nse_v37_n2_pp186-191

  • Upload
    lei-tu

  • View
    215

  • Download
    0

Embed Size (px)

Citation preview

  • 7/29/2019 nse_v37_n2_pp186-191

    1/6

    N U C L E A R S C I E N C E A N D E N G I N E E R I N G : 3 7 , 1 8 6 - 1 9 1 ( 1 9 6 9 )

    Discrete Kinetics for Periodical ly Pulsed Fast ReactorsG . B l a es s e r an d J . A . L arr i m ore

    Reactor Physics Department, EURATOM C.C.R., Ispra, ItalyReceived Novem ber 27, 1968Revised March 17, 1969

    A d i s c re te n eu t ron k ine t i c s fo r pe r iod ic a l ly pu l s ed fa s t rea c to rs i s fo rm ula tedin which the t ime behav io r o f the de layed neu t ron p r ec urs o r concen t ra t ions i scons ide red exp l i c i t ly on ly jus t b e fo r e and jus t a f t e r e ach power pu l s e . T he powerpu l s e i s rep re s e n ted by a de l t a func t ion and a gene ra l in teg ra t ion o f the p rec ur s o requa t ions be tween pu l s e s i s us ed . T he d i f fe ren ce equa t ions ob ta ined a r e we l ls u i t ed fo r us e in d ig i t a l s imula t ion of pu l s ed rea c to rs . An " inho ur equa t io n" fo rpu l s ed re ac to rs i s de r ived f r om the d i f fe r ence equa t ions and i s s hown to reduceto the re l a t io n ob ta ined f ro m the pe r iod -ave rage d k ine t i c s equa t ions , i f the dev i -a t ion f ro m pu l s ed c r i t i c a l i ty i s s ma l l .

    I. INTRODUCTIONIn period ical ly pulsed fas t rea ctor s (such asIBR, SORA, etc.) the repetition frequency is of theorde r of 100 cps while the pulse width is

  • 7/29/2019 nse_v37_n2_pp186-191

    2/6

    a r e m u l t i p l y i n g a s s e m b l i e s w i th p e r i o d i c a l l y , o rr e p e t i t i v e l y , m o d u l a t e d r e a c t i v i t y w h i l e " a c c e l e r -a t o r p u l s e d r e a c t o r s " a r e t h o s e w i t h m o d u l a t e dr e a c t i v i t y a n d s y n c h r o n i z e d s o u r c e i n j e c t i o n f r o ma n a c c e l e r a t o r . W h i l e w e c o n s i d e r i n t h i s p r e s e n tw o r k o n l y s y s t e m s o f t h e f i r s t k i n d , t h e i n c l u s i o no f a t i m e - d e p e n d e n t s o u r c e i n o u r e q u a t i o n s a l l o w sa n e x t e n s i o n o f t h e p r e s e n t m e t h o d t o " a c c e l e r a t o rp u l s e d r e a c t o r s " t o o .

    II. DISCRETE KINETICS DIFFERENCEEQUATION FORMULATIONWe denote ( s ee F ig . 1 ) :

    Ci(p) = i't h p r e c u r s o r c o n c e n t r a t i o n a t t h ebeg in ning o f the powe r pu lse in thep' t h p e r i o d

    Ci+(p) = i ' th p r e c u r s o r c o n c e n t r a t i o n a t t h e e n dof the power pu lse in the ' th per iod .

    W e d i v i d e th e p e r i o d i n t o t w o p a r t s : d u r i n g th ep u l s e , an d b e t w e e n p u l s e s .A. During the Pulse

    T h e i n c r e a s e i n p r e c u r s o r c o n c e n t r a t i o n d u r i n gthe p' th pu lse i s

    b e g i n n i n g o f t h e p u l s e . T h e n

    AQ = Ci+(p) - Ciip) = liiUFJp) (1 )w h e r e Fp(p ) i s t h e n u m b e r o f f i s s i o n s i n t h e p'\hp u l s e a n d f tf i s th e z' th d e l a y e d - n e u t r o n p r e c u r s o rp r o d u c t io n p e r f i s s i o n .

    I n t h e p r e s e n t f o r m o f th e d i s c r e t e k i n e t i c sm e t h o d r e a c t i v i t y f e e d b a c k d u r i n g t h e p u l s e w i l lb e n e g l e c t e d ; t h e r e f o r e , Fp(p ) i s p r o p o r t i o n a l t ot h e t o t a l n e u t r o n s o u r c e s t r e n g t h S ^ t d u r i n g th ep u l s e . N e g l e c t i n g t h e s m a l l e f f e c t of t h e i n c r e a s ei n Q d u r i n g t h e p u l s e , w e e v a l u a t e S t o t at the

    C,tt)

    PERIOD p

    T 2T

    Time3T

    Fig. 1. Schem atic Variation of Pr ecu rso r Concen-trations.

    w h e r e( 2 )

    M : p r e c u r s o r p r o d u c t i o n d u r i n g p u l s es o u r c e n e u t r o n p r o d u c t i o n r a t ean d

    S = e x t e r n a l n e u t r o n s o u r c e ( w h i c h i s p r e -s e n t f o r s t a r t - u p ) .

    T h e p a r a m e t e r M h a s b e e n i n t r o d u c e d i n t h em e a n p o w e r k i n e t i c s f o r m u l a t i o n s . 2 ' 3 It can beo b t a i n e d b y i n t e g r a t i o n o f t h e n e u t r o n k i n e t i c se q u a t i o n s d u r i n g a p u l s e , i n t r o d u c i n g t h e a p p r o -p r i a t e r e a c t i v i t y p u l s e .

    Com binat ion o f Eq s . (1 ) and (2 ) g i ve s a d i f -f e r e n c e e q u a ti o n f o r t h e p r e c u r s o r c o n c e n t r a t i o n sa t the end of a pu lse in t e rm s o f the va l ue s be for ethe pu lse and M(p)} the value of M c o r r e s p o n d i n gto the react iv i ty pu lse in the p ' th per iodC {+(p) = C {(p ) + ( f t / 0 ) M(p) [EXjCj(p) + S ] . (3)i

    M(p) i s a f u n c t i o n w h i c h i s c o n s i d e r e d t o b ek n o w n a s f a r a s t h e d i s c r e t e k i n e t i c s a r e c o n -c e r n e d . I t c a n b e d e t e r m i n e d b e f o r e h a n d b yone o f the usu a l m etho ds o f t rea t ing rea ct iv i tye x c u r s i o n s . F o r in s t a n c e , a s a n a p p r o x i m a t i o nw h i c h i s q ui te s a t i s f a c t o r y f o r s m a l l p u l s e d r e -a c t o r s th e p o i n t n e u t r o n k i n e t i c s f o r m u l a t i o n w i t h -o u t f e e d b a c k m a y b e u s e d f o r t h e d e t e r m i n a t i o n o fM. T h e e q u a t i o n f o r t h e f i s s i o n r a t e w i s

    dw _ ew_ Stotdt T + TV (4 )

    wh ere r i s the prom pt gener a t ion t im e and e = p -/3 i s t h e p r o m p t r e a c t i v i t y . I t i s u s u a l l y a s s u m e dthat the peak of the rea ct i v i t y pu ls e has a pa ra -b o l i c s h a p e e x p r e s s e d i n t h e f o r m= 6m - avzt2 (5 )

    with em t h e p e a k p r o m p t r e a c t i v i t y , a t h e p a r a b o l i cc o n s t a n t a n d v t h e v e l o c i t y o f t h e m o v i n g p a r t .A n a p p r o x i m a t e i n t e g r a t i o n o f E q . ( 4 ) u s i n g

    E q . (5 ) y i e l d s a n a n a l y t i c r e l a t i o n f o r M , v a l i dw h e n em i s w e l l a b o v e p r o m p t c r i t i c a l

    M = (av2em e x p4 ; /2

    3 Tiav2) /2 ( 6 )T h e r e l a t i o n M(em ) can be obta ine d for the who lerange o f em, i n c l u d i n g t h e p u l s e d s u b c r i t i c a lr e g i o n , b y n u m e r i c a l i n t e g r a t i o n o f E q s . ( 4 ) a n d( 5) u s i n g a s t a n d a r d r e a c t o r k i n e t i c s c o d e . T h e nthe va lue M(p) i s o b t a i n e d i m m e d i a t e l y u s i n g th eva lue o f em at the p'th p u l s e .

  • 7/29/2019 nse_v37_n2_pp186-191

    3/6

    The se m ethods for determ ining M(p) have beenr e c a l l e d f o r r e f e r e nc e pu r po s e s . Ho w e v e r , w h i l ean expl ici ty expression [of the type of Eq. (6)] isrequ ired for the ap pl i ca t ion o f the di sc rete k i -net i cs method, i t s determinat ion i s independentfrom thi s method.As ment ioned ear l i er , the l inear dependencebetween Fp a n d S t o t use d in Eq. (2 ) i s not a ne ce s -sary fea ture o f the di scr ete k inet i c s method.Exten s ions can be made to treat acc e ler ato rpu l s e d r e a c t o r s o r s y s t e m s w he r e r e a c t i v i t y f e e d -back during the pulse is impo rtant.B. Between Pulses

    We a ssum e that between the pu l ses the promptreact iv i ty (p - 13) has the constan t value -e 0 . Thef i s s ion rate fo l lows the source wi th neg l ig ibledelay, and from Eq. (4) ,Mt) = |~E + S

    The pre cur sor equat ions become= ( 8 )

    with boundary conditions C,(0) = C, + .We see fr om Eq. (8 ) that the pre cur sor conc en-trations at the end of the period Ci (T ) can beexp res sed in the ter m s o f the in i t ia l va lues and S ,for a given set of constants ft, A,-, e 0 , T. To obtainthese exp res s ion s w e f i rs t cons ide r the cas e wi thno e x t e r na l s o u r c e .No Externa l SourceWe w rite the so lution for C,-( /) in ter m s of theGreen's function G,-?(f) which gives the number ofi'th pre cur sor s at t ime t r e s u l t i ng f r o m o ne j ' t hpr e c u r s o r at t i m e z e r o . The n ,

    Ciip (T)Cj+(p) , (9)/wh ere we se e fro m Eq. (8) that G t-,(f) for 0 < t < Ti s the solution to the equa tions

    dGif/dt = - A G if + (h/e0) E ^ mGmj (10)msub jec t to boundary con dition s G,,(0) = 6,y.S ince G-y (:T) = Gij is a fun ct ion on ly of A,-, /3;, e 0and T, which are o f ten cons tant for a whole ser iesof pr ob lem s, the form ulation in Eq. (9) is ver ycon ven ien t. A G,-? matrix can be readi ly ca lcula tedby num erica l methods from Eq. (10) .

    With External SourceTo obtain the solution of the inhom ogene ousEq. (8) with external source, we use Eq. (9) assolutio n of the ho mog ene ous equation and obtain a

    solution of the inhomogeneous equation by intro-ducing a function g{{t ) equal to the numbe r of i 'thpr e c ur s o r s a t t i m e t resul t ing from one sourceneutron introduced at t im e ze ro . Then the inho -mogeneous so lut ion may be wri t tencjnh (T) = f : gi (T - t) S(t) d t s f j g. (t) dt , (11)where S is the average value of the externalsou rce during the per iod. (Thus, the solutio n isa l so good for a sour ce s trength which var i ess lowly in t ime. )

    Fro m Eq. (8) we s ee that g { i s the solution ofthe equationW = - + T0 S ^ (12)

    with boundary condition

    Comparing Eqs. (10) and (12) defining Gij and gi,we see thatgi(t) = Gi, (t) . & . (13)i e

    ThusCinh(r) S s (14)

    /where we define

    Aa = fo GijiDdt . (15)The complete solution for C,- (p + 1) with externalsource is the sum of Eqs. (9) and (14)CAP + 1) = E Gi,, C/ (p) + f E P>iAa (16)

    7 fc jC. Com plete Precursor Difference EquationFormulation

    We now have obtained the diff ere nc e equations(3 ) and (16) exp ress ing the change in pre cur sorconcentrations over one period as a function of theini t ia l va lues , M (em), S , T, e 0 and the kinet i c sp a r a m e t e r s Pi a nd A I f d e s i r e d , a n e x p r e s s i o ncon tain ing on ly C,- or C,+ can be obtained by com-bining the two equ ations. In pr act ice , i t i s con -venien t to make the ca lculation in two step saccording to Eqs. (3) and (16).D. Other Quan tities of Interest

    N um be r o f F i s s i o ns Be t w e e n P u l s e sThe number o f f i s s ions between pul ses in thep' th period Fb(p ) i s calcu lated as \

    Fb(p)=f?w(t)dt (17a)

    / ( w o ) . ( 7)

  • 7/29/2019 nse_v37_n2_pp186-191

    4/6

    and us ing Eq. (7 ) th i s bec om esF ^ ^ ^ ^ i f o d t C M )

    Using Eq. (16) and the definit ion Eq. (15)JJ dtCi (t) = AijC+ip) + 1 0/ >t o

    3

    (17b)i n s t e a dy s t a t e /

    M/T + j3/e 0 = 1 . (23 )If we con side r Eq. (22) as a se t of l ine ar eq ua-t ions , we may formal ly express the so lut ion forthe pr ecu rso r c oncen trations at the end of thepulse in s tead y-s ta t e operat ion C? us ing m atr ixnotation asw he r e

    a{j = f*dt .Aij{t) ,and thus,

    ( 1 8 )Cf- = Bi w

    with

    ve 0X

    STve 0

    fyvXi ""i

    (24)

    (25)where B i f are e l e me nts o f the inve rse of the B {jmatr ix which has matr ix e l ements( i ^ s ^ ) ( H ^ ^

    v fo vn n 1 +V a c an rtn /4 f o yvyi rr> t k o ^ 0 / (26)With no externa l sou rce , the second term on ther ight s ide i s zero .Mean Fi s s ion Rate or Power in the Per iodThe mean fiss ion rate in the period is

    w(p) = (l/T)[Fp(p) + Fb(p)] , (19)w h e r e Fp(p ) an d Fb{p ) are given by Eq s. (2) and( 1 7 c ) , r e s pe c t i v e l y .

    Pr ecu rso rs Concentrat ions in Steady Sta teIt i s of in ter est to know the values of C,- (p )}Cf(p) in s teady-s ta te condi t ions , in part i cular , tohave s tart ing va lues for a d i sc ret e k inet i cs ca lc u-la t ion. We cons ider two ca se s : pu l sed cr i t i ca l

    (no source) ; pul sed subcri t i ca l wi th source .Pulsed Critical:

    In this ca se , we us e Eq. (19) with Eq s. (2) , (9) ,and (17c) to exp re ss the mean pow er in ter m s oft he pr e c u r s o r c o nc e nt r a t io ns . A f t e r s o m e r e a r -ranging, we obtainw (20 )The m ean (per iod-a vera ged ) value of the z'thprecursor concentrat ion in s teady s ta te i s ob-ta ined from the neutron precursor equat ion as

    Ci = & vw ( 2 1 )and thus, j3vw = J^ X {Ci, so we may wri te from Eq.(20)

    C , . = s ( f ' r e l i c t . ( 2 2 )We m ay introduce in Eq. (22) the pu lsed c ri t i -ca l i ty condi t ion, which expresses that product ionand decay o f precursors during a per iod are equal

    The prec urs or concentrat ions a t the beg inningof the pu lse in st ead y state C,- can be obtainedusing Eq. (9)

    C, = E Gij C* (27)The inverse matr ix (B {j) _1 can be eas i ly ob-ta ined us ing s tandard matr ix invers io n cod es .

    Pulsed Subcritical With SourceSteady -s ta te condi t ions in subc ri t i ca l s ta te canbe obtained by using the condition

    Ci( p + 1) = C i(p ) = Ci . (28)Fro m Eq s. (3) and (16), we may write after som ea l g e br aCi(P + 1) = E G {j C , (P ) + J Pi Gij | e X , Q ( / > ) j

    The equ i l ibrium condition, Eq. (28), g iv es fromEq. (29), the set of equations

    w he r e

    an d

    Z/ Pij Cj - RiS )i

    MPi j = 6 - Gi j - Xj E f ikPikp k

    (30)

    (31)

    We can form al ly exp re ss the so lut ion of the seequations for C { a sCi = ( p Pik1 -R k)s , (33)

  • 7/29/2019 nse_v37_n2_pp186-191

    5/6

    w h e r e P , / " 1 a r e t h e e l e m e n t s o f t h e i n v e r s e o f th eP i ] m a t r i x w h i c h m a y b e e a s i l y f o u n d b y s t a n d a r dm a t r i x i n v e r s i o n m e t h o d s .E. Some Simplifying Approximations

    W h e n \{T 1 , t he e x p r e s s i o n s o b ta in e d a b o vec a n b e s i m p l i f i e d b y u s i n g a n a p p r o x i m a t i o n o f t h eG r e e n ' s f u n c t i o n G ij i n w h i c h w e c o n s i d e r o n l yd i r e c t z' th p r e c u r s o r p r o d u c t i o n f r o m t h e j ' t hs o u r c e p r e c u r s o r a n d w e n e g l e c t a l l p r e c u r s o rd e c a y d u r i n g t h e p e r i o d . 3 T h i s i s e q u i v a l e n t t oc o n s i d e r i n g t h e r i g h t - h a n d s i d e o f E q . ( 1 0 ) a sc o n s t a n t a t t h e i n i t i a l v a l u e . I n t e g r a t i o n o v e r t h ep e r i o d t he n g i v e s

    % =3i + j (34)

    wi th A/ = A, (l - /3,/e 0) . (35)W i t h t h i s a p p r o x i m a t i o n , A t j a n d b e c o m e

    P i X j T 2

    e 0 2

    (36)ir i* J

    /3A/ T 3e 0 6

    (37)i * j

    With this ap pr ox im ati on fo r a,-,-, the las t ter m int h e b r a c k e t i n E q . ( 1 7 c ) b e c o m e s

    1e o T ^

    T

    2e 0

    h ? ftX w h e r e t h e l a s t t e r m i s ju s t t h e f i s s i o n s d u e t oaImpro ved ap proximations can also be used. For ex -ample, a l lowance for decay of source precurso rs g ives

    Gn = e x p ( - X j T ) ,while allowance for decay of one precursor (7'th) gives

    ftX/,T r i - exp(-A;T)"| ^ 0iXjT / X'fT \~ e0 L A)T J e0 V1 " 2 / *

    These relations are useful for improving values for theshortest l ived precursor.

    p r o m p t m u l t i p l i c a t i o n o f t h e s o u r c e n e u t r o n s e m i t -t e d d u r i n g t h e p e r i o d .F. Relations for One-Precursor-Group Model

    A o n e - p e r c u r s o r - g r o u p m o d e l i s s u f f i c i e n t f o rs o m e k i n e t i c s a n d d y n a m i c s s t u d i e s . T h e r e d u c -t i o n o f t h e p r e v i o u s m u l t i g r o u p e q u a t i o n s t o o n eg r o u p y i e l d s :

    Fp(p) = [M{p)/M (AC +S )C+(p) = [1 + AM(p)] C(p) + M(p) S

    C(p+1) = GC(p) + (p/e0)ASFb(p) = [AC +(p)/ve0]A + (ST/ve0)

    G = e x p [ - A ( l - / 3 / e 0 ) T ] = e x p ( - A T )A = ( 1 - G ) / A '

    T h e s e e q u a t i on s r e d u c e t o t h e n o - s o u r c e c a s ew i t h S = 0 . T h e s t e a d y - s t a t e c o n d i t i o n s r e d u c e t ot h e f o l l o w i n g :

    (38)

    no source

    C~ =ft vw p vwA

    1 l + A Te 0 2(1 - AT)(39)

    with sourceGM + A - tLc~ sL " 1 - ( 1 + X M ) G

    PX'TK +2 e 0 ( l - A T )A T SA (40)A T

    w h e r e , i n t h e a p p r o x i m a t i o n s , E q s . ( 3 4 ) a n d ( 3 6 )h a v e b e e n u s e d , an d t h e v a l u e of t h e s u b c r i t i c a lm u l t i p l i c a t i o n f a c t o r h a s b e e n i n t r o d u c e d

    K=M/T+j3/e0 . (41)W e n o t e , f o r c o m p a r i s o n , t h e r e l a t i o n s f o r t h e

    m e a n ( i . e . , p e r i o d a v e r a g e d ) p r e c u r s o r c o n c e n -t r a t i o n s :no source

    with sourceC = fivw/X (42)

    C = {S/X)K/{1 -K) . (43III. "INHOUR EQUATIO N" FORPULSED REACTORS

    A. General FormulationIn ord er to obta in an ' ' inhour equ at io n" for the

    b e h a v i o r o f Q(p), w e c o n s i d e r a s t e p c h a n g e i n

  • 7/29/2019 nse_v37_n2_pp186-191

    6/6

    reac t iv i ty from pulsed cr i t i ca l i ty and see k s o lu -tions to the difference equations of the formC t{p + 1 ) = e x p ( u > r ) Ciip) . (44)

    Introducing this into Eq . (16) and usin g Eq . (3) toel im ina te C}, we obtaine x p ( w r ) C ^ p ) = E G i j C ji p ) + j Z G i j p j

    [ E HCkiP)\ (45)Th is i s a s et of hom ogen eous equations which canbe wri t ten in matr ix form as

    (F ) [C,-] = exp(cor) [C{] (46)wi th the matr ix e l ements

    Fi j = G ( 7 + ^ X ; - E foGih (47)P k

    Sett ing the determinant /F - e x p ( w T ) E / = 0 , where is a unit ma trix, y ield s the inhour equation forthe decay constants w k .B. Simplification for Slow Transients

    For per iods where wT 1 , w e m a y a p p ro x i-m a t e e xp( co r ) = 1 + u T . We m a y a l s o us e t heapproximate Eq. (34) for G i;-, valid for X,- T 1 .Introducing these approximations into Eq. (45) andcarry ing through the summation over j y i e l ds- ( . . x a r C f ^ j M ^ r /Xf - o 1 T

    x e ^ C i ( p ) = o

    ftAf h M1 (w+Xi) Ie0 T 1

    We ne gle ct [X,- - (l /e 0 ) S fo>k\T compared tounity and introduce the multipl ication factor Kfrom Eq. (41); then

    Multiply by X,/(w + X,)T and sum over i; cancel thec o m m o n t e r m Z Xm Cm (p ) to find

    1 = ^ E P Aij3(w + Xf) (48)

    Th is m ay be rear ran ged to give the inhour equ a-t ion prev iou s ly determ ined from the mean powerk i ne t i c s , 2 ' 3

    K y |3(w + Xf ) (49)

    The pulsed crit ical i ty condition K = 1 is see n toresul t from thi s equat ion.

    I V . C O N C L U S I O N

    The d i scre te neutron kinet i cs model for pul sedreactors developed in th i s paper i s an extens ion o fthe m ean kinet i cs model which a l lows accuratetreatment o f pul sed reactor kinet i cs for muchf a s t e r t r a ns i e n t s .An inhour equation for pulsed reactors hasbeen developed from the di sc rete k inet i cs equa-tions and shown to r educ e to the inhour equationdetermined from the mean power kinet i cs in thel imit of periods much longer than the pulse period.The di f fer ence formulat ion developed i s wel lsuite d for digital calculation . The multigrou ptrea tme nt has b een include d in a digital pulsedreacto r s imulat ion code inc luding therma l andcontro l feedback loops . The one-grou p treatmenti s be ing incorpo rated in a d ig i ta l -ana logue pul sedreacto r s im ulato r . These app l i ca tions wi l l bedescr ibed in future publ i ca t ions .