Nu Cleo Synthesis

Embed Size (px)

Citation preview

  • 7/30/2019 Nu Cleo Synthesis

    1/16

    BigBang

    Nucleosynthesis

    Theemergenceofelementsintheuniverse

    BenjaminTopper

    Abstract.

    Inthispaper,Iwillfirstgiveabriefoverviewofwhatgeneralrelativityhastosayabout

    cosmology,gettinganexpandinguniverseasasolutiontoEinstein'sequation,i.e.auniverse

    witha[thermal]history.Wewillgothroughthedifferentstepsofthebigbangnucleosynthesis,

    brieflyjustifyingtheparticleantiparticleasymmetry(otherwisenonucleosynthesiswould

    happen)andthenevaluatinganddiscussingindetailstheabundancesofthefirstelements.

    IwillthendiscusstheconsequencesoftheBigBangBnucleosynthesisonmodernphysics:the

    constraintsitgivesonthestandardmodel,ondarkmatter...

  • 7/30/2019 Nu Cleo Synthesis

    2/16

    Contents

    1. Introductiontostandardcosmology.TheFriedmannLemaitreRobertsonWalkermodels.Thermalhistoryoftheuniverse

    2. BigBangNucleosynthesis.Nuclearequilibrium

    .Weakinteractionfreezeout

    .Elementsynthesis:Primordialabundancesof , ,Deuterium, .

    .Uncertainties

    3. Constraintsonnewphysics.Numberofneutrinogenerations

    .Neutrinomasses

    .Darkmatter

    4. Conclusion

    Disclaimer.

    ThislectureismainlybasedonJeanPhilippeUzanandPatrickPetersbookCosmologie

    Primordiale(chapter4),MarkTroddenandSeanCarrollsTASILectures:Introductionto

    Cosmology,andthereviewarticleBigBangnucleosynthesisandphysicsbeyondthe

    StandardModel.

    Thecompletelistofreferencesusedcanbefoundonthelastpageofthisdocument.

  • 7/30/2019 Nu Cleo Synthesis

    3/16

    Introductiontostandardcosmology

    ThefirstcosmologicalsolutionstoEinsteinsequationsweregivenbyEinsteinhimselfinthe

    early1917.HoweverthegeneralsolutionswereindependentlyfoundbyAlexandreFriedmann

    andGeorgesLemaitreonlyin1922and1927.

    ThestandardBigBangcosmologicalmodelisbasedonwhatisnowcalledtheCosmological

    Principle,whichassumesthattheuniverseisspatiallyhomogeneousandisotropic.This

    principleenforcesthegeometryoftheuniversetobeonethatisdescribedbyFriedmannand

    LemaitresolutionstoEinsteinsequations.

    a) TheFriedmannLemaitreRobertsonWalkermodelsThesymmetriesinducedbyhomogeneityandisotropyofspaceallowustowritethemetricina

    verysimpleandelegantform:

    1 sin

    HereR(t)isthecosmicscalefactorwhichevolvesintimeanddescribestheexpansionor

    contraction oftheuniverseandkisthescaled3spacecurvaturesignature(+1=elliptic,

    0=euclidean,1=hyperbolicspace;itisaninformationonthelocalgeometryoftheuniverse).

    AnotherusefulquantitytodefinefromthecosmicscalefactoristheHubbleparametergivenby:

    TheHubbleparameteristhemeasureoftheexpansionrateoftheuniverse(itisanexpansion

    ratebecauseitishomogenoustoaninversetime: )whichlinkstherecessionspeedofagalaxyvtoitsdistancedthroughthefollowinglaw,knownastheHubblelaw, .ComingbacktoEinsteinsfullfieldequation 8firstneedtoaskourselvesiswhatkindofenergymomentumtensorcanbeconsistentwith

    Withtheenergydensityintherestframeofthefluidanditspressureinthesameframe,

    ,thequestionwe

    observationsandthecosmologicalprinciple.Itturnsoutthatitisoftenuseful(andsimpler)to

    considerthematteroftheuniverseasaperfectfluid:

    beingthespatialmetric(includingthe ).

  • 7/30/2019 Nu Cleo Synthesis

    4/16

    PluggingitintoEinsteinsequations,wegetthetwofollowingequations,thefirstonebeingan

    evolutionequationandthesecondoneaconstrainttoit:

    12

    4

    2

    6

    83 3Wethereforegetadynamicaluniverse,towhichwecangiveanage:

    ~ 14.2

    ,

    andwecannowturnourselvestounderstandingits[thermal]evolution,orinotherwordsits

    thermodynamics.

    b) ThermalhistoryoftheuniverseFromverybasicarguments,wecanunderstandthatthecompositionoftheuniversehasgreatly

    evolved;letscall reactionrateforagivenparticleinteraction.Ifthatreactionrateismuch

    higherthantheexpansionrateH,thentheinvolvedinteractioncanmaintainthoseparticlesin

    athermodynamicequilibriumatatemperatureT;theycanthenbetreatedasFermiDiracor

    BoseEinsteingases,obeyingthefollowingdistributionfunction:

    1

    With thedegeneracyfactor, isthechemicalpotential, ,andistheofthephoton call

    However,if theparticleissaidtobedecoupled;theinteractioncanmaintainthemiceq

    interactionisnot

    Theparticledensityequationcanbecomputedfromthedistributionfunction:

    temperatureofthekindofparticlestudied.Thetemperature s,T,is ed

    temperatureoftheuniverse.

    thermodyna uilibriumbetweentheparticleandtheotherconstituents.

    Fromthisweunderstandthattherealwaysexistsatemperatureforwhichthe

    effectiveanymore;itissaidtobefrozen.

    1

  • 7/30/2019 Nu Cleo Synthesis

    5/16

    Thisequation,appliedtobosonsandfermionsatdifferenttemperatures,givesthefollowing

    table:

    Limit Typeofparticle n

    ,

    Bosons g3 TFermions

    3g34 T Bosons g mT2

    eE

    g mT2

    Fermions

    eE

    Table1:Thermodynamics

    Thephotonsareknowntohavezerochemicalpotential(asthenumberofphotonsisnot

    conserved),thereforetheparticleantiparticleannihilationprocess: mustsatisfythefollowingconservationlaw: .Pluggingthisintheparticledensityequation,wefindanasymmetryinthenumberofparticles

    andantiparticles:

    0

    Note:atlowtemperature( )weget,asexpected,anexponentialsuppressionofthisasymmetrythatgoes

    with .

    like

    .

    Thisasymmetryexplainsthedominationofmatteroverantimatterandthereforeallowsthe

    Theearlyuniversebeingdominatedbyradiation,wecanrewrite,using[table1]theexpansionrateof

    83

    formationofnuclei.

    expansionoftheuniverse:

    30

  • 7/30/2019 Nu Cleo Synthesis

    6/16

    Hbeinghomogenoustoaninversetime,wecanrewriteitas:

    2.42 withTinMeV, beingthenumberofrelativisticdegreesoffreedomatagiventemperature.ThesynopsisoftheBigBangnucleosynthesiscanbesplitintothreemajorphases:

    T>>1MeV Thermodynamicequilibriumbetweenallthecomponentsoftheuniverse;

    Universesdominatedbyradiation;## ~

    Photodissociationpreventsanycomplexnucleitoform.

    1>T>0.7Mev Weakinteractioncannotmaintainequilibriumbetweenallparticles;neutrons

    decouple:neutronfreezeout:## ~ .Freeneutronsdecayinto

    protons;atomicnucleistayatthermodynamicequilibrium.Freezeout

    temperature

    .

    0.7>T>0.05Mev Nuclearthermodynamicequilibriumcannotbemaintained.Electronpositronannihilationhasheatedthephotonbath.Atomicnucleiformthrough2body

    collisions: (onlyonewaybecauseradiationdensityislowenough).

    Table2:Thermalevolutionoftheuniverse

  • 7/30/2019 Nu Cleo Synthesis

    7/16

    BigBangNucleosynthesis

    a) NuclearequilibriumFortemperaturesgreateroroftheorderof100Mev,theuniverseisdominatedbyrelativistic

    particlesinequilibrium:electrons,positrons,neutrinosandphotons.Thecontributionfrom

    nonrelativisticparticlecanbeneglected;theweakinteractionsbetweenneutrons,protonsand

    leptons:

    keepalltheparticles(aswellasthenonrelativisticbaryons)inthermodynamicequilibrium.

    Attemperatureslargerthan1Mev,thenuclearinteractionsstillmaintaintheveryfirstnucleiinforegivenby:

    n g mT2

    andtheelectromagneticinteractionbetweenelectronsandpositrons:

    thermodynamicequilibriumtheirfractioncanthereforebecomputedonlyusing

    thermodynamicconsiderations,asshownbelow.

    Thedensityofthosenonrelativisticnucleiisthere

    e

    gmT2

    e

    e e

    with , thechemicalpotentialofprotonsandneutrons.gast echemicalequilibriumimposes

    A Z eglectingthedifferenceinmassbetweenprotonsandneutronsintheprefactor,wecan

    / 2 2

    Aslon hereactionratesarehighertheexpansionrate,th

    thechemicalpotentialtobe:

    N

    extractfromthisformulathedensityratioofprotonsandneutrons:

    2 ///

    Rewritingtheexponentialinthenucleardensity,weget:

    n g mT2 e gmT2

    2nn mNT/ eB

    ith isthebindingenergyofthenucleon.W

  • 7/30/2019 Nu Cleo Synthesis

    8/16

    Defining , , abundancesofucleiin ermodynamicequilibrium:

    /

    ,wefinallyobtaintheatomicn th 3

    2

    /

    with thebaryontophotonratio.Wecanusethisformulato ebindi ndthetemperatureat

    getth ngenergyofthelightnucleia

    whichtheirabundancewillbeatamaximum: 2.22 6.92 7.72 28.3 0.066 0.1 0.11 0.28Inparticular,itgivestheexactgoodprimordialevolutionfortheDeuteriumabundanceuptoits

    leweunderstandthatevenatthermalequilibrium,nucleosynthesiscannotstart

    b) Weakinteractionfreezeoutandneutronabundancetsomestage ,Xcanbesaidtofreezeoutifitsabundancestopsevolvinggreatly.

    onrea rium:

    760

    peak,andfortheotherlightuntilelementsuntiltheydepartfromequilibrium(welldiscussthis

    pointlater).

    Fromthistab

    beforeT=0.3MeV.Thermalphotonspreventformationoflargequantityofdeuteriumuntil

    T>0.3MeV(photodissociation)eventhoughthecrosssectionfor ishigh.

    A

    Weakinteracti ctionratefor

    keepsprotonsandneutronsinequilib

    1 Futwhenthisreactionratebecomesoftheorderoftheexpansionrate,thethermal

    H

    3g G TB

    equilibriumisbroken: T0.8 T 0.8MeV or t 1.15s

    Therefore,whentheweakinteraction(i.e.theneutronabundance)freezesout,theneutronto

    T 11

    protonrationis:

    1/6Justconsideringtheexpansiontoget eneutronabundanceatthebeginningof

    icleitwill

    e

    6

    th

    nucleosynthesisisabittoonavethough,),asthefreeneutronisnotastablepart

    decaywithalifetimeof887sfromthetimeweakinteractionfreezesoutto,temperaturthatallowsDeuteriumtoform(T=0.086MeV,t=180sec).Wethereforeget:

    1 / 0.136

  • 7/30/2019 Nu Cleo Synthesis

    9/16

    c) Elementsynthesis:Primordialabundancesof , ,Deuterium,

    utronsarelockedupandnoheavier

    anyore

    e

    synthesisisthatno elementsexistwith

    Letsstartouranalysiswithqualitativearguments:

    TheformationofdeuteriumisacrucialfactorforthecontinuationoftheBigBang

    nucleosynthesis:iftoomuch

    isformed,thenne

    elementscanbecreated.Howeveriftoolittleisformed,thenanimportantfactorinfurtherfusionismissing;especially,whendeuteriumcanform,helium4canformmuchm

    easilybecausethefollowingreactions and enablethcreationoflargeamountsforHeliumthrough and .AveryimportantfactorintheBigBangnucleo stable

    A=5andA=8(figure4).Thereforewewouldexpect togreatlythisanomaly decreaseany

    lium

    ndancethanHelium4(tritiumis

    t

    Figure1:Nuclearreactions http://physicsworld.com/cws/article/print/30680/1/PWfea4_0807

    nucleationprocessatA=4andA=7(itisalotlesslikelyforA=4togotoA=6thantoA=5).

    Fromthis,weunderstandthat:

    Theabundanceof

    shouldatfirstincreasethendecreasewhenHelium4canbe

    onsumedinthereactions).produced(asitisbeingc Theabundancesof and shouldincreasethenlevelupordecreasewhenheisgettingcreated.Theyshouldhavealowerfinalabuesh decradioactivetherefor ould reaseoverlongperiodslongerthantheonestudied

    here)

    Helium4,whichisstable,andattheendofthefirstchain(beforeA=5)shouldbepresentinlargequantitiesattheendoftheBigBangnucleosynthesis.Alltheprevious

    elementscanfusetoformHelium4,andHelium4isveryunlikely(butnot0)toreac

    withprotonsorneutronstojumptoA=6

    AbundancesofLithiumandBerylliumshouldbeverylowcomparedtotheother.Wecanexpect

    and

    tobetheendoftheBigBangnucleosynthesisbecauseofthe

    A=8barrier(alsohelpedbythefactthatBe7isradioactiveandthereforedecaysto

    lighterelements).

    Lithiumvalley: destroyedbyprotonsbutBe7contribution.

  • 7/30/2019 Nu Cleo Synthesis

    10/16

    Nowletsgetintosomelittlecomputations:

    TheeasiestestimationisforHelium4:wenowthatallfreeneutronsleftafterfreezeoutwill

    getbounduptoHe4becauseofnucleistability.EstimationsonHe4abundancesdepend

    mostlyontheneutrontoprotonrate,thusmostoftheuncertaintiesarebasedonthe

    uncertaintiesofthefreeneutronlifetime(=887seconds)

    ~ 2 1 0.24 ForDeuterium,wecangetitscreationslopewiththethermalequilibriumequationgiven

    previously(simplyusingMathematica,itworkperfectly);howevergettingitsfinalabundanceis

    muchmoredifficultaswehavetocomputeallitssinkterms.Thesameproblemappearsfor

    alltheotherelements.

    Itishoweverdoablewithoutacomputer,startingwiththeverygeneralstatement:

    whereJ(t)and aretimedependantsourceandsinkterms.Thesolutiontothisequationis

    Thisrequires,asexpected,carefulexaminationofallthedifferentreactionnetworksand

    keepingtrackoftheirreactionrateastemperaturedecreases,thereforeitisaverytedious

    computation(figure2)1

    .

    Generallyfreezeoutoccurswhen ~.ItispossibletoshowthatXapproachesthisequilibriumvaluefor

    Figure2:Analyticcomputation

    http://arxiv.org/PS_cache/hepph/pdf/9602/9602260v2.pdf

    1Esmailzadethetal(1991);Dimopoulosetal(1988)

  • 7/30/2019 Nu Cleo Synthesis

    11/16

    TheanalyticalresultsshownheregivethegoodpredictionsforD,Helium3andLithium7

    withinafactorof3,andHelium4within5%!

    Moreover,thisanalyticcalculationhelpsinunderstandingthedepartofHelium4fromits

    nuclearstatisticalequilibrium(thedashedlinearound0.6Mev).

    Thisbehaviorisexplainedbythedeuteriumbottleneck(figure1):thecreationofHelium4is

    delayeduntilenoughtritiumandhelium3areformed(itthenmimicstheevolutionofTandHelium3).

    Thentheytoodepartfromnuclearstatisticalequilibriumatabout0.2MeVduetothe

    deuteriumbottleneck.AtthispointHelium4,Helium3andTritiumallmimictheevolutionof

    Deuteriumuntilitfinallydeviatesfromequilibriumat0.07MeV.

    Wecannowcomparetheoryandtheobservation(figure4)onthefinalabundancesofthelight

    elements:

    Theory Observation

    3.610. 5.510.

    2.780.4410

    1.5 0.1 10 6.7 10 1.210. 5.510 10. 1.50.5 0.2450.014 3 0.0002 887 0.009ln.

    0.00150.23910.0020040.24430.2490.0 1.210. 5.510. 1.23.. 10

    Figure3:Abundances Figure4:Elementgap

    http://www.astro.ucla.edu/~wright/BBNS.html BigBangNucleosynthesisC.Ciemniak14.05.2004

  • 7/30/2019 Nu Cleo Synthesis

    12/16

    d) UncertaintiesAsnucleosynthesisinvolvesmanydifferentreactions,therearemanysourcesofuncertainty.

    Themajoruncertaintiesin aredueto Theexperimentaluncertaintyontheneutronlifetime.Thecurrentvalueisconsidered

    tobe2

    887 2 .Achangeof2intheneutronlifetimecausesachangeinHelium4predictionofabout0.4%. Thenumberofneutrinogenerations;ifthenumberofgenerationsismorethan3,say

    3.3(aswewillthisthatseemstobethecurrentboundonthenumberofneutrino

    generations)thenwegetachangeofabout1.5%intheabundanceprediction.

    Fortheotherelements,uncertaintiesinthenuclearcrosssectionscandramaticallymodifythe

    abundancepredictions.TheycanalterDand byupto15%and byabout50%!Andallofthisbeingachainreactionachangeinthereactionrateofoneelementwillaffect

    alltheothers.

    TheseeffectscanbeneglectedfortheHelium4abundance( 0.3%)becauseaswehaveseenitispossibletocalculateitsabundanceonlyusingtheneutronsabundanceatnucleationtime;alreadygotveryprecis

    Big an nucleosynthesisalsoallowstocalculatethebaryontophotonratio .1.7510

    e,

    cedHubble

    toputconstraintsonotherobservableslikethe

    wedidnothavetoconsideranyofthenuclearreactionstodothiscalculationsand

    a eresult.

    B g

    Fromspectroscopicmeasurements,andtaking 3,onegetsthefollowingvalue: 5.15Whichcorrespondsto Bh 0.018 0.006where Bisthebaryoniccontentoftheuniversandtheredu constant.Aswewillseelaterthoseparametersallowus

    numberofneutrinosgenerations,theirmasses,butalsototestthevalueofthefundamental

    constantslikeGandthefinestructureconstant (constraintgivenbyBBNis

    5%.)BigBangnucleosynthesisisthereforeatestforthehotBigBangmodel,nuclearphysics,and

    astrophysicsingeneral.

    2ParticleDataGroup

  • 7/30/2019 Nu Cleo Synthesis

    13/16

    Constraints

    to nrateof e

    niverse,thereforemoreneutronswillsurviveuntilnucleosynthesiswhichleadstoanincrease

    NumberofNeutrino

    Flavors

    Modelpredictionsfor

    He4

    onnewphysics

    a) NumberofneutrinogenerationsAnincreaseinthenumberofneutrino

    leads anincreaseintheexpansio th

    u

    intheHelium4abundance.

    2 ~ 0.227 3 ~ 0.242 4 ~ 0.254ConstraintsfromBigBangnucleosynthesisarestillverydifficulttoestimate(manydifferent

    aluescanbefoundintheliterature).Itseemslikethebestfit ~30.3v .

    Credits:arXiv:astroph/9706069

  • 7/30/2019 Nu Cleo Synthesis

    14/16

    b) NeutrinomassesAlthoughinthenaveversionoftheStandardModelneutrinosaremassless,recent

    experimentshavetendedtoshowthatneutrinoswereactuallymassive(fromneutrino

    oscillationexperimentsmainly3

    ).

    Eventhoughtheirmassisthoughttobeextremelysmall,thelargequantityofneutrinosimplies

    thatanynonzeromasshaveanobservableimpactoncosmology.

    Fromnucleosynthesis,wecangetanupperlimittothemassofalltheneutrinos,bycombining

    therelicneutrinoabundancewithobservationalboundsonpresentenergydensity(thanksto

    WMAP):

    2 94

    summingoverallneutrinospeciesthatarerelativisticatdecoupling(i.e. 1).Ifweconsiderthatneutrinosaremoremassiveandthereforewherenotrelativistic(!),then

    ticdecoupling,thewegetalowerlimit

    ontheirmass: 2.Thereforenostableneutrinocanhaveamassinthe100eVto2GeVrange.

    urrentneutrinomassestimationsare:

    ,

    160 ,

    24

    nregion.

    theyfalloutofchemicalequilibriumbeforetherelativis

    C

    2.1Thatisfornow,onlytheelectronneutrinoisknowntohaveamassoutoftheforbiddec) DarkmatterDirectobservationsofluminousmattergivethefollowingresulttowardthecontentofthe

    universe:

    h ~ 0.005ComparingthistothepreviousvalueofBh,wequicklyunderstandthatthereisaproblem:

    n30%!Wherearetheother70%?

    Baryonic=>no nucleonicdarkmatter,planetarymassblackholes,strangequarknuggets(shouldhaveenhancedproductionofheavyelementsduringBBN).

    Nonbaryonic=>Relicparticles?Newparticles?3SuperKamiokande,1998

  • 7/30/2019 Nu Cleo Synthesis

    15/16

    Conclusion

    Foralongtime,primordialnucleosynthesisandspectroscopicmeasurementswheretheonlywayto

    predictandtestthelightelementsabundances,andtogetavalueforthebaryoniccontentofthe

    B)haveallowedto

    ccontentoftheuniverse:

    h 0.02240.0009whichcorrespondstoabaryontophotonratio:

    universe.Howeverrecentcalculations4oftheCosmicMicrowaveBackground(CM

    measurewithextremeaccuracythebaryoni

    6.14 0.25 10Ifweredoallthepreviouscalculationswiththosevalues,wegetthefollowingabundances:

    predictionusing

    CMBvalues

    Element Theoretical

    2.600.170.19 10 1.040.04 1050.04 0.2470.0004 4.150.450.49 1010

    photonratio.

    TheverticallinerepresentsWMAP

    ThecurvesaretheBBNpredictions.

    Uzan&Peter

    Onthisgraphareshownthe

    theoreticalpredictionsfor

    Deuterium,Helium3,Helium4and

    Lithium7withrespecttothebaryon

    valuefor,thehorizontalonesindicatethespectroscopic

    measurementsforeachelement,the

    widthrepresentingtheuncertainties.

    Credits:CosmologiePirmordiale

    Tho arein theoreticalpredictions.Nuclearreactionratesarebeing

    reanalyzedbecause, ,aslightchangeinoneofthemcouldgreatlyaffectallthe

    predictions.

    seresults conflictwiththe

    aswehaveseen

    4WMAPresultsontheCMB

  • 7/30/2019 Nu Cleo Synthesis

    16/16

    References

    Books

    CosmologiePrimordialeJeanPhilippeUzan&PatrickPeter

    Princ P.J.EPeeblesiplesofphysicalcosmology

    ArXiV

    Xiv:astroph/9706069:BigbangNucle

    astroph/0009506:LightElem

    arXiv:astroph/9905211:PrimordialLithiu

    rXiv:astroph/0008495:WhatIsTheBBN

    rXiv:astroph/9905320:PrimordialNucl

    arXiv:hepph/9602260:BigBangnucleosynthesisandphysicsbeyondtheStandardModel

    ar osynthesisEntersthePrecisionEra

    arXiv: entNucleosynthesis

    mandBigBangNucleosynthesis

    a PredictionfortheBaryonDensityandHowReliableIsIt?

    a eosynthesis:TheoryandObservations

    OtherInternetresources

    http://www.astro.ucla.edu/~wright/BBNS.html

    http://wwwthphys.physics.ox.ac.uk/users/SubirSarkar/mytalks/groningen05.pdf

    http://www.astro.uu.se/~bg/cosmology

    http://www.mpia.de/homes/rix/BBN_Lect.pdf

    roddenandSeanCarrollTASILectures:IntroductiontoCosmology

    .pdf

    MarkT