116
Nuclear Magnetic Resonance Parameters P. K. Madhu Department of Chemical Sciences Tata Institute of Fundamental Research Homi Bhabha Road Colaba Mumbai 400 005, India

Nuclear Magnetic Resonance Parametersiupab/madhu1.pdfNuclear Magnetic Resonance Parameters P. K. Madhu Department of Chemical Sciences Tata Institute of Fundamental Research Homi Bhabha

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Nuclear Magnetic Resonance Parametersiupab/madhu1.pdfNuclear Magnetic Resonance Parameters P. K. Madhu Department of Chemical Sciences Tata Institute of Fundamental Research Homi Bhabha

Nuclear Magnetic Resonance Parameters

P. K. MadhuDepartment of Chemical Sciences

Tata Institute of Fundamental ResearchHomi Bhabha Road

ColabaMumbai 400 005, India

Page 2: Nuclear Magnetic Resonance Parametersiupab/madhu1.pdfNuclear Magnetic Resonance Parameters P. K. Madhu Department of Chemical Sciences Tata Institute of Fundamental Research Homi Bhabha

Understanding the nuclear spin systemSpin choreography

Characterisation of various materials

Structure of compounds, biomoleculesProteins, nucleic acids……….

Magnetic resonance imaging, MRI

NMR: What are the Potentials?

Page 3: Nuclear Magnetic Resonance Parametersiupab/madhu1.pdfNuclear Magnetic Resonance Parameters P. K. Madhu Department of Chemical Sciences Tata Institute of Fundamental Research Homi Bhabha

• Structure elucidation• Natural product chemistry• Synthetic organic chemistry

• Study of dynamic processes• Reaction kinetics• Study of equilibrium (chemical or structural)

• Structure determination of macromolecules• Proteins• Nucleotides, protein/DNA complexes• Polysaccharides

• Drug Design• Structure-Activity Relationship (SAR) by NMR

• Medicine• Magnetic Resonance Imaging• Metabonomics: combined use of spectroscopy & multivariate statistical approaches

to studies of biofluids, cells & tissues. Gives a unique metabolic fingerprint for eachcomplex biological mixture, sensitive to change

NMR: What are the Potentials?

Page 4: Nuclear Magnetic Resonance Parametersiupab/madhu1.pdfNuclear Magnetic Resonance Parameters P. K. Madhu Department of Chemical Sciences Tata Institute of Fundamental Research Homi Bhabha

Magnetic Resonance

Nuclear spins areour spies to probestructure

Superconducting magnetsgive us the medium andmechanism to manipulatethe spins

Talking to the spins ina language that they understand, which meanswe have to resonate withthem

Nuclear

NMR

Page 5: Nuclear Magnetic Resonance Parametersiupab/madhu1.pdfNuclear Magnetic Resonance Parameters P. K. Madhu Department of Chemical Sciences Tata Institute of Fundamental Research Homi Bhabha

Nuclear Spins

ElectronProtonNeutron

Nuclear spin is a fundamental property just like charge and mass

Deuterium atom:1 electron, 1 proton, and 1 neutron

Electronic spin = 1/2Nuclear spin = 1

NMR uses the nuclear properties and nuclear spins to eavesdrop on others

Paired nuclear spins are or of no use to work as nuclear spies

NMR needs unpaired, socially non-committed, nuclear spins to act as spies

Helium atomNet nuclear spin = 0NMR non-observabe

Page 6: Nuclear Magnetic Resonance Parametersiupab/madhu1.pdfNuclear Magnetic Resonance Parameters P. K. Madhu Department of Chemical Sciences Tata Institute of Fundamental Research Homi Bhabha

H1

Li2

Be3

Na11

Mg12

K19

Ca20

Rb37

Sr38

Cs55

Ba56

Fr87

Ra88

Sc21

Ti22

Y39

Zr40

La57

Hf72

Ac89

V23

Cr24

Mn25

Fe26

Co27

Ni28

Cu29

Zn30

Ga31

Ge32

As33

Se34

Br35

Kr36

Nb41

Ta73

Mo42

W74

Tc43

Re75

Ru44

Os76

Rh45

Ir77

Pd46

Pt78

Ag47

Au79

Cd48

Hg80

In49

C6

Si14

B5

Al13

N7

P15

O8

S16

F9

Cl17

Ar18

Ne10

He2

Sn50

Sb51

Te52

I53

Xe54

Rn86

At85

Po84

Bi83

Pb82

Tl81

Xn element with one I=1/2 isotope

Xn element with two (three) I=1/2 isotopes

NMR Periodic Table: Nuclei with Spins-1/2

Common nuclei probed are 13C, 15N, 29Si, and 31P

Page 7: Nuclear Magnetic Resonance Parametersiupab/madhu1.pdfNuclear Magnetic Resonance Parameters P. K. Madhu Department of Chemical Sciences Tata Institute of Fundamental Research Homi Bhabha

H1

Li2

Be3

Na11

Mg12

K19

Ca20

Rb37

Sr38

Cs55

Ba56

Fr87

Ra88

Sc21

Ti22

Y39

Zr40

La57

Hf72

Ac89

V23

Cr24

Mn25

Fe26

Co27

Ni28

Cu29

Zn30

Ga31

Ge32

As33

Se34

Br35

Kr36

Nb41

Ta73

Mo42

W74

Tc43

Re75

Ru44

Os76

Rh45

Ir77

Pd46

Pt78

Ag47

Au79

Cd48

Hg80

In49

C6

Si14

B5

Al13

N7

P15

O8

S16

F9

Cl17

Ar18

Ne10

He2

Sn50

Sb51

Te52

I53

Xe54

Rn86

At85

Po84

Bi83

Pb82

Tl81

Xn

Xn

Xn

I = 3/2 I = 5/2 I = 7/2

Xn

I = 9/2

Xn

5/2 + 7/2 etc.

NMR Periodic Table: Nuclei with Half-Integer Spins>1/2

Many of the nuclei of industrial importance are quadrupolar spin nucleimanifesting in ceramics, glasses, zeolites and catalysts

Page 8: Nuclear Magnetic Resonance Parametersiupab/madhu1.pdfNuclear Magnetic Resonance Parameters P. K. Madhu Department of Chemical Sciences Tata Institute of Fundamental Research Homi Bhabha

Nuclear Spins

Charge

Spin

Nuclear spin

Iμ γ=Gyromagnetic ratio, depends on the nucleus

Magnetic moment Spin quantum number

Page 9: Nuclear Magnetic Resonance Parametersiupab/madhu1.pdfNuclear Magnetic Resonance Parameters P. K. Madhu Department of Chemical Sciences Tata Institute of Fundamental Research Homi Bhabha

A spinning gyroscopein a gravity field A spinning charge

in a magnetic field

Nuclear Spins & Magnetic Field

Page 10: Nuclear Magnetic Resonance Parametersiupab/madhu1.pdfNuclear Magnetic Resonance Parameters P. K. Madhu Department of Chemical Sciences Tata Institute of Fundamental Research Homi Bhabha

Nuclear Spin

Page 11: Nuclear Magnetic Resonance Parametersiupab/madhu1.pdfNuclear Magnetic Resonance Parameters P. K. Madhu Department of Chemical Sciences Tata Institute of Fundamental Research Homi Bhabha

NMR Spies – Inside a Magnetic Field

Page 12: Nuclear Magnetic Resonance Parametersiupab/madhu1.pdfNuclear Magnetic Resonance Parameters P. K. Madhu Department of Chemical Sciences Tata Institute of Fundamental Research Homi Bhabha

NMR Spies – In Action

Page 13: Nuclear Magnetic Resonance Parametersiupab/madhu1.pdfNuclear Magnetic Resonance Parameters P. K. Madhu Department of Chemical Sciences Tata Institute of Fundamental Research Homi Bhabha

NMR Spies – The Tools

How do the spins probe the medium?

Chemical shift anisotropy

Dipole-dipolecouplings

Through-bondcouplings

Quadrupolarcouplings

Page 14: Nuclear Magnetic Resonance Parametersiupab/madhu1.pdfNuclear Magnetic Resonance Parameters P. K. Madhu Department of Chemical Sciences Tata Institute of Fundamental Research Homi Bhabha

Nuclear Spin Interactions

Spin Interactions

External Internal

Zeeman,HZ RF, HRF(t)

CSA,HCS Dipole,HDD Scalar,HJ Quad,HQ

The isotropic parts (manifest in solution-state) are time independentAnisotropic parts cause line broadening

Page 15: Nuclear Magnetic Resonance Parametersiupab/madhu1.pdfNuclear Magnetic Resonance Parameters P. K. Madhu Department of Chemical Sciences Tata Institute of Fundamental Research Homi Bhabha

Internal Nuclear Spin Interactions

Spin Interactions

Chemical shift Spin-spin couplings

Isotropicchemical shift

Chemical shiftanisotropy, CSA

Scalar, J-couplings Dipolar

Heteronuclear Homonuclear

Quadrupolar

Isotropic quad.shift

1st, 2nd order quad. Interaction, anisotropic

Electric Magnetic

Spin ½, 1H, 13C…..Spin>½, 23Na, 17O…..

Page 16: Nuclear Magnetic Resonance Parametersiupab/madhu1.pdfNuclear Magnetic Resonance Parameters P. K. Madhu Department of Chemical Sciences Tata Institute of Fundamental Research Homi Bhabha

NMR: Nuclear Spins, Magnetic Moments, and Resonance

Page 17: Nuclear Magnetic Resonance Parametersiupab/madhu1.pdfNuclear Magnetic Resonance Parameters P. K. Madhu Department of Chemical Sciences Tata Institute of Fundamental Research Homi Bhabha

The Electromagnetic Spectrum

Page 18: Nuclear Magnetic Resonance Parametersiupab/madhu1.pdfNuclear Magnetic Resonance Parameters P. K. Madhu Department of Chemical Sciences Tata Institute of Fundamental Research Homi Bhabha

RF waves in

Nuclear magnetic momentsin the sample

B0, External magnetic field

RF waves out

The frequency of emitted RF waves reveals information about the magnetic environment of atomic nuclei

Page 19: Nuclear Magnetic Resonance Parametersiupab/madhu1.pdfNuclear Magnetic Resonance Parameters P. K. Madhu Department of Chemical Sciences Tata Institute of Fundamental Research Homi Bhabha

Populations and Nuclear Magnetisation

Page 20: Nuclear Magnetic Resonance Parametersiupab/madhu1.pdfNuclear Magnetic Resonance Parameters P. K. Madhu Department of Chemical Sciences Tata Institute of Fundamental Research Homi Bhabha

Nuclear Magnetic Resonance

Page 21: Nuclear Magnetic Resonance Parametersiupab/madhu1.pdfNuclear Magnetic Resonance Parameters P. K. Madhu Department of Chemical Sciences Tata Institute of Fundamental Research Homi Bhabha

Typical 1H NMR Spectrum

CH3-CH2-OH

Page 22: Nuclear Magnetic Resonance Parametersiupab/madhu1.pdfNuclear Magnetic Resonance Parameters P. K. Madhu Department of Chemical Sciences Tata Institute of Fundamental Research Homi Bhabha

Sensitivity of NMR Spectroscopy

Page 23: Nuclear Magnetic Resonance Parametersiupab/madhu1.pdfNuclear Magnetic Resonance Parameters P. K. Madhu Department of Chemical Sciences Tata Institute of Fundamental Research Homi Bhabha

Isotope Net Spin γ / MHz T-1 Abundance %

1H 1/2 42.58 99.982H 1 6.54 0.0153H 1/2 45.41 0.031P 1/2 17.25 100.023Na 3/2 11.27 100.014N 1 3.08 99.6315N 1/2 4.31 0.3713C 1/2 10.71 1.10819F 1/2 40.08 100.0

Sensitivity of NMR Spectroscopy

Relative sensitivity of nuclei depends onGyromagneticGyromagnetic ratio (ratio (γγ))Natural abundance of the isotope Natural abundance of the isotope

Page 24: Nuclear Magnetic Resonance Parametersiupab/madhu1.pdfNuclear Magnetic Resonance Parameters P. K. Madhu Department of Chemical Sciences Tata Institute of Fundamental Research Homi Bhabha

1H NMR spectra of organic compound

8 scans ~12 secs

13C NMR spectra8 scans ~12 secs

13C NMR spectra10,000 scans ~4.2 hours

Sensitivity of NMR Spectroscopy

Page 25: Nuclear Magnetic Resonance Parametersiupab/madhu1.pdfNuclear Magnetic Resonance Parameters P. K. Madhu Department of Chemical Sciences Tata Institute of Fundamental Research Homi Bhabha

Energy Levels: Why Big Magnets Are Needed?

Page 26: Nuclear Magnetic Resonance Parametersiupab/madhu1.pdfNuclear Magnetic Resonance Parameters P. K. Madhu Department of Chemical Sciences Tata Institute of Fundamental Research Homi Bhabha

30 MHz

7 kGauss

500 MHz117 kGauss

Do We Need Bigger/Higher Magnets?

Highest superconducting magnet currently available is 23 T yieldingproton Larmor frequency of 1000 MHz

Page 27: Nuclear Magnetic Resonance Parametersiupab/madhu1.pdfNuclear Magnetic Resonance Parameters P. K. Madhu Department of Chemical Sciences Tata Institute of Fundamental Research Homi Bhabha

Chemical Shift- Usefulness of NMR

CH3CH2OH

NMR used for structural characterisationShould be able to distinguish functional groups unambiguously

Page 28: Nuclear Magnetic Resonance Parametersiupab/madhu1.pdfNuclear Magnetic Resonance Parameters P. K. Madhu Department of Chemical Sciences Tata Institute of Fundamental Research Homi Bhabha

Chemical Shift- Usefulness of NMR

Hb

Hc

C

Ha

Cl

νa νb νc

frequency

Page 29: Nuclear Magnetic Resonance Parametersiupab/madhu1.pdfNuclear Magnetic Resonance Parameters P. K. Madhu Department of Chemical Sciences Tata Institute of Fundamental Research Homi Bhabha

Pioneer of NMR in India

Prof. Dharmatti was a student of Felix Bloch in Stanford and discoveredchemical-shift phenomenon

Page 30: Nuclear Magnetic Resonance Parametersiupab/madhu1.pdfNuclear Magnetic Resonance Parameters P. K. Madhu Department of Chemical Sciences Tata Institute of Fundamental Research Homi Bhabha

Fourier-Transform NMR

Page 31: Nuclear Magnetic Resonance Parametersiupab/madhu1.pdfNuclear Magnetic Resonance Parameters P. K. Madhu Department of Chemical Sciences Tata Institute of Fundamental Research Homi Bhabha

Typical Experiment in NMR: RF Pulse

z

x

y

Mo

z

x

y

z

x

yMo

RF off

RF on

RF off

Effect of a 90o x pulse

Page 32: Nuclear Magnetic Resonance Parametersiupab/madhu1.pdfNuclear Magnetic Resonance Parameters P. K. Madhu Department of Chemical Sciences Tata Institute of Fundamental Research Homi Bhabha

z

x

yMo

z

x

y

Moω

z

x

y

Time

x

y

RF receivers pick up the signals I

After the Pulse: Nuclear Spin Evolution

The spins precess in the xy plane and relax to the equilibrium value, free induction decay

Page 33: Nuclear Magnetic Resonance Parametersiupab/madhu1.pdfNuclear Magnetic Resonance Parameters P. K. Madhu Department of Chemical Sciences Tata Institute of Fundamental Research Homi Bhabha

Fourier Transformation

Page 34: Nuclear Magnetic Resonance Parametersiupab/madhu1.pdfNuclear Magnetic Resonance Parameters P. K. Madhu Department of Chemical Sciences Tata Institute of Fundamental Research Homi Bhabha

Radio-Frequency Pulse

Pulse

Amplitude

Phase

Frequency

90x

Music

Volume

Timing

Pitch

Page 35: Nuclear Magnetic Resonance Parametersiupab/madhu1.pdfNuclear Magnetic Resonance Parameters P. K. Madhu Department of Chemical Sciences Tata Institute of Fundamental Research Homi Bhabha

Spin Relaxtion

There are two primary causes of spin relaxation:

Spin - lattice relaxation, T1, longitudinal relaxation

Spin - spin relaxation, T2, transverse relaxation

lattice

Page 36: Nuclear Magnetic Resonance Parametersiupab/madhu1.pdfNuclear Magnetic Resonance Parameters P. K. Madhu Department of Chemical Sciences Tata Institute of Fundamental Research Homi Bhabha

Spin Relaxation, T1

T1 determines the repetition rate of an experiment

90x

n

Signal-to-noise enhancement

For an optimum signal, there is a need to wait for a few T1 times before which an experiment can be repeated for signal averaging

The time scale with which the z-component of the magnetisation has felaxed back to the equilibrium magnetisation, M0

Page 37: Nuclear Magnetic Resonance Parametersiupab/madhu1.pdfNuclear Magnetic Resonance Parameters P. K. Madhu Department of Chemical Sciences Tata Institute of Fundamental Research Homi Bhabha

T1 or T2relaxation time

Correlation time

Short

Long

T1 minimum

T1 and T2 at short correlation times

optimal frequency for T1 relaxation (MHz frequencies)

T1

T2

Fast motionShort τc

Slow motionLong τc

Gases

Small molecules

Medium sizedmolecules

Large molecules

0 0.2 0.4 0.6 0.8 1.0 ns

Behaviour of T1 and T2 Relaxation Times

Page 38: Nuclear Magnetic Resonance Parametersiupab/madhu1.pdfNuclear Magnetic Resonance Parameters P. K. Madhu Department of Chemical Sciences Tata Institute of Fundamental Research Homi Bhabha

180x 90x

τ

z

y

x

z

y

x

90x

z

y

x

z

y

x

90x

z

y

x

z

y

x

90x

τ=0

some τ

large τ

T1 Measurement- Inversion Recovery Experiment

Page 39: Nuclear Magnetic Resonance Parametersiupab/madhu1.pdfNuclear Magnetic Resonance Parameters P. K. Madhu Department of Chemical Sciences Tata Institute of Fundamental Research Homi Bhabha

T1 Measurement- Inversion Recovery Experiment

180x 90x

τ

τ

0

Measure the NMR signal as a function of τ

Bloch equation for longitudinal magnetisation: 0

1

zz M MdMdt T

−= −

10 (1 2 )T

zM M eτ

= −

t

Page 40: Nuclear Magnetic Resonance Parametersiupab/madhu1.pdfNuclear Magnetic Resonance Parameters P. K. Madhu Department of Chemical Sciences Tata Institute of Fundamental Research Homi Bhabha

Mz = Mo (1- 2e -τ/T1 )

Mz

τ

Inversion Recovery - Measure NMR Intensity as a function of the delay time τ and fit to an exponential function

τ

0

0

T1 Measurement- Inversion Recovery Experiment

Page 41: Nuclear Magnetic Resonance Parametersiupab/madhu1.pdfNuclear Magnetic Resonance Parameters P. K. Madhu Department of Chemical Sciences Tata Institute of Fundamental Research Homi Bhabha

time

Currentamplitude

frequency

The faster the dephasing, the faster the decay of the time domain signal, the broader the line

Line widths are related to T2 relaxation. LW ~ 1/ T2 (not always true due to inhomogeneous broadening)

T2 is always faster (shorter) than or equal to T1

Transverse Relaxation Time, T2

Page 42: Nuclear Magnetic Resonance Parametersiupab/madhu1.pdfNuclear Magnetic Resonance Parameters P. K. Madhu Department of Chemical Sciences Tata Institute of Fundamental Research Homi Bhabha

T2 Measurement- Spin-Echo Experiment

90x 180x

τ/2 τ/2 t

Bloch equation for transverse magnetisation: , ,

1

x y x ydM Mdt T

= −

2, 0

Tx yM M e

τ−

=Mx(t)

τ

Plot of the peak amplitude as a functionof τ in the spin-echo experiment

Page 43: Nuclear Magnetic Resonance Parametersiupab/madhu1.pdfNuclear Magnetic Resonance Parameters P. K. Madhu Department of Chemical Sciences Tata Institute of Fundamental Research Homi Bhabha

Spin-Echo Experiment

Physics Today, 1953

E. Hahn, Physical Reivew, 80, 1950

Page 44: Nuclear Magnetic Resonance Parametersiupab/madhu1.pdfNuclear Magnetic Resonance Parameters P. K. Madhu Department of Chemical Sciences Tata Institute of Fundamental Research Homi Bhabha

90x 180x

τ/2 τ/2 t

Spin-Echo Experiment

y

z

y

x

y

x

y

x

y

x

90x

180x

evolution

evolutionMagnetisation is refocusedFormation of an echoDecay of echo only due to T2

Page 45: Nuclear Magnetic Resonance Parametersiupab/madhu1.pdfNuclear Magnetic Resonance Parameters P. K. Madhu Department of Chemical Sciences Tata Institute of Fundamental Research Homi Bhabha

T2 Relaxation, Line Width and Correlation Times

4pηwr3H

τc = 3kBT

ηw = viscosity of the solvent

r3H = hydrated radius

τc (ns)

0

10

20

15

5

25

2 4 6 8 10 12 14

Δν FWHM(Hz)

See Cavanagh et al. Protein NMR spectroscopy, pages 16-19.

Page 46: Nuclear Magnetic Resonance Parametersiupab/madhu1.pdfNuclear Magnetic Resonance Parameters P. K. Madhu Department of Chemical Sciences Tata Institute of Fundamental Research Homi Bhabha

1H

NH

NH

NH

15N

9.0 8.0

NH

NH

mobile, flexible chain has narrowerline widths than globular protein

T2 Relaxation, Line Width and Correlation Times

Page 47: Nuclear Magnetic Resonance Parametersiupab/madhu1.pdfNuclear Magnetic Resonance Parameters P. K. Madhu Department of Chemical Sciences Tata Institute of Fundamental Research Homi Bhabha

NH

NH

NH N

HNH

Mobility is also expressed in T1relaxation times.

t = 10 us

t = 100 us

t = 1000 us

t = 5000 us

T1 Relaxation and Mobility

Page 48: Nuclear Magnetic Resonance Parametersiupab/madhu1.pdfNuclear Magnetic Resonance Parameters P. K. Madhu Department of Chemical Sciences Tata Institute of Fundamental Research Homi Bhabha

Intensity and Resolution

To summarise:

The first point of the FID determines the intensity of the resonance signal

The duration of the FID determines the resolution of the resonance signal

Page 49: Nuclear Magnetic Resonance Parametersiupab/madhu1.pdfNuclear Magnetic Resonance Parameters P. K. Madhu Department of Chemical Sciences Tata Institute of Fundamental Research Homi Bhabha

Information in a NMR SpectraInformation in a NMR Spectra

ObservableObservable NameName QuantitativeQuantitative InformationInformation

Peak position Chemical shifts (δ) δ(ppm) = uobs –uref/uref (Hz) chemical (electronic) environment of nucleus

Peak Splitting Coupling Constant (J) Hz peak separation neighboring nuclei(intensity ratios) (torsion angles)

Peak Intensity Integral unit less (ratio) nuclear count (ratio)

relative height of integral curve quantifying

Peak Shape Line width Δυ = 1/πT2 molecular motionpeak half-height chemical exchange

1) Energy E = hυ

h is Planck constantυ is NMR resonance frequency 10-10 10-8 10-6 10-4 10-2 100 102

wavelength (cm)

γ-rays x-rays UV VIS IR μ-wave radio

Page 50: Nuclear Magnetic Resonance Parametersiupab/madhu1.pdfNuclear Magnetic Resonance Parameters P. K. Madhu Department of Chemical Sciences Tata Institute of Fundamental Research Homi Bhabha

a) Small local magnetic fields (Bloc) are generated by electrons as they circulate around nuclei.

b) These local magnetic fields can either oppose or augment the external magnetic field1) Typically oppose external magnetic field2) Nuclei “see” an effective magnetic field (Beff) smaller then

the external field3) σ – magnetic shielding or screening constant

i. depends on electron densityii. depends on the structure of the compound

Beff = Bo - Bloc Beff = Bo( 1 - σ )HO-CH2-CH3

de-shielding high shieldingShielding – local field opposes Bo

ν = γBo/2π

Chemical ShiftChemical Shift

σ – reason why we observe three distinct NMR peaks instead of one based on strength of B0

Page 51: Nuclear Magnetic Resonance Parametersiupab/madhu1.pdfNuclear Magnetic Resonance Parameters P. K. Madhu Department of Chemical Sciences Tata Institute of Fundamental Research Homi Bhabha

Proton Peaks are Referenced Against TMSProton Peaks are Referenced Against TMS

TMSshift in Hz

0

Si CH3CH3

CH3

CH3

tetramethylsilane“TMS”

n

Rather than measure the exact resonance position of a peak, we measure how far downfield it is shifted from TMS.

Highly shieldedprotons appearway upfield.

downfield

Page 52: Nuclear Magnetic Resonance Parametersiupab/madhu1.pdfNuclear Magnetic Resonance Parameters P. K. Madhu Department of Chemical Sciences Tata Institute of Fundamental Research Homi Bhabha

TMSshift in Hz

0ndownfield

The shift observed for a given protonin Hz also depends on the frequencyof the instrument used.

Higher frequencies= larger shifts in Hz

Higher Fields (Frequencies) Give Larger ShiftsHigher Fields (Frequencies) Give Larger Shifts

Page 53: Nuclear Magnetic Resonance Parametersiupab/madhu1.pdfNuclear Magnetic Resonance Parameters P. K. Madhu Department of Chemical Sciences Tata Institute of Fundamental Research Homi Bhabha

ppmppm and Hzand Hz

1H operating frequency Hz equivalent of ppm

500 MHz 500 Hz

600 MHz 600 Hz

800 MHz 800 Hz

Page 54: Nuclear Magnetic Resonance Parametersiupab/madhu1.pdfNuclear Magnetic Resonance Parameters P. K. Madhu Department of Chemical Sciences Tata Institute of Fundamental Research Homi Bhabha

chemicalshift = δ =

shift in Hzspectrometer frequency in MHz

= ppm

parts permillion

Chemical ShiftChemical Shift

0

10

10

10 0

0

PPM

PPM

PPM

500 MHzHigher frequency leads to more dispersion

800 MHz

600 MHz

Page 55: Nuclear Magnetic Resonance Parametersiupab/madhu1.pdfNuclear Magnetic Resonance Parameters P. K. Madhu Department of Chemical Sciences Tata Institute of Fundamental Research Homi Bhabha

H3C Si CH3

CH3

CH3

•For protons, ~ 15 ppm:

•For carbon, ~ 220 ppm:0

TMS

ppm

210 715 5

Aliphatic

Alcohols, protons ato ketones

Olefins

AromaticsAmides

AcidsAldehydes

ppm

50150 100 80210

Aliphatic CH3,CH2, CH

Carbons adjacent toalcohols, ketones

Olefins

Aromatics,conjugated alkenes

C=O of Acids,aldehydes, esters

0TMS

C=O inketones

Chemical-Shift Scales

Page 56: Nuclear Magnetic Resonance Parametersiupab/madhu1.pdfNuclear Magnetic Resonance Parameters P. K. Madhu Department of Chemical Sciences Tata Institute of Fundamental Research Homi Bhabha

Chemical-Shift Scales

aliphaticC-H

CH on Cnext to pi bonds

C-H where C is attached to anelectronega-tive atom

alkene=C-H

benzeneCH

aldehydeCHO

acidCOOH

23467910 0X-C-H X=C-C-H

Interpretation of most 1D spectra is possible with this information

Page 57: Nuclear Magnetic Resonance Parametersiupab/madhu1.pdfNuclear Magnetic Resonance Parameters P. K. Madhu Department of Chemical Sciences Tata Institute of Fundamental Research Homi Bhabha

Factors Determining Resonance Positions of 1H

• Deshielding by electronegative elements

•Anisotropic fields usually due to pi-bonded electrons in the molecule

•Deshielding due to hydrogen bonding

Page 58: Nuclear Magnetic Resonance Parametersiupab/madhu1.pdfNuclear Magnetic Resonance Parameters P. K. Madhu Department of Chemical Sciences Tata Institute of Fundamental Research Homi Bhabha

Deshielding by an Electronegative Element

C HClelectronegativeelement

δ- δ+

δ- δ+

Chlorine “deshields” the proton,that is, it takes valence electron density away from carbon, whichin turn takes more density fromhydrogen deshielding the proton.

0 ppm

highly shieldedprotons appearat high field

“deshielded“protons appear at low field

deshielding moves protonresonance to lower field

Page 59: Nuclear Magnetic Resonance Parametersiupab/madhu1.pdfNuclear Magnetic Resonance Parameters P. K. Madhu Department of Chemical Sciences Tata Institute of Fundamental Research Homi Bhabha

Electronegativity Dependence of Chemical Shift

Compound CH3X

Element X

Electronegativity of X

Chemical shift δ

CH3F CH3OH CH3Cl CH3Br CH3I CH4 (CH3)4Si

F O Cl Br I H Si

4.0 3.5 3.1 2.8 2.5 2.1 1.8

4.26 3.40 3.05 2.68 2.16 0.23 0

Dependence of the Chemical Shift of CH3X on the element X

deshielding increases with theelectronegativity of atom X

TMSmostdeshielded

Page 60: Nuclear Magnetic Resonance Parametersiupab/madhu1.pdfNuclear Magnetic Resonance Parameters P. K. Madhu Department of Chemical Sciences Tata Institute of Fundamental Research Homi Bhabha

Substitution Effects on Chemical Shift

CHCl3 CH2Cl2 CH3Cl 7.27 5.30 3.05 ppm

-CH2-Br -CH2-CH2Br -CH2-CH2CH2Br 3.30 1.69 1.25 ppm

mostdeshielded

mostdeshielded

The effect decreaseswith increasing distance

The effect increases withgreater numbersof electronegativeatoms

Page 61: Nuclear Magnetic Resonance Parametersiupab/madhu1.pdfNuclear Magnetic Resonance Parameters P. K. Madhu Department of Chemical Sciences Tata Institute of Fundamental Research Homi Bhabha

Aromatic Ring Current Effects

The presence of pi-bonds leads to anisotropic fields and affect chemical shift

Aromatic ring currents are observed in molecules like benzene and naphthalene

The applied magnetic field gives rise to a ring current in the delocalisedpi-electrons of the aromatic ring

Benzene rings have the greatest effect

Ring protons can get deshielded (induced and static fields add)while inner protons get shielded (induced and static fields oppose)

Ring current

Induced field

Page 62: Nuclear Magnetic Resonance Parametersiupab/madhu1.pdfNuclear Magnetic Resonance Parameters P. K. Madhu Department of Chemical Sciences Tata Institute of Fundamental Research Homi Bhabha

Aromatic Ring Current Effects

Secondary magnetic fieldgenerated by circulating πelectrons deshields aromaticprotons

Circulating π electrons

Ring Current in BenzeneRing Current in Benzene

Bo

Deshielded

H H fields add together

Ring protons come at 7.3 ppminstead of the 5.6 ppm of the vinylicprotons in cyclohexane

Page 63: Nuclear Magnetic Resonance Parametersiupab/madhu1.pdfNuclear Magnetic Resonance Parameters P. K. Madhu Department of Chemical Sciences Tata Institute of Fundamental Research Homi Bhabha

Influence of Hydrogen Bonding Influence of Hydrogen Bonding

OC

OR

H

HCO

OR

Carboxylic acids have stronghydrogen bonding - theyform dimers.

With carboxylic acids the O-Habsorptions are found between10 and 12 ppm very far downfield.

O

OO

HCH3

In methyl salicylate, which has stronginternal hydrogen bonding, the NMRabsortion for O-H is at about 14 ppm,way, way downfield.

Page 64: Nuclear Magnetic Resonance Parametersiupab/madhu1.pdfNuclear Magnetic Resonance Parameters P. K. Madhu Department of Chemical Sciences Tata Institute of Fundamental Research Homi Bhabha

O HR

O R

HHO

RThe chemical shift dependson how much hydrogen bondingis taking place.

Alcohols vary in chemical shiftfrom 0.5 ppm (free OH) to about5.0 ppm (lots of H bonding).

Hydrogen bonding lengthens theO-H bond and reduces the valence electron density around the proton- it is deshielded and shifted

downfield in the NMR spectrum.

Hydrogen Bond and Chemical Shift

Page 65: Nuclear Magnetic Resonance Parametersiupab/madhu1.pdfNuclear Magnetic Resonance Parameters P. K. Madhu Department of Chemical Sciences Tata Institute of Fundamental Research Homi Bhabha

Influence of Hydrogen Bonding Influence of Hydrogen Bonding

free H-bonded

OH upfield shifted,No H-bonding

OH downfieldfieldshifted, H-bonding

Page 66: Nuclear Magnetic Resonance Parametersiupab/madhu1.pdfNuclear Magnetic Resonance Parameters P. K. Madhu Department of Chemical Sciences Tata Institute of Fundamental Research Homi Bhabha

SPIN-SPIN SPLITTING

Page 67: Nuclear Magnetic Resonance Parametersiupab/madhu1.pdfNuclear Magnetic Resonance Parameters P. K. Madhu Department of Chemical Sciences Tata Institute of Fundamental Research Homi Bhabha

Multiplets in Spectra

Splitting of the resonances, multiplets, are due to spin-spin coupling andCan be predicted by the n+1 rule

Page 68: Nuclear Magnetic Resonance Parametersiupab/madhu1.pdfNuclear Magnetic Resonance Parameters P. K. Madhu Department of Chemical Sciences Tata Institute of Fundamental Research Homi Bhabha

Scalar Coupling

I1

I2e-

e-

Fermi contact

J-coupling is facilitated by the electrons in the bonds that connect the nuclei

Scalar coupling, through-bond coupling

The coupling constants can be related to a number of physical properties: Hybridisation, dihedral bond angles, and electronegativity of substituents

Geminal and vicinal couplings may be used to determine the bond angles and torsion angles

Page 69: Nuclear Magnetic Resonance Parametersiupab/madhu1.pdfNuclear Magnetic Resonance Parameters P. K. Madhu Department of Chemical Sciences Tata Institute of Fundamental Research Homi Bhabha

Geminal Scalar Coupling: 2J Coupling

Smaller the J value, larger the bond angle

Page 70: Nuclear Magnetic Resonance Parametersiupab/madhu1.pdfNuclear Magnetic Resonance Parameters P. K. Madhu Department of Chemical Sciences Tata Institute of Fundamental Research Homi Bhabha

The magnitude of the J coupling is dictated by the torsionangle between the two coupling nuclei according to the Karplus equation.

Vicinal Scalar Coupling: 3J Coupling

CC

H

HH

H θ

J = A + B cos(θ) + C cos2(θ)

Page 71: Nuclear Magnetic Resonance Parametersiupab/madhu1.pdfNuclear Magnetic Resonance Parameters P. K. Madhu Department of Chemical Sciences Tata Institute of Fundamental Research Homi Bhabha

right-handed alpha helix 3JNHα = 3.9antiparallel beta sheet 3JNHα = 8.9parallel beta sheet 3JNHα = 9.7

Scalar Coupling

Page 72: Nuclear Magnetic Resonance Parametersiupab/madhu1.pdfNuclear Magnetic Resonance Parameters P. K. Madhu Department of Chemical Sciences Tata Institute of Fundamental Research Homi Bhabha

Spin System Classification

Chemical equivalence among the spins:

• If the spins of the same isotopic species

• There exists a molecular symmetry operation that exchanges the two spins

Magnetic equivalence among the spins:

• This is a stronger form of the chemical equivalence

• The spins should have the same chemical shifts

• Either the spins have identical couplings to all other spins in themolecule or there are no other spins in the molecule

Ha

Hb Fb

Fa

1,1-difluoroethene

Ha

OR

HbH1

H2H3

Ha

OR

HbH3

H1H2

Ha

OR

HbH2

H3H1

CH3-CH2-OR

Page 73: Nuclear Magnetic Resonance Parametersiupab/madhu1.pdfNuclear Magnetic Resonance Parameters P. K. Madhu Department of Chemical Sciences Tata Institute of Fundamental Research Homi Bhabha

Spin System Classification

Ha

Hb Fb

FaNot magnetically equivalent

δHa= δHb, and δFa= δFb butJHaFb≠JHaFa and JHbFb≠JHbFa

Also here JHa JHb ≠0

It is an AA’XX’ spin system

H

HF

F

In this case, difluoromethane, 1Hs and 19Fs are magnetically equivalent not due to rotation, but to symmetry around the carbon. It is an A2X2 system

Ha

OR

HbH1

H2H3

Ha

OR

HbH3

H1H2

Ha

OR

HbH2

H3H1

Magnetically equivalent

It is an A2X3 spin system

The most shielded spin isnotated as A

Page 74: Nuclear Magnetic Resonance Parametersiupab/madhu1.pdfNuclear Magnetic Resonance Parameters P. K. Madhu Department of Chemical Sciences Tata Institute of Fundamental Research Homi Bhabha

C C

H H

H

C C

H H

H

two neighboursn+1 = 3triplet

one neighbourn+1 = 2doublet

this hydrogen peakis split by its two neighbours

these hydrogens aresplit by their singleneighbour

Scalar Coupling and Splitting of Resonances

n+1 rule

Page 75: Nuclear Magnetic Resonance Parametersiupab/madhu1.pdfNuclear Magnetic Resonance Parameters P. K. Madhu Department of Chemical Sciences Tata Institute of Fundamental Research Homi Bhabha

Exception To The n+1 RuleException To The n+1 Rule

Protons that are equivalent by symmetryusually do not split one another

CH CHX Y CH2 CH2X Y

no splitting if x=y no splitting if x=y

1)

2) Protons in the same groupusually do not split one another

CH

HH or C

H

H

Page 76: Nuclear Magnetic Resonance Parametersiupab/madhu1.pdfNuclear Magnetic Resonance Parameters P. K. Madhu Department of Chemical Sciences Tata Institute of Fundamental Research Homi Bhabha

Some Splitting PatternsSome Splitting Patterns

CH2 CH2X Y

CH CHX Y

CH2 CH

CH3 CH

CH3 CH2

CH3

CHCH3

( x = y )

( x = y )

Page 77: Nuclear Magnetic Resonance Parametersiupab/madhu1.pdfNuclear Magnetic Resonance Parameters P. K. Madhu Department of Chemical Sciences Tata Institute of Fundamental Research Homi Bhabha

J J

J

J J

The coupling constant is the distance J (measured in Hz) between the peaks in a multiplet.

J is a measure of the amount of interaction between the two sets of hydrogens creating the multiplet.

C

H

H

C H

H

H

J

Coupling ConstantCoupling Constant

Page 78: Nuclear Magnetic Resonance Parametersiupab/madhu1.pdfNuclear Magnetic Resonance Parameters P. K. Madhu Department of Chemical Sciences Tata Institute of Fundamental Research Homi Bhabha

C C

H H

C CH

H

C CHH

CH

H

6 to 8 Hz

11 to 18 Hz

6 to 15 Hz

0 to 5 Hz

three bond 3J

two bond 2J

three bond 3J

three bond 3J

trans

cis

geminal

vicinal

Representative Coupling ConstantsRepresentative Coupling Constants

Page 79: Nuclear Magnetic Resonance Parametersiupab/madhu1.pdfNuclear Magnetic Resonance Parameters P. K. Madhu Department of Chemical Sciences Tata Institute of Fundamental Research Homi Bhabha

I S

J ≠ 0

I S

J = 0

Scalar Coupling- Splitting of Resonances

A splitting of a signal means that we have more energies involved in the transition of a certain nuclei. So why do we have more energies?

Coupling constants do not depend on the applied magnetic field, unlike the CSA

Page 80: Nuclear Magnetic Resonance Parametersiupab/madhu1.pdfNuclear Magnetic Resonance Parameters P. K. Madhu Department of Chemical Sciences Tata Institute of Fundamental Research Homi Bhabha

Scalar Coupling- Splitting of Resonances

Bo

19F

19F

1H

1H

Nucleus

Electron

The nuclear magnetic moment of 19F polarises the F bonding electron (up), which, since we are following quantum mechanics rules, makes the other electron point down (the electron spins have to be antiparallel).

Now, since we have different states for the 1H electrons depending on the state of the 19F nucleus, we will have slightly different energies for the 1H nuclear magnetic moment (remember that the 1s electron of the 1H generates an induced field…).

This difference in energies for the 1H result in a splitting of the 1H resonance line.

Page 81: Nuclear Magnetic Resonance Parametersiupab/madhu1.pdfNuclear Magnetic Resonance Parameters P. K. Madhu Department of Chemical Sciences Tata Institute of Fundamental Research Homi Bhabha

Scalar Coupling- Splitting of Resonances

Bo

1H 1H

C

Similar analysis for a CH2 system as well.

The state of one of the 1H spins gets transmitted to the other 1H spins via the electrons in the bond (things get a bit complicated here due to the sp3 hybridiation etc. in general).

Page 82: Nuclear Magnetic Resonance Parametersiupab/madhu1.pdfNuclear Magnetic Resonance Parameters P. K. Madhu Department of Chemical Sciences Tata Institute of Fundamental Research Homi Bhabha

C CH H

C CH HA A

upfielddownfield

Bo

50 % ofmolecules

50 % ofmolecules

aligned with Bo opposed to Bo

neighbour aligned neighbour opposed

At any given time about half of the molecules in solution willhave spin +1/2 and the other half will have spin -1/2.

+1/2 -1/2

Shift of HA is Affected by the Spin of its Neighbour

Page 83: Nuclear Magnetic Resonance Parametersiupab/madhu1.pdfNuclear Magnetic Resonance Parameters P. K. Madhu Department of Chemical Sciences Tata Institute of Fundamental Research Homi Bhabha

C CH H

C CH H

one neighbourn+1 = 2doublet

one neighbourn+1 = 2doublet

yellow spinsblue spins

The resonance positions (splitting) of a given hydrogen is affected by the possible spins of its neighbor.

Spin Arrangements

Page 84: Nuclear Magnetic Resonance Parametersiupab/madhu1.pdfNuclear Magnetic Resonance Parameters P. K. Madhu Department of Chemical Sciences Tata Institute of Fundamental Research Homi Bhabha

C C

H H

H

C C

H H

H

two neighborsn+1 = 3triplet

one neighborn+1 = 2doublet

methylene spinsmethine spins

Spin Arrangements

Page 85: Nuclear Magnetic Resonance Parametersiupab/madhu1.pdfNuclear Magnetic Resonance Parameters P. K. Madhu Department of Chemical Sciences Tata Institute of Fundamental Research Homi Bhabha

A XA X

A1

A2

A1

A2

Bo E

J = 0J > 0

E4

E3E2

E1

A X A X

A1

A2A2

A1

Bo E

J = 0 J < 0E4

E3E2

E1

A1

A2

ν A1 = ν A2

J = 0

A1 A2

ν A1 ν A2

J > 0

A2 A1

ν A2 ν A1

J < 0

Scalar Coupling- Energy Level Picture

Page 86: Nuclear Magnetic Resonance Parametersiupab/madhu1.pdfNuclear Magnetic Resonance Parameters P. K. Madhu Department of Chemical Sciences Tata Institute of Fundamental Research Homi Bhabha

Scalar Coupling: First-Order Spectra

In weakly coupled spin systems: Consider ethyl acetate, CH2 at 4.5 ppm and CH3 at 1.5 ppm

J is typically 7 Hz, hence weakly coupled, also calledfirst-order spin system

ββαβ βααα

βββααβ αβα βαααββ βαβ ββα

αααCH2 CH3

Each 1H in CH3 will see three possible states of 1H in CH2Each 1H in CH2 will see four possible states of 1H in CH3Note the 1H in CH3 and that in CH2 are equivalent

Page 87: Nuclear Magnetic Resonance Parametersiupab/madhu1.pdfNuclear Magnetic Resonance Parameters P. K. Madhu Department of Chemical Sciences Tata Institute of Fundamental Research Homi Bhabha

11stst order systems (continued)order systems (continued)

•A coupled to n identical nuclei X (of spin 1/2) yields n + 1 lines in the spectrum of A.

•Therefore, the CH2 in EtOAc will show up as four lines, or a quartet. •Analogously, the CH3 in EtOAc will show up as three lines, or a triplet.

• The separation of the lines will be equal to the coupling constant between the two types of nuclei (CH2’s and CH3’s in EtOAc, approximately 7 Hz).

• Intensities can also be derived from the diagram of the possible states:

• Since we have the same probability of finding the system in any of the states,and states in the same rows have equal energy, the intensity will havea ratio 1:2:1 for the CH3, and a ratio of 1:3:3:1 for the CH2.

CH3

CH2

J (Hz)

4.5 ppm 1.5 ppm

Scalar Coupling: First-Order Spectra

Page 88: Nuclear Magnetic Resonance Parametersiupab/madhu1.pdfNuclear Magnetic Resonance Parameters P. K. Madhu Department of Chemical Sciences Tata Institute of Fundamental Research Homi Bhabha

The splitting of the resonance of a nuclei A by a nuclei X with spin number I will be 2I + 1.

Scalar Coupling: First-Order Spectra

8

4 4

2 22 2

1 111 1111

2

1

Coupling to the first 1H(2 * 1/2 + 1 = 2)

Coupling to the second 1H

Coupling to the third 1H

In general, the number of lines in these cases will be a binomial expansion, known as the Pascal Triangle:

Start with one 1H

1 : n / 1 : n ( n - 1 ) / 2 : n ( n - 1 ) ( n - 2 ) / 6 : ...

Page 89: Nuclear Magnetic Resonance Parametersiupab/madhu1.pdfNuclear Magnetic Resonance Parameters P. K. Madhu Department of Chemical Sciences Tata Institute of Fundamental Research Homi Bhabha

Scalar Coupling: First-Order Spectra

11 1

1 2 11 3 3 1

1 4 6 4 1

Here n is the number of equivalentspins 1/2 we are coupled to: Theresults for several n’s is

• In a spin system in which we have a certain nuclei coupled to more than one nuclei, all first order, the splitting will be basically an extension of what we saw before.

• Say that we have a CH (A) coupled to a CH3 (M) with a JAM of 7 Hz, and to a CH2 (X) with a JAX of5 Hz. We basically go in steps. First the big coupling, which will give a quartet:

• Then the small coupling, which will split each linein the quartet into a triplet:

• This is called a triplets of quartet (big effect is the last…).

7 Hz

5 Hz

Page 90: Nuclear Magnetic Resonance Parametersiupab/madhu1.pdfNuclear Magnetic Resonance Parameters P. K. Madhu Department of Chemical Sciences Tata Institute of Fundamental Research Homi Bhabha

CCH3 CH3

N

H

O O+

-

1:6:15:20:16:6:1 in higher multiplets the outer peaksare often nearly lost in the baseline

2-Nitropropane

Page 91: Nuclear Magnetic Resonance Parametersiupab/madhu1.pdfNuclear Magnetic Resonance Parameters P. K. Madhu Department of Chemical Sciences Tata Institute of Fundamental Research Homi Bhabha

Scalar Coupling: Strong Coupling

SecondSecond--order spectra, AB spin systemorder spectra, AB spin system

B2

B1

J > 0

A2

A1

23

αα

αβcosθ+βαsinθ

ββ

0 0| | | |

1

4

A X AXJω ω π− ∼

−αβsinθ+βαcosθ

E4 = 1/2 ω0A + 1/2 ω0BX + 1/4 πJAB

E3 = 1/2 D- 1/4 πJAB

E2 = - 1/2D - 1/4 πJAB

E1 = -1/2 ω0A - 1/2 ω0B + 1/4 πJAB

E4 = 1/2 ω0A + 1/2 ω0BX + 1/4 πJAB

E3 = 1/2 D- 1/4 πJAB

E2 = - 1/2D - 1/4 πJAB

E1 = -1/2 ω0A - 1/2 ω0B + 1/4 πJAB

sin 2θ=J/Dsos2θ= (ω0A - 1/2 ω0BX)/DD=[(ω0A - ω0B)2+πJ2]1/2

sin 2θ=J/Dsos2θ= (ω0A - 1/2 ω0BX)/DD=[(ω0A - ω0B)2+πJ2]1/2

ω0A ω0X

JAB JAB1-sin 2θ 1-sin 2θ

1+sin 2θ1+sin 2θ

Page 92: Nuclear Magnetic Resonance Parametersiupab/madhu1.pdfNuclear Magnetic Resonance Parameters P. K. Madhu Department of Chemical Sciences Tata Institute of Fundamental Research Homi Bhabha

Δν >> J

Δν = 0

Scalar Coupling: Second-Order Spectra

••As As ΔνΔν approaches J, more and more transition of similar energy occurapproaches J, more and more transition of similar energy occur

•Our system is now a second-order system. We have effects that are not predicted by the simple multiplicity rules that were described earlier

Page 93: Nuclear Magnetic Resonance Parametersiupab/madhu1.pdfNuclear Magnetic Resonance Parameters P. K. Madhu Department of Chemical Sciences Tata Institute of Fundamental Research Homi Bhabha

1 2 3 4A BνZνA νB

| JAB | = | f1 - f2 | = | f3 - f4 || JAB | = | f1 - f2 | = | f3 - f4 |Δν2 = | ( f1 - f4 ) ( f2 - f3 ) |

νA = νZ - Δν / 2νB = νZ + Δν / 2

Δν2 = | ( f1 - f4 ) ( f2 - f3 ) |

νA = νZ - Δν / 2νB = νZ + Δν / 2

I2 I3 | f1 - f4 |= =

I1 I4 | f2 - f3 |

I2 I3 | f1 - f4 |= =

I1 I4 | f2 - f3 |•Peak intensities can be computed similarly:

•AB system has the roofing effect: coupled pairs will lean towards each other, making a little roof:

•The chemical shifts of nuclei A and B are not at the center of the doublets. They will be at the center of mass of both lines. Δν the νA - νB chemical shift difference

Scalar Coupling: Second-Order Spectra

Page 94: Nuclear Magnetic Resonance Parametersiupab/madhu1.pdfNuclear Magnetic Resonance Parameters P. K. Madhu Department of Chemical Sciences Tata Institute of Fundamental Research Homi Bhabha

Cl

Cl

Cl

HX Cl

ClHA HA

Cl

Cl

HA

HB

HA

Cl

Transition from A2X to A2B

Scalar Coupling: Second-Order Spectra

Page 95: Nuclear Magnetic Resonance Parametersiupab/madhu1.pdfNuclear Magnetic Resonance Parameters P. K. Madhu Department of Chemical Sciences Tata Institute of Fundamental Research Homi Bhabha

100 MHz

200 MHz

123456

123

200 Hz

400 Hz

J = 7.5 Hz 7.5 Hz

J = 7.5 Hz 7.5 Hz

Coupling constants areconstant - they do not change at differentfield strengths

The shift isdependanton the field

ppm

Separationis larger

J and Magnetic Field: Comparison

100 Hz

200 Hz

Page 96: Nuclear Magnetic Resonance Parametersiupab/madhu1.pdfNuclear Magnetic Resonance Parameters P. K. Madhu Department of Chemical Sciences Tata Institute of Fundamental Research Homi Bhabha

100 MHz

200 MHz

123456

123

100 Hz

200 Hz

J = 7.5 Hz

J =7.5 Hz

ppm4

200 Hz

400 Hz

56

J = 7.5 Hz

Note the compression ofmultiplets in the 200 MHzspectrum when it is plotted on the same scale as the 100 MHz spectruminstead of on a chart whichis twice as wide.

Separationis larger

J and Magnetic Field: Comparison

Page 97: Nuclear Magnetic Resonance Parametersiupab/madhu1.pdfNuclear Magnetic Resonance Parameters P. K. Madhu Department of Chemical Sciences Tata Institute of Fundamental Research Homi Bhabha

123

123

100 MHz

200 MHz

Why buy a higherfield instrument?

Spectra aresimplified!

Overlapping multiplets areseparated.

123

50 MHzJ = 7.5 Hz

J = 7.5 Hz

J = 7.5 HzSecond-ordereffects are minimized.

J and Magnetic Field: Comparison

Page 98: Nuclear Magnetic Resonance Parametersiupab/madhu1.pdfNuclear Magnetic Resonance Parameters P. K. Madhu Department of Chemical Sciences Tata Institute of Fundamental Research Homi Bhabha

INTEGRATION

Page 99: Nuclear Magnetic Resonance Parametersiupab/madhu1.pdfNuclear Magnetic Resonance Parameters P. K. Madhu Department of Chemical Sciences Tata Institute of Fundamental Research Homi Bhabha

Integration of a Peak

Besides identifying the type of hydrogen, we can also obtain the relative Numbers of each type of hydrogen by integration

Integration is determining the area under a peak

The are under a peak is proportional to the number of hydrogens that generate the peak

Page 100: Nuclear Magnetic Resonance Parametersiupab/madhu1.pdfNuclear Magnetic Resonance Parameters P. K. Madhu Department of Chemical Sciences Tata Institute of Fundamental Research Homi Bhabha

Integration of a Peak

Benzyl AcetateThe integral line rises an amount proportional to the number of H in each peak

integralline

55: 22: 33 = 5: 2: 3 simplest ratio of the heights

Page 101: Nuclear Magnetic Resonance Parametersiupab/madhu1.pdfNuclear Magnetic Resonance Parameters P. K. Madhu Department of Chemical Sciences Tata Institute of Fundamental Research Homi Bhabha

Summary So Far!

• Each different type of hydrogen gives a peak or group of peaks(multiplet)

•The chemical shift, in ppm, is suggestive of the type of hydrogen generating the peak

•The integral gives the relative numbers of each type of hydrogen

•Spin-spin splitting gives the number of hydrogens on adjacent carbons

•The coupling constant J also gives information about the arrangement of the atoms involved, dihedral angles for instance

Page 102: Nuclear Magnetic Resonance Parametersiupab/madhu1.pdfNuclear Magnetic Resonance Parameters P. K. Madhu Department of Chemical Sciences Tata Institute of Fundamental Research Homi Bhabha

13C NMR

12C is not NMR active, I=0

13C is NMR active, I=1/2

However, 13C is only 1.08% abundant:

•Low gyromagnetic ratio•Signals about 6000 times weaker than 1H

The chemical-shift range of 13C is larger than that of 1H, about 0-200 ppm

Page 103: Nuclear Magnetic Resonance Parametersiupab/madhu1.pdfNuclear Magnetic Resonance Parameters P. K. Madhu Department of Chemical Sciences Tata Institute of Fundamental Research Homi Bhabha

13C NMR

For a given field strength 13C has its resonance at adifferent (lower) frequency than 1H.

1H11.7 T 500 MHz14.1 T 600 MHz18.89 T 800 MHz 13C

11.7 T 125 MHz14.1 T 150 MHz18.89 T 200 MHz

Divide the hydrogenfrequency by 4 (approximately)for carbon-13

Page 104: Nuclear Magnetic Resonance Parametersiupab/madhu1.pdfNuclear Magnetic Resonance Parameters P. K. Madhu Department of Chemical Sciences Tata Institute of Fundamental Research Homi Bhabha

13C NMR

Due to the low natural abundance of 13C spins, the probability of finding two 13C atoms next to each other in a single molecule is very small

13C-!3C coupling NO! Not probable

13C spectra are determined by many molecules contributing to the spectrum, eachhaving only one 13C atom

However, 13C does couple to 1H (spin ½)

13C-1H coupling YES! Very common

Page 105: Nuclear Magnetic Resonance Parametersiupab/madhu1.pdfNuclear Magnetic Resonance Parameters P. K. Madhu Department of Chemical Sciences Tata Institute of Fundamental Research Homi Bhabha

13C-1H J Coupling, Heteronuclear Coupling

The effect of attached protons on 13C resonances

n+1 = 4 n+1 = 3 n+1 = 2 n+1 = 1

C13

3 protons 2 protons 1 proton 0 protons

H

H

H

C13 H

H

C13 H C13

Methylcarbon

Methylenecarbon

Methinecarbon

Quaternarycarbon

( n+1 rule applies ) (J’s are large ~ 100 - 200 Hz)

Page 106: Nuclear Magnetic Resonance Parametersiupab/madhu1.pdfNuclear Magnetic Resonance Parameters P. K. Madhu Department of Chemical Sciences Tata Institute of Fundamental Research Homi Bhabha

13C-1H J Coupling, Heteronuclear Coupling

13C coupledto the hydrogens

Ethyl phenylacetate

Page 107: Nuclear Magnetic Resonance Parametersiupab/madhu1.pdfNuclear Magnetic Resonance Parameters P. K. Madhu Department of Chemical Sciences Tata Institute of Fundamental Research Homi Bhabha

Decoupling: Removing J Couplings

13C NMR spectrum of quinoline13C NMR spectrum of quinoline

1H decoupled 13C spectrum

13C spectrum scalar coupled to 1H

In cases of many nuclear spins, J couplings can reduce the sensitivitysnd crowd the spectra, hence, the need to remove them-Heteronuclear/homonuclear J decoupling

Page 108: Nuclear Magnetic Resonance Parametersiupab/madhu1.pdfNuclear Magnetic Resonance Parameters P. K. Madhu Department of Chemical Sciences Tata Institute of Fundamental Research Homi Bhabha

Heteronuclear Decoupling in Solution-State NMR

Decoupling

(π/2)y

S

I1H

13C

RF

Decoupling

S spin detection

Page 109: Nuclear Magnetic Resonance Parametersiupab/madhu1.pdfNuclear Magnetic Resonance Parameters P. K. Madhu Department of Chemical Sciences Tata Institute of Fundamental Research Homi Bhabha

Heteronuclear Decoupling in Solution-State NMR

Page 110: Nuclear Magnetic Resonance Parametersiupab/madhu1.pdfNuclear Magnetic Resonance Parameters P. K. Madhu Department of Chemical Sciences Tata Institute of Fundamental Research Homi Bhabha

Double-Resonance Techniques

Heteronuclear decoupling- A double-resonance scheme

Others being Nuclear Overhauser Effect, Spin Tickling and othersophisticated schemes

NMR Spectroscopy, A Physicochemical View- Robin HarrisModern NMR Techniques for Chemistry Research- Andrew DeromeNMR: The Toolkit- P. J. Hore, J. Jones, and S. WimperisSpin Dynamics, Basics of NMR- Malcolm H. Levitt

Page 111: Nuclear Magnetic Resonance Parametersiupab/madhu1.pdfNuclear Magnetic Resonance Parameters P. K. Madhu Department of Chemical Sciences Tata Institute of Fundamental Research Homi Bhabha

Decoupling: Spectral Simplification

Ethyl phenylacetate

Page 112: Nuclear Magnetic Resonance Parametersiupab/madhu1.pdfNuclear Magnetic Resonance Parameters P. K. Madhu Department of Chemical Sciences Tata Institute of Fundamental Research Homi Bhabha

13C Chemical Shift Chart

AldehydesKetones

Acids AmidesEsters Anhydrides

Aromatic ringcarbons

Unsaturated carbon - sp2

Alkynecarbons - sp

Saturated carbon - sp3

electronegativity effects

Saturated carbon - sp3

no electronegativity effects

C=O

C=O

C=CC C

200 150 100 50 0

8 - 30

15 - 55

20 - 60

40 - 80

35 - 80

25 - 65

65 - 90

100 - 150

110 - 175

155 - 185

185 - 220

C-O

C-Cl

C-Br

R3CH R4C

R-CH2-R

R-CH3

RANGE

/

Page 113: Nuclear Magnetic Resonance Parametersiupab/madhu1.pdfNuclear Magnetic Resonance Parameters P. K. Madhu Department of Chemical Sciences Tata Institute of Fundamental Research Homi Bhabha

nitriles

acid anhydridesacid chlorides

amides

esters

carboxylic acidsaldehydesα,β-unsaturated ketones

ketones

220 200 180 160 140 120 100 ppm

13C PPM Chart for Carbonyl and Nitrile Functional Groups

13C Chemical Shift Chart

Page 114: Nuclear Magnetic Resonance Parametersiupab/madhu1.pdfNuclear Magnetic Resonance Parameters P. K. Madhu Department of Chemical Sciences Tata Institute of Fundamental Research Homi Bhabha

Structural Determination with 1D NMR

•Structure determination of small molecules possible with 1D NMR

•Chemical shift, J coupling, geometry ………..

•Other sophisticated experiments

•INEPT•DEPT•Nuclear Overhauser Effect, NOE•Relaxation measurements•Exchange experiments•Diffusion experiments•Variable temperature experiments

Page 115: Nuclear Magnetic Resonance Parametersiupab/madhu1.pdfNuclear Magnetic Resonance Parameters P. K. Madhu Department of Chemical Sciences Tata Institute of Fundamental Research Homi Bhabha

Homodecoupling

• Simple & quick means of determining if two spins are coupled• Effective on molecules with simple, well-dispersed spectra• Involves irradiation of selected resonance with low power, thus

eliminating any coupling to this spin• Comparison of homodecoupled spectrum with the normal one,

coupling partners of the irradiated peak are determined

Homodec. spectrum of ethyl benzene

Normal spectrum

Irr. at quartet

Irr. at triplet

CH2-CH3

2D counterpart COSY

Page 116: Nuclear Magnetic Resonance Parametersiupab/madhu1.pdfNuclear Magnetic Resonance Parameters P. K. Madhu Department of Chemical Sciences Tata Institute of Fundamental Research Homi Bhabha

•Conclusions

•NMR is a very powerful method to probe geometry, dynamics, and other structural information parameters

•Chemical shift, scalar coupling, relaxation rate constants, peak integrals are some of the methods used in one-dimensional NMR

•1D NMR can yield a host of information regarding a wide range of molecules

•1H and 13C are the normal probes in 1D NMR

•Other probes, such as, 31P, 29Si, 11B, and many other spin ½ or spin higher nucleimay be used to characterise materials

•NMR also is a thorough test bed for many quantum mechanics principles

•A versatile tool with far reaching implications in Physics, Chemistry, Biology, and Medicine