15
On Linear and Nonlinear Beltrami Systems Jarmo Jääskeläinen University of Helsinki November 9, 2012 Lectio praecursoria

November 9, 2012 Lectio praecursoriausers.jyu.fi/~jatujaas/files/Lektio_HANDOUT.pdf · On Linear and Nonlinear Beltrami Systems Jarmo Jääskeläinen University of Helsinki November

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: November 9, 2012 Lectio praecursoriausers.jyu.fi/~jatujaas/files/Lektio_HANDOUT.pdf · On Linear and Nonlinear Beltrami Systems Jarmo Jääskeläinen University of Helsinki November

On Linear and Nonlinear Beltrami Systems

Jarmo Jääskeläinen

University of Helsinki

November 9, 2012

Lectio praecursoria

Page 2: November 9, 2012 Lectio praecursoriausers.jyu.fi/~jatujaas/files/Lektio_HANDOUT.pdf · On Linear and Nonlinear Beltrami Systems Jarmo Jääskeläinen University of Helsinki November

Grötzch ProblemHerbert Grötzsch asked in 1928 the most nearly conformal mappingbetween a square and a rectangle.

Conformal mapping preserves angles locally.

Jarmo Jääskeläinen On Linear and Nonlinear Beltrami Systems Nov 9, 2012 1 / 14

Page 3: November 9, 2012 Lectio praecursoriausers.jyu.fi/~jatujaas/files/Lektio_HANDOUT.pdf · On Linear and Nonlinear Beltrami Systems Jarmo Jääskeläinen University of Helsinki November

Quasiconformal Mappings

radius of the smallest disk outsideradius of the biggest disk inside

=L(z, r)l(z, r)

A homeomorphism f : C→ C is quasiconformal if for every point z

lim supr→∞

L(z, r)l(z, r)

6 K

one point to one point, mapping and its inverse are continuous (ifpoints are close then the image of the points are close)

Jarmo Jääskeläinen On Linear and Nonlinear Beltrami Systems Nov 9, 2012 2 / 14

Page 4: November 9, 2012 Lectio praecursoriausers.jyu.fi/~jatujaas/files/Lektio_HANDOUT.pdf · On Linear and Nonlinear Beltrami Systems Jarmo Jääskeläinen University of Helsinki November

Quasiconformal MappingsInfinitesimal behaviour can be characterized by the derivative.

disks 7→ ellipsoids

major axisminor axis

=|∂z f |+ |∂z̄ f ||∂z f |− |∂z̄ f |

6 K(z) 6 K

Conformal functions (preserve angles locally) map infinitesimallydisks to disks.

Jarmo Jääskeläinen On Linear and Nonlinear Beltrami Systems Nov 9, 2012 3 / 14

Page 5: November 9, 2012 Lectio praecursoriausers.jyu.fi/~jatujaas/files/Lektio_HANDOUT.pdf · On Linear and Nonlinear Beltrami Systems Jarmo Jääskeläinen University of Helsinki November

Back to GrötzchHerbert Grötzsch asked in 1928 the most nearly conformal mappingbetween a square and a rectangle.

major axisminor axis

=|∂z f |+ |∂z̄ f ||∂z f |− |∂z̄ f |

6 K(z) 6 K most nearly = smallest K

f (z) =12

(aR

aS+

bR

bS

)z +

12

(aR

aS−

bR

bS

)z̄

This natural generalization of conformal maps is a superficial reason tostudy quasiconformal functions. Quasiconformal mappings arise inmany questions of geometry and analysis (holomorphic dynamics,elliptic PDEs, etc.)

Jarmo Jääskeläinen On Linear and Nonlinear Beltrami Systems Nov 9, 2012 4 / 14

Page 6: November 9, 2012 Lectio praecursoriausers.jyu.fi/~jatujaas/files/Lektio_HANDOUT.pdf · On Linear and Nonlinear Beltrami Systems Jarmo Jääskeläinen University of Helsinki November

Beltrami Inequality

major axisminor axis

=|∂z f |+ |∂z̄ f ||∂z f |− |∂z̄ f |

6 K(z) 6 K

|∂z̄f | 6 k|∂zf |, k =K − 1K + 1

< 1

Jarmo Jääskeläinen On Linear and Nonlinear Beltrami Systems Nov 9, 2012 5 / 14

Page 7: November 9, 2012 Lectio praecursoriausers.jyu.fi/~jatujaas/files/Lektio_HANDOUT.pdf · On Linear and Nonlinear Beltrami Systems Jarmo Jääskeläinen University of Helsinki November

Beltrami EquationBeltrami inequality

|∂z̄ f | 6 k|∂z f |, k =K − 1K + 1

< 1.

Beltrami equation

∂z̄ f (z) = µ(z)∂z f (z), |µ(z)| 6 k,

named after Eugenio Beltrami(1835–1899); studied differentialgeometry and mathematicalphysics.

Already Carl Friedrich Gauss(1777–1855) used the equationwhen he studied isothermalcoordinates.

Jarmo Jääskeläinen On Linear and Nonlinear Beltrami Systems Nov 9, 2012 6 / 14

Page 8: November 9, 2012 Lectio praecursoriausers.jyu.fi/~jatujaas/files/Lektio_HANDOUT.pdf · On Linear and Nonlinear Beltrami Systems Jarmo Jääskeläinen University of Helsinki November

Examples (Quasicircles)Koch snowflake

Douady Rabbit

the rabbit on right: RBerenguelJarmo Jääskeläinen On Linear and Nonlinear Beltrami Systems Nov 9, 2012 7 / 14

Page 9: November 9, 2012 Lectio praecursoriausers.jyu.fi/~jatujaas/files/Lektio_HANDOUT.pdf · On Linear and Nonlinear Beltrami Systems Jarmo Jääskeläinen University of Helsinki November

Examples (Radial Stretching)

Jarmo Jääskeläinen On Linear and Nonlinear Beltrami Systems Nov 9, 2012 8 / 14

Page 10: November 9, 2012 Lectio praecursoriausers.jyu.fi/~jatujaas/files/Lektio_HANDOUT.pdf · On Linear and Nonlinear Beltrami Systems Jarmo Jääskeläinen University of Helsinki November

Reduced Beltrami EquationBeltrami equation

∂z̄ f (z) = µ(z)∂z f (z), |µ(z)| 6 k.

Reduced Beltrami Equation

|∂z̄ f | = λ(z) Im∂z f (z), |λ(z)| 6 k < 1

Reduced Beltrami inequality

|∂z̄ f | 6 k| Im∂z f |.

Jarmo Jääskeläinen On Linear and Nonlinear Beltrami Systems Nov 9, 2012 9 / 14

Page 11: November 9, 2012 Lectio praecursoriausers.jyu.fi/~jatujaas/files/Lektio_HANDOUT.pdf · On Linear and Nonlinear Beltrami Systems Jarmo Jääskeläinen University of Helsinki November

Reduced Beltrami EquationReduced Beltrami Equation

|∂z̄ f | = λ(z) Im∂z f (z), |λ(z)| 6 k < 1

Identity is always a solution,f (z) = z.

The identity is the uniquehomeomorphic solution fixingpoints z = 0 and z = 1,i.e., f (0) = 0 and f (1) = 1.

Im∂z f is non-vanishing almost everywhere.

Jarmo Jääskeläinen On Linear and Nonlinear Beltrami Systems Nov 9, 2012 10 / 14

Page 12: November 9, 2012 Lectio praecursoriausers.jyu.fi/~jatujaas/files/Lektio_HANDOUT.pdf · On Linear and Nonlinear Beltrami Systems Jarmo Jääskeläinen University of Helsinki November

Radial Stretching

When rotated by 90◦, the mapping is reduced quasiregular.Jarmo Jääskeläinen On Linear and Nonlinear Beltrami Systems Nov 9, 2012 11 / 14

Page 13: November 9, 2012 Lectio praecursoriausers.jyu.fi/~jatujaas/files/Lektio_HANDOUT.pdf · On Linear and Nonlinear Beltrami Systems Jarmo Jääskeläinen University of Helsinki November

Linear FamiliesLinear families of quasiconformal mappings can be studied with thehelp of a reduced Beltrami equation. That is families ofquasiconformal mappings a f + b g, where a and b are real numbers,e.g., f + g, f − g, 0.1f − 6g, etc.

A linear family of quasiconformal mappings has a unique associatedlinear Beltrami equation,

∂z̄ f (z) = µ(z)∂z f (z) + ν(z)∂z f (z).

∂z̄ f (z) = µ(z)∂z f (z) and ∂z̄ f (z) = λ(z) Im∂z f (z) are linear equations,i.e., if f , g are solutions, then a f + b g is a solution.

Jarmo Jääskeläinen On Linear and Nonlinear Beltrami Systems Nov 9, 2012 12 / 14

Page 14: November 9, 2012 Lectio praecursoriausers.jyu.fi/~jatujaas/files/Lektio_HANDOUT.pdf · On Linear and Nonlinear Beltrami Systems Jarmo Jääskeläinen University of Helsinki November

Nonlinear Situation

Jarmo Jääskeläinen On Linear and Nonlinear Beltrami Systems Nov 9, 2012 13 / 14

Page 15: November 9, 2012 Lectio praecursoriausers.jyu.fi/~jatujaas/files/Lektio_HANDOUT.pdf · On Linear and Nonlinear Beltrami Systems Jarmo Jääskeläinen University of Helsinki November

Uniqueness in Nonlinear Equation

Beltrami Systems = we have uniform ellipticity bound k < 1.

The identity was the unique homeomorphic solution to the reducedBeltrami equation such that 0 7→ 0 and 1 7→ 1. There is a uniquesolution in the case of the Beltrami equation.

The same is true in the nonlinear case under an explicit bound of theellipticity. Namely, if we fix two points, say f (0) = 0 and f (1) = 1, thenthere is a unique solution to nonlinear Beltrami equation ifk(z) < 3 − 2

√2 = 0.17157 . . . when z is near ∞.

Jarmo Jääskeläinen On Linear and Nonlinear Beltrami Systems Nov 9, 2012 14 / 14