234
N15/4/PHYSI/HPM/ENG/TZ0/XX/M 2 pages Markscheme November 2015 Physics Higher level Paper 1

November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

  • Upload
    others

  • View
    76

  • Download
    1

Embed Size (px)

Citation preview

Page 1: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

N15/4/PHYSI/HPM/ENG/TZ0/XX/M

2 pages

Markscheme

November 2015

Physics

Higher level

Paper 1

Page 2: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

– 2 – N15/4/PHYSI/HPM/ENG/TZ0/XX/M

1. C 16. A 31. B 46. – 2. C 17. C 32. C 47. – 3. D 18. D 33. B 48. – 4. C 19. C 34. A 49. – 5. A 20. A 35. D 50. – 6. D 21. C 36. B 51. – 7. B 22. D 37. D 52. – 8. B 23. D 38. A 53. – 9. A 24. B 39. B 54. – 10. D 25. D 40. C 55. – 11. D 26. A 41. – 56. – 12. A 27. B 42. – 57. – 13. C 28. B 43. – 58. – 14. B 29. A 44. – 59. – 15. A 30. C 45. – 60. –

Page 3: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

32EP01

2 hours 15 minutes

32 pages

N15/4/PHYSI/HP2/ENG/TZ0/XX

PhysicsHigher levelPaper 2

Instructions to candidates

• Write your session number in the boxes above.• Do not open this examination paper until instructed to do so.• Section A: answer all questions.• Section B: answer two questions.• Write your answers in the boxes provided.• A calculator is required for this paper.• A clean copy of the physics data booklet is required for this paper.• The maximum mark for this examination paper is [95 marks].

© International Baccalaureate Organization 2015

Monday 9 November 2015 (morning)Candidate session number

8815 – 6502

Page 4: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

32EP02

– 2 – N15/4/PHYSI/HP2/ENG/TZ0/XX

Section A

Answer all questions. Write your answers in the boxes provided.

1. Data analysis question.

An experiment is undertaken to investigate the relationship between the temperature of a ball and the height of its first bounce.

A ball is placed in a beaker of water until the ball and the water are at the same temperature. The ball is released from a height of 1.00 m above a bench. The maximum vertical height h from the bottom of the ball above the bench is measured for the first bounce. This procedure is repeated twice and an average hmean is calculated from the three measurements.

1.00 m

point of release of the ball

maximum vertical position of the ball

h

bench

The procedure is repeated for a range of temperatures. The graph shows the variation of hmean with temperature T.

hmean / m

0.8

0.7

0.6

0.5

8

7

6

8 10 20 30 40 50 60 70 80 90

T / °C

(a) Draw the line of best-fit for the data. [1]

(This question continues on the following page)

Page 5: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

32EP03

– 3 –

Turn over

N15/4/PHYSI/HP2/ENG/TZ0/XX

(Question 1 continued)

(b) A student hypothesizes that hmean is proportional to T 2.

(i) Comment, using two points on your line of best-fit, whether or not this is a valid hypothesis. [3]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(ii) Suggest why using two points cannot confirm that hmean is proportional to T 2. [2]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(c) (i) State the uncertainty in each value of T. [1]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(ii) The temperature is measured using a liquid in glass thermometer. Explain why it is likely that the uncertainty in T is constant. [2]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(This question continues on the following page)

Page 6: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

32EP04

– 4 – N15/4/PHYSI/HP2/ENG/TZ0/XX

(Question 1 continued)

(d) Another hypothesis is that hmean = KT 3 where K is a constant. Using the graph on page 2, calculate the absolute uncertainty in K corresponding to T = 50 °C. [4]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Page 7: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

32EP05

– 5 –

Turn over

N15/4/PHYSI/HP2/ENG/TZ0/XX

2. This question is about gravitation and uniform circular motion.

Phobos, a moon of Mars, has an orbital period of 7.7 hours and an orbital radius of 9.4 ×103 km.

(a) Outline why Phobos moves with uniform circular motion. [3]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(b) Show that the orbital speed of Phobos is about 2 km s–1. [2]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(c) Deduce the mass of Mars. [3]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Page 8: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

32EP06

– 6 – N15/4/PHYSI/HP2/ENG/TZ0/XX

3. This question is about simple harmonic motion (SHM).

The graph shows the variation with time t of the acceleration a of an object X undergoing simple harmonic motion (SHM).

a / m s–2 3

2

1

0

– 1

– 2

– 3

0 2 4 6 8 10 12 t / s

(a) Define simple harmonic motion (SHM). [2]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(b) X has a mass of 0.28 kg. Calculate the maximum force acting on X. [1]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(This question continues on the following page)

Page 9: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

32EP07

– 7 –

Turn over

N15/4/PHYSI/HP2/ENG/TZ0/XX

(Question 3 continued)

(c) Determine the maximum displacement of X. Give your answer to an appropriate number of significant figures. [4]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(d) A second object Y oscillates with the same frequency as X but with a phase difference

of 4π

. Sketch, using the graph opposite, how the acceleration of object Y varies with t. [2]

Page 10: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

32EP08

– 8 – N15/4/PHYSI/HP2/ENG/TZ0/XX

4. This question is about an ideal gas.

The graph shows how the pressure P of a sample of fixed mass of an ideal gas varies with volume V.

P / 105 Pa

2.0

1.9

1.8

1.7

1.6

1.5

1.4

1.3

1.2

1.1

1.0

B

A

C

D

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 V / 10– 4 m3

The temperature of the gas at point A is 85 °C. The gas can change its state to that of point C either along route ABC or route ADC.

(a) Calculate the temperature of the gas at point C. [3]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(This question continues on the following page)

Page 11: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

32EP09

– 9 –

Turn over

N15/4/PHYSI/HP2/ENG/TZ0/XX

(Question 4 continued)

(b) Compare, without any calculation, the work done and the thermal energy supplied along route ABC and route ADC. [3]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Page 12: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

32EP10

– 10 – N15/4/PHYSI/HP2/ENG/TZ0/XX

5. This question is about the photoelectric effect.

(a) Outline why the wave model of light cannot account for the photoelectric effect. [3]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(b) Monochromatic light of wavelength 420 nm is incident on a clean metal surface. The work function of the metal is 2.6 ×10–19 J.

(i) Calculate, in eV, the maximum kinetic energy of the photoelectrons emitted. [3]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(ii) The intensity of the light is 5.1 µW m–2. Determine the number of photoelectrons emitted per second for each mm2 of the metal surface. Each photon has a 1 in 800 chance of ejecting an electron. [3]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Page 13: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

32EP11

– 11 –

Turn over

N15/4/PHYSI/HP2/ENG/TZ0/XX

Please do not write on this page.

Answers written on this pagewill not be marked.

Page 14: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

32EP12

– 12 – N15/4/PHYSI/HP2/ENG/TZ0/XX

Section B

This section consists of four questions: 6, 7, 8 and 9. Answer two questions. Write your answers in the boxes provided.

6. This question is in two parts. Part 1 is about electric fields and radioactive decay. Part 2 is about waves.

Part 1 Electric fields and radioactive decay

An ionization chamber is a device which can be used to detect charged particles.

sensitive ammeter

parallel metal plates

V

window

charged particle aird

ionization chamber

The charged particles enter the chamber through a thin window. They then ionize the air between the parallel metal plates. A high potential difference across the plates creates an electric field that causes the ions to move towards the plates. Charge now flows around the circuit and a current is detected by the sensitive ammeter.

(a) On the diagram, draw the shape of the electric field between the plates. [2]

(This question continues on the following page)

Page 15: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

32EP13

– 13 –

Turn over

N15/4/PHYSI/HP2/ENG/TZ0/XX

(Question 6, part 1 continued)

(b) The separation of the plates d is 12 mm and the potential difference V between the plates is 5.2 kV. An ionized air molecule M with charge +2e is produced when a charged particle collides with an air molecule.

(i) Calculate the electric field strength between the plates. [1]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(ii) Calculate the force on M. [2]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(iii) Determine the change in the electric potential energy of M as it moves from the positive to the negative plate. [3]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(This question continues on the following page)

Page 16: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

32EP14

– 14 – N15/4/PHYSI/HP2/ENG/TZ0/XX

(Question 6, part 1 continued)

(c) Radium-226 88226Ra( ) decays into an isotope of radon (Rn) by the emission of an

alpha particle and a gamma-ray photon. The alpha particle may be detected using the ionization chamber but the gamma-ray photon is unlikely to be detected.

(i) Outline why gamma-ray photons are unlikely to be detected in the ionization chamber. [1]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(ii) Construct the nuclear equation for the decay of radium-226. [2]

88226

00Ra Rn He..........

..............................→ + + γ

(iii) Radium-226 has a half-life of 1600 years. Determine the time, in years, it takes for the activity of radium-226 to fall to 5 % of its original activity. [3]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(This question continues on page 16)

Page 17: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

32EP15

– 15 –

Turn over

N15/4/PHYSI/HP2/ENG/TZ0/XX

Please do not write on this page.

Answers written on this pagewill not be marked.

Page 18: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

32EP16

– 16 – N15/4/PHYSI/HP2/ENG/TZ0/XX

(Question 6 continued from page 14)

Part 2 Waves

Two waves, A and B, are travelling in opposite directions in a tank of water. The graph shows the variation of displacement of the water surface with distance along the wave at a particular instant.

displacement / 10–3 m

20

15

10

5

0

– 5

– 10

– 15

– 20

10

0 1 2 3 4 5 6 7 8

wave A

wave B

distance / 10–2 m

(d) State the amplitude of wave A. [1]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(This question continues on the following page)

Page 19: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

32EP17

– 17 –

Turn over

N15/4/PHYSI/HP2/ENG/TZ0/XX

(Question 6, part 2 continued)

(e) (i) Wave A has a frequency of 9.0 Hz. Calculate the velocity of wave A. [2]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(ii) Deduce the frequency of wave B. [3]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(f) (i) State what is meant by the principle of superposition of waves. [2]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(ii) On the graph opposite, sketch the wave that results from the superposition of wave A and wave B at that instant. [3]

Page 20: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

32EP18

– 18 – N15/4/PHYSI/HP2/ENG/TZ0/XX

7. This question is in two parts. Part 1 is about energy resources. Part 2 is about charge-coupled devices (CCDs).

Part 1 Energy resources

Electricity can be generated using nuclear fission, by burning fossil fuels or using pump storage hydroelectric schemes.

(a) Outline which of the three generation methods above is renewable. [2]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(b) In a nuclear reactor, outline the purpose of the

(i) heat exchanger. [1]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(ii) moderator. [2]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(This question continues on the following page)

Page 21: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

32EP19

– 19 –

Turn over

N15/4/PHYSI/HP2/ENG/TZ0/XX

(Question 7, part 1 continued)

(c) Fission of one uranium-235 nucleus releases 203 MeV.

(i) Determine the maximum amount of energy, in joule, released by 1.0 g of uranium-235 as a result of fission. [3]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(ii) Coal has an energy density of 2.8 ×107 J kg–1.

Calculate the ratio energy density of uranium-235energy density of coal

. [1]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(iii) Using your answer to (c)(ii), outline why fossil fuel stations are often built near to the source of the fossil fuel but nuclear power stations are rarely close to the source of the nuclear fuel. [2]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(This question continues on the following page)

Page 22: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

32EP20

– 20 – N15/4/PHYSI/HP2/ENG/TZ0/XX

(Question 7, part 1 continued)

(d) (i) Describe the main principles of the operation of a pump storage hydroelectric scheme. [3]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(ii) A hydroelectric scheme has an efficiency of 92 %. Water stored in the dam falls through an average height of 57 m. Determine the rate of flow of water, in kg s–1, required to generate an electrical output power of 4.5 MW. [3]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(This question continues on the following page)

Page 23: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

32EP21

– 21 –

Turn over

N15/4/PHYSI/HP2/ENG/TZ0/XX

(Question 7 continued)

Part 2 Charge-coupled devices (CCDs)

The camera on a smart phone is used to take a photograph of the full Moon. The sensor in the camera consists of an array of square-shaped pixels.

The following data are available.

Pixel area = 6.25 ×10–10 m2

Area of the disc of the full Moon = 9.5 ×1012 m2

Area of the image of the full Moon formed on the sensor = 1.9 ×10–3 m2

(e) The centres of two craters on the Moon are separated by 1.5 km. Deduce whether the images of the centres of the two craters will be resolved. [4]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(f) Light from the Moon is incident on the pixels for an exposure time of 300 ms. There are 4.7 ×102 photons incident on one pixel each second. Each pixel has a quantum efficiency of 80 % and a capacitance 25 pF.

(i) State what is meant by quantum efficiency. [1]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(ii) Determine the change in potential difference across each pixel when it is exposed to the light for 300 ms. [3]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Page 24: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

32EP22

– 22 – N15/4/PHYSI/HP2/ENG/TZ0/XX

8. This question is in two parts. Part 1 is about kinematics and Newton’s laws of motion. Part 2 is about power transmissions.

Part 1 Kinematics and Newton’s laws of motion

Cars I and B are on a straight race track. I is moving at a constant speed of 45 m s–1 and B is initially at rest. As I passes B, B starts to move with an acceleration of 3.2 m s–2.

I passes B B passes I

I I

B B

45 m s–1

at rest, begins to move

45 m s–1

At a later time B passes I. You may assume that both cars are point particles.

(a) (i) Show that the time taken for B to pass I is approximately 28 s. [4]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(ii) Calculate the distance travelled by B in this time. [2]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(This question continues on the following page)

Page 25: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

32EP23

– 23 –

Turn over

N15/4/PHYSI/HP2/ENG/TZ0/XX

(Question 8, part 1 continued)

(b) B slows down while I remains at a constant speed. The driver in each car wears a seat belt. Using Newton’s laws of motion, explain the difference in the tension in the seat belts of the two cars. [3]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(c) A third car O with mass 930 kg joins the race. O collides with I from behind, moving along the same straight line as I. Before the collision the speed of I is 45 m s–1 and its mass is 850 kg. After the collision, I and O stick together and move in a straight line with an initial combined speed of 52 m s–1.

(i) Calculate the speed of O immediately before the collision. [2]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(ii) The duration of the collision is 0.45 s. Determine the average force acting on O. [2]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(This question continues on the following page)

Page 26: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

32EP24

– 24 – N15/4/PHYSI/HP2/ENG/TZ0/XX

(Question 8 continued)

Part 2 Power transmissions

The diagram shows the main features of an ideal transformer whose primary coil is connected to a source of alternating current (ac) voltage.

laminated core

primary coil

input voltage output voltage

secondary coil

(d) Outline, with reference to electromagnetic induction, how a voltage is induced across the secondary coil. [3]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(e) The primary coil has 25 turns and is connected to an alternating supply with an input voltage of root mean squared (rms) value 12 V. The secondary coil has 80 turns and is not connected to an external circuit. Determine the peak voltage induced across the secondary coil. [2]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(This question continues on the following page)

Page 27: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

32EP25

– 25 –

Turn over

N15/4/PHYSI/HP2/ENG/TZ0/XX

(Question 8, part 2 continued)

(f) A different transformer is used to transmit power to a small town.

resistance 4.0 Ω 120 V

cables cablespower station transformer town

resistance 60 mΩ

The transmission cables from the power station to the transformer have a total resistance of 4.0 Ω. The transformer is 90 % efficient and steps down the voltage to 120 V. At the time of maximum power demand the effective resistance of the town and of the cables from the transformer to the town is 60 mΩ.

(i) Calculate the current in the cables connected to the town. [1]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(ii) Calculate the power supplied to the transformer. [2]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(iii) Determine the input voltage to the transformer if the power loss in the cables from the power station is 2.0 kW. [2]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(This question continues on the following page)

Page 28: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

32EP26

– 26 – N15/4/PHYSI/HP2/ENG/TZ0/XX

(Question 8, part 2 continued)

(g) Outline why laminating the core improves the efficiency of a transformer. [2]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Page 29: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

32EP27

– 27 –

Turn over

N15/4/PHYSI/HP2/ENG/TZ0/XX

Please do not write on this page.

Answers written on this pagewill not be marked.

Page 30: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

32EP28

– 28 – N15/4/PHYSI/HP2/ENG/TZ0/XX

9. This question is in two parts. Part 1 is about electrical circuits. Part 2 is about magnetic fields.

Part 1 Electrical circuits

The circuit shown is used to investigate how the power developed by a cell varies when the load resistance R changes.

R

The variable resistor is adjusted and a series of current and voltage readings are taken. The graph shows the variation with R of the power dissipated in the cell and the power dissipated in the variable resistor.

P / W

1.8

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

power dissipated in resistor

power dissipated in cell

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 R / Ω

(This question continues on the following page)

Page 31: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

32EP29

– 29 –

Turn over

N15/4/PHYSI/HP2/ENG/TZ0/XX

(Question 9, part 1 continued)

(a) Show that the current in the circuit is approximately 0.70 A when R = 0.80 Ω. [3]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(b) The cell has an internal resistance.

(i) Outline what is meant by the internal resistance of a cell. [2]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(ii) Determine the internal resistance of the cell. [3]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(c) Calculate the electromotive force (emf) of the cell. [2]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(This question continues on the following page)

Page 32: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

32EP30

– 30 – N15/4/PHYSI/HP2/ENG/TZ0/XX

(Question 9, part 1 continued)

(d) The cell may be damaged if it dissipates a power greater than 1.2 W. Outline why damage in the cell may occur if the terminals of the cell are short-circuited. [2]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Part 2 Magnetic fields

The diagram shows an arrangement for measuring the force between two parallel sections of the same rigid wire carrying a current as viewed from the front.

power supply

upper section

lower section

electronic balance

The supports for the upper section of the wire and the power supply are not shown.

(This question continues on the following page)

Page 33: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

32EP31

– 31 –

Turn over

N15/4/PHYSI/HP2/ENG/TZ0/XX

(Question 9, part 2 continued)

(e) The part of the wire from A to B is viewed from above. The direction of the current is out of the plane of the paper.

Using the diagram, draw the magnetic field pattern due to just the current in wire AB. [2]

(f) Deduce what happens to the reading on the electronic balance when the current is switched on. [3]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(This question continues on the following page)

Page 34: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

32EP32

– 32 – N15/4/PHYSI/HP2/ENG/TZ0/XX

(Question 9, part 2 continued)

(g) When the current in the wire is 0.20 A, the magnetic field strength at the upper section of wire due to the lower section of wire is 1.3 ×10−4 T.

(i) Calculate the magnetic force acting per unit length on the upper section of wire. [1]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(ii) Each cubic metre of the wire contains approximately 8.5 ×1028 free electrons. The diameter of the wire is 2.5 mm and the length of wire within the magnetic field is 0.15 m. Using the force per unit length calculated in (g)(i), deduce the speed of the electrons in the wire when the current is 0.20 A. [4]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(h) The upper section of wire is adjusted to make an angle of 30° with the lower section of wire. Outline how the reading of the balance will change, if at all. [3]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Page 35: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

N16/4/PHYSI/HPM/ENG/TZ0/XX

© International Baccalaureate Organization 201617 pages

PhysicsHigher levelPaper 1

1 hour

Tuesday 8 November 2016 (morning)

Instructions to candidates

• Do not open this examination paper until instructed to do so.• Answer all the questions.• For each question, choose the answer you consider to be the best and indicate your choice on

the answer sheet provided.• A clean copy of the physics data booklet is required for this paper.• The maximum mark for this examination paper is [40 marks].

8816 – 6501

Page 36: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

N16/4/PHYSI/HPM/ENG/TZ0/XX– 2 –

1. A boy jumps from a wall 3 m high. What is an estimate of the change in momentum of the boy when he lands without rebounding?

A. 5 100 kg m s–1

B. 5 101 kg m s–1

C. 5 102 kg m s–1

D. 5 103 kg m s–1

2. A car moves north at a constant speed of 3 m s–1 for 20 s and then east at a constant speed of 4 m s–1 for 20 s. What is the average speed of the car during this motion?

A. 7.0 m s–1

B. 5.0 m s–1

C. 3.5 m s–1

D. 2.5 m s–1

Page 37: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

N16/4/PHYSI/HPM/ENG/TZ0/XX– 3 –

Turn over

3. A student draws a graph to show the variation with time t of the acceleration a of an object.

a

00 t

What can the student deduce from this graph only, and what quantity from the graph is used to make this deduction?

Deduction Quantity used

A. change in velocity gradient of graph

B. change in velocity area under line

C. change in displacement gradient of graph

D. change in displacement area under line

4. A mass is suspended from the ceiling of a train carriage by a string. The string makes an angle q  with the vertical when the train is accelerating along a straight horizontal track.

q

What is the acceleration of the train?

A. g sin q

B. g cos q

C. g tan q

D. tan

gq

Page 38: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

N16/4/PHYSI/HPM/ENG/TZ0/XX– 4 –

5. An object, initially at rest, is accelerated by a constant force. Which graphs show the variation with time t of the kinetic energy and the variation with time t of the speed of the object?

A. kinetic energy speed

B. kinetic energy speed

C. kinetic energy speed

D. kinetic energy speed

Page 39: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

N16/4/PHYSI/HPM/ENG/TZ0/XX– 5 –

Turn over

6. Two stationary objects of mass 1 kg and 2 kg are connected by a thread and suspended from a spring.

spring

1 kg

thread

2 kg

The thread is cut. Immediately after the cut, what are the magnitudes of the accelerations of the objects in terms of the acceleration due to gravity g ?

Acceleration of 1 kg object

Acceleration of 2 kg object

A. 3 g 2 g

B. 2 g 2 g

C. 3 g 1 g

D. 2 g 1 g

7. An object of mass 2 kg is thrown vertically downwards with an initial kinetic energy of 100 J. What is the distance fallen by the object at the instant when its kinetic energy has doubled?

A. 2.5 m

B. 5.0 m

C. 10 m

D. 14 m

8. A student of weight 600 N climbs a vertical ladder 6.0 m tall in a time of 8.0 s. What is the power developed by the student against gravity?

A. 22 W

B. 45 W

C. 220 W

D. 450 W

Page 40: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

N16/4/PHYSI/HPM/ENG/TZ0/XX– 6 –

9. Energyissuppliedataconstantratetoafixedmassofamaterial.Thematerialbeginsasasolid.The graph shows the variation of the temperature of the material with time.

temperature

time

Thespecificheatcapacitiesofthesolid,liquidandgaseousformsofthematerialare cs cl and cg respectively. What can be deduced about the values of cs cl and cg?

A. cs > cg > cl

B. cl > cs > cg

C. cl > cg > cs

D. cg > cs > cl

10. Thepressureofafixedmassofanidealgasinacontainerisdecreasedatconstanttemperature.For the molecules of the gas there will be a decrease in

A. the mean square speed.

B. the number striking the container walls every second.

C. the force between them.

D. their diameter.

Page 41: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

N16/4/PHYSI/HPM/ENG/TZ0/XX– 7 –

Turn over

11. An ideal gas of N molecules is maintained at a constant pressure p. The graph shows how the volume V of the gas varies with absolute temperature T.

V

00 T

What is the gradient of the graph?

A. Np

B. NRp

C. BNkp

D. NRp

12. A particle oscillates with simple harmonic motion (shm) of period T. Which graph shows the variation with time of the kinetic energy of the particle?

A. kineticenergy

0 T time

B. kineticenergy

0 T time

C. kineticenergy

0 T time

D. kineticenergy

0 T time

Page 42: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

N16/4/PHYSI/HPM/ENG/TZ0/XX– 8 –

13. Alightrayisincidentonanair–diamondboundary.Therefractiveindexofdiamondisgreaterthan1. Which diagram shows the correct path of the light ray?

A.

airdiamond

B.

airdiamond

C.

airdiamond

D.

airdiamond

14. A point source of light of amplitude A0 gives rise to a particular light intensity when viewed at a distance from the source. When the amplitude is increased and the viewing distance is doubled, the light intensity is doubled. What is the new amplitude of the source?

A. 2 A0

B. 2 2 A0

C. 4 A0

D. 8 A0

Page 43: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

N16/4/PHYSI/HPM/ENG/TZ0/XX– 9 –

Turn over

15. Which diagram shows the shape of the wavefront as a result of the diffraction of plane waves by an object?

A. B.

C. D.

16. A – 5 mC charge and a +10 mCchargeareafixeddistanceapart.

+10 mC – 5 mC

position I position II position III not to scale

Wherecantheelectricfieldbezero?

A. position I only

B. position II only

C. position III only

D. positions I, II and III

17. A 12 V battery has an internal resistance of 2.0 W. A load of variable resistance is connected across the battery and adjusted to have resistance equal to that of the internal resistance of the battery. Which statement is correct for this circuit?

A. The current in the battery is 6 A.

B. The potential difference across the load is 12 V.

C. The power dissipated in the battery is 18 W.

D. The resistance in the circuit is 1.0 W.

Page 44: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

N16/4/PHYSI/HPM/ENG/TZ0/XX– 10 –

18. A wire carrying a current I isatrightanglestoauniformmagneticfieldofstrengthB. A magnetic force Fisexertedonthewire.Whichforceactswhenthesamewireisplaced

atrightanglestoauniformmagneticfieldofstrength2B when the current is 4I

?

A. 4F

B. 2F

C. F

D. 2F

19. An object at the end of a wooden rod rotates in a vertical circle at a constant angular velocity. What is correct about the tension in the rod?

A. It is greatest when the object is at the bottom of the circle.

B. It is greatest when the object is halfway up the circle.

C. It is greatest when the object is at the top of the circle.

D. It is unchanged throughout the motion.

20. Which of the following lists the particles emitted during radioactive decay in order of increasing ionizing power?

A. g, b, a

B. b, a, g

C. a, g, b

D. a, b, g

21. When an alpha particle collides with a nucleus of nitrogen-14 147( N), a nucleus X can be produced

together with a proton. What is X?

A. 188 X

B. 178 X

C. 189 X

D. 179 X

Page 45: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

N16/4/PHYSI/HPM/ENG/TZ0/XX– 11 –

Turn over

22. The mass defect for deuterium is 4  10–30 kg. What is the binding energy of deuterium?

A. 4  10–7 eV

B. 8  10–2 eV

C. 2  106 eV

D. 2  1012 eV

23. What are the principal energy changes in a photovoltaic cell and in a solar heating panel?

Photovoltaic cell Solar heating panel

A. solar to electrical solar to thermal

B. solar to thermal solar to thermal

C. solar to electrical electrical to thermal

D. solar to thermal electrical to thermal

24. The solar constant is the intensity of the Sun’s radiation at

A. the surface of the Earth.

B. the mean distance from the Sun of the Earth’s orbit around the Sun.

C. the surface of the Sun.

D. 10 km above the surface of the Earth.

25. X and Y are two spherical black-body radiators that emit the same total power. The absolute temperature of X is half that of Y.

What is radius of Xradius of Y ?

A. 4

B. 8

C. 16

D. 32

Page 46: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

N16/4/PHYSI/HPM/ENG/TZ0/XX– 12 –

26. A particle is oscillating with simple harmonic motion (shm) of amplitude x0andmaximumkineticenergy Ek. What is the potential energy of the system when the particle is a distance 0.20 x0 fromitsmaximumdisplacement?

A. 0.20 Ek

B. 0.36 Ek

C. 0.64 Ek

D. 0.80 Ek

27. Monochromaticlightisincidentonadoubleslit.Bothslitshaveafinitewidth.Thelightthenformsan interference pattern on a screen some distance away. Which graph shows the variation of intensity with distance from the centre of the pattern?

A. intensity B. intensity

distance from centre of pattern distance from centre of pattern

C. intensity D. intensity

distance from centre of pattern distance from centre of pattern

28. Light of wavelength l is incident normally on a diffraction grating that has a slit separation of 72l

. Whatisthegreatestnumberofmaximathatcanbeobservedusingthisarrangement?

A. 4

B. 6

C. 7

D. 9

Page 47: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

N16/4/PHYSI/HPM/ENG/TZ0/XX– 13 –

Turn over

29. A diffraction grating is used to observe light of wavelength 400 nm. The light illuminates 100 slits of the grating. What is the minimum wavelength difference that can be resolved when the second order of diffraction is viewed?

A. 1 nm

B. 2 nm

C. 4 nm

D. 8 nm

30. What is the unit of Ge0, where G is the gravitational constant and e0 is the permittivity of free space?

A. C kg–1

B. C2 kg–2

C. C kg

D. C2 kg2

31. Twoparallelmetalplatesareconnectedtoadcpowersupply.Anelectricfieldformsinthespacebetween the plates as shown.

What is the shape of the equipotentials surfaces that result from this arrangement?

A. B. C. D.

Page 48: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

N16/4/PHYSI/HPM/ENG/TZ0/XX– 14 –

32. Asatelliteofmass1500kgisintheEarth’sgravitationalfield.Itmovesfromapointwherethegravitational potential is – 30 MJ kg–1 to a point where the gravitational potential is – 20 MJ kg–1. What is the direction of movement of the satellite and the change in its gravitational potential energy?

Direction of movement of satellite

Change ingravitational potential energy / GJ

A. away from Earth 15

B. away from Earth 75

C. towards Earth 15

D. towards Earth 75

33. Which of the following reduces the energy losses in a transformer?

A. Using thinner wires for the windings.

B. Using a solid core instead of a laminated core.

C. Using a core made of steel instead of iron.

D. Linkingmorefluxfromtheprimarytothesecondarycore.

Page 49: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

N16/4/PHYSI/HPM/ENG/TZ0/XX– 15 –

Turn over

34. The secondary coil of an alternating current (ac) transformer is connected to two diodes as shown.

Which graph shows the variation with time of the potential difference VXY between X and Y?

A. VXY

time

B. VXY

time

C. VXY

time

D. VXY

time

35. A parallel-plate capacitor is connected to a battery. What happens when a sheet of dielectric material is inserted between the plates without disconnecting the battery?

A. The capacitance is unchanged.

B. The charge stored decreases.

C. The energy stored increases.

D. The potential difference between the plates decreases.

Page 50: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

N16/4/PHYSI/HPM/ENG/TZ0/XX– 16 –

36. Three capacitors are arranged as shown.

1.0 F

2.0 F

1.0 F

What is the total capacitance of the arrangement?

A. 1.0 F

B. 2.5 F

C. 3.0 F

D. 4.0 F

37. Pair production by a photon occurs in the presence of a nucleus. For this process, which of momentum and energy are conserved?

Momentum Energy

A. not conserved not conserved

B. not conserved conserved

C. conserved not conserved

D. conserved conserved

Page 51: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

N16/4/PHYSI/HPM/ENG/TZ0/XX– 17 –

38. An electron of mass m has an uncertainty in its position r . What is the uncertainty in the speed of this electron?

A. 4h

B. 4hr

C. 4hm

D. 4

hmrπ

39. Whichofthefollowing,observedduringaradioactive-decayexperiment,provideevidencefortheexistenceofnuclearenergylevels?

I. The spectrum of alpha particle energies II. The spectrum of beta particle energies III. The spectrum of gamma ray energies

A. I and II only

B. I and III only

C. II and III only

D. I, II and III

40. What is the charge on an electron antineutrino and during what process is an electron antineutrino produced?

Charge on electron antineutrino

Production of electron antineutrino

A. negative during b+ emission

B. negative during b- emission

C. zero during b+ emission

D. zero during b- emission

Page 52: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

N16/4/PHYSI/HPM/ENG/TZ0/XX/M

2 pages

Markscheme

November 2016

Physics

Higher level

Paper 1

Page 53: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

– 2 – N16/4/PHYSI/HPM/ENG/TZ0/XX/M

1. C 16. C 31. B 46. – 2. C 17. C 32. A 47. – 3. B 18. B 33. D 48. – 4. C 19. A 34. A 49. – 5. A 20. A 35. C 50. – 6. D 21. B 36. A 51. – 7. B 22. C 37. D 52. – 8. D 23. A 38. D 53. – 9. D 24. B 39. B 54. – 10. B 25. A 40. D 55. – 11. C 26. C 41. – 56. – 12. D 27. D 42. – 57. – 13. A 28. C 43. – 58. – 14. B 29. B 44. – 59. – 15. A 30. B 45. – 60. –

Page 54: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

28EP01

N16/4/PHYSI/HP2/ENG/TZ0/XX

Physics

Higher level

Paper 2

2 hours 15 minutes

Tuesday 8 November 2016 (morning)Candidate session number

© International Baccalaureate Organization 201625 pages

Instructions to candidates

• Write your session number in the boxes above.• Do not open this examination paper until instructed to do so.• Answer all questions.• Write your answers in the boxes provided.• A calculator is required for this paper.• A clean copy of the physics data booklet is required for this paper.• The maximum mark for this examination paper is [95 marks].

8816 – 6502

Page 55: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

N16/4/PHYSI/HP2/ENG/TZ0/XX

28EP02

– 2 –

Please do not write on this page.

Answers written on this pagewill not be marked.

Page 56: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

N16/4/PHYSI/HP2/ENG/TZ0/XX

28EP03

– 3 –

Turn over

Answer all questions. Write your answers in the boxes provided.

1. Atennisballishitwitharacketfromapoint1.5mabovethefloor.Theceilingis8.0mabovethefloor.Theinitialvelocityoftheballis15ms–1at50° above the horizontal. Assume that air resistance is negligible.

15 m s–1

50°

1.5 m

ceiling

8.0m

floor

(a) Determine whether the ball will hit the ceiling. [3]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(b) Thetennisballwasstationarybeforebeinghit.Ithasamassof5.810–2 kg and was in contact with the racket for 23 ms.

(i) Calculate the mean force exerted by the racket on the ball. [1]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(ii) Explain how Newton’s third law applies when the racket hits the tennis ball. [2]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Page 57: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

N16/4/PHYSI/HP2/ENG/TZ0/XX

28EP04

– 4 –

2. Curling is a game played on a horizontal ice surface. A player pushes a large smooth stone acrosstheiceforseveralsecondsandthenreleasesit.Thestonemovesuntilfrictionbringsittorest.Thegraphshowsthevariationofspeedofthestonewithtime.

speed

v

00 3.5 17.5 time/s

Thetotaldistancetravelledbythestonein17.5sis29.8m.

(a) Determine the maximum speed v of the stone. [2]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(b) Determinethecoefficientofdynamicfrictionbetweenthestoneandtheiceduringthelast14.0softhestone’smotion. [3]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(This question continues on the following page)

Page 58: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

N16/4/PHYSI/HP2/ENG/TZ0/XX

28EP05

– 5 –

Turn over

(Question 2 continued)

(c) Thediagramshowsthestoneduringitsmotionafter release.

direction of travel

stone

ice

Label the diagram to show the forces acting on the stone. Your answer should include the name, the direction and point of application of each force. [3]

Page 59: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

N16/4/PHYSI/HP2/ENG/TZ0/XX

28EP06

– 6 –

3. (a) Defineinternal energy. [2]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(b) 0.46moleofanidealmonatomicgasistrappedinacylinder.Thegashasavolumeof21 m3 and a pressure of 1.4 Pa.

(i) State how the internal energy of an ideal gas differs from that of a real gas. [1]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(ii) Determine, in kelvin, the temperature of the gas in the cylinder. [2]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(iii) Thekinetictheoryofidealgasesisoneexampleofascientificmodel.Identifytwo reasonswhyscientistsfindsuchmodelsuseful. [2]

1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Page 60: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

N16/4/PHYSI/HP2/ENG/TZ0/XX

28EP07

–7–

Turn over

4. (a) A particular K meson has a quark structure us. State the charge, strangeness and baryon number for this meson. [2]

Charge: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Strangeness: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Baryon number: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(b) TheFeynmandiagramshowsthechangesthatoccurduringbetaminus(β–) decay.

Label the diagram by inserting the four missing particle symbols and the direction of the arrows for the decay particles. [3]

(c) Carbon-14 (C-14) is a radioactive isotope which undergoes beta minus (β–) decay to the stable isotope nitrogen-14 (N-14). Energy is released during this decay. Explain why the mass of a C-14 nucleus and the mass of a N-14 nucleus are slightly different even though they have the same nucleon number. [2]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(This question continues on the following page)

Page 61: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

N16/4/PHYSI/HP2/ENG/TZ0/XX

28EP08

–8–

(Question 4 continued)

(d) TheC-14decayin(c)isusedtoestimatetheageofanolddeadtree.TheactivityofC-14 in the dead tree is determined to have fallen to 21 % of its original value. C-14 hasahalf-lifeof5700years.

(i) Explain why the activity of C-14 in the dead tree decreases with time. [1]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(ii) Calculate, in years, the age of the dead tree. Give your answer to an appropriate numberofsignificantfigures. [3]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Page 62: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

N16/4/PHYSI/HP2/ENG/TZ0/XX

28EP09

–9–

Turn over

5. (a) Twomicrowavetransmitters,XandY,areplaced12cmapartandareconnectedtothesame source. A single receiver is placed 54 cm away and moves along a line AB that is paralleltothelinejoiningXandY.

microwave source

X

Y12 cm

54 cm

A

receiver

B

Maxima and minima of intensity are detected at several points along AB.

(i) Explain the formation of the intensity minima. [2]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(ii) Thedistancebetweenthecentralmaximumandthefirstminimumis7.2cm.Calculate the wavelength of the microwaves. [2]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(This question continues on the following page)

Page 63: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

N16/4/PHYSI/HP2/ENG/TZ0/XX

28EP10

–10–

(Question 5 continued)

(b) Radiowavesareemittedbyastraightconductingrodantenna(aerial).Theplaneofpolarization of these waves is parallel to the transmitting antenna.

polarized radio waves

56 km

transmitting antenna receiving antenna

An identical antenna is used for reception. Suggest why the receiving antenna needs to be be parallel to the transmitting antenna. [2]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(This question continues on the following page)

Page 64: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

N16/4/PHYSI/HP2/ENG/TZ0/XX

28EP11

– 11 –

Turn over

(Question 5 continued)

(c) Thereceivingantennabecomesmisalignedby30° to its original position.

transmitting antenna

30° receiving antenna

original position

position after misalignment

Thepowerofthereceivedsignalinthisnewpositionis12µW.

(i) Calculate the power that was received in the original position. [2]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(ii) Calculate the minimum time between the wave leaving the transmitting antenna and its reception. [1]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Page 65: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

N16/4/PHYSI/HP2/ENG/TZ0/XX

28EP12

– 12 –

6. (a) Policeuseradartodetectspeedingcars.Apoliceofficerstandsatthesideoftheroadandpointsaradardeviceatanapproachingcar.Thedeviceemitsmicrowaveswhichreflectoffthecarandreturntothedevice.Achangeinfrequencybetweentheemittedand received microwaves is measured at the radar device.

Thefrequencychange∆ f is given by

2 vc

=∆ ff

where f is the transmitter frequency, v is the speed of the car and c is the wave speed.

Thefollowingdataareavailable.

Transmitterfrequencyf =40GHz ∆ f =9.5kHz Maximum speed allowed =28ms–1

(i) Explain the reason for the frequency change. [3]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(ii) Suggest why there is a factor of 2 in the frequency-change equation. [1]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(This question continues on the following page)

Page 66: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

N16/4/PHYSI/HP2/ENG/TZ0/XX

28EP13

– 13 –

Turn over

(Question 6 continued)

(iii) Determine whether the speed of the car is below the maximum speed allowed. [2]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(b) Airportsuseradartotrackthepositionofaircraft.Thewavesarereflectedfromtheaircraftanddetectedbyalargecircularreceiver.Thereceivermustbeabletoresolvetheradarimagesoftwoaircraftflyingclosetoeachother.

Thefollowingdataareavailable.

Diameter of circular radar receiver =9.3m Wavelength of radar = 2.5 cm Distance of two aircraft from the airport = 31 km

Calculate the minimum distance between the two aircraft when their images can just be resolved. [2]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Page 67: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

N16/4/PHYSI/HP2/ENG/TZ0/XX

28EP14

– 14 –

7. (a) Explain what is meant by the gravitational potential at the surface of a planet. [2]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(b) Anunpoweredprojectileisfiredverticallyupwardsintodeepspacefromthesurfaceofplanet Venus. Assume that the gravitational effects of the Sun and the other planets are negligible.

Thefollowingdataareavailable.

Mass of Venus =4.871024 kg Radius of Venus =6.05106 m Mass of projectile =3.50103 kg Initialspeedofprojectile =1.10 escape speed

(i) Determine the initial kinetic energy of the projectile. [2]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(ii) Describe the subsequent motion of the projectile until it is effectively beyond the gravitationalfieldofVenus. [3]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(This question continues on the following page)

Page 68: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

N16/4/PHYSI/HP2/ENG/TZ0/XX

28EP15

– 15 –

Turn over

(Question 7 continued)

(c) A planet orbits the Sun in a circular orbit with orbital period T and orbital radius R. ThemassoftheSunisM.

(i) Show that 2 34 RT

GM=

π . [2]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(ii) TheEarth’sorbitaroundtheSunisalmostcircularwithradius1.5 1011 m. Estimate the mass of the Sun. [2]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Page 69: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

N16/4/PHYSI/HP2/ENG/TZ0/XX

28EP16

– 16 –

8. ThegraphshowshowcurrentI varies with potential difference V for a resistor R and a non-ohmiccomponentT.

I/A

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

T

R

0 1 2 3 4 5 6 7

V/V

(a) (i) StatehowtheresistanceofTvarieswiththecurrentgoingthroughT. [1]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(ii) Deduce, without a numerical calculation, whether R orThasthegreaterresistance at I =0.40A. [2]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(This question continues on the following page)

Page 70: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

N16/4/PHYSI/HP2/ENG/TZ0/XX

28EP17

–17–

Turn over

(Question 8 continued)

(b) ComponentsRandTareplacedinacircuit.Bothmetersareideal.

SliderZofthepotentiometerismovedfromYtoX.

(i) State what happens to the magnitude of the current in the ammeter. [1]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(ii) Estimate, with an explanation, the voltmeter reading when the ammeter reads0.20A. [2]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Page 71: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

N16/4/PHYSI/HP2/ENG/TZ0/XX

28EP18

–18–

9. A beam of electrons e–entersauniformelectricfieldbetweenparallelconductingplatesRS.RSareconnectedtoadirectcurrent(dc)powersupply.AuniformmagneticfieldBisdirected into the plane of the page and is perpendicular to the direction of motion of the electrons.

e–

R

B

S

4.0 cm 2.2 kV

Themagneticfieldisadjusteduntiltheelectronbeamisundeflected as shown.

(a) Identify,onthediagram,thedirectionoftheelectricfieldbetweentheplates. [1]

(b) Thefollowingdataareavailable.

Separation of the plates RS =4.0cm Potential difference between the plates = 2.2 kV Velocity of the electrons =5.0105 m s–1

DeterminethestrengthofthemagneticfieldB. [2]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(This question continues on the following page)

Page 72: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

N16/4/PHYSI/HP2/ENG/TZ0/XX

28EP19

–19–

Turn over

(Question 9 continued)

(c) Thevelocityoftheelectronsisnowincreased.Explaintheeffectthatthiswillhaveonthe path of the electron beam. [2]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Page 73: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

N16/4/PHYSI/HP2/ENG/TZ0/XX

28EP20

–20–

10. Thefollowingdataareavailableforanaturalgaspowerstationthathasahighefficiency.

Rate of consumption of natural gas = 14.6 kg s–1

Specificenergyofnaturalgas = 55.5 MJ kg–1

Efficiencyofelectricalpowergeneration =59.0% Mass of CO2 generated per kg of natural gas =2.75kg One year = 3.16 × 107 s

(a) (i) Calculate, with a suitable unit, the electrical power output of the power station. [1]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(ii) Calculate the mass of CO2 generated in a year assuming the power station operates continuously. [1]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(iii) Explain, using your answer to (a)(ii), why countries are being asked to decrease their dependence on fossil fuels. [2]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(iv) Describe, in terms of energy transfers, how thermal energy of the burning gas becomes electrical energy. [2]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(This question continues on the following page)

Page 74: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

N16/4/PHYSI/HP2/ENG/TZ0/XX

28EP21

– 21 –

Turn over

(Question 10 continued)

(b) Theelectricalpoweroutputisproducedbyseveralalternatingcurrent(ac)generatorswhich use transformers to deliver energy to the national electricity grid.

Thefollowingdataareavailable.Rootmeansquare(rms)valuesaregiven.

ac generator output voltage to a transformer = 25 kV ac generator output current to a transformer =3.9kA Transformeroutputvoltagetothegrid =330kV Transformerefficiency =96%

(i) Calculate the current output by the transformer to the grid. Give your answer to anappropriatenumberofsignificantfigures. [2]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(ii) Electricalenergyisoftendeliveredacrosslargedistancesat330kV.Identifythemain advantage of using this very high potential difference. [2]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(This question continues on the following page)

Page 75: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

N16/4/PHYSI/HP2/ENG/TZ0/XX

28EP22

– 22 –

(Question 10 continued)

(c) Inanalternatingcurrent(ac)generator,asquarecoilABCDrotatesinamagneticfield.

slip ring brush

Theendsofthecoilareconnectedtoslipringsandbrushes.Theplaneofthecoilisshownattheinstantwhenitisparalleltothemagneticfield.Onlyonecoilisshownfor clarity.

Thefollowingdataareavailable.

Dimensions of the coil =8.5cm8.5cm Number of turns on the coil =80 Speed of edge AB =2.0ms–1

Uniformmagneticfieldstrength=0.34T

(i) Explain, with reference to the diagram, how the rotation of the generator produces an electromotive force (emf ) between the brushes. [3]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(This question continues on the following page)

Page 76: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

N16/4/PHYSI/HP2/ENG/TZ0/XX

28EP23

– 23 –

Turn over

(Question 10 continued)

(ii) Calculate, for the position in the diagram, the magnitude of the instantaneous emf generated by a single wire between A and B of the coil. [1]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(iii) Hence,calculatethetotalinstantaneouspeakemfbetweenthebrushes. [1]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Page 77: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

N16/4/PHYSI/HP2/ENG/TZ0/XX

28EP24

– 24 –

11. An apparatus is used to investigate the photoelectric effect. A caesium cathode C is illuminated by a variable light source. A variable power supply is connected between C andthecollectinganodeA.ThephotoelectriccurrentI is measured using an ammeter.

= 400nm

C e– A I

(a) A current is observed on the ammeter when violet light illuminates C. With V held constant the current becomes zero when the violet light is replaced by red light of the same intensity. Explain this observation. [3]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(This question continues on the following page)

Page 78: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

N16/4/PHYSI/HP2/ENG/TZ0/XX

28EP25

– 25 –

Turn over

(Question 11 continued)

(b) ThegraphshowsthevariationofphotoelectriccurrentI with potential difference V between C and A when violet light of a particular intensity is used.

I

low intensity

–1.15 V 0 V

Theintensityofthelightsourceisincreasedwithoutchangingitswavelength.

(i) Draw, on the axes, a graph to show the variation of I with V for the increased intensity. [2]

(ii) Thewavelengthofthevioletlightis400nm.Determine,ineV,theworkfunctionof caesium. [2]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(iii) V is adjusted to +2.50V.Calculatethemaximumkineticenergyofthephotoelectrons just before they reach A. [2]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Page 79: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

28EP26

Please do not write on this page.

Answers written on this page will not be marked.

Page 80: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

28EP27

Please do not write on this page.

Answers written on this page will not be marked.

Page 81: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

28EP28

Please do not write on this page.

Answers written on this page will not be marked.

Page 82: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

44EP01

N16/4/PHYSI/HP3/ENG/TZ0/XX

PhysicsHigher levelPaper 3

1 hour 15 minutes

Wednesday 9 November 2016 (morning)Candidate session number

© International Baccalaureate Organization 201642 pages

Instructions to candidates

• Write your session number in the boxes above.• Do not open this examination paper until instructed to do so.• Write your answers in the boxes provided.• A calculator is required for this paper.• A clean copy of the physics data booklet is required for this paper.• The maximum mark for this examination paper is [45 marks].

Section A Questions

Answer all questions. 1 – 3

Option Questions

Answer all of the questions from one of the options.

Option A — Relativity 4 – 9

Option B — Engineering physics 10 – 14

Option C — Imaging 15 – 20

Option D — Astrophysics 21 – 25

8816 – 6503

Page 83: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

N16/4/PHYSI/HP3/ENG/TZ0/XX

44EP02

– 2 –

Section A

Answer all questions. Write your answers in the boxes provided.

1. A student measures the refractive index of water by shining a light ray into a transparent container.

IO shows the direction of the normal at the point where the light is incident on the container. IX shows the direction of the light ray when the container is empty. IY shows the direction of the deviated light ray when the container is filled with water.

The angle of incidence is varied and the student determines the position of O, X and Y for each angle of incidence.

light ray

I

O

Y

X

(top view)

(This question continues on the following page)

Page 84: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

N16/4/PHYSI/HP3/ENG/TZ0/XX

44EP03

– 3 –

Turn over

(Question 1 continued)

The table shows the data collected by the student. The uncertainty in each measurement of length is 0.1 cm.

OX / cm OY / cm

1.8 1.3

3.6 2.6

5.8 4.0

8.4 5.5

11.9 7.3

17.3 9.5

27.4 12.2

(a) (i) Outline why OY has a greater percentage uncertainty than OX for each pair of data points. [1]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(ii) The refractive index of the water is given by OXOY

when OX is small.

Calculate the fractional uncertainty in the value of the refractive index of water for OX = 1.8 cm. [2]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(This question continues on the following page)

Page 85: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

N16/4/PHYSI/HP3/ENG/TZ0/XX

44EP04

– 4 –

(Question 1 continued)

(b) A graph of the variation of OY with OX is plotted.

OY / cm

8.0

7.0

6.0

5.0

4.0

3.0

2.0

1.0

0.0 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0

OX / cm

(i) Draw, on the graph, the error bars for OY when OX = 1.8 cm and when OY = 5.8 cm. [1]

(ii) Determine, using the graph, the refractive index of the water in the container for values of OX less than 6.0 cm. [3]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(This question continues on the following page)

Page 86: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

N16/4/PHYSI/HP3/ENG/TZ0/XX

44EP05

– 5 –

Turn over

(Question 1 continued)

(iii) The refractive index for a material is also given by sinsinir

where i is the angle of incidence and r is the angle of refraction.

Outline why the graph on page 4 deviates from a straight line for large values of OX. [1]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Page 87: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

N16/4/PHYSI/HP3/ENG/TZ0/XX

44EP06

– 6 –

2. An apparatus is used to verify a gas law. The glass jar contains a fixed volume of air. Measurements can be taken using the thermometer and the pressure gauge.

thermometer

pressure gauge

glass jar

The apparatus is cooled in a freezer and then placed in a water bath so that the temperature of the gas increases slowly. The pressure and temperature of the gas are recorded.

(This question continues on the following page)

Page 88: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

N16/4/PHYSI/HP3/ENG/TZ0/XX

44EP07

– 7 –

Turn over

(Question 2 continued)

(a) The graph shows the data recorded.

pressure / 105 Pa

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0 0 50 100 150 200 250 300 350 400

temperature / K

Identify the fundamental SI unit for the gradient of the pressure–temperature graph. [1]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(b) The experiment is repeated using a different gas in the glass jar. The pressure for both experiments is low and both gases can be considered to be ideal.

(i) Using the axes provided in (a), draw the expected graph for this second experiment. [1]

(ii) Explain the shape and intercept of the graph you drew in (b)(i). [2]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Page 89: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

N16/4/PHYSI/HP3/ENG/TZ0/XX

44EP08

– 8 –

Please do not write on this page.

Answers written on this pagewill not be marked.

Page 90: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

N16/4/PHYSI/HP3/ENG/TZ0/XX

44EP09

– 9 –

Turn over

3. A student pours a canned carbonated drink into a cylindrical container after shaking the can violently before opening. A large volume of foam is produced that fills the container. The graph shows the variation of foam height with time.

foam height / cm

40

35

30

25

20

15

10

5

0 0 20 40 60 80 100 120

time / s

(a) Determine the time taken for the foam to drop to

(i) half its initial height. [1]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(ii) a quarter of its initial height. [1]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(b) The change in foam height can be modelled using ideas from other areas of physics. Identify one other situation in physics that is modelled in a similar way. [1]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Page 91: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

N16/4/PHYSI/HP3/ENG/TZ0/XX

44EP10

– 10 –

Section B

Answer all of the questions from one of the options. Write your answers in the boxes provided.

Option A — Relativity

4. An electron X is moving parallel to a current-carrying wire. The positive ions and the wire are fixed in the reference frame of the laboratory. The drift speed of the free electrons in the wire is the same as the speed of the external electron X.

v

ion

free electron

X

drift speed of free electrons

(a) Define frame of reference. [1]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(Option A continues on the following page)

Page 92: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

N16/4/PHYSI/HP3/ENG/TZ0/XX

44EP11

– 11 –

Turn over

(Option A, question 4 continued)

(b) In the reference frame of the laboratory the force on X is magnetic.

(i) State the nature of the force acting on X in this reference frame where X is at rest. [1]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(ii) Explain how this force arises. [3]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(Option A continues on the following page)

Page 93: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

N16/4/PHYSI/HP3/ENG/TZ0/XX

44EP12

– 12 –

(Option A continued)

5. (a) Define proper length. [1]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(b) A charged pion decays spontaneously in a time of 26 ns as measured in the frame of reference in which it is stationary. The pion moves with a velocity of 0.96c relative to the Earth. Calculate the pion’s lifetime as measured by an observer on the Earth. [2]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(c) In the pion reference frame, the Earth moves a distance X before the pion decays. In the Earth reference frame, the pion moves a distance Y before the pion decays. Demonstrate, with calculations, how length contraction applies to this situation. [3]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(Option A continues on the following page)

Page 94: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

N16/4/PHYSI/HP3/ENG/TZ0/XX

44EP13

– 13 –

Turn over

(Option A continued)

6. A spaceship S leaves the Earth with a speed v = 0.80c. The spacetime diagram for the Earth is shown. A clock on the Earth and a clock on the spaceship are synchronized at the origin of the spacetime diagram.

ct

45°

Z

S

x

(a) Calculate the angle between the worldline of S and the worldline of the Earth. [1]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(b) Draw, on the diagram, the ′x -axis for the reference frame of S. [1]

(c) An event Z is shown on the diagram. Label the co-ordinates of this event in the reference frame of S. [1]

(Option A continues on the following page)

Page 95: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

N16/4/PHYSI/HP3/ENG/TZ0/XX

44EP14

– 14 –

(Option A continued)

7. Identical twins, A and B, are initially on Earth. Twin A remains on Earth while twin B leaves the Earth at a speed of 0.6c for a return journey to a point three light years from Earth.

(a) Calculate the time taken for the journey in the reference frame of twin A as measured on Earth. [1]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(b) Determine the time taken for the journey in the reference frame of twin B. [2]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(c) Draw, for the reference frame of twin A, a spacetime diagram that represents the worldlines for both twins. [1]

(Option A continues on the following page)

Page 96: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

N16/4/PHYSI/HP3/ENG/TZ0/XX

44EP15

– 15 –

Turn over

(Option A, question 7 continued)

(d) Suggest how the twin paradox arises and how it is resolved. [2]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(Option A continues on the following page)

Page 97: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

N16/4/PHYSI/HP3/ENG/TZ0/XX

44EP16

– 16 –

(Option A continued)

8. An electron and a positron have identical speeds but are travelling in opposite directions. Their collision results in the annihilation of both particles and the production of two photons of identical energy. The initial kinetic energy of the electron is 2.00 MeV.

(a) Explain, in terms of a conservation law, why two photons need to be created. [1]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(b) Determine the speed of the incoming electron. [3]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(c) Calculate the energy and the momentum for each photon after the collision. [2]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(Option A continues on the following page)

Page 98: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

N16/4/PHYSI/HP3/ENG/TZ0/XX

44EP17

– 17 –

Turn over

(Option A continued)

9. The global positioning system (GPS) uses satellites that orbit the Earth. The satellites transmit information to Earth using accurately known time signals derived from atomic clocks on the satellites. The time signals need to be corrected due to the gravitational redshift that occurs because the satellites are at a height of 20 Mm above the surface of the Earth.

(a) The gravitational field strength at 20 Mm above the surface of the Earth is about 0.6 N kg–1. Estimate the time correction per day needed to the time signals, due to the gravitational redshift. [3]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(b) Suggest, whether your answer to (a) underestimates or overestimates the correction required to the time signal. [1]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

End of Option A

Page 99: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

N16/4/PHYSI/HP3/ENG/TZ0/XX

44EP18

– 18 –

Option B — Engineering physics

10. A flywheel consists of a solid cylinder, with a small radial axle protruding from its centre.

small radial axle

R r

string

m

flywheel

The following data are available for the flywheel.

Flywheel mass M = 1.22 kg Small axle radius r = 60.0 mm Flywheel radius R = 240 mm Moment of inertia = 0.5 MR2

An object of mass m is connected to the axle by a light string and allowed to fall vertically from rest, exerting a torque on the flywheel.

(a) The velocity of the falling object is 1.89 m s–1 at 3.98 s. Calculate the average angular acceleration of the flywheel. [2]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(b) Show that the torque acting on the flywheel is about 0.3 Nm. [2]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(Option B continues on the following page)

Page 100: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

N16/4/PHYSI/HP3/ENG/TZ0/XX

44EP19

– 19 –

Turn over

(Option B, question 10 continued)

(c) (i) Calculate the tension in the string. [2]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(ii) Determine the mass m of the falling object. [2]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(Option B continues on the following page)

Page 101: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

N16/4/PHYSI/HP3/ENG/TZ0/XX

44EP20

– 20 –

(Option B continued)

11. The diagram shows two methods of pedalling a bicycle using a force F.

Method 1 Method 2

crank arm crank arm

In method 1 the pedal is always horizontal to the ground. A student claims that method 2 is better because the pedal is always parallel to the crank arm. Explain why method 2 is more effective. [2]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

12. An ideal nuclear power plant can be modelled as a heat engine that operates between a hot temperature of 612 °C and a cold temperature of 349 °C.

(a) Calculate the Carnot efficiency of the nuclear power plant. [2]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(Option B continues on the following page)

Page 102: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

N16/4/PHYSI/HP3/ENG/TZ0/XX

44EP21

– 21 –

Turn over

(Option B, question 12 continued)

(b) Explain, with a reason, why a real nuclear power plant operating between the stated temperatures cannot reach the efficiency calculated in (a). [2]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(c) The nuclear power plant works at 71.0 % of the Carnot efficiency. The power produced is 1.33 GW. Calculate how much waste thermal energy is released per hour. [3]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(d) Discuss the production of waste heat by the power plant with reference to the first law and the second law of thermodynamics. [3]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(Option B continues on the following page)

Page 103: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

N16/4/PHYSI/HP3/ENG/TZ0/XX

44EP22

– 22 –

(Option B continued)

13. (a) A solid cube of side 0.15 m has an average density of 210 kg m–3.

(i) Calculate the weight of the cube. [1]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(ii) The cube is placed in gasoline of density 720 kg m–3. Calculate the proportion of the volume of the cube that is above the surface of the gasoline. [2]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(Option B continues on the following page)

Page 104: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

N16/4/PHYSI/HP3/ENG/TZ0/XX

44EP23

– 23 –

Turn over

(Option B, question 13 continued)

(b) Water flows through a constricted pipe. Vertical tubes A and B, open to the air, are located along the pipe.

A B

flow

Describe why tube B has a lower water level than tube A. [3]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(Option B continues on the following page)

Page 105: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

N16/4/PHYSI/HP3/ENG/TZ0/XX

44EP24

– 24 –

(Option B continued)

14. A mass–spring system is forced to vibrate vertically at the resonant frequency of the system. The motion of the system is damped using a liquid.

spring

vibrator

container

mass

liquid

At time t = 0 the vibrator is switched on. At time tB the vibrator is switched off and the system comes to rest. The graph shows the variation of the vertical displacement of the system with time until tB.

vertical displacement 0

tBtA

time

(Option B continues on the following page)

Page 106: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

N16/4/PHYSI/HP3/ENG/TZ0/XX

44EP25

– 25 –

Turn over

(Option B, question 14 continued)

(a) Explain, with reference to energy in the system, the amplitude of oscillation between

(i) t = 0 and tA. [1]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(ii) tA and tB. [1]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(b) The system is critically damped. Draw, on the graph on page 24, the variation of the displacement with time from tB until the system comes to rest. [2]

End of Option B

Page 107: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

N16/4/PHYSI/HP3/ENG/TZ0/XX

44EP26

– 26 –

Please do not write on this page.

Answers written on this pagewill not be marked.

Page 108: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

N16/4/PHYSI/HP3/ENG/TZ0/XX

44EP27

– 27 –

Turn over

Option C — Imaging

15. Spherical converging mirrors are reflecting surfaces which are cut out of a sphere. The diagram shows a mirror, where the dot represents the centre of curvature of the mirror.

(a) A ray of light is incident on a converging mirror. On the diagram, draw the reflection of the incident ray shown. [2]

centre of curvature

incident ray

optical axis

(b) The incident ray shown in the diagram makes a significant angle with the optical axis.

(i) State the aberration produced by these kind of rays. [1]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(ii) Outline how this aberration is overcome. [1]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(Option C continues on the following page)

Page 109: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

N16/4/PHYSI/HP3/ENG/TZ0/XX

44EP28

– 28 –

(Option C continued)

16. A lamp is located 6.0 m from a screen.

6.0 m

lamp screen

Somewhere between the lamp and the screen, a lens is placed so that it produces a real inverted image on the screen. The image produced is 4.0 times larger than the lamp.

(a) Identify the nature of the lens. [1]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(b) Determine the distance between the lamp and the lens. [3]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(c) Calculate the focal length of the lens. [1]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(Option C continues on the following page)

Page 110: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

N16/4/PHYSI/HP3/ENG/TZ0/XX

44EP29

– 29 –

Turn over

(Option C, question 16 continued)

(d) The lens is moved to a second position where the image on the screen is again focused. The lamp–screen distance does not change. Compare the characteristics of this new image with the original image. [2]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(Option C continues on the following page)

Page 111: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

N16/4/PHYSI/HP3/ENG/TZ0/XX

44EP30

– 30 –

(Option C continued)

17. Both optical refracting telescopes and compound microscopes consist of two converging lenses.

(a) Compare the focal lengths needed for the objective lens in an refracting telescope and in a compound microscope. [1]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(b) A student has four converging lenses of focal length 5, 20, 150 and 500 mm. Determine the maximum magnification that can be obtained with a refracting telescope using two of the lenses. [1]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(c) There are optical telescopes which have diameters about 10 m. There are radio telescopes with single dishes of diameters at least 10 times greater.

(i) Discuss why, for the same number of incident photons per unit area, radio telescopes need to be much larger than optical telescopes. [1]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(ii) Outline how is it possible for radio telescopes to achieve diameters of the order of a thousand kilometres. [1]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(Option C continues on the following page)

Page 112: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

N16/4/PHYSI/HP3/ENG/TZ0/XX

44EP31

– 31 –

Turn over

(Option C, question 17 continued)

(d) The diagram shows a schematic view of a compound microscope with the focal points fo of the objective lens and the focal points fe of the eyepiece lens marked on the axis.

fo fo fe fe

objective lens eyepiece lens

On the diagram, identify with an X, a suitable position for the image formed by the objective of the compound microscope. [1]

(e) Image 1 shows details on the petals of a flower under visible light. Image 2 shows the same flower under ultraviolet light. The magnification is the same, but the resolution is higher in Image 2.

Image 1 Image 2

Explain why an ultraviolet microscope can increase the resolution of a compound microscope. [1]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(Option C continues on page 33)

Page 113: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

N16/4/PHYSI/HP3/ENG/TZ0/XX

44EP32

– 32 –

Please do not write on this page.

Answers written on this pagewill not be marked.

Page 114: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

N16/4/PHYSI/HP3/ENG/TZ0/XX

44EP33

– 33 –

Turn over

(Option C continued from page 31)

18. Optical fibres can be classified, based on the way the light travels through them, as single-mode or multimode fibres. Multimode fibres can be classified as step-index or graded-index fibres.

(a) State the main physical difference between step-index and graded-index fibres. [1]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(b) Explain why graded-index fibres help reduce waveguide dispersion. [2]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(Option C continues on the following page)

Page 115: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

N16/4/PHYSI/HP3/ENG/TZ0/XX

44EP34

– 34 –

(Option C continued)

19. The linear attenuation coefficient µ of a material is affected by the energy of the X-ray beam and by the density ρ of the material. The mass absorption coefficient is equal to µ

ρ to take

into account the density of the material.

The graph shows the variation of mass absorption coefficient with energy of the X-ray beam for both muscle and bone.

mass absorption coefficient / cm2 g–1

101

100

10–1

bone

muscle

10 20 30 40 50 100 150 300

energy / keV

(a) Show that the attenuation coefficient for bone of density 1800 kg m–3, for X-rays of 20 keV, is about 7 cm–1. [2]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(Option C continues on the following page)

Page 116: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

N16/4/PHYSI/HP3/ENG/TZ0/XX

44EP35

– 35 –

Turn over

(Option C, question 19 continued)

(b) The density of muscle is 1200 kg m–3. Calculate the ratio of intensities to compare, for a beam of 20 keV, the attenuation produced by 1 cm of bone and 1 cm of muscle. [3]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(c) Suggest why more energetic beams of about 150 keV would be unsuitable for imaging a bone–muscle section of a body. [1]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

20. (a) State the property of protons used in nuclear magnetic resonance (NMR) imaging. [1]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(b) Explain how a gradient field and resonance are produced in NMR to allow for the formation of images at a specific plane. [3]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

End of Option C

Page 117: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

N16/4/PHYSI/HP3/ENG/TZ0/XX

44EP36

– 36 –

Option D — Astrophysics

21. Alpha Centauri A and B is a binary star system in the main sequence.

Alpha Centauri A Alpha Centauri B

Luminosity 1.5L 0.5L

Surface temperature / K 5800 5300

(a) State what is meant by a binary star system. [1]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(b) (i) Calculate bb

A

B

apparent brightness of Alpha Centauri Aapparent brig

=

hhtness of Alpha Centauri B. [2]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(ii) The luminosity of the Sun is 3.8 × 1026 W. Calculate the radius of Alpha Centauri A. [2]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(Option D continues on the following page)

Page 118: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

N16/4/PHYSI/HP3/ENG/TZ0/XX

44EP37

– 37 –

Turn over

(Option D, question 21 continued)

(c) Show, without calculation, that the radius of Alpha Centauri B is smaller than the radius of Alpha Centauri A. [2]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(d) Alpha Centauri A is in equilibrium at constant radius. Explain how this equilibrium is maintained. [3]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(Option D continues on the following page)

Page 119: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

N16/4/PHYSI/HP3/ENG/TZ0/XX

44EP38

– 38 –

(Option D, question 21 continued)

(e) A standard Hertzsprung–Russell (HR) diagram is shown.

LLstar

106

104

102

100

10–2

10–4

Sun

40 000 20 000 10 000 5000 2500

temperature / K

Using the HR diagram, draw the present position of Alpha Centauri A and its expected evolutionary path. [2]

(Option D continues on the following page)

Page 120: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

N16/4/PHYSI/HP3/ENG/TZ0/XX

44EP39

– 39 –

Turn over

(Option D continued)

22. The first graph shows the variation of apparent brightness of a Cepheid star with time.

apparent brightness

A

0 2 4 6 8 10 12 14 16 18 20 22

time / days

The second graph shows the average luminosity with period for Cepheid stars.

luminosity / solar

luminosities

100 000

20 00010 000

20001000

200100

1 2 5 10 20 50 100

period / days

Determine the distance from Earth to the Cepheid star in parsecs. The luminosity of the Sun is 3.8 × 1026 W. The average apparent brightness of the Cepheid star is 1.1 × 10–9 W m–2. [3]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(Option D continues on the following page)

Page 121: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

N16/4/PHYSI/HP3/ENG/TZ0/XX

44EP40

– 40 –

(Option D continued)

23. The peak wavelength of the cosmic microwave background (CMB) radiation spectrum corresponds to a temperature of 2.76 K.

(a) Identify two other characteristics of the CMB radiation that are predicted from the Hot Big Bang theory. [2]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(b) A spectral line in the hydrogen spectrum measured in the laboratory today has a wavelength of 21 cm. Since the emission of the CMB radiation, the cosmic scale factor has changed by a factor of 1100. Determine the wavelength of the 21 cm spectral line in the CMB radiation when it is observed today. [1]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(Option D continues on the following page)

Page 122: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

N16/4/PHYSI/HP3/ENG/TZ0/XX

44EP41

– 41 –

Turn over

(Option D continued)

24. (a) Describe how some white dwarf stars become type Ia supernovae. [3]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(b) Hence, explain why a type Ia supernova is used as a standard candle. [2]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(c) Explain how the observation of type Ia supernovae led to the hypothesis that dark energy exists. [3]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(Option D continues on the following page)

Page 123: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

N16/4/PHYSI/HP3/ENG/TZ0/XX

44EP42

– 42 –

(Option D continued)

25. The graph shows the observed orbital velocities of stars in a galaxy against their distance from the centre of the galaxy. The core of the galaxy has a radius of 4.0 kpc.

velocity / km s–1

radius / kpc

(a) Calculate the rotation velocity of stars 4.0 kpc from the centre of the galaxy. The average density of the galaxy is 5.0 × 10–21 kg m–3. [2]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(b) Explain why the rotation curves are evidence for the existence of dark matter. [2]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

End of Option D

Page 124: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

44EP43

Please do not write on this page.

Answers written on this page will not be marked.

Page 125: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

44EP44

Please do not write on this page.

Answers written on this page will not be marked.

Page 126: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

N16/4/PH

YSI/HP3/EN

G/TZ0/XX/M

28 pages

Markschem

e

Novem

ber 2016

Physics

Higher level

Paper 3

Page 127: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

–2 –

N16/4/PH

YSI/HP3/EN

G/TZ0/XX/M

This markschem

e is the property of the International Baccalaureate and m

ust not be reproduced or distributed to any other person w

ithout the authorization of the IB

Assessm

ent Centre.

Page 128: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

–3 –

N16/4/PH

YSI/HP3/EN

G/TZ0/XX/M

General M

arking Instructions

1.Follow

the markschem

e provided, award only w

hole marks and m

ark only in RED

.

2.M

ake sure that the question you are about to mark is highlighted in the m

ark panel on the right-hand side of the screen.

3.W

here a mark is aw

arded, a tick/check () m

ust be placed in the text at the precise point where it becom

es clear that the candidate deservesthe m

ark. One tick to be show

n for each mark aw

arded.

4.Som

etimes, careful consideration is required to decide w

hether or not to award a m

ark. In these cases use RM

™ Assessor annotations to support

your decision. You are encouraged to write com

ments w

here it helps clarity, especially for re-marking purposes. U

se a text box for theseadditional com

ments. It should be rem

embered that the script m

ay be returned to the candidate. Please do not allow these annotations to obscure

the written m

aterial. Try to keep these to the margin of the scan as far as possible. (Ticks should how

ever be at the point of award, cf 4.)

5.Personal codes/notations are unacceptable.

6.W

here an answer to a part question is w

orth no marks but the candidate has attem

pted the part question, use the “ZERO

” annotation to award

zero marks. W

here a candidate has not attempted the part question, use the “SEEN

” annotation to show you have looked at the question.

RM

™ Assessor w

ill apply “NR

” once you click complete.

7.If a candidate has attem

pted more than the required num

ber of questions within a paper or section of a paper, m

ark all the answers.

RM

™ Assessor w

ill only award the highest m

ark or marks in line w

ith the rubric.

8.Ensure that you have view

ed every page including any additional sheets. Please ensure that you stamp “SEEN

” on any additional pages that areblank or w

here the candidate has crossed out his/her work.

9.There is no need to stam

p an annotation when a candidate has not chosen an option. R

M™

Assessor will apply “N

R” once you click com

plete.

10.M

ark positively. Give candidates credit for w

hat they have achieved and for what they have got correct, rather than penalizing them

for what they

have got wrong. H

owever, a m

ark should not be awarded w

here there is contradiction within an answ

er. Make a com

ment to this effect using a

text box or the “CO

N” stam

p.

Page 129: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

– 4 –

N16/4/PH

YSI/HP3/EN

G/TZ0/XX/M

Subject D

etails: Physics HL Paper 3 M

arkscheme

Candidates are required to answ

er all questions in Section A

and all questions from one option in S

ection B. M

aximum

total = 45 marks.

1. Each row

in the “Question” colum

n relates to the smallest subpart of the question.

2. The m

aximum

mark for each question subpart is indicated in the “Total” colum

n. 3.

Each marking point in the “Answ

ers” column is show

n by means of a tick (

) at the end of the marking point.

4. A question subpart m

ay have more m

arking points than the total allows. This w

ill be indicated by “max” w

ritten after the mark in the “Total” colum

n. The related rubric, if necessary, w

ill be outlined in the “Notes” colum

n. 5.

An alternative wording is indicated in the “Answ

ers” column by a slash (/). Either w

ording can be accepted. 6.

An alternative answer is indicated in the “Answ

ers” column by “O

R”. Either answ

er can be accepted. 7.

An alternative markschem

e is indicated in the “Answers” colum

n under heading ALTER

NA

TIVE 1 etc. Either alternative can be accepted. 8.

Words inside chevrons « » in the “Answ

ers” column are not necessary to gain the m

ark. 9.

Words that are underlined are essential for the m

ark. 10.

The order of marking points does not have to be as in the “Answ

ers” column, unless stated otherw

ise in the “Notes” colum

n. 11.

If the candidate’s answer has the sam

e “meaning” or can be clearly interpreted as being of equivalent significance, detail and validity as that in the

“Answers” colum

n then award the m

ark. Where this point is considered to be particularly relevant in a question it is em

phasized by OW

TTE (or w

ords to that effect) in the “Notes” colum

n. 12.

Rem

ember that m

any candidates are writing in a second language. Effective com

munication is m

ore important than gram

matical accuracy.

13. O

ccasionally, a part of a question may require an answ

er that is required for subsequent marking points. If an error is m

ade in the first marking point

then it should be penalized. How

ever, if the incorrect answer is used correctly in subsequent m

arking points then follow through m

arks should be aw

arded. When m

arking, indicate this by adding ECF (error carried forw

ard) on the script. “ECF acceptable” w

ill be displayed in the “Notes” colum

n. 14.

Do not penalize candidates for errors in units or significant figures, unless it is specifically referred to in the “N

otes” column.

15. Allow

reasonable substitutions where in com

mon usage, eg c for rad.

Page 130: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

– 5 –

N16/4/PH

YSI/HP3/EN

G/TZ0/XX/M

Section A

Q

uestion Answ

ers N

otes Total

1. a

i O

Y always sm

aller than OX

AN

D uncertainties are the sam

e/0.1

« so fraction 0.10.1

OY

OX

> »

1

a

ii 0.11.3

AN

D 0.11.8

Watch for correct answ

er even if calculation continues to the absolute uncertainty.

2

=

0.13 OR

13 %

b

i total length of bar=

0.2 cm

A

ccept correct error bar in one of the points: OX=

1.8 cm

OR

OY=

5.8 cm (w

hich is not a measured point but is a

point on the interpolated line) OR

OX=

5.8 cm.

Ignore error bar of OX.

Allow

range from 0.2 to 0.3 cm

, by eye.

1

b

ii suitable line draw

n extending at least up to 6 cm

OR

gradient calculated using two out of the first three data points

If using one value of OX

and OY from

the graph for any of the first three data points aw

ard [2 max].

Aw

ard [3] for correct value for each of the three data points and average.

3

inverse of gradient used

If gradient used, aw

ard [1 max].

value betw

een 1.30 and 1.60

Page 131: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

– 6 –

N16/4/PH

YSI/HP3/EN

G/TZ0/XX/M

Question

Answers

Notes

Total

b

iii «the equation

OX

OY

n=

» involves a tan approximation/is true only for sm

all θ «when sinθ = tanθ»

1

OR

«the equation O

XO

Yn=

» uses OI instead of the hypotenuse of the ∆

IOX

or IOY

OW

TTE

2. a

1

2–1

kgm

sK

−−

1

b

i any straight line that either goes or w

ould go, if extended, through the origin

1

b

ii for ideal gas p is proportional to T / P= nR

T/V

gradient is constant /graph is a straight line

line passes through origin / 0,0

2max

Page 132: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

– 7 –

N16/4/PH

YSI/HP3/EN

G/TZ0/XX/M

Question

Answers

Notes

Total

3. a

i 18 «s»

A

llow answ

er in the range of 17 «s» to 19 «s». Ignore w

rong unit. 1

a

ii 36 «s»

A

llow answ

er in the range of 35 «s» to 37 «s». 1

b

radioactive/nuclear decay

OR

capacitor discharge

OR

cooling

Accept any relevant situation, eg: critically dam

ping, approaching term

inal velocity.

1

Page 133: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

– 8 –

N16/4/PH

YSI/HP3/EN

G/TZ0/XX/M

Section B

Option A

— R

elativity

Question

Answers

Notes

Total

4. a

a coordinate system

OR

a system of clocks and m

easures providing time and position

relative to an observer

OW

TTE 1

b

i electric

OR

electrostatic

1

b

ii «as the positive ions are m

oving with respect to the charge,»

there is a length contraction

therefore the charge density on ions is larger than on electrons

so net positive charge on w

ire attracts X

For candidates who clearly interpret the question to m

ean that X

is now at rest in the E

arth frame accept this

alternative MS

for bii

the magnetic force on a charge exists only if the charge is

moving

an electric force on X , if stationary, only exists if it is in an

electric field

no electric field exists in the Earth fram

e due to the wire

and look back at b i, and award m

ark for there is no electric or m

agnetic force on X

3

Page 134: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

– 9 –

N16/4/PH

YSI/HP3/EN

G/TZ0/XX/M

Question

Answers

Notes

Total

5. a

the length of an object in its rest fram

e

1

b

2

1

1–0.96

() O

R γ

=3.6

E

CF for w

rong γ

2

93 «ns»

Aw

ard [2] for a bald correct answ

er.

Page 135: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

– 10 –

N16/4/PH

YSI/HP3/EN

G/TZ0/XX/M

Question

Answers

Notes

Total

c

«X

is» 7.5 «m» in fram

e on pion

3

«Y is» 26.8 «m

» in frame on Earth

identifies proper length as the Earth m

easurement

OR

identifies Earth distance according to pion as contracted length

OR

a statement explaining that one of the length is shorter than the other one

6. a

==

10.8

angletan

39

»«

o» OR

0.67 «rad»

1

b

adds

′x -axis as shown

A

pproximate sam

e angle to v=

c as for ct ′. Ignore labelling of that axis.

1

ct

x45

°

S

Page 136: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

– 11 –

N16/4/PH

YSI/HP3/EN

G/TZ0/XX/M

Question

Answers

Notes

Total

c

adds tw

o lines parallel to ct ′and ′x as show

n indicating coordinates

1

S

ct

x45

°

7. a

«0.6 ct=

6 ly» so t=10 «years»

A

ccept: If the 6 ly are considered to be measured

from B, then the answ

er is 12.5 years. 1

b

A

LTERN

ATIVE 1

2

2

22

210

60

t−

=−

Accept: If the 6 ly are considered to be m

easured from

B, then the answer is 10 years.

so t is 8 «years»

Allow

EC

F from a

A

LTERN

ATIVE 2

gam

ma is 54

4

108

=«years»

A

llow E

CF for incorrect γ in m

p1

Page 137: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

– 12 –

N16/4/PH

YSI/HP3/EN

G/TZ0/XX/M

Question

Answers

Notes

Total

c

three w

orld lines as shown

1

twin A

twin B (w

orldline to go and come back)

Aw

ard mark only if axes O

R w

orld lines are labelled.

d

according to both tw

ins, it is the other one who is m

oving fast therefore clock should run slow

Allow

explanation in terms of spacetim

e diagram.

2

«it is not considered a paradox as» tw

in B is not always in the sam

e inertial fram

e of reference

OR

twin B is actually accelerating «and decelerating»

Page 138: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

– 13 –

N16/4/PH

YSI/HP3/EN

G/TZ0/XX/M

Question

Answers

Notes

Total

8. a

as the total initial m

omentum

is zero, it must be zero after the collision

1

b

2

02

(1)

(–

1)m

γ=

−=

0.511

3

4.91γ=

0.978

vc

=

c

2

22

0.5115.02

MeV

++

×=

«»

so each photon is 2.51« MeV »

2

–12.51

MeV

cE

pc

==

«»

9. a

2

ghc

∆=

ffso

108

20.6

200000001.3

10(3

10)

f−

×∆

==

××

Aw

ard [3 max] if for g 0.6 O

R 9.8 O

R

average of 0.6 and 9.8 is used.

3

tt∆

∆=

ff

10

1.310

243600

−×

××

=1.15 x10 -5 «s» «running fast»

b

A

LTERN

ATIVE 1

Use E

CF from

(a)

1

g is not constant through h∆

so value determined should be larger

A

ccept under or overestimate for

SR

argument.

A

LTERN

ATIVE 2

the satellite clock is affected by tim

e dilation due to special relativity/its motion

Page 139: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

– 14 –

N16/4/PH

YSI/HP3/EN

G/TZ0/XX/M

O

ption B —

Engineering physics

Question

Answers

Notes

Total

10. a

A

LTERN

ATIVE 1

2

ω

−=

=1

final31.5

rads

vr«

»

so

ot

ωω

α=

»2

31.57.91

rads

3.98t ω

α−

==

»

A

LTERN

ATIVE 2

==

21.89

0.4749m

s3.98

»

2

0.47490.060

7.91 rad

sar

α−

==

»

A

ward [1 m

ax] for r=

0.24 mm

used giving α=

1.98 «rad s–2».

b

2

21

11.22

0.2407.91

22

MR

αΓ

==

××

×

2

0.278N

m=

«»

At least two significant figures required for M

P2, as question is a “Show

”.

c

i T

Fr Γ

=

A

llow 5 «N

» if Γ=

0.3 Νm

is used.

2

4.63N

TF

»

c

ii 4.63

so9.81

0.475T

Fm

gm

am

==

A

llow E

CF

2

m=

0.496 «kg»

Page 140: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

– 15 –

N16/4/PH

YSI/HP3/EN

G/TZ0/XX/M

Question

Answers

Notes

Total 11.

in method 1 the perpendicular distance varies from

0 to a maxim

um value, in m

ethod 2 this distance is constant at the m

aximum

value O

R

angle between F and r is 90° in m

ethod 2 and less in method 1

OR

perpendicular distance

2

perpendicular distance/ torque is greater in m

ethod 2

12.

a

correct conversion to K «622 K cold, 885 K hot»

Aw

ard [1 max] if tem

peratures are not converted to K, giving result 0.430.

2

coldC

arnothot

6221

1 0.297

29.7%885

TTη

=−

=−

=or

b

the C

arnot efficiency is the maxim

um possible

the C

arnot cycle is theoretical/reversible/impossible/infinitely slow

energy losses to surroundings «friction, electrical losses, heat losses, sound energy»

OW

TTE

2 max

c

0.71

×0.297

=0.211

A

llow solution utilizing w

asted pow

er «78.9 %».

3

1.33/0.211

×0.789

=4.97 «G

Aw

ard [2 max] if 71 %

used as the overall efficiency giving an answ

er of 1.96×

1012 J.

4.97

×3600

=1.79

×10

13 «J»

Aw

ard [3] for a bald correct answ

er.

Watch for E

CF from

(a).

Page 141: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

– 16 –

N16/4/PH

YSI/HP3/EN

G/TZ0/XX/M

Question

Answers

Notes

Total

d

Law

1: net thermal energy flow

is IN

OU

TQ

Q−

OU

TQ

refers to “waste heat”

3 max

Law

1: IN

OU

Tas

QQ

QW

U−

=∆

=∆

∆ is zero

Law

1: does not forbid O

UT

0Q

=

Law

2: no power plant can cover 100 %

of IN

Q into w

ork

Law

2: total entropy must increase so som

e Q m

ust enter surroundings

OW

TTE 13.

a i

3w

eightcube

210 9.81 0.15

6.95N

FgV

ρ=

×=

«»

«»

1

a

ii buoyancy

6.95g

FV

ρ=

=gives V

=9.8

410

−×

2

4

3( 9.8

100

).15

−×

=0.29 so 0.71 or 71 %

of the cube is above the gasoline

Aw

ard [2] for a bald correct answer.

b

«from

continuity equation» v is greater at B O

R

area at B is smaller thus «from

continuity equation» velocity at B is greater

3

increase in speed leads to reduction in pressure «through Bernoulli effect»

pressure related to height of colum

n

OR

phg

ρ=

Page 142: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

– 17 –

N16/4/PH

YSI/HP3/EN

G/TZ0/XX/M

Question

Answers

Notes

Total

14. a

i am

plitude is increasing as energy is added

1

a

ii energy input=

energy lost due to damping

1

b

curve from

time

B t reaching zero displacement

2

in no m

ore than one cycle

Aw

ard zero if displacem

ent after tB goes to negative values.

t B t A

vertical displacem

ent 0

time

Page 143: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

– 18 –

N16/4/PH

YSI/HP3/EN

G/TZ0/XX/M

O

ption C —

Imaging

Q

uestion Answ

ers N

otes Total

15. a

A

LTERN

ATIVE 1

2

for incident ray, norm

al drawn w

hich pass through C

i=

r by eye

If normal is not visibly constructed using C

, do not aw

ard MP

1.

If no normal is draw

n then grazing angles must be

equal for MP

2.

reflected ray draw

n such as i=r

A

LTERN

ATIVE 2

draw

n second ray through C, parallel to incident ray

Focal plane position by eye, half-w

ay between

C and m

irror

adds focal plane and draw

s reflected ray so that it meets 2nd ray at

focal plane

b

i spherical «aberration»

1

b

ii using parabolic m

irror

OR

reducing the aperture

1

Page 144: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

– 19 –

N16/4/PH

YSI/HP3/EN

G/TZ0/XX/M

Question

Answers

Notes

Total

16. a

converging/positive/biconvex/plane convex

D

o not accept convex. 1

b

4

vu=

Aw

ard [3] for a bald correct answer.

3

6v

u+

=

A

llow [1] if the answ

er is 4.8 «m».

so lens is 1.2 «m

» from object or u

=1.2 «m

»

c

u

vf

f+

=+

=1

11

11

1, so

, so1.2

4.8«

»=

f 0.96 «m

» or 1 «m»

W

atch for EC

F from (b)

1

d

real A

ND

inverted

2

sm

aller OR

diminished

Page 145: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

– 20 –

N16/4/PH

YSI/HP3/EN

G/TZ0/XX/M

Question

Answers

Notes

Total 17.

a

OB

JEC

TIVE

f for telescope

OB

JEC

TIVE

>f

for microscope

OR

OB

JEC

TIVE

f for telescope

EYE

PIE

CE

>f

for telescope but O

BJE

CTIV

Ef

for microscope

EYE

PIE

CE

<f

for m

icroscope

1

b

5005

OR

100 times

1

c

i R

F photons have smaller energy, so signal requires larger dish

M

ust see both, reason and explanation.

1 max

R

F waves have greater w

avelength, good resolution requires larger dish

c

ii use of an array of dishes/m

any mutually connected antennas «so the effective diam

eter equals to the distance betw

een the furthest antennas»

1

d

betw

een e f and eyepiece lens, on its left

1

objective lenseyepiece lens

fofo

fefe

accepted position for X

Accept any clear indication of

the image (eg: X, arrow

, dot).

Accept positions w

hich are slightly off axis.

e

resolution im

proves as wavelength decreases A

ND

wavelength of U

V is smaller

OR

gives resolution formula A

ND

adds that λ is sm

aller for UV

1

Page 146: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

– 21 –

N16/4/PH

YSI/HP3/EN

G/TZ0/XX/M

Question

Answers

Notes

Total

18. a

step-index fibres have constant «core» refracting index, graded index fibres have refracting index that reduces/decreases/gets sm

aller away from

axis

OW

TTE but refractive index is variable is not enough for the m

ark.

Aw

ard the mark if these ideas are

evident in the answer to 18(b).

1

b

«in graded index fibres» rays travelling longer paths travel faster

Ignore statem

ents about different colours/w

avelengths. 2

so that rays travelling different paths arrive at sam

e/similar tim

e

19. a

reads value on graph at 20 keV as

21

4cm

g−

«»

Ensure that the calculation has

right POT conversion.

2

21

31

10004

cmg

1800kg

m7.2

cm1000000

−−

−×

×=

«»

«»

Answ

er must be to at least

two significant figures.

Page 147: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

– 22 –

N16/4/PH

YSI/HP3/EN

G/TZ0/XX/M

Question

Answers

Notes

Total

b

ALTER

NA

TIVE 1 (finds intensity ratios for m

uscle and bone separately) W

atch for EC

F

3

for m

uscle: obtains 1

0.96cm

−=

µ

A

llow answ

ers in the range of 0.90 to 1.02 cm–1.

II

−µ=

x

0e

so for muscle 0.38

A

llow answ

ers in the range of 0.36 to 0.41. A

llow answ

ers in dB. M

uscle -4dB, B

one -30 or -31dB

for bone:

4

07.5

10−

II «if

7.2 is used»

OR

9.14

10−

× «if

7 is used»

A

LTERN

ATIVE 2

for m

uscle: obtains 1

0.96cm

−=

µ

A

llow answ

ers in the range of 0.90 to 1.02 cm–1.

0.96

7.2B

ON

MU

SCE LE

ee

−−=

II

Frequently the PO

T will be incorrect for M

P1. A

llow E

CF

from M

P1 to M

P2.

Allow

+/- 26 or 27dB

Aw

ard [2 max] if µ

=960 as they w

ill get II=

BO

MU

SCL

NE

E0

.

ratio is about 500 «513»

A

llow range 395 to 546

If 7 used, ratio is about 420, if 7.2 is used, ratio is about 510

Allow

answer IB

ON

E /IMU

SC

LE from a range 0.0017 to 0.0026.

c

sim

ilar absorption so poor contrast

1

Page 148: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

– 23 –

N16/4/PH

YSI/HP3/EN

G/TZ0/XX/M

Question

Answers

Notes

Total

20. a

«proton» spin

1

b

strong B field applied to align proton spins

O

WTTE

3 max

cross-field applied to give gradient field

OR

each point in a plane has a unique B

Allow

features to be mentioned in any order.

R

F field excites spins

protons em

it RF at resonant/Larm

or frequency dependent on Total B field

R

F detected shows position in the plane / is used to form

2D im

ages

Page 149: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

– 24 –

N16/4/PH

YSI/HP3/EN

G/TZ0/XX/M

O

ption D —

Astrophysics

Question

Answers

Notes

Total

21. a

tw

o stars orbiting about a comm

on centre «of mass/gravity»

D

o not accept two stars orbiting each other.

1

b

i stars are roughly at the sam

e distance from Earth

OR

d is constant for binaries

Aw

ard [2] for a bald correct answer.

2

AB

1.53.0

0.5LL

==

b

ii 26

84

1.53.8

105.67

104

5800r

××

×π×

Aw

ard [2] for a bald correct answer.

2

8

8.410

m=

׫

»

c

4

LA

Tσ=

«»

B and A have similar tem

peratures

2

so areas are in ratio of luminosities

«so B radius is less than A»

d

radiation pressure/force outw

ards

3

gravitational pressure/force inwards

forces/pressures balance

Page 150: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

– 25 –

N16/4/PH

YSI/HP3/EN

G/TZ0/XX/M

Question

Answers

Notes

Total

e

Alpha C

entauri A within allow

able region

2

som

e indication of star moving right and up then left and dow

n ending in w

hite dwarf region as indicated

starLL

acceptablew

hite dwarf

region

acceptablelocation ofAlpha C

entauri A

106

104

102

100

10–2

10–

440000

20000

10000

50002500

Sun

temperature / K

Page 151: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

– 26 –

N16/4/PH

YSI/HP3/EN

G/TZ0/XX/M

Question

Answers

Notes

Total

22.

from

first graph period=

5.7 «days» ±0.3 «days»

3

from

second graph S

UN

2300L

L=

«±

200»

Accept answ

er from interval 240 to 270 pc If unit om

itted, assum

e pc

26

189

25003.8

108.3

10 m

41.1

10d

××

==

×π×

׫

»=250 «pc»

W

atch for EC

F from m

p1

Page 152: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

– 27 –

N16/4/PH

YSI/HP3/EN

G/TZ0/XX/M

Question

Answers

Notes

Total

23. a

isotropic/appears the sam

e from every view

ing angle

2 max

hom

ogenous/same throughout the universe

black-body radiation

b

23 100 «cm

» O

R

231 «m»

1

24. a

w

hite dwarf m

ust have companion «in binary system

»

3

white dw

arf gains material «from

companion»

w

hen dwarf reaches and exceeds the C

handrasekhar limit/1.4 M

SU

N supernova can occur

b

a standard candle represents a «stellar object» w

ith a known lum

inosity

OW

TTE

2

this supernova occurs at an certain/known/exact m

ass so luminosity/energy released is also

known

M

P1 for indication of know

n lum

inosity, MP

2 for any relevant supportive argum

ent.

c

distant supernovae w

ere dimm

er/further away than expected

3

hence universe is accelerating

dark energy «is a hypothesis to» explain this

Page 153: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

– 28 –

N16/4/PH

YSI/HP3/EN

G/TZ0/XX/M

Question

Answers

Notes

Total

25. a

ρ

=π43 G

vr

«»

−=

××

××

××

××π

1121

166.67

105.0

10(4000

3.110

43)

2

v is about 146 000 «m s

–1» or 146 «km s

–1»

Accept answ

er in the range of 140 000 to 160 000 «m

s–1».

b

rotation curves/velocity of stars w

ere expected to decrease outside core of galaxy

2

flat curve suggests existence of m

atter/mass that cannot be seen – now

called dark matter

Page 154: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

N17/4/PHYSI/HPM/ENG/TZ0/XX

© International Baccalaureate Organization 201719 pages

PhysicsHigher levelPaper 1

1 hour

Tuesday 31 October 2017 (afternoon)

Instructions to candidates

• Do not open this examination paper until instructed to do so.• Answer all the questions.• For each question, choose the answer you consider to be the best and indicate your choice on

the answer sheet provided.• A clean copy of the physics data booklet is required for this paper.• The maximum mark for this examination paper is [40 marks].

8817 – 6501

Page 155: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

– 2 –

1. What is a correct value for the charge on an electron?

A. 1.60 10–12  µC

B. 1.60 10–15  mC

  C.  1.60  10–22  kC

D. 1.60 10–24  MC

2.  The diagram shows an analogue meter with a mirror behind the pointer.

02

4 68

10mA mA

mirrorpointer

  What is the main purpose of the mirror?

  A.  To provide extra light when reading the scale

  B.  To reduce the risk of parallax error when reading the scale

  C.  To enable the pointer to be seen from different angles

  D.  To magnify the image of the pointer

3.  An object is released from a stationary hot air balloon at height h above the ground.   An identical object is released at height h above the ground from another balloon that is rising  at constant speed.  Air resistance is negligible.  What does not increase for the object released from the rising balloon?

  A.  The distance through which it falls

  B.  The time taken for it to reach the ground

  C.  The speed with which it reaches the ground

D. Its acceleration

N17/4/PHYSI/HPM/ENG/TZ0/XX

Page 156: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

– 3 –

Turn over

4.  The diagram shows the forces acting on a block resting on an inclined plane.  The angle h is adjusted until the block is just at the point of sliding.  R is the normal reaction, W the weight of  the block and F  the maximum frictional force.

R

h

F

W not to scale

  What is the maximum coefficient of static friction between the block and the plane?

A. sin h

B. cos h

  C.  tan h

D. 1

tanq

5.  A sunbather is supported in water by a floating sun bed.  Which diagram represents the magnitudes of the forces acting on the sun bed?

A.

water sun bed

B.

water sun bed

C.

water sun bed

D.

water sun bed

N17/4/PHYSI/HPM/ENG/TZ0/XX

Page 157: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

– 4 –

6.  A system that consists of a single spring stores a total elastic potential energy Ep when a load is added to the spring.  Another identical spring connected in parallel is added to the system.  The same load is now applied to the parallel springs.

loadload

single spring parallel springs

  What is the total elastic potential energy stored in the changed system?

A. Ep

B. p

2E

  C.  p

4E

D. p

8E

7.  A toy car of mass 0.15  kg accelerates from a speed of 10  cm  s–1 to a speed of 15  cm  s–1. What is the impulse acting on the car?

  A.  7.5  mN  s

  B.  37.5  mN  s

  C.  0.75  N  s

  D.  3.75  N  s

8.  A 1.0  kW heater supplies energy to a liquid of mass 0.50  kg.  The temperature of the liquid changes by 80  K in a time of 200  s.  The specific heat capacity of the liquid is 4.0  kJ  kg–1  K–1. What is the average power lost by the liquid?

A. 0

  B.  200  W

  C.  800  W

  D.  1600  W

N17/4/PHYSI/HPM/ENG/TZ0/XX

Page 158: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

– 5 –

Turn over

9.  The fraction of the internal energy that is due to molecular vibration varies in the different states of matter.  What gives the order from highest fraction to lowest fraction of internal energy due to molecular vibration?

  A.  liquid > gas > solid

  B.  solid > liquid > gas

  C.  solid > gas > liquid

  D.  gas > liquid > solid

10. What does the constant n represent in the equation of state for an ideal gas pV  =  nRT  ?

  A.  The number of atoms in the gas

  B.  The number of moles of the gas

  C.  The number of molecules of the gas

  D.  The number of particles in the gas

11.  The graph shows the variation with position s of the displacement x of a wave undergoing simple harmonic motion (SHM).

x

0

X

Y Z s

  What is the magnitude of the velocity at the displacements X, Y and Z?

X Y Z

A.   maximum zero   maximum

B. zero   maximum   maximum

C.   maximum   maximum zero

D. zero   maximum zero

N17/4/PHYSI/HPM/ENG/TZ0/XX

Page 159: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

– 6 –

12.  Unpolarized light of intensity  0I  is incident on a polarizing fi lter.  Light from this fi lter is incident on a second fi lter, which has its axis of polarization at 30˚ to that of the fi rst fi lter.

  The value of cos 30˚ is 32.  What is the intensity of the light emerging through the second fi lter?

A. 03

2I

B. 032I

  C.  034I

D. 038I

13. The refractive index for light travelling from medium X to medium Y is 43

. The refractive index for

light travelling from medium Y to medium Z is 35

. What is the refractive index for light travelling from medium X to medium Z?

A. 45

B.

  C.  54

D. 2915

N17     /4/PHYSI/HPM/ENG/TZ0/XX

Page 160: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

– 7 –

Turn over

14.  The diagram shows a second harmonic standing wave on a string fixed at both ends.

 X  Y

  What is the phase difference, in rad, between the particle at X and the particle at Y?

A. 0

B. 4π

  C. 2π

D. 34π

15.  Two wires, X and Y, are made from the same metal.  The wires are connected in series.   The radius of X is twice that of Y.  The carrier drift speed in X is v X and in Y it is v Y .

What is the value of the ratio Y

Xvv

?

A. 0.25

B. 0.50

  C.  2.00

D. 4.00

N17/4/PHYSI/HPM/ENG/TZ0/XX

Page 161: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

– 8 –

16.  Kirchhoff’s laws are applied to the circuit shown.

6  V

I1

2  

3  

4  

I2

I3

  What is the equation for the dotted loop?

A. 0 = 3I2  +  4I3

B. 0 = 4I3  −  3I2

  C.  6 = 2I1  +  3I2 + 4I3

D. 6 = 3I2  +  4I3

17.  The diagram shows two current-carrying wires, P and Q, that both lie in the plane of  the paper.  The arrows show the conventional current direction in the wires.

P

Q

  The electromagnetic force on Q is in the same plane as that of the wires.  What is the direction of the electromagnetic force acting on Q?

A.

D. B.

  C.

N17/4/PHYSI/HPM/ENG/TZ0/XX

Page 162: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

– 9 –

Turn over

18. The diagram shows the magnetic field surrounding two current-carrying metal wires P and Q.  The wires are parallel to each other and at right angles to the plane of the page.

P Q

  What is the direction of the electron flow in P and the direction of the electron flow in Q?

Direction of electron flow in P Direction of electron flow in Q

A. into page into page

B. into page out of page

C. out of page into page

D. out of page out of page

19.  A satellite X of mass m orbits the Earth with a period T.  What will be the orbital period of satellite Y of mass 2m occupying the same orbit as X?

A. 2T

B. T

  C.  2T

D. 2T

20.  Which statement about atomic spectra is not true?

  A.  They provide evidence for discrete energy levels in atoms.

  B.  Emission and absorption lines of equal frequency correspond to transitions between the same two energy levels.

  C.  Absorption lines arise when electrons gain energy.

  D.  Emission lines always correspond to the visible part of the electromagnetic spectrum.

N17/4/PHYSI/HPM/ENG/TZ0/XX

Page 163: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

– 10 –

21.  What gives the total change in nuclear mass and the change in nuclear binding energy as a result of a nuclear fusion reaction?

Nuclear mass Nuclear binding energy

A. decreases decreases

B. decreases increases

C. increases decreases

D. increases increases

22.  The Feynman diagram shows a particle interaction involving a W – boson.

time

U

  X

W – Z

 Y

Which particles are interacting?

  A.  U and Y

B. W – boson and Y

  C.  X and Y

  D.  U and X

N17/4/PHYSI/HPM/ENG/TZ0/XX

Page 164: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

– 11 –

Turn over

23.  Samples of different radioactive nuclides have equal numbers of nuclei.  Which graph shows the relationship between the half-life  1

2t  and the activity A for the samples?

A.12t

0

B.12t

0 0 A 0 A

C.12t

0

D.12t

0 0 A 0 A

24.  Which of the energy sources are classified as renewable and non-renewable?

Renewable Non-renewable

A.   Sun   wind

B. natural gas   geothermal

C.   biomass crude oil

D.   uranium-235 coal

25. A black body emits radiation with its greatest intensity at a wavelength of  maxl . The surface temperature of the black body doubles without any other change occurring.  What is the wavelength at which the greatest intensity of radiation is emitted?

A. maxl

B. max

2l

  C.  max

4l

D. max

16l

N17/4/PHYSI/HPM/ENG/TZ0/XX

Page 165: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

– 12 –

26.  The three statements give possible reasons why an average value should be used for the solar constant.

    I.  The Sun’s output varies during its 11 year cycle.

    II.  The Earth is in elliptical orbit around the Sun.

    III.  The plane of the Earth’s spin on its axis is tilted to the plane of its orbit about the Sun.

Which are the correct reasons for using an average value for the solar constant?

  A.  I and II only

  B.  I and III only

  C.  II and III only

  D.  I, II and III

27.  A spring loaded with mass m oscillates with simple harmonic motion.  The amplitude of the motion is A and the spring has total energy E.  What is the total energy of the spring when the mass is increased to 3m and the amplitude is increased to 2A?

A. 2E

B. 4E

  C.  12E

  D.  18E

28.  Monochromatic light is incident on two identical slits to produce an interference pattern on a screen.  One slit is then covered so that no light emerges from it.  What is the change to the pattern observed on the screen?

  A.  Fewer maxima will be observed.

  B.  The intensity of the central maximum will increase.

  C.  The outer maxima will become narrower.

  D.  The width of the central maximum will decrease.

N17/4/PHYSI/HPM/ENG/TZ0/XX

Page 166: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

– 13 –

Turn over

29.  A transparent liquid forms a parallel-sided thin film in air.  The diagram shows a ray I incident on the upper air–film boundary at normal incidence (the rays are shown at an angle to the normal for clarity).

  J  K  L

I

air

film

air

  Reflections from the top and bottom surfaces of the film result in three rays J, K and L.  Which of the rays has undergone a phase change of π rad?

  A.  J only

  B.  J and L only

  C.  J and K only

  D.  J, K and L

30.  A stationary sound source emits waves of wavelength  and speed v.  The source now moves away from a stationary observer.  What are the wavelength and speed of the sound as measured by the observer?

Wavelength Speed

A. longer than   equal to v

B. longer than less than v

C. shorter than   equal to v

D. shorter than less than v

N17/4/PHYSI/HPM/ENG/TZ0/XX

Page 167: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

– 14 –

31. A charge of − 3  C is moved from A to B and then back to A.  The electric potential at A is +10  V and the electric potential at B is − 20  V.  What is the work done in moving the charge from A to B and the total work done?

Work done in moving from A to B / J

Total work done/ J

A. 30 0

B. 30 60

C. 90 0

D. 90   180

32.  A spacecraft moves towards the Earth under the influence of the gravitational field of the Earth.  The three quantities that depend on the distance r of the spacecraft from the centre of the Earth are the

    I.  gravitational potential energy of the spacecraft

    II  gravitational field strength acting on the spacecraft

III. gravitational force acting on the spacecraft.

  Which of the quantities are proportional to  2

1r

?

  A.  I and II only

  B.  I and III only

  C.  II and III only

  D.  I, II and III

N17/4/PHYSI/HPM/ENG/TZ0/XX

Page 168: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

– 15 –

Turn over

33.  An isolated hollow metal sphere of radius R carries a positive charge.  Which graph shows the variation of potential V  with distance x from the centre of the sphere?

A.V

0

B.V

0 0 R x 0 R x

C.V

0

D.V

0 0 R x 0 R x

34.  The plane of a coil is positioned at right angles to a magnetic field of flux density B. The coil has N turns, each of area A.  The coil is rotated through 180˚ in time t.

coil of N turns and area A

B

180˚

  What is the magnitude of the induced emf ?

A. BAt

B. 2BAt

  C.  BANt

D. 2BANt

N17/4/PHYSI/HPM/ENG/TZ0/XX

Page 169: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

– 16 –

35. The ratio number of primary turnsnumber of secondary turns

 for a transformer is 2.5.

  The primary coil of the transformer draws a current of 0.25  A from a 200  V alternating current (ac) supply.  The current in the secondary coil is 0.5  A.  What is the efficiency of the transformer?

  A.  20  %

  B.  50  %

  C.  80  %

  D.  100  %

36.  An alternating current (ac) generator produces a peak emf E 0 and periodic time T. What are the peak emf and periodic time when the frequency of rotation is doubled?

Peak emf Periodic time

A. 2 E 0 2T

B.2 E 0 2

T

C. E 0 2T

D.E 0 2

T

N17/4/PHYSI/HPM/ENG/TZ0/XX

Page 170: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

– 17 –

Turn over

37.  Six identical capacitors, each of value C, are connected as shown.

What is the total capacitance?

A. 6C

B. 23C

  C.  32C

D. 6C

N17/4/PHYSI/HPM/ENG/TZ0/XX

Page 171: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

– 18 –

38. A capacitor of capacitance C discharges through a resistor of resistance R.  The graph shows the variation with time t of the voltage V across the capacitor.

1.61.41.21.00.80.60.40.20.0

1.2

1.0

0.8

0.6

0.4

0.2

0.0

t / s

V /

V

The capacitor is changed to one of value 2C and the resistor is changed to one of value 2R. Which graph shows the variation with t  of V  when the new combination is discharged?

A.

1.61.41.21.00.80.60.40.20.0

1.2

1.0

0.8

0.6

0.4

0.2

0.0

t / s

V /

V

B.

1.61.41.21.00.80.60.40.20.0

1.2

1.0

0.8

0.6

0.4

0.2

0.0

t / s

V /

V

C.

1.61.41.21.00.80.60.40.20.0

1.2

1.0

0.8

0.6

0.4

0.2

0.0

t / s

V /

V

D.

1.61.41.21.00.80.60.40.20.0

1.2

1.0

0.8

0.6

0.4

0.2

0.0

t / s

V /

V

N17/4/PHYSI/HPM/ENG/TZ0/XX

Page 172: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

– 19 –

39.  Monochromatic electromagnetic radiation is incident on a metal surface.  The kinetic energy of the electrons released from the metal

  A.  is constant because the photons have a constant energy.

  B.  is constant because the metal has a constant work function.

  C.  varies because the electrons are not equally bound to the metal lattice.

  D.  varies because the work function of the metal is different for different electrons.

40.  A photon interacts with a nearby nucleus to produce an electron.  What is the name of this process?

A. Pair annihilation

B. Pair production

  C.  Electron diffraction

  D.  Quantum tunnelling

N17/4/PHYSI/HPM/ENG/TZ0/XX

Page 173: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

N17/4/PHYSI/HPM/ENG/TZ0/XX/M

2 pages

Markscheme

November 2017

Physics

Higher level

Paper 1

Page 174: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

– 2 – N17/4/PHYSI/HPM/ENG/TZ0/XX/M

31. C 46. –

32. C 47. –

33. B 48. –

34. D 49. –

35. C 50. –

36. B 51. –

37. B 52. –

38. B 53. –

39. C 54. –

40. B 55. –

41. – 56. –

42. – 57. –

43. – 58. –

44. – 59. –

1. C

2. B

3. D

4. C

5. D

6. B

7. A

8. B

9. B

10. B

11. B

12. D

13. A

14. A

15. A

16. B

17. A

18. B

19. B

20. D

21. B

22. C

23. D

24. C

25. B

26. A

27. B

28. A

29. A

30. A 45. – 60. –

Page 175: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

24EP01

N17/4/PHYSI/HP2/ENG/TZ0/XX

PhysicsHigher levelPaper 2

2 hours 15 minutes

Tuesday 31 October 2017 (afternoon)Candidate session number

© International Baccalaureate Organization 201721 pages

Instructions to candidates

• Write your session number in the boxes above.• Do not open this examination paper until instructed to do so.• Answer all questions.• Answers must be written within the answer boxes provided.• A calculator is required for this paper.• A clean copy of the physics data booklet is required for this paper.• The maximum mark for this examination paper is [95 marks].

8817 – 6502

Page 176: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

N17/4/PHYSI/HP2/ENG/TZ0/XX

24EP02

– 2 –

Answer all questions. Answers must be written within the answer boxes provided.

1. A girl on a sledge is moving down a snow slope at a uniform speed.

sledge

snow slope horizontal region of snow

(a) Draw the free-body diagram for the sledge at the position shown on the snow slope. [2]

(b) After leaving the snow slope, the girl on the sledge moves over a horizontal region of snow. Explain, with reference to the physical origin of the forces, why the vertical forces on the girl must be in equilibrium as she moves over the horizontal region. [3]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(This question continues on the following page)

Page 177: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

N17/4/PHYSI/HP2/ENG/TZ0/XX

24EP03

– 3 –

Turn over

(Question 1 continued)

(c) When the sledge is moving on the horizontal region of the snow, the girl jumps off the sledge. The girl has no horizontal velocity after the jump. The velocity of the sledge immediately after the girl jumps off is 4.2  m  s–1. The mass of the girl is 55  kg and the mass of the sledge is 5.5  kg. Calculate the speed of the sledge immediately before the girl jumps from it. [2]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(d) The girl chooses to jump so that she lands on loosely-packed snow rather than frozen ice. Outline why she chooses to land on the snow. [3]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(This question continues on the following page)

Page 178: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

N17/4/PHYSI/HP2/ENG/TZ0/XX

24EP04

– 4 –

(Question 1 continued)

(e) The sledge, without the girl on it, now travels up a snow slope that makes an angle of 6.5˚ to the horizontal. At the start of the slope, the speed of the sledge is 4.2  m  s–1. The coefficient of dynamic friction of the sledge on the snow is 0.11.

(i) Show that the acceleration of the sledge is about –2  m  s–2. [3]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(ii) Calculate the distance along the slope at which the sledge stops moving. Assume that the coefficient of dynamic friction is constant. [2]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(f) The coefficient of static friction between the sledge and the snow is 0.14. Outline, with a calculation, the subsequent motion of the sledge. [2]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Page 179: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

N17/4/PHYSI/HP2/ENG/TZ0/XX

24EP05

– 5 –

Turn over

2. There is a proposal to power a space satellite X as it orbits the Earth. In this model, X is connected by an electronically-conducting cable to another smaller satellite Y.

cable

Y X

orbit of X not to scale

(a) Satellite X orbits 6600  km from the centre of the Earth.

Mass of the Earth  =  6.0 1024  kg

Show that the orbital speed of satellite X is about 8  km  s–1. [2]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(b) Satellite Y orbits closer to the centre of Earth than satellite X. Outline why

(i) the orbital times for X and Y are different. [1]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(ii) satellite Y requires a propulsion system. [2]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(This question continues on the following page)

Page 180: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

N17/4/PHYSI/HP2/ENG/TZ0/XX

24EP06

– 6 –

(Question 2 continued)

(c) The cable between the satellites cuts the magnetic field lines of the Earth at right angles.

Earth’s magnetic field magnetic field lines

cable

Y X

orbit of X

not to scale

Explain why satellite X becomes positively charged. [3]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(d) Satellite X must release ions into the space between the satellites. Explain why the current in the cable will become zero unless there is a method for transferring charge from X to Y. [3]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(This question continues on the following page)

Page 181: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

N17/4/PHYSI/HP2/ENG/TZ0/XX

24EP07

– 7 –

Turn over

(Question 2 continued)

(e) The magnetic field strength of the Earth is 31  µT at the orbital radius of the satellites.The cable is 15  km in length. Calculate the emf induced in the cable. [2]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(f) The cable acts as a spring. Satellite Y has a mass m of 3.5 102  kg. Under certain circumstances, satellite Y will perform simple harmonic motion (SHM) with a period T of 5.2 s.

(i) Estimate the value of k in the following expression.

2 mTk

= π

Give an appropriate unit for your answer. Ignore the mass of the cable and any oscillation of satellite X. [3]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(ii) Describe the energy changes in the satellite Y-cable system during one cycle of the oscillation. [2]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Page 182: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

N17/4/PHYSI/HP2/ENG/TZ0/XX

24EP08

– 8 –

Please do not write on this page.

Answers written on this page will not be marked.

Page 183: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

N17/4/PHYSI/HP2/ENG/TZ0/XX

24EP09

– 9 –

Turn over

3. (a) The Feynman diagram shows electron capture.

time

n

p

W +

X

e–

(i) State and explain the nature of the particle labelled X. [3]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(ii) Distinguish between hadrons and leptons. [2]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(This question continues on the following page)

Page 184: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

N17/4/PHYSI/HP2/ENG/TZ0/XX

24EP10

– 10 –

(Question 3 continued)

(b) Particles can be used in scattering experiments to estimate nuclear sizes.

(i) Outline how these experiments are carried out. [2]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(ii) Outline why the particles must be accelerated to high energies in scattering experiments. [3]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(c) State and explain one example of a scientific analogy. [2]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(This question continues on the following page)

Page 185: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

N17/4/PHYSI/HP2/ENG/TZ0/XX

24EP11

– 11 –

Turn over

(Question 3 continued)

(d) Electron diffraction experiments indicate that the nuclear radius of carbon-12 ( )126C

is 2.7 10–15  m. The graph shows the variation of nuclear radius with nucleon number.The nuclear radius of the carbon-12 is shown on the graph.

nuclear radius / 10–15  m

4

3

2

1

0

carbon-12

0 12 24nucleon number

(i) Determine the radius of the magnesium-24 ( )2412Mg nucleus. [2]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(ii) Plot the position of magnesium-24 on the graph. [1]

(iii) Draw a line on the graph, to show the variation of nuclear radius with nucleonnumber. [2]

Page 186: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

N17/4/PHYSI/HP2/ENG/TZ0/XX

24EP12

– 12 –

4. Electrical resistors can be made by forming a thin film of carbon on a layer of an insulating material.

(a) A carbon film resistor is made from a film of width 8.0  mm and of thickness 2.0  µm. The diagram shows the direction of charge flow through the resistor.

resistor l

8.0  mm

2.0  µm

charge flow

not to scale

(i) The resistance of the carbon film is 82 Ω. The resistivity of carbon is 4.1 10–5  Ω  m. Calculate the length l  of the film. [1]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(ii) The film must dissipate a power less than 1500  W from each square metre of its surface to avoid damage. Calculate the maximum allowable current for the resistor. [2]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(iii) State why knowledge of quantities such as resistivity is useful to scientists. [1]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(This question continues on the following page)

Page 187: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

N17/4/PHYSI/HP2/ENG/TZ0/XX

24EP13

– 13 –

Turn over

(Question 4 continued)

(b) The current direction is now changed so that charge flows vertically through the film.

charge flow

not to scale

Deduce, without calculation, the change in the resistance. [2]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Page 188: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

N17/4/PHYSI/HP2/ENG/TZ0/XX

24EP14

– 14 –

5. (a) A large cube is formed from ice. A light ray is incident from a vacuum at an angle of 46˚ to the normal on one surface of the cube. The light ray is parallel to the plane of one of the sides of the cube. The angle of refraction inside the cube is 33˚.

A B

46˚ 33˚

ice cube

(i) Calculate the speed of light inside the ice cube. [2]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(ii) Show that no light emerges from side AB. [3]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(iii) Sketch, on the diagram, the subsequent path of the light ray. [2]

(This question continues on the following page)

Page 189: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

N17/4/PHYSI/HP2/ENG/TZ0/XX

24EP15

– 15 –

Turn over

(Question 5 continued)

(b) Each side of the ice cube is 0.75  m in length. The initial temperature of the ice cube is –20  C.

(i) Determine the energy required to melt all of the ice from –20  C to water at a temperature of 0  C.

Specific latent heat of fusion of ice =  330  kJ  kg–1

Specific heat capacity of ice =  2.1  kJ  kg–1  K–1

Density of ice =  920  kg  m–3

[4]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(ii) Outline the difference between the molecular structure of a solid and a liquid. [1]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Page 190: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

N17/4/PHYSI/HP2/ENG/TZ0/XX

24EP16

– 16 –

6. (a) Yellow light from a sodium lamp of wavelength 590  nm is incident at normal incidence on a double slit. The resulting interference pattern is observed on a screen. The intensity of the pattern on the screen is shown.

A

(i) Explain why zero intensity is observed at position A. [2]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(ii) The distance from the centre of the pattern to A is 4.1 10–2  m. The distance from the screen to the slits is 7.0  m.

sodium light 7.0  m

double slit screen not to scale

Calculate the width of each slit. [2]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(This question continues on the following page)

Page 191: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

N17/4/PHYSI/HP2/ENG/TZ0/XX

24EP17

– 17 –

Turn over

(Question 6 continued)

(iii) Calculate the separation of the two slits. [2]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(This question continues on the following page)

Page 192: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

N17/4/PHYSI/HP2/ENG/TZ0/XX

24EP18

– 18 –

(Question 6 continued)

(b) The double slit is replaced by a diffraction grating that has 600 lines per millimetre. The resulting pattern on the screen is shown.

(i) State and explain the differences between the pattern on the screen due to the grating and the pattern due to the double slit. [3]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(ii) The yellow light is made from two very similar wavelengths that produce two lines in the spectrum of sodium. The wavelengths are 588.995  nm and 589.592  nm. These two lines can just be resolved in the second-order spectrum of this diffraction grating. Determine the beam width of the light incident on the diffraction grating. [3]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Page 193: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

N17/4/PHYSI/HP2/ENG/TZ0/XX

24EP19

– 19 –

Turn over

7. A satellite is orbiting the Earth in a polar orbit.

satellite

(a) The satellite carries an experiment that measures the peak wavelength emitted by different objects. The Sun emits radiation that has a peak wavelength  S of 509  nm. The peak wavelength  E of the radiation emitted by the Earth is 10.1  µm.

(i) Determine the mean temperature of the Earth. [2]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(ii) Suggest how the difference between  S and  E helps to account for the greenhouse effect. [3]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(b) Not all scientists agree that global warming is caused by the activities of man. Outline how scientists try to ensure agreement on a scientific issue. [1]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Page 194: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

N17/4/PHYSI/HP2/ENG/TZ0/XX

24EP20

– 20 –

8. A non-uniform electric field, with field lines as shown, exists in a region where there is no gravitational field. X is a point in the electric field. The field lines and X lie in the plane of the paper.

X

(a) Outline what is meant by electric field strength. [2]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(b) An electron is placed at X and released from rest. Draw, on the diagram, the direction of the force acting on the electron due to the field. [1]

(This question continues on the following page)

Page 195: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

N17/4/PHYSI/HP2/ENG/TZ0/XX

24EP21

– 21 –

Turn over

(Question 8 continued)

(c) The electron is replaced by a proton which is also released from rest at X. Compare, without calculation, the motion of the electron with the motion of the proton after release. You may assume that no frictional forces act on the electron or the proton. [4]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Page 196: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

24EP22

Please do not write on this page.

Answers written on this page will not be marked.

Page 197: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

24EP23

Please do not write on this page.

Answers written on this page will not be marked.

Page 198: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

24EP24

Please do not write on this page.

Answers written on this page will not be marked.

Page 199: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

36EP01

N17/4/PHYSI/HP3/ENG/TZ0/XX

PhysicsHigher levelPaper 3

1 hour 15 minutes

Wednesday 1 November 2017 (morning)Candidate session number

© International Baccalaureate Organization 201736 pages

Instructions to candidates

• Write your session number in the boxes above.• Do not open this examination paper until instructed to do so.• Answers must be written within the answer boxes provided.• A calculator is required for this paper.• A clean copy of the physics data booklet is required for this paper.• The maximum mark for this examination paper is [45 marks].

Section A QuestionsAnswer all questions. 1 – 3

Section B QuestionsAnswer all of the questions from one of the options.

Option A — Relativity 4 – 8

Option B — Engineering physics 9 – 12

Option C — Imaging 13 – 16

Option D — Astrophysics 17 – 20

8817 – 6503

Page 200: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

N17/4/PHYSI/HP3/ENG/TZ0/XX

36EP02

– 2 –

Section A

Answer all questions. Answers must be written within the answer boxes provided.

1. In an experiment, data were collected on the variation of specific heat capacity of water with temperature. The graph of the plotted data is shown.

specific heat capacity / kJ  kg–1  K–1

4.225

4.220

4.215

4.210

4.205

4.200

4.195

4.190

4.185

4.1804.180

4.185

4.190

4.195

4.200

4.205

4.210

4.215

4.220

4.225

40 50 60 70 80 90 100 110 temperature / C

(a) Draw the line of best-fit for the data. [1]

(This question continues on the following page)

Page 201: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

N17/4/PHYSI/HP3/ENG/TZ0/XX

36EP03

– 3 –

Turn over

(Question 1 continued)

(b) (i) Determine the gradient of the line at a temperature of 80 C. [3]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(ii) State the unit for the quantity represented by the gradient in your answer to (b)(i). [1]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(c) The uncertainty in the values for specific heat capacity is 5 %. Water of mass (100 2)  g is heated from (75.0 0.5) C to (85.0 0.5) C.

(i) Calculate the energy required to raise the temperature of the water from 75 C to 85 C. [1]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(ii) Using an appropriate error calculation, justify the number of significant figures that should be used for your answer to (c)(i). [3]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Page 202: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

N17/4/PHYSI/HP3/ENG/TZ0/XX

36EP04

– 4 –

2. An electrical circuit is used during an experiment to measure the current I in a variable resistor of resistance R. The emf of the cell is e and the cell has an internal resistance r.

e r

R

I

A graph shows the variation of 1I

with R.

1I

R

(a) Show that the gradient of the graph is equal to 1e

. [2]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(b) State the value of the intercept on the R axis. [1]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Page 203: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

N17/4/PHYSI/HP3/ENG/TZ0/XX

36EP05

– 5 –

Turn over

3. A student is running an experiment to determine the acceleration of free-fall g. She drops a small metal ball from a given height and measures the time t taken for it to fall using an electronic timer. She repeats the same experiment several times.

(a) Suggest a reason for repeating the experiment in the same conditions. [1]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(b) With the collected data she determines the value of g to be (10.4 0.7)  m s–2. Researching scientific literature about the location of her experiment she finds the value of g to be (9.807 0.006)  m s–2. State, with a reason, whether her experiment is accurate. [2]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Page 204: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

N17/4/PHYSI/HP3/ENG/TZ0/XX

36EP06

– 6 –

Section B

Answer all of the questions from one of the options. Answers must be written within the answer boxes provided.

Option A — Relativity

4. Outline the conclusion from Maxwell’s work on electromagnetism that led to one of the postulates of special relativity. [2]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5. Two rockets, A and B, are moving towards each other on the same path. From the frame of reference of the Earth, an observer measures the speed of A to be 0.6c and the speed of B to be 0.4c. According to the observer on Earth, the distance between A and B is 6.0 108  m.

rocket A, 0.6c

6.0 108  m

observer on Earth

rocket B, 0.4c

(a) Define frame of reference. [1]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(Option A continues on the following page)

Page 205: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

N17/4/PHYSI/HP3/ENG/TZ0/XX

36EP07

– 7 –

Turn over

(Option A, question 5 continued)

(b) Calculate, according to the observer on Earth, the time taken for A and B to meet. [2]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(c) Identify the terms in the formula.

21

u vu uvc

−′ =−

[1]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(d) Determine, according to an observer in A, the velocity of B. [2]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(Option A continues on page 9)

Page 206: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

N17/4/PHYSI/HP3/ENG/TZ0/XX

36EP08

– 8 –

Please do not write on this page.

Answers written on this pagewill not be marked.

Page 207: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

N17/4/PHYSI/HP3/ENG/TZ0/XX

36EP09

– 9 –

Turn over

(Option A, question 5 continued from page 7)

(e) (i) Determine, according to an observer in A, the time taken for B to meet A. [2]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(ii) Deduce, without further calculation, how the time taken for A to meet B, according to an observer in B, compares with the time taken for the same event according to an observer in A. [2]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(Option A continues on the following page)

Page 208: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

N17/4/PHYSI/HP3/ENG/TZ0/XX

36EP10

– 10 –

(Option A continued)

6. A train is passing through a tunnel of proper length 80  m. The proper length of the train is 100  m. According to an observer at rest relative to the tunnel, when the front of the train coincides with one end of the tunnel, the rear of the train coincides with the other end of the tunnel.

(a) Explain what is meant by proper length. [1]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(b) Draw a spacetime diagram for this situation according to an observer at rest relative to the tunnel. [3]

(c) Calculate the velocity of the train, according to an observer at rest relative to the tunnel, at which the train fits the tunnel. [2]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(Option A continues on the following page)

Page 209: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

N17/4/PHYSI/HP3/ENG/TZ0/XX

36EP11

– 11 –

Turn over

(Option A, question 6 continued)

(d) For an observer on the train, it is the tunnel that is moving and therefore will appear length contracted. This seems to contradict the observation made by the observer at rest to the tunnel, creating a paradox. Explain how this paradox is resolved. You may refer to your spacetime diagram in (b). [2]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(Option A continues on the following page)

Page 210: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

N17/4/PHYSI/HP3/ENG/TZ0/XX

36EP12

– 12 –

(Option A continued)

7. The Λ0 (Lambda) particle decays spontaneously into a proton and a negatively charged pion of rest mass 140  MeV  c–2. After the decay, the particles are moving in the same direction with a proton momentum of 630  MeV  c–1 and a pion momentum of 270  MeV  c–1.

(a) Determine the rest mass of the Λ0 particle. [4]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(b) Determine, using your answer to (a), the initial speed of the Λ0 particle. [2]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(Option A continues on the following page)

Page 211: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

N17/4/PHYSI/HP3/ENG/TZ0/XX

36EP13

– 13 –

Turn over

(Option A continued)

8. The Schwarzschild radius of a black hole is 6.0 105  m. A rocket is 7.0 108  m from the black hole and has a clock. The proper time interval between the ticks of the clock on the rocket is 1.0  s. These ticks are transmitted to a distant observer in a region free of gravitational fields.

(a) Outline why the clock near the black hole runs slowly compared to a clock close to the distant observer. [2]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(b) Calculate the number of ticks detected in 10  ks by the distant observer. [2]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

End of Option A

Page 212: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

N17/4/PHYSI/HP3/ENG/TZ0/XX

36EP14

– 14 –

Option B — Engineering physics

9. A hoop of mass m, radius r and moment of inertia mr 2 rests on a rough plane inclined at an angle    to the horizontal. It is released so that the hoop gains linear and angular acceleration by rolling, without slipping, down the plane.

hoop

(a) On the diagram, draw and label the forces acting on the hoop. [2]

(b) Show that the linear acceleration a of the hoop is given by the equation shown.

sin 2

ga q×=

[4]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(Option B continues on the following page)

Page 213: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

N17/4/PHYSI/HP3/ENG/TZ0/XX

36EP15

– 15 –

Turn over

(Option B, question 9 continued)

(c) Calculate the linear acceleration of the hoop when   =  20. Assume that the hoop continues to roll without slipping. [1]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(d) State the relationship between the force of friction and the angle of the incline. [2]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(e) The angle of the incline is slowly increased from zero. Determine the angle, in terms of the coefficient of friction, at which the hoop will begin to slip. [3]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(Option B continues on the following page)

Page 214: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

N17/4/PHYSI/HP3/ENG/TZ0/XX

36EP16

– 16 –

(Option B continued)

10. A monatomic ideal gas is confined to a cylinder with volume 2.0 10–3  m3. The initial pressure of the gas is 100  kPa. The gas undergoes a three-step cycle. First, the gas pressure increases by a factor of five under constant volume. Then, the gas expands adiabatically to its initial pressure. Finally it is compressed at constant pressure to its initial volume.

(a) Show that the volume of the gas at the end of the adiabatic expansion is approximately 5.3 10–3  m3. [2]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(b) Using the axes, sketch the three-step cycle. [2]

p / kPa

700

600

500

400

300

200

100

00 1 2 3 4 5 6

0

100

200

300

400

500

600

0 1 2 3 4 5 6 V / 10–3  m3

(Option B continues on the following page)

Page 215: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

N17/4/PHYSI/HP3/ENG/TZ0/XX

36EP17

– 17 –

Turn over

(Option B, question 10 continued)

(c) The initial temperature of the gas is 290  K. Calculate the temperature of the gas at the start of the adiabatic expansion. [2]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(d) Using your sketched graph in (b), identify the feature that shows that net work is done by the gas in this three-step cycle. [2]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(Option B continues on the following page)

Page 216: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

N17/4/PHYSI/HP3/ENG/TZ0/XX

36EP18

– 18 –

(Option B continued)

11. The diagram shows a simplified model of a Galilean thermometer. The thermometer consists of a sealed glass cylinder that contains ethanol, together with glass spheres. The spheres are filled with different volumes of coloured water. The mass of the glass can be neglected as well as any expansion of the glass through the temperature range experienced.

Spheres have tags to identify the temperature. The mass of the tags can be neglected in all calculations.

not to scale

Each sphere has a radius of 3.0  cm and the spheres, due to the different volumes of water in them, are of varying densities. As the temperature of the ethanol changes the individual spheres rise or fall, depending on their densities, compared with that of the ethanol.

(a) The graph shows the variation with temperature of the density of ethanol.

density of ethanol/ kg m–3

810

805

800

795

790

785

780

7750 5 10 15 20 25 30 35

775

780

785

790

795

800

805

810

0 5 10 15 20 25 30 35 temperature / C

(Option B continues on the following page)

Page 217: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

N17/4/PHYSI/HP3/ENG/TZ0/XX

36EP19

– 19 –

Turn over

(Option B, question 11 continued)

(i) Using the graph, determine the buoyancy force acting on a sphere when the ethanol is at a temperature of 25 C. [2]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(ii) When the ethanol is at a temperature of 25 C, the 25 C sphere is just at equilibrium. This sphere contains water of density 1080  kg  m–3. Calculate the percentage of the sphere volume filled by water. [2]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(b) The room temperature slightly increases from 25 C, causing the buoyancy force to decrease. For this change in temperature, the ethanol density decreases from 785.20  kg  m–3 to 785.16  kg  m–3. The average viscosity of ethanol over the temperature range covered by the thermometer is 0.0011  Pa  s. Estimate the steady velocity at which the 25 C sphere falls. [2]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(Option B continues on page 21)

Page 218: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

N17/4/PHYSI/HP3/ENG/TZ0/XX

36EP20

– 20 –

Please do not write on this page.

Answers written on this pagewill not be marked.

Page 219: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

N17/4/PHYSI/HP3/ENG/TZ0/XX

36EP21

– 21 –

Turn over

(Option B continued from page 19)

12. A farmer is driving a vehicle across an uneven field in which there are undulations every 3.0  m.

vehicle

undulation

3.0  m

The farmer’s seat is mounted on a spring. The system, consisting of the mass of the farmer and the spring, has a natural frequency of vibration of 1.9  Hz.

(a) Explain why it would be uncomfortable for the farmer to drive the vehicle at a speed of 5.6  m  s–1. [3]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(b) Outline what change would be required to the value of Q for the mass–spring system in order for the drive to be more comfortable. [1]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

End of Option B

Page 220: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

N17/4/PHYSI/HP3/ENG/TZ0/XX

36EP22

– 22 –

Option C — Imaging

13. A magnifying glass is constructed from a thin converging lens.

(a) (i) Sketch a ray diagram to show how the magnifying glass produces an upright image. [2]

f f

thin converging lens

(ii) State the maximum possible distance from an object to the lens in order for the lens to produce an upright image. [1]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(Option C continues on the following page)

Page 221: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

N17/4/PHYSI/HP3/ENG/TZ0/XX

36EP23

– 23 –

Turn over

(Option C, question 13 continued)

(b) A converging lens can also be used to produce an image of a distant object. The base of the object is positioned on the principal axis of the lens at a distance of 10.0  m from the centre of the lens. The lens has a focal length of 2.0  m.

(i) Determine the position of the image. [2]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(ii) State three characteristics of the image. [1]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(Option C continues on the following page)

Page 222: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

N17/4/PHYSI/HP3/ENG/TZ0/XX

36EP24

– 24 –

(Option C, question 13 continued)

(c) The object is replaced with an L shape that is positioned 0.30  m vertically above the principal axis as shown. A screen is used to form a focused image of part of the L shape. Two points P and Q on the base of the L shape and R on its top, are indicated on the diagram. Point Q is 10.0  m away from the same lens as used in part (b).

0.30 m

10.0 m

f f

not to scale

(i) On the diagram, draw two rays to locate the point Q′ on the image that corresponds to point Q on the L shape. [2]

(ii) Calculate the vertical distance of point Q′ from the principal axis. [2]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(iii) A screen is positioned to form a focused image of point Q. State the direction, relative to Q, in which the screen needs to be moved to form a focused imaged of point R. [1]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(Option C continues on the following page)

Page 223: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

N17/4/PHYSI/HP3/ENG/TZ0/XX

36EP25

– 25 –

Turn over

(Option C, question 13 continued)

(iv) The screen is now correctly positioned to form a focused image of point R. However, the top of the L shape looks distorted. Identify and explain the reason for this distortion. [2]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(Option C continues on the following page)

Page 224: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

N17/4/PHYSI/HP3/ENG/TZ0/XX

36EP26

– 26 –

(Option C continued)

14. An astronomical reflecting telescope is being used to observe the night sky.

The diagram shows an incomplete reflecting telescope.

parabolic reflector

principal focus

eyepiece

(a) Complete the diagram, with a Newtonian mounting, continuing the two rays to show how they pass through the eyepiece. [3]

(b) When the Earth-Moon distance is 363 300  km, the Moon is observed using the telescope. The mean radius of the Moon is 1737  km. Determine the focal length of the mirror used in this telescope when the diameter of the Moon’s image formed by the main mirror is 1.20  cm. [2]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(c) The final image of the Moon is observed through the eyepiece. The focal length of the eyepiece is 5.0  cm. Calculate the magnification of the telescope. [1]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(Option C continues on the following page)

Page 225: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

N17/4/PHYSI/HP3/ENG/TZ0/XX

36EP27

– 27 –

Turn over

(Option C, question 14 continued)

(d) The Hubble Space reflecting telescope has a Cassegrain mounting. Identify the main optical difference between a Cassegrain mounting and a Newtonian mounting. [1]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(Option C continues on the following page)

Page 226: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

N17/4/PHYSI/HP3/ENG/TZ0/XX

36EP28

– 28 –

(Option C continued)

15. Some optic fibres consist of a core surrounded by cladding as shown in the diagram.

cladding

O

axis core

cladding

(a) Calculate the maximum angle   for light to travel through the fibre.

Refractive index of core = 1.50 Refractive index of cladding = 1.48

[3]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(b) Outline how the combination of core and cladding reduces the overall dispersion in the optic fibres. [3]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(Option C continues on the following page)

Page 227: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

N17/4/PHYSI/HP3/ENG/TZ0/XX

36EP29

– 29 –

Turn over

(Option C continued)

16. An X-ray beam of intensity 0I is incident on lead. After travelling a distance x through the lead the intensity of the beam is reduced to I.

The graph shows the variation of 0

ln

II

with x.

x / mm0.0 0.1 0.2

0ln

II

0.0

– 0.5

– 1.0

(a) Show that the attenuation coefficient of lead is 60  cm–1. [2]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(b) A technician operates an X-ray machine that takes 100 images each day. Estimate the width of the lead screen that is required so that the total exposure of the technician in 250 working days is equal to the exposure that the technician would receive from one X-ray exposure without the lead screen. [2]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

End of Option C

Page 228: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

N17/4/PHYSI/HP3/ENG/TZ0/XX

36EP30

– 30 –

Option D — Astrophysics

17. Two of the brightest objects in the night sky are the planet Jupiter and the star Vega. The light observed from Jupiter has a similar brightness to that received from Vega.

(a) (i) Identify the mechanism leading stars to produce the light they emit. [1]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(ii) Outline why the light detected from Jupiter and Vega have a similar brightness, according to an observer on Earth. [2]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(Option D continues on the following page)

Page 229: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

N17/4/PHYSI/HP3/ENG/TZ0/XX

36EP31

– 31 –

Turn over

(Option D, question 17 continued)

(b) Vega is found in the constellation Lyra. The stellar parallax angle of Vega is about 0.13 arc sec.

(i) Outline what is meant by a constellation. [1]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(ii) Outline how the stellar parallax angle is measured. [2]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(iii) Show that the distance to Vega from Earth is about 25  ly. [2]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(Option D continues on the following page)

Page 230: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

N17/4/PHYSI/HP3/ENG/TZ0/XX

36EP32

– 32 –

(Option D continued)

18. Sirius is a binary star. It is composed of two stars, Sirius A and Sirius B. Sirius A is a main sequence star.

(a) State what is meant by a binary star. [1]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(b) The peak spectral line of Sirius B has a measured wavelength of 115  nm. Show that the surface temperature of Sirius B is about 25 000  K. [1]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(c) The mass of Sirius B is about the same mass as the Sun. The luminosity of Sirius B is 2.5 % of the luminosity of the Sun. Show, with a calculation, that Sirius B is not a main sequence star. [2]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(Option D continues on the following page)

Page 231: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

N17/4/PHYSI/HP3/ENG/TZ0/XX

36EP33

– 33 –

Turn over

(Option D, question 18 continued)

(d) The Sun’s surface temperature is about 5800  K.

(i) Determine the radius of Sirius B in terms of the radius of the Sun. [2]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(ii) Identify the star type of Sirius B. [1]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(Option D continues on the following page)

Page 232: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

N17/4/PHYSI/HP3/ENG/TZ0/XX

36EP34

– 34 –

(Option D, question 18 continued)

(e) The image shows a Hertzsprung–Russell (HR) diagram.

luminosity

1 000 000

10 000

10 000 6000 300025 000

100

L

L

L

L

1100

L

110 000

L

Sun

temperature / K

The mass of Sirius A is twice the mass of the Sun. Using the Hertzsprung–Russell (HR) diagram,

(i) draw the approximate positions of Sirius A, labelled A and Sirius B, labelled B. [1]

(ii) sketch the expected evolutionary path for Sirius A. [1]

(Option D continues on the following page)

Page 233: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

N17/4/PHYSI/HP3/ENG/TZ0/XX

36EP35

– 35 –

Turn over

(Option D continued)

19. The collision of two galaxies is being studied. The wavelength of a particular spectral line from the galaxy measured from Earth is 116.04  nm. The spectral line when measured from a source on Earth is 115.00  nm.

(a) Outline one reason for the difference in wavelength. [1]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(b) Determine the velocity of the galaxy relative to Earth. [2]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(Option D continues on the following page)

Page 234: November 2015 Physics Higher level Paper 1 · Physics Higher level Paper 2 Instructions to candidates Write your session number in the boxes above. Do not open this examination paper

N17/4/PHYSI/HP3/ENG/TZ0/XX

36EP36

– 36 –

(Option D continued)

20. (a) The Sun is a second generation star. Outline, with reference to the Jeans criterion (MJ), how the Sun is likely to have been formed. [4]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(b) Suggest how fluctuations in the cosmic microwave background (CMB) radiation are linked to the observation that galaxies collide. [3]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(c) Show that the critical density of the universe is

23H8 Gπ

where H is the Hubble parameter and G is the gravitational constant. [3]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

End of Option D