLOTKIN, S., Vaccine 8, 130-l 36 (1990).

KYTE, J., and DOOLI~TLE, R. F., J. Mol. Biol. 157, 105-l 32 (1984). HIGGINS, D. G., and SHARP, P. M., Gene 73, 237-244 (1988).