15
NRLMSIS 2.0: New Formulation, New Data Acknowledgement: This work was supported by the Chief of Naval Research and by NASA Many, many thanks to the data providers! John Emmert, Doug Drob, David Siskind Space Science Division, Naval Research Lab Mike Picone Voluntary Emeritus Program, Naval Research Lab 1) NRLMSISE00 History and Formulation 2) NRLMSIS 2.0 Data and Formulation 3) NRLMSIS 2.0 Results

NRLMSIS 2.0: New Formulation, New Datacedarweb.vsp.ucar.edu/wiki/images/d/dd/2017GEM_Tuesday_Emmer… · NRLMSIS 2.0: New Formulation, New Data Acknowledgement: This work was supported

  • Upload
    others

  • View
    9

  • Download
    0

Embed Size (px)

Citation preview

Page 1: NRLMSIS 2.0: New Formulation, New Datacedarweb.vsp.ucar.edu/wiki/images/d/dd/2017GEM_Tuesday_Emmer… · NRLMSIS 2.0: New Formulation, New Data Acknowledgement: This work was supported

NRLMSIS 2.0: New Formulation, New Data

Acknowledgement: This work was supported by the Chief of Naval Research and by NASA

Many, many thanks to the data providers!

John Emmert, Doug Drob, David SiskindSpace Science Division, Naval Research Lab

Mike PiconeVoluntary Emeritus Program, Naval Research Lab

1) NRLMSISE‐00 History and Formulation

2) NRLMSIS 2.0 Data and Formulation

3) NRLMSIS 2.0 Results

Page 2: NRLMSIS 2.0: New Formulation, New Datacedarweb.vsp.ucar.edu/wiki/images/d/dd/2017GEM_Tuesday_Emmer… · NRLMSIS 2.0: New Formulation, New Data Acknowledgement: This work was supported

NRLMSIS History• The Mass Spectrometer and Incoherent Scatter radar model (MSIS) was created in 

1977 by Alan Hedin at Goddard Space Flight Center, based in large part on Atmospheric Explorer data.

• It grew out of a 1974 statistical model of Ogo 6 mass spectrometer data.• MSIS originally represented the upper thermosphere. Upgrades followed:

• 1983: Rocket data, extended to lower thermosphere• 1986: DE‐2 data, atomic nitrogen added, expanded formulation• 1990: Extended to ground

• After Alan Hedin retired from NASA in 1995,  Mike Picone of NRL’s Space Science Division continued development of the model with Alan’s assistance.

• The current version, NRLMSISE‐00, added mass density from satellite drag, O2 data from solar occultation, and a new “anomalous O” species above 500 km.

Page 3: NRLMSIS 2.0: New Formulation, New Datacedarweb.vsp.ucar.edu/wiki/images/d/dd/2017GEM_Tuesday_Emmer… · NRLMSIS 2.0: New Formulation, New Data Acknowledgement: This work was supported

MSIS papers are top 3 cited papers in JGR Space Physics

Page 4: NRLMSIS 2.0: New Formulation, New Datacedarweb.vsp.ucar.edu/wiki/images/d/dd/2017GEM_Tuesday_Emmer… · NRLMSIS 2.0: New Formulation, New Data Acknowledgement: This work was supported

MSIS Applications• Prediction of geophysical conditions at specific times• Distilled view of the historical observational record• Benchmark for assessing new measurement techniques and first‐principles models

• Boundary and initial conditions for first‐principles models• Interpolation among sparse observations• Attribution of observed variations• First guess (Bayesian prior) for measurement retrievals• Background conditions for other models (e.g., wave propagation)

Temperatures at 90 km over Mohe, China (54N, 122E) from MSIS (left) and a Meteor Radar (right). From Liu et al., JGR, 2017

Page 5: NRLMSIS 2.0: New Formulation, New Datacedarweb.vsp.ucar.edu/wiki/images/d/dd/2017GEM_Tuesday_Emmer… · NRLMSIS 2.0: New Formulation, New Data Acknowledgement: This work was supported

NRLMSISE‐00 OperationGTD7 ‐ Gets Temperature and Density: GTD7(IYD,SEC,ALT,GLAT,GLONG,STL,F107A,F107,AP,MASS,D,T)

Input:IYD YEAR AND DAY AS YYDDD (day of year from 1 to 365 or 366; year ignored)

SEC UNIVERSAL TIME (s); should be consistent with GLONG and STL

ALT GEODETIC ALTITUDE (km)

GLAT GEODETIC LATITUDE (degrees)

GLONG GEODETIC LONGITUDE(degrees)

STL LOCAL APPARENT SOLAR TIME (hours)

F107A 81 day AVERAGE OF F10.7 FLUX (centered on day DDD)

F107 DAILY F10.7 FLUX FOR PREVIOUS DAY

AP 7‐element array: Daily Ap, ap(t), ap(t‐3h), ap(t‐6h), ap(t‐9h), Ap(12‐33h), Ap(36‐57h)First element used  when SW(9) = 1, all elements used when SW(9) = ‐1

MASS MASS NUMBER; 48 for all, 0, for temperature, 1 for H, 2 for He, 14 for N, etc. 

Output:1 2 3 4 5 6 7 8 9

D = Number Density (cm‐3) He O N2 O2 Ar

(g/cm3)H N Hot O

T = Temperature Tex T(z)

Page 6: NRLMSIS 2.0: New Formulation, New Datacedarweb.vsp.ucar.edu/wiki/images/d/dd/2017GEM_Tuesday_Emmer… · NRLMSIS 2.0: New Formulation, New Data Acknowledgement: This work was supported

Asymptotic temperature profile defined by exospheric temperature Fully mixed hydrostatic equilibrium below ~100 km Diffusive equilibrium (~species hydrostatic equilibrium ) above ~200 km Approximate hydrostatic equilibrium between 100 and 200 km Temperature profile constructed so that the integral can be computed in closed‐form

Number Density

O2

N2

ON

HeH

Solar Min

Solar Max

Diff

usiv

e Eq

uilib

rium

Fully Mixed

Asymptotic Temperature

0

00

0

1ln ln ln mgTn n dT k T

0

0,0

0

1ln ln 1 ln ii i

m gTn n dT k T

NRLMSISE‐00 Physical Constraints

Ref. Ideal gas Hydrostatic

Ref. Ideal gas Hydrostatic(w/thermal diff)

Page 7: NRLMSIS 2.0: New Formulation, New Datacedarweb.vsp.ucar.edu/wiki/images/d/dd/2017GEM_Tuesday_Emmer… · NRLMSIS 2.0: New Formulation, New Data Acknowledgement: This work was supported

NRLMSISE‐00 Formulation Vertical temperature profile (17 parameters)

• Cubic splines in 1/T below 120 km (14 parameters)• Bates profile above 120 km (Tex, T120, )

Species density parameters (8 per species)• Reference density (1)• Mixing ratio relative to N2 (1)• Turbopause height (1)• Corrections for dynamic flow and chemistry  (5)

Expansion of vertical parameters (up to ~140 per param.)• Associated Legendre fns in latitude (up to degree 6)• Polynomials in daily and 81‐day average solar activity

(F10.7) up to order 2• Intra‐annual harmonics up  to semiannual• Local time harmonics up to terdiurnal (migrating tides)• Time history of geomagnetic activity (ap index) via heating function• Longitude harmonics up to order 1 • Universal Time harmonics up to order 1

Total number of nonzero model parameters: ~1280 Limitation: Important nonmigrating tides not included.

120 120

120 120

exp

Shape factorex ex

ex

T T T

T T T

Em

mer

t, A

dv. S

pace

Res

., 20

15

Page 8: NRLMSIS 2.0: New Formulation, New Datacedarweb.vsp.ucar.edu/wiki/images/d/dd/2017GEM_Tuesday_Emmer… · NRLMSIS 2.0: New Formulation, New Data Acknowledgement: This work was supported

NRLMSISE‐00 Data

Satellite Drag: Orbit‐derived, accelerometer

()

Alti

tude

(km

)0

100

20

0

3

00

400

500

600

1960 1970 1980 1990 2000

Mass Spectrometer

(T, ni)

Incoherent Scatter Radar (T)

ISR (T)

Occul‐tation(O2)

MAP tables (~CIRA‐86)

Misc RocketISR (T)

Reanalysis (T, P)

Lidar (T)

Infrared

 (T, n

i)

Ultraviolet (T, n

i)

Microwave (T)

Occultatio

n (T)

New Data for NRLMSIS 2.0:Orbit, accelerometer, ISR, and:

Page 9: NRLMSIS 2.0: New Formulation, New Datacedarweb.vsp.ucar.edu/wiki/images/d/dd/2017GEM_Tuesday_Emmer… · NRLMSIS 2.0: New Formulation, New Data Acknowledgement: This work was supported

New Data• NOAA meteorological reanalyses in the troposphere/stratosphere.

• Extensive new temperature and composition data in the mesosphere and lower thermosphere (incl. TIMED/SABER, Aura/MLS, ACE, AIM/Sofie, Odin/OSIRIS, Lidar).

• Extensive new orbit‐derived and accelerometer densities, UV remote sensing data, and ground‐based FPI temperaturesin the thermosphere.

1) NRLMSISE‐00 History and Formulation2) NRLMSIS 2.0 Data and Formulation3) NRLMSIS 2.0 Results

Page 10: NRLMSIS 2.0: New Formulation, New Datacedarweb.vsp.ucar.edu/wiki/images/d/dd/2017GEM_Tuesday_Emmer… · NRLMSIS 2.0: New Formulation, New Data Acknowledgement: This work was supported

NRLMSIS 2.0: Formulation Changes

NRLMSISE‐00 NRLMSIS 2.0

Temperature Profile Continuity C1 Continuous C2 Continuous

Transition from fully mixed to diffusively separated

Geometric average of mixed and diffusive profiles

Height‐dependent effective mass

O profile near and below peak

Hyperbolic tangent (logistic) function

Above 85 km: Modified Chapman function

Below 85 km: Cubic splines decoupled from T

Thermal Diffusion Applied to H, He, Ar

Not used: Incompatible with static representation, 

inadequately supported by data

Fourier expansion fitting parameters Amplitude and Phase Sine and cosine coefficients

Altitude representationGeopotential height differences  between 

geometric reference heights

Internally uses global geopotential height function

Page 11: NRLMSIS 2.0: New Formulation, New Datacedarweb.vsp.ucar.edu/wiki/images/d/dd/2017GEM_Tuesday_Emmer… · NRLMSIS 2.0: New Formulation, New Data Acknowledgement: This work was supported

Transition from Fully Mixed to Diffusively SeparatedNRLMSISE‐00 NRLMSIS 2.0

260

220

180

140

100

60

20

1

2828.95

AA Ad m

s

n n n

Am

0

00

0

ln ln ln1 R R

effH

MgT Rn n dT k T e

Mixed nmDiffusive ndMerged

log nN2

Ref. Ideal gas Hydrostatic Topside Corr.(O2, He, H)

Effective Mass (Meff) transitions from 28.9 amu to species massEffective Mass (Meff) transitions from 28.9 amu to species mass

Merged profile: weighted averageof diffusive andmixed profiles

Page 12: NRLMSIS 2.0: New Formulation, New Datacedarweb.vsp.ucar.edu/wiki/images/d/dd/2017GEM_Tuesday_Emmer… · NRLMSIS 2.0: New Formulation, New Data Acknowledgement: This work was supported

12

Problems with merged profile in NRLMSISE‐00 (fixed in 2.0)

NRLMSISE‐00 Helium Effective Mass Profile

Negative effective mass Density increases with height!

Discontinuities in effective mass Density profile not C1 continuous.Discontinuities in effective mass Density profile not C1 continuous.

Geo

pote

ntia

l H

eigh

t (km

)

Page 13: NRLMSIS 2.0: New Formulation, New Datacedarweb.vsp.ucar.edu/wiki/images/d/dd/2017GEM_Tuesday_Emmer… · NRLMSIS 2.0: New Formulation, New Data Acknowledgement: This work was supported

NRLMSIS 2.0: Test fits of O profile (5N, Day of year 150)

Daytime (14 LT) Nighttime (2 LT)

Species Hydrostatic Equilibrium with Variable Mass

Modified Chapman Layer

Cubic B Splines (decoupled from T)

0

00

0

ln ln ln expeff C

C

M Tgn n d Ck T T H

-- NRLMSISE-00 -- SABER Climatology-- Fit with MSIS above 120 km, SABER below 80 km

Ref. Hydrostatic Ideal gas Chapman term

Page 14: NRLMSIS 2.0: New Formulation, New Datacedarweb.vsp.ucar.edu/wiki/images/d/dd/2017GEM_Tuesday_Emmer… · NRLMSIS 2.0: New Formulation, New Data Acknowledgement: This work was supported

14

NRLMSIS 2.0 Fortran Code Goals• Fortran 90• Compatible with gfortran compiler• OpenMP compatible• Speed comparable to or faster than NRLMSISE‐00

Remaining Tasks• Add geomagnetic activity• Finalize model parameters• Code and speed enhancements• Documentation

Planned Enhancements for NRLMSIS 2.1• Use other solar activity inputs besides F10.7• Add nitric oxide (NO)• Improve geomagnetic activity dependence

Page 15: NRLMSIS 2.0: New Formulation, New Datacedarweb.vsp.ucar.edu/wiki/images/d/dd/2017GEM_Tuesday_Emmer… · NRLMSIS 2.0: New Formulation, New Data Acknowledgement: This work was supported

17

NRLMSIS 2.0 Summary Arguments: Position, time, solar irradiance, geomagnetic activity Output: T(z), Tex (K); N2, O2, O, He, H, Ar (cm‐3);  (g cm‐3) Domain: Ground to exosphere 

Formulation Changes Include: • Seamless transition from fully mixed to diffusive separation• New O profile, down to 50 km• C2 continuity in temperature profile

New Data Include: • NOAA meteorological reanalysis data in the lower atmosphere.• Extensive new temperature and composition data in the mesosphere 

and lower thermosphere.• Extensive new orbit‐derived an accelerometer densities, UV remote 

sensing data, and ground‐based FPI temperatures in the thermosphere.

Interested in using the new model (version 1.95)?Contact John Emmert ([email protected]) or Doug Drob ([email protected])