Normed Linear Spaces notes by Dr E_Prempeh_Ghana

Embed Size (px)

Citation preview

  • 8/13/2019 Normed Linear Spaces notes by Dr E_Prempeh_Ghana

    1/13

    1

    NORMED LINEAR SPACES

    1.1 Normed Linear Spaces

    Definition 1.1 (Linear or Vector Space)

    Let .X ,K a scalar field (usually ,K the real line). Suppose the two functions

    , ,

    :X X X

    :K X X

    called respectively addition and scalar multiplication are defined, (that is, for any

    , ,x y X scalar ,K x y X and x X )

    such that

    1. X is an abelian group( that is, for any , , ,x y z X

    x y y x

    ( ) ( )x y z x y z

    0 X : 0x x

    ,x X ( )x X : ( ) 0x x )

    2. ( )x y x y , , ,x y X K 3. ( ) x x x , , ,K x X 4. ( ) ( )x x , , K , x X 5. 1 x x for 1 K , x X

    Then X is called a linear space or a vector space over .K If K is the set of real

    numbers, X is called a real linear space or if K is the set of complex numbers, X is

    called a complex linear space.

    (Notation: We take x x ).

  • 8/13/2019 Normed Linear Spaces notes by Dr E_Prempeh_Ghana

    2/13

    2

    Definition 1.2 (Normed Linear Space)

    Let X be a linear space over K.

    A norm on X is a real-valued function , where

    : 0,X such that for any , ,x y X K the following conditions are satistied:

    1:N 0x and 0x if and only if 0x

    2 :N x x , K , x X

    3:N x y x y , ,x y X

    A linear space with a norm defined on it is called a Normed linear space.

    Examples of Normed linear spaces

    Example 1.3

    Let2

    X (the plane). For any 2. ,x y X 1 2( : ( , ),x x x 1 2( , )),y y y scalar

    ,

    Define1 1 2 2

    : ( , )x y x y x y

    1 2: ( , )x x x

    With these definitions, (easy, exercise!), 2 is a Vector Space!

    For each2

    1 2( , ) ,x x x define

    2: 0,

    by

    1 21 2

    max , maxi

    ix x x x

    W.T.S:2

    ( , )

    is a normed linear space.

  • 8/13/2019 Normed Linear Spaces notes by Dr E_Prempeh_Ghana

    3/13

    3

    Verification

    1:N Absolute value of any real number ,ix 0,ix

    Thus

    1 2max 0i

    ix

    i.e.1 1

    : max 0i

    x

    x x

    Next, suppose 1 2, 0x x x

    W.T.S: 0x

    Now1 2

    ( , ) 0x x x 1 0x , 2 0x (in Cartesian Coordinate System)

    and so1 2max 0i

    ix

    Next, suppose 0.x

    W.T.S : 0x

    Now 0x

    means1 2max 0i

    ix

    Without loss of generality (wilog),

    let 11 2

    maxi

    i

    x x

    .

    Then 1 0x implies 2 0x

    (since 1 20 x x and none is negative).

    Hence 1 2 0x x 1 2 0x x

    So,1 2( , ) (0,0) 0.x x x

    2 :N 1 2 1 2( , ) ( , )x x x x x

    1 2 1 21 2

    : max max maxi i ii i

    i

    x x x x

    i.e. .x x

  • 8/13/2019 Normed Linear Spaces notes by Dr E_Prempeh_Ghana

    4/13

    4

    3:N Let 1 2( , ),x x x 1 2( , ),y y y

    Then 1 2 1 2( , ) ( , )x y x x y y

    1 1 2 2( , )x y x y

    1 1 2 21 2

    max , maxi i

    ix y x y x y

    1 2max( )i i

    ix y

    1 2 1 2max max

    i ii i

    x y x y

    2( , ) ( , )x

    is a normed linear space.

    Example 1.4. Let2.X For any 1 2( , )x x x X ,

    Define 2

    : 0,X by1

    2 2 21 22

    ( )x x x

    W.T.S:2

    2( , ) is a normed linear space.

    Verification

    1N : Trivial (Exercise!!!)2 :N 1 2 1 22 2( , ) ( , )x x x x x

    1 1

    2 2 2 2 2 22 21 2 1 2

    : ( ) ( ) ( )x x x x

    1 12 2 2 2 22 2

    1 2 1 2( ) ( )x x x x

    2x

    3:N (Recall Cauchy Schwartz Inequality for n )

    For 1

    n

    i ix

    ,

    1

    n

    i iy

    ,

    n

    1 12 2

    2 2

    1 1 1

    .n n n

    i i i i

    i i i

    x y x y

  • 8/13/2019 Normed Linear Spaces notes by Dr E_Prempeh_Ghana

    5/13

    5

    This is used to verify 3N as follows:

    Let1 2

    ( , ),x x x 1 2( , )y y y 2

    Then

    22 2 2

    1 1 2 22 21

    ( , ) : ( )i i

    i

    x y x y x y x y

    22 2

    1

    ( 2 )i i i i

    i

    x x y y

    2 2 22 2

    1 1 12i i i ii i ix x y y

    12 2 2 22

    2 2 2 2

    1 1 1 1

    2i i i i

    i i i i

    x x y y

    (Cauchy Schwartz)

    2 22A AB B

    (where

    12 2

    2

    21

    i

    i

    A x x

    ,

    12 2

    2

    21

    i

    i

    B y y

    2 2

    2 2( ) ( )A B x y

    2 2

    2 2 2( )x y x y

    (If ( 2

    1( (# ))ve 22( (# ))ve 1 2(# ) (# )ve ve )

    2 2 2

    x y x y

    2

    2( , ) is a normed linear space.

    Example 1.5

    Let2

    ,X for any 21 2( , ) ,x x x

    define2

    11

    :i

    i

    x x

  • 8/13/2019 Normed Linear Spaces notes by Dr E_Prempeh_Ghana

    6/13

    6

    W.T.S :2

    1( , ) is a normed linear space. (Exercise)

    The Spacesn

    p (1 p ) andn

    Letn

    X and define the map

    : 0,np

    X

    such that for any 1 2, ,..., n

    nx x x x

    1

    1 2

    1

    : , ,..., : ,n p

    p

    n ip pi

    x x x x x

    1 p

    (In example 1.5, 1,p 2n ), and if p ,

    1: max

    ii n

    x x

    The verification that

    is a norm is easy. (Exercise!)

    So we verify the case of the mapp

    1:N For any 1 2( , ,..., ) n

    nx x x x

    1

    1

    :n p

    p

    ipi

    x x

    , (1 ),p ix for 1 i n

    Clearly, 0,p

    ix

    1

    0n

    p

    i

    i

    x

    and1

    1

    0,n p

    p

    i

    i

    x

    implying 0.px

    Assume 0p

    x

    1

    1

    0n p

    p

    i

    i

    x

    1

    0n

    p

    i

    i

    x

    0p

    ix

    0,ix 1 i n 0x ,

    Next, assume 0x 0ix 1 i n 1

    0n

    p

    i

    i

    x

    0px

  • 8/13/2019 Normed Linear Spaces notes by Dr E_Prempeh_Ghana

    7/13

    7

    2 :N For any ,

    1 1 1

    1 2

    1 1 1

    , ,..., :n n np p p

    p p pp

    n i i ip pp i i i

    x x x x x x x x

    3:N We need Hlders Inequality: For , ,n

    x y 1 2( , ,..., )nx x x x and

    1 2( , ,..., ),ny y y y

    1 1

    1 1 1

    n n np qp q

    i i i i

    i i i

    x y x y

    where1 1

    1p q

    , and thus ( , )p q is called the conjugate pair. If 2,p q

    the Hlders Inequality becomes Cauchy-Schwartz Inequality. This Hlders inequality is

    used to verify 3N as follows: for , ,nx y

    1 1 2 21

    , ,...,n

    p pp

    n n i ip pi

    x y x y x y x y x y

    1

    1

    np

    i i i i

    i

    x y x y

    1 1

    1 1

    n np p

    i i i i i i

    i i

    x x y y x y

    Using the Hlders inequality on each of the terms on the r. h. s, we have

    1 1 1 1

    1 1

    1 1 1 1

    n n n np q p qp p q p p qp

    i i i i i ipi i i i

    x y x x y y x y

    1

    1

    1

    ( )n q

    p q

    i ip pi

    x y x y

    From1 1

    1,p q

    1 1p

    p q

    1p q p

  • 8/13/2019 Normed Linear Spaces notes by Dr E_Prempeh_Ghana

    8/13

    8

    1

    1

    n qpp

    i ip p pi

    x y x y x y

    1

    1

    pn p qp

    i ip pi

    x y x y

    p

    q

    p p px y x y

    1

    1pq

    p p px y x y

    p p p

    x y x y (since1 1

    1q p

    )

    Remark 1.7

    The spacen

    with norm,

    is denoted byn

    , while the space

    n with norm

    p

    is denoted byn

    p . The notations n

    p andn

    p are used to emphasize the type of

    n tuple as follows:

    :np

    1

    1 2

    1

    , ,..., : , :np

    n pp

    n i i

    i

    x x x x x x x

    1

    1 2

    1

    : , ,..., : , :np

    n ppn

    p n i i

    i

    z z z z z z z

    The spacen

    with norm2

    is called the Euclidean Space and the spacen

    with

    norm2

    is called the Unitary Space.

  • 8/13/2019 Normed Linear Spaces notes by Dr E_Prempeh_Ghana

    9/13

    9

    Next we consider the space p of infinite sequences 1i ix

    such that

    1

    ,

    p

    i

    i

    x

    1 p , that is

    1 21

    : , ,... , : p

    p i i

    i

    x x x x x

    We now study the spacep into some detail.

    For 1p ,

    1 1 2 31

    , , ,... :i

    i

    x x x x x

    If 1, 1,0,0,0,...y is 1 ?y

    We notice,1

    1 1 0 0 0 ... 2 .ii

    y

    So 1y .

    If1 1 1

    1, , , ,...2 3 4

    w

    , is

    1?w

    Again, we compute1

    1 1 1

    1 ...2 3 4i

    iw

    . This series is called the Harmonic

    Series which certainly does not converge, that is,1

    i

    i

    w

    is false. So 1.w l

    For 2,p

    2

    2 1 2 3

    1

    : , , ,... : ,i ii

    x x x x x x

    For ,y w, considered above, 2y and 2.w So 1 2.

    One can generalize to have:

    Proposition 1.8

    If p q , then p q .

    Proof : (Proof by contradiction)

  • 8/13/2019 Normed Linear Spaces notes by Dr E_Prempeh_Ghana

    10/13

    10

    Assuming by contradiction let p q , and let 1, 2p q , and2 1

    but by the above illustration,1 2 ; a contradiction! Therefore for ,p q p q .

    Exercise 1.9: (The Space, p )

    The space

    p 1 21

    (1 ) , ,... : p

    i

    i

    p x x x x

    with addition and scalar multiplication

    defined in an obvious way, is a normed linear space with norm defined by

    1

    1

    :p

    pp

    i

    i

    x x

    for 1 2 3, , ,... .px x x x

    Exercise: Verify that , ,p p 1 p is a normed linear space.

    The space is defined by

    : { 1 2 3, , ,... , :ix x x x x x is bounded},

    That is, is the space of all bounded sequences. This means that if

    1 2 3, , ,...x x x x then there exists a real constant M such that ix M i .

    Consider 1,1, 1,1, 1,1,... ,y then y . Observe that 1y , 2y for

    1 1 11, , , ,... ,

    2 3 4

    .

    Example 1.10 (The Space )

    Let :X { 1 2 3, , ,... : ,ix x x x x M for some real constant M }

    Define

    : 0,

  • 8/13/2019 Normed Linear Spaces notes by Dr E_Prempeh_Ghana

    11/13

    11

    by

    1

    supi

    i

    x x

    Exercise: Verify that , ll is a normed linear space.

    Next, consider the sequence space c defined by

    :c { 1 2 1, ,... : i ix x x x

    converges}

    Since a convergent sequence of numbers is necessarily bounded, then c is a subspace

    of . To see that c is a proper subspace of ,

    it is observed that the vector

    1,1, 1,1,...y (since y is bounded)

    but

    y c (since y is not convergent).

    It is therefore proper to define the same norm on c as defined for .

    Example 1.11 (The Space, c )

    Let :c { 1 21

    , ,... :i

    i

    x x x x

    converges}. For any 1 2, ,...x x x c ,

    define

    1

    : supic

    i

    x x

    Then , cc is a normed linear space (Exercise!!)

    Example 1.12 (The Space, 0c )

    Let 0 1 2: ( , ,...) : 0 .n

    nc x x x x For any 0x c , define

    0 1

    : supic

    i

    x x

    then 0

    0,

    cc is a normed linear space. Clearly 0c is a proper subspace c .

  • 8/13/2019 Normed Linear Spaces notes by Dr E_Prempeh_Ghana

    12/13

    12

    Example 1.13

    Let , ,X C a b the space of all real-valued continuous functions: , ,f g which are

    functions of an independent variable , ,t a b closed and bounded interval. For any

    , , ,f g C a b define

    : ,f g t f t g t , ,f g C a b

    and ,f t f t ,K ,f C a b

    With these definitions ,C a b is a vector space. (Verify)

    For arbitrary ,f C a b , define

    ,: sup ( )

    t a b

    f f t

    1: ( )

    b

    af f t dt

    1

    22

    2: ( )

    b

    af f t dt

    Then, ,X , 1, ,X and 2, ,X are normed linear spaces. The proofs are

    left as exercises.

    Exercise 1.1

    1. Let ,X C a b be the space of all continuous real-valued functions on ,a b whichalso have continuous first order derivatives on , .a b For any , ,f C a b define

    : max maxa t b a t b

    df tf f t

    dt

    Verify that ,X with obvious addition and scalar multiplication, is a normed linear

    space.

  • 8/13/2019 Normed Linear Spaces notes by Dr E_Prempeh_Ghana

    13/13

    13

    2. Let ,X C a b be the space of all real-valued continuous functions on , .a b Forany ,f X define

    : .b

    a

    f f t dt

    Verify that X with addition and scalar multiplication as defined in Example 1.13 is

    a normed linear space.

    3. Let ,X C a b be the space of all continuous real-valued functions on ,a b with

    122

    :b

    af f t dt

    for any , .f C a b Verify that X is a normed linear space.

    (Hint: Use Cauchy-Schwartz Inequality for Integration: For any , ,f g C a b )

    1 1

    2 22 2b b b

    a a afg dt f t dt g t dt

    4. Let X be a normed linear space. Prove that for any ,x y X a. x y x y b. The mapping x x is continuous ( in the sense that if

    nx x , then

    nx x )

    c. Addition and scalar multiplication are jointly continuous, that is, ifn

    x x and

    ny y , then n nx y x y and if nx x and na a , then n na x ax

    as n , where na and a are real numbers.