98
Nonparametric Sequential Prediction of Time Series. Extension to quantile prediction. G. Biau – B. Patra University Paris VI – University Paris VI - Lokad ENGREF, J UNE 2009 B. Patra (University Paris VI - Lokad) 1 / 56

Nonparametric Sequential Prediction of Time Series. · Nonparametric Sequential Prediction of Time Series. Extension to quantile prediction. G. Biau – B. Patra University Paris

  • Upload
    others

  • View
    26

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Nonparametric Sequential Prediction of Time Series. · Nonparametric Sequential Prediction of Time Series. Extension to quantile prediction. G. Biau – B. Patra University Paris

Nonparametric Sequential Prediction of Time Series.Extension to quantile prediction.

G. Biau – B. Patra

University Paris VI – University Paris VI - Lokad

ENGREF, JUNE 2009

B. Patra (University Paris VI - Lokad) 1 / 56

Page 2: Nonparametric Sequential Prediction of Time Series. · Nonparametric Sequential Prediction of Time Series. Extension to quantile prediction. G. Biau – B. Patra University Paris

Outline

1 Nonparametric mean predictionContextA consistent strategyExperimental results

2 Non parametric quantile predictionContext and quantile regressionA similar consistent strategyExperimental results

3 Other contexts

4 Conclusion

B. Patra (University Paris VI - Lokad) 2 / 56

Page 3: Nonparametric Sequential Prediction of Time Series. · Nonparametric Sequential Prediction of Time Series. Extension to quantile prediction. G. Biau – B. Patra University Paris

Outline

1 Nonparametric mean predictionContextA consistent strategyExperimental results

2 Non parametric quantile predictionContext and quantile regressionA similar consistent strategyExperimental results

3 Other contexts

4 Conclusion

B. Patra (University Paris VI - Lokad) 3 / 56

Page 4: Nonparametric Sequential Prediction of Time Series. · Nonparametric Sequential Prediction of Time Series. Extension to quantile prediction. G. Biau – B. Patra University Paris

Introduction

Time series prediction has a long history [Yule, 1927].Genetics, medecine, climate, finance. . .Until 1970’s, parametric approach.Recently: nonparametric approaches.

B. Patra (University Paris VI - Lokad) 4 / 56

Page 5: Nonparametric Sequential Prediction of Time Series. · Nonparametric Sequential Prediction of Time Series. Extension to quantile prediction. G. Biau – B. Patra University Paris

Nonparametric framework

A slightly different spiritConsider the sequential (= on-line) prediction of time series.

Including series that do not necessarily satisfy classical statisticalassumptions for bounded, mixing or Markovian processes.

GoalShow consistency results under a minimum of hypotheses.

B. Patra (University Paris VI - Lokad) 5 / 56

Page 6: Nonparametric Sequential Prediction of Time Series. · Nonparametric Sequential Prediction of Time Series. Extension to quantile prediction. G. Biau – B. Patra University Paris

Nonparametric framework

A slightly different spiritConsider the sequential (= on-line) prediction of time series.

Including series that do not necessarily satisfy classical statisticalassumptions for bounded, mixing or Markovian processes.

GoalShow consistency results under a minimum of hypotheses.

B. Patra (University Paris VI - Lokad) 5 / 56

Page 7: Nonparametric Sequential Prediction of Time Series. · Nonparametric Sequential Prediction of Time Series. Extension to quantile prediction. G. Biau – B. Patra University Paris

Context

Sequential predictionAt time n = 1,2, . . ., predict the next outcome yn ∈ R of sequencey1, y2, . . .

Side information x1, x2, . . ., where each xi ∈ Rd .

Notationyn−1

1 = (y1, . . . , yn−1).

xn1 = (x1, . . . , xn).

On-line learningThe elements y0, y1, y2, . . . and x1, x2, . . . are revealed one at a time, inorder, beginning with (x1, y0), (x2, y1), . . .

B. Patra (University Paris VI - Lokad) 6 / 56

Page 8: Nonparametric Sequential Prediction of Time Series. · Nonparametric Sequential Prediction of Time Series. Extension to quantile prediction. G. Biau – B. Patra University Paris

Context

Sequential predictionAt time n = 1,2, . . ., predict the next outcome yn ∈ R of sequencey1, y2, . . .

Side information x1, x2, . . ., where each xi ∈ Rd .

Notationyn−1

1 = (y1, . . . , yn−1).

xn1 = (x1, . . . , xn).

On-line learningThe elements y0, y1, y2, . . . and x1, x2, . . . are revealed one at a time, inorder, beginning with (x1, y0), (x2, y1), . . .

B. Patra (University Paris VI - Lokad) 6 / 56

Page 9: Nonparametric Sequential Prediction of Time Series. · Nonparametric Sequential Prediction of Time Series. Extension to quantile prediction. G. Biau – B. Patra University Paris

Context

Sequential predictionAt time n = 1,2, . . ., predict the next outcome yn ∈ R of sequencey1, y2, . . .

Side information x1, x2, . . ., where each xi ∈ Rd .

Notationyn−1

1 = (y1, . . . , yn−1).

xn1 = (x1, . . . , xn).

On-line learningThe elements y0, y1, y2, . . . and x1, x2, . . . are revealed one at a time, inorder, beginning with (x1, y0), (x2, y1), . . .

B. Patra (University Paris VI - Lokad) 6 / 56

Page 10: Nonparametric Sequential Prediction of Time Series. · Nonparametric Sequential Prediction of Time Series. Extension to quantile prediction. G. Biau – B. Patra University Paris

Prediction

StrategySequence g = {gn}∞n=1 of forecasting functions

gn : (Rd )n × Rn−1 → R.

Prediction at time n is gn (xn1 , y

n−11 ).

Hypotheses(x1, y1), (x2, y2), . . . are realizations of random variables (X1,Y1),(X2,Y2), . . .

The process {(Xn,Yn)}∞−∞ is jointly stationary and ergodic.

B. Patra (University Paris VI - Lokad) 7 / 56

Page 11: Nonparametric Sequential Prediction of Time Series. · Nonparametric Sequential Prediction of Time Series. Extension to quantile prediction. G. Biau – B. Patra University Paris

Prediction

StrategySequence g = {gn}∞n=1 of forecasting functions

gn : (Rd )n × Rn−1 → R.

Prediction at time n is gn (xn1 , y

n−11 ).

Hypotheses(x1, y1), (x2, y2), . . . are realizations of random variables (X1,Y1),(X2,Y2), . . .

The process {(Xn,Yn)}∞−∞ is jointly stationary and ergodic.

B. Patra (University Paris VI - Lokad) 7 / 56

Page 12: Nonparametric Sequential Prediction of Time Series. · Nonparametric Sequential Prediction of Time Series. Extension to quantile prediction. G. Biau – B. Patra University Paris

Measuring the error

DefinitionAt time n , the (normalized ) cumulative prediction error on the stringsX n

1 and Y n1 is

Ln(g) =1n

n∑t=1

(gt (X t

1,Yt−11 )− Yt

)2.

Goal versus realityGoal: make Ln(g) small.

Reality: fundamental limit L? [Algoet, 1994].

B. Patra (University Paris VI - Lokad) 8 / 56

Page 13: Nonparametric Sequential Prediction of Time Series. · Nonparametric Sequential Prediction of Time Series. Extension to quantile prediction. G. Biau – B. Patra University Paris

Measuring the error

DefinitionAt time n , the (normalized ) cumulative prediction error on the stringsX n

1 and Y n1 is

Ln(g) =1n

n∑t=1

(gt (X t

1,Yt−11 )− Yt

)2.

Goal versus realityGoal: make Ln(g) small.

Reality: fundamental limit L? [Algoet, 1994].

B. Patra (University Paris VI - Lokad) 8 / 56

Page 14: Nonparametric Sequential Prediction of Time Series. · Nonparametric Sequential Prediction of Time Series. Extension to quantile prediction. G. Biau – B. Patra University Paris

How good can we get?

Fundamental limit [Algoet, 1994]For any prediction strategy g and jointly stationary ergodic process{(Xn,Yn)}∞−∞,

lim infn→∞

Ln(g) ≥ L? almost surely,

where

L? = E{(

Y0 − E{

Y0|X 0−∞,Y

−1−∞

})2}

is the minimal mean squared error of any prediction for the value of Y0based on the infinite past observation sequences

Y−1−∞ = (. . . ,Y−2,Y−1) and X 0

−∞ = (. . . ,X−1,X0).

B. Patra (University Paris VI - Lokad) 9 / 56

Page 15: Nonparametric Sequential Prediction of Time Series. · Nonparametric Sequential Prediction of Time Series. Extension to quantile prediction. G. Biau – B. Patra University Paris

Consistency

DefinitionA prediction strategy g is universally consistent with respect to a classC of stationary and ergodic processes {(Xn,Yn)}∞−∞ if for eachprocess in the class,

limn→∞

Ln(g) = L? almost surely.

There exist universally consistent strategies for the class C of allbounded, stationary and ergodic processes [Algoet,1992 andMorvai et al.,1996].Very complex or slow-converging algorithms.

B. Patra (University Paris VI - Lokad) 10 / 56

Page 16: Nonparametric Sequential Prediction of Time Series. · Nonparametric Sequential Prediction of Time Series. Extension to quantile prediction. G. Biau – B. Patra University Paris

Consistency

DefinitionA prediction strategy g is universally consistent with respect to a classC of stationary and ergodic processes {(Xn,Yn)}∞−∞ if for eachprocess in the class,

limn→∞

Ln(g) = L? almost surely.

There exist universally consistent strategies for the class C of allbounded, stationary and ergodic processes [Algoet,1992 andMorvai et al.,1996].Very complex or slow-converging algorithms.

B. Patra (University Paris VI - Lokad) 10 / 56

Page 17: Nonparametric Sequential Prediction of Time Series. · Nonparametric Sequential Prediction of Time Series. Extension to quantile prediction. G. Biau – B. Patra University Paris

Outline

1 Nonparametric mean predictionContextA consistent strategyExperimental results

2 Non parametric quantile predictionContext and quantile regressionA similar consistent strategyExperimental results

3 Other contexts

4 Conclusion

B. Patra (University Paris VI - Lokad) 11 / 56

Page 18: Nonparametric Sequential Prediction of Time Series. · Nonparametric Sequential Prediction of Time Series. Extension to quantile prediction. G. Biau – B. Patra University Paris

State of the art

A book on prediction of individual sequences.Cesa-Bianchi, N. and Lugosi, G. Prediction, Learning, andGames, Cambridge University Press, New York, 2006.

Quantization strategiesGyörfi and Lugosi (2001) and Nobel (2003): boundedprocesses.Györfi and Ottucsák (2007): fourth-finite momentprocesses.

Biau and al. contributionSeveral simple nonparametric strategies for non-necessarily boundedprocesses:

Kernel-based strategy.Nearest neighbor-based strategy.

B. Patra (University Paris VI - Lokad) 12 / 56

Page 19: Nonparametric Sequential Prediction of Time Series. · Nonparametric Sequential Prediction of Time Series. Extension to quantile prediction. G. Biau – B. Patra University Paris

State of the art

A book on prediction of individual sequences.Cesa-Bianchi, N. and Lugosi, G. Prediction, Learning, andGames, Cambridge University Press, New York, 2006.

Quantization strategiesGyörfi and Lugosi (2001) and Nobel (2003): boundedprocesses.Györfi and Ottucsák (2007): fourth-finite momentprocesses.

Biau and al. contributionSeveral simple nonparametric strategies for non-necessarily boundedprocesses:

Kernel-based strategy.Nearest neighbor-based strategy.

B. Patra (University Paris VI - Lokad) 12 / 56

Page 20: Nonparametric Sequential Prediction of Time Series. · Nonparametric Sequential Prediction of Time Series. Extension to quantile prediction. G. Biau – B. Patra University Paris

State of the art

A book on prediction of individual sequences.Cesa-Bianchi, N. and Lugosi, G. Prediction, Learning, andGames, Cambridge University Press, New York, 2006.

Quantization strategiesGyörfi and Lugosi (2001) and Nobel (2003): boundedprocesses.Györfi and Ottucsák (2007): fourth-finite momentprocesses.

Biau and al. contributionSeveral simple nonparametric strategies for non-necessarily boundedprocesses:

Kernel-based strategy.Nearest neighbor-based strategy.

B. Patra (University Paris VI - Lokad) 12 / 56

Page 21: Nonparametric Sequential Prediction of Time Series. · Nonparametric Sequential Prediction of Time Series. Extension to quantile prediction. G. Biau – B. Patra University Paris

Nearest neighbor strategy

Define infinite array of experts h(k ,`) = {h(k ,`)n }+∞n=1. k , ` = 1,2, . . .

What are k and ¯̀?k is the length of the past observation vector we consider.¯̀ (simple function of `) is the number of nearest neighbors oflength k we consider.

More precisely, ¯̀ = bp`nc where p` ∈ (0,1) and lim`→∞ p` = 0.

Each expert has a job

At time n, expert h(k ,`)n searches for the ¯̀nearest neighbors of

length k .

B. Patra (University Paris VI - Lokad) 13 / 56

Page 22: Nonparametric Sequential Prediction of Time Series. · Nonparametric Sequential Prediction of Time Series. Extension to quantile prediction. G. Biau – B. Patra University Paris

Nearest neighbor strategy

Define infinite array of experts h(k ,`) = {h(k ,`)n }+∞n=1. k , ` = 1,2, . . .

What are k and ¯̀?k is the length of the past observation vector we consider.¯̀ (simple function of `) is the number of nearest neighbors oflength k we consider.

More precisely, ¯̀ = bp`nc where p` ∈ (0,1) and lim`→∞ p` = 0.

Each expert has a job

At time n, expert h(k ,`)n searches for the ¯̀nearest neighbors of

length k .

B. Patra (University Paris VI - Lokad) 13 / 56

Page 23: Nonparametric Sequential Prediction of Time Series. · Nonparametric Sequential Prediction of Time Series. Extension to quantile prediction. G. Biau – B. Patra University Paris

Nearest neighbor strategy

Define infinite array of experts h(k ,`) = {h(k ,`)n }+∞n=1. k , ` = 1,2, . . .

What are k and ¯̀?k is the length of the past observation vector we consider.¯̀ (simple function of `) is the number of nearest neighbors oflength k we consider.

More precisely, ¯̀ = bp`nc where p` ∈ (0,1) and lim`→∞ p` = 0.

Each expert has a job

At time n, expert h(k ,`)n searches for the ¯̀nearest neighbors of

length k .

B. Patra (University Paris VI - Lokad) 13 / 56

Page 24: Nonparametric Sequential Prediction of Time Series. · Nonparametric Sequential Prediction of Time Series. Extension to quantile prediction. G. Biau – B. Patra University Paris

Nearest neighbor strategy

Define infinite array of experts h(k ,`) = {h(k ,`)n }+∞n=1. k , ` = 1,2, . . .

What are k and ¯̀?k is the length of the past observation vector we consider.¯̀ (simple function of `) is the number of nearest neighbors oflength k we consider.

More precisely, ¯̀ = bp`nc where p` ∈ (0,1) and lim`→∞ p` = 0.

Each expert has a job

At time n, expert h(k ,`)n searches for the ¯̀nearest neighbors of

length k .

B. Patra (University Paris VI - Lokad) 13 / 56

Page 25: Nonparametric Sequential Prediction of Time Series. · Nonparametric Sequential Prediction of Time Series. Extension to quantile prediction. G. Biau – B. Patra University Paris

6,17 7,18 9,10 8,18 7,16 6,17 5,15

0,10 1,15 2,17 3,72 −1,71 6,39 5,16 0,11 −0,20 1,89 2,84 3,92 2,99 2,21 1,73 ?

1,34 −1,25 0,19 3,18 4,13 2,22 1,34 0,26 −1,90 −2,29 0,88 1,28 3,31 4,12 5,15 3,31

2,27 −3,16 0,01 1,16 5,17

0,91

2,67

2,56 1,881,78 0,57

2,89 2,12 1,78 3,14

3,13

2,18 1,18 0,99

1,89 0,90

Figure: Work of fundamental expert with k = 3 and ¯̀ = 4.

B. Patra (University Paris VI - Lokad) 14 / 56

Page 26: Nonparametric Sequential Prediction of Time Series. · Nonparametric Sequential Prediction of Time Series. Extension to quantile prediction. G. Biau – B. Patra University Paris

1,16 5,17 6,17 7,18 9,10 8,18 7,16 6,17 5,15

0,10 1,15 2,17 3,72 −1,71 6,39 5,16 0,11 −0,20 1,89 2,84 3,92 2,99 2,21 1,73 ?

?

1,34 −1,25 0,19 3,18 4,13 2,22 1,34 0,26 −1,90 −2,29 0,88 1,28 3,31 4,12 5,15 3,31

2,27 −3,16 0,01

0,90

2,56 1,88

0,91

1,78 0,57

2,67

2,99 2,21 1,73

2,89 2,12 1,78 3,14

3,13

2,18 1,18 0,99

1,89

B. Patra (University Paris VI - Lokad) 15 / 56

Page 27: Nonparametric Sequential Prediction of Time Series. · Nonparametric Sequential Prediction of Time Series. Extension to quantile prediction. G. Biau – B. Patra University Paris

1,89

2,22 1,34 0,26 −1,90 −2,29 0,88 1,28 3,31 4,12 5,15 3,31

2,27 −3,16 0,01 1,16 5,17 6,17 7,18 9,10 8,18 7,16 6,17 5,15

0,10 1,15 2,17 3,72 −1,71 6,39 5,16 0,11 −0,20 2,84 3,92 2,99 2,21 1,73 ?

1,34 −1,25 0,19 3,18 4,13

2,99 2,21 1,73

2,21 1,73

2,56 1,88 0,57

2,99

1,78

2,89 2,12 1,78 3,14

3,13

2,18 1,18 0,99

1,89 0,90 0,91

2,56 1,88

?

0,57

1,78

2,67

B. Patra (University Paris VI - Lokad) 16 / 56

Page 28: Nonparametric Sequential Prediction of Time Series. · Nonparametric Sequential Prediction of Time Series. Extension to quantile prediction. G. Biau – B. Patra University Paris

3,92

3,18 4,13 2,22 1,34 0,26 −1,90 −2,29 0,88 1,28 3,31 4,12 5,15 3,31

2,27 −3,16 0,01 1,16 5,17 6,17 7,18 9,10 8,18 7,16 6,17 5,15

0,10 1,15 2,17 3,72 −1,71 6,39 5,16 0,11 −0,20 1,89 2,84 2,99 2,21 1,73 ?

1,34 −1,25 0,19

2,67

?

1,78 1,88

2,89 2,12 1,78 3,14

3,13

2,18 1,18 0,99

1,89 0,90 0,91

2.12 2,67

2,56 0,57

2.89

1,78

1,78

2,99 2,21 1,73

2,99 2,21 1,73

2,56 1,88 0,57

B. Patra (University Paris VI - Lokad) 17 / 56

Page 29: Nonparametric Sequential Prediction of Time Series. · Nonparametric Sequential Prediction of Time Series. Extension to quantile prediction. G. Biau – B. Patra University Paris

3,18 4,13 2,22 1,34 0,26 −1,90 −2,29 0,88 1,28 3,31 4,12 5,15 3,31

2,27 −3,16 0,01 1,16 5,17 6,17 7,18 9,10 8,18 7,16 6,17 5,15

0,10 1,15 2,17 3,72 −1,71 6,39 5,16 0,11 −0,20 1,89 2,84 3,92 2,99 2,21 1,73 ?

1,34 −1,25 0,19

0,99

2,18

2,89 2,12 1,78

3,13

1,18

1,89 0,90 0,91

2.12

1,18 0,993,14

2.89

1,78

1,78

2,99 2,21 1,73

2,99 2,21 1,73

2,56 1,88 0,57

2,67

?

1,78 1,88

2,67

2,56 0,57

3,14 2,18

B. Patra (University Paris VI - Lokad) 18 / 56

Page 30: Nonparametric Sequential Prediction of Time Series. · Nonparametric Sequential Prediction of Time Series. Extension to quantile prediction. G. Biau – B. Patra University Paris

3,18 4,13 2,22 1,34 0,26 −1,90 −2,29 0,88 1,28 3,31 4,12 5,15 3,31

2,27 −3,16 0,01 1,16 5,17 6,17 7,18 9,10 8,18 7,16 6,17 5,15

0,10 1,15 2,17 3,72 −1,71 6,39 5,16 0,11 −0,20 1,89 2,84 3,92 2,99 2,21 1,73 ?

1,34 −1,25 0,19

2,12 1,78 1,18

1,89 0,90

2.12

0,90

0,91

0,91

2.89

1,78

1,78

2,99 2,21 1,73

2,99 2,21 1,73

2,56 1,88 0,57

2,67

?

1,78 1,88

2,67

2,56 0,57

3,14 2,18 0,99

2,18 1,18 0,993,14

3,13

3,13 1,89

2,89

B. Patra (University Paris VI - Lokad) 19 / 56

Page 31: Nonparametric Sequential Prediction of Time Series. · Nonparametric Sequential Prediction of Time Series. Extension to quantile prediction. G. Biau – B. Patra University Paris

3,18 4,13 2,22 1,34 0,26 −1,90 −2,29 0,88 1,28 3,31 4,12 5,15 3,31

2,27 −3,16 0,01 1,16 5,17 6,17 7,18 9,10 8,18 7,16 6,17 5,15

0,10 1,15 2,17 3,72 −1,71 6,39 5,16 0,11 −0,20 1,89 2,84 3,92 2,99 2,21 1,73 ?

1,34 −1,25 0,19

3,13 1,89 0,90

2,89 2,12 1,78 1,18

1,89 0,90

2.12

0,91

0,91

?=1,29

2.89

1,78

1,78

2,99 2,21 1,73

2,99 2,21 1,73

2,56 1,88 0,57

2,67

?

1,78 1,88

2,67

2,56 0,57

3,14 2,18 0,99

2,18 1,18 0,993,14

3,13

B. Patra (University Paris VI - Lokad) 20 / 56

Page 32: Nonparametric Sequential Prediction of Time Series. · Nonparametric Sequential Prediction of Time Series. Extension to quantile prediction. G. Biau – B. Patra University Paris

Prediction and Aggregation

Prediction of one expert

h(k ,`)n (xn

1 , yn−11 ) = Tmin{nδ,`}

(∑{t∈J(k,`)

n } yt

|J(k ,`)n |

).

Aggregated prediction of all experts

gn(xn1 , y

n−11 ) =

∞∑k ,`=1

pk ,`,nh(k ,`)n (xn

1 , yn−11 ).

Where do the pk ,`,n come from?Exponentially weight the experts based on their past performance.

B. Patra (University Paris VI - Lokad) 21 / 56

Page 33: Nonparametric Sequential Prediction of Time Series. · Nonparametric Sequential Prediction of Time Series. Extension to quantile prediction. G. Biau – B. Patra University Paris

Prediction and Aggregation

Prediction of one expert

h(k ,`)n (xn

1 , yn−11 ) = Tmin{nδ,`}

(∑{t∈J(k,`)

n } yt

|J(k ,`)n |

).

Aggregated prediction of all experts

gn(xn1 , y

n−11 ) =

∞∑k ,`=1

pk ,`,nh(k ,`)n (xn

1 , yn−11 ).

Where do the pk ,`,n come from?Exponentially weight the experts based on their past performance.

B. Patra (University Paris VI - Lokad) 21 / 56

Page 34: Nonparametric Sequential Prediction of Time Series. · Nonparametric Sequential Prediction of Time Series. Extension to quantile prediction. G. Biau – B. Patra University Paris

Prediction and Aggregation

Prediction of one expert

h(k ,`)n (xn

1 , yn−11 ) = Tmin{nδ,`}

(∑{t∈J(k,`)

n } yt

|J(k ,`)n |

).

Aggregated prediction of all experts

gn(xn1 , y

n−11 ) =

∞∑k ,`=1

pk ,`,nh(k ,`)n (xn

1 , yn−11 ).

Where do the pk ,`,n come from?Exponentially weight the experts based on their past performance.

B. Patra (University Paris VI - Lokad) 21 / 56

Page 35: Nonparametric Sequential Prediction of Time Series. · Nonparametric Sequential Prediction of Time Series. Extension to quantile prediction. G. Biau – B. Patra University Paris

Aggregation continued. . ..

DefinitionsLet {qk ,`} be a probability distribution over all pairs (k , `) ofpositive integers such that qk ,` > 0 for all (k , `).For ηn > 0, we define the weights

wk ,`,n = qk ,`e−ηn(n−1)Ln−1(h(k,`)).

We normalize these weights:

pk ,`,n =wk ,`,n∑∞

i,j=1 wi,j,n.

Global prediction

gn(xn1 , y

n−11 ) =

∞∑k ,`=1

pk ,`,nh(k ,`)n (xn

1 , yn−11 ).

B. Patra (University Paris VI - Lokad) 22 / 56

Page 36: Nonparametric Sequential Prediction of Time Series. · Nonparametric Sequential Prediction of Time Series. Extension to quantile prediction. G. Biau – B. Patra University Paris

Aggregation continued. . ..

DefinitionsLet {qk ,`} be a probability distribution over all pairs (k , `) ofpositive integers such that qk ,` > 0 for all (k , `).For ηn > 0, we define the weights

wk ,`,n = qk ,`e−ηn(n−1)Ln−1(h(k,`)).

We normalize these weights:

pk ,`,n =wk ,`,n∑∞

i,j=1 wi,j,n.

Global prediction

gn(xn1 , y

n−11 ) =

∞∑k ,`=1

pk ,`,nh(k ,`)n (xn

1 , yn−11 ).

B. Patra (University Paris VI - Lokad) 22 / 56

Page 37: Nonparametric Sequential Prediction of Time Series. · Nonparametric Sequential Prediction of Time Series. Extension to quantile prediction. G. Biau – B. Patra University Paris

Aggregation continued. . ..

DefinitionsLet {qk ,`} be a probability distribution over all pairs (k , `) ofpositive integers such that qk ,` > 0 for all (k , `).For ηn > 0, we define the weights

wk ,`,n = qk ,`e−ηn(n−1)Ln−1(h(k,`)).

We normalize these weights:

pk ,`,n =wk ,`,n∑∞

i,j=1 wi,j,n.

Global prediction

gn(xn1 , y

n−11 ) =

∞∑k ,`=1

pk ,`,nh(k ,`)n (xn

1 , yn−11 ).

B. Patra (University Paris VI - Lokad) 22 / 56

Page 38: Nonparametric Sequential Prediction of Time Series. · Nonparametric Sequential Prediction of Time Series. Extension to quantile prediction. G. Biau – B. Patra University Paris

Aggregation continued. . ..

DefinitionsLet {qk ,`} be a probability distribution over all pairs (k , `) ofpositive integers such that qk ,` > 0 for all (k , `).For ηn > 0, we define the weights

wk ,`,n = qk ,`e−ηn(n−1)Ln−1(h(k,`)).

We normalize these weights:

pk ,`,n =wk ,`,n∑∞

i,j=1 wi,j,n.

Global prediction

gn(xn1 , y

n−11 ) =

∞∑k ,`=1

pk ,`,nh(k ,`)n (xn

1 , yn−11 ).

B. Patra (University Paris VI - Lokad) 22 / 56

Page 39: Nonparametric Sequential Prediction of Time Series. · Nonparametric Sequential Prediction of Time Series. Extension to quantile prediction. G. Biau – B. Patra University Paris

Result

Theorem [Biau, Bleakley, Györfi, Ottucsák, 2009]Let C be the class of all jointly stationary and ergodic processes{(Xn,Yn)}∞−∞ such that E{Y 4

0 } <∞.

Choose parameter ηn as

ηn =1√n.

Then the nearest neighbor forecasting strategy is universallyconsistent with respect to the class C, that is

limn→∞

Ln(g) = L? almost surely.

B. Patra (University Paris VI - Lokad) 23 / 56

Page 40: Nonparametric Sequential Prediction of Time Series. · Nonparametric Sequential Prediction of Time Series. Extension to quantile prediction. G. Biau – B. Patra University Paris

Result

Theorem [Biau, Bleakley, Györfi, Ottucsák, 2009]Let C be the class of all jointly stationary and ergodic processes{(Xn,Yn)}∞−∞ such that E{Y 4

0 } <∞.

Choose parameter ηn as

ηn =1√n.

Then the nearest neighbor forecasting strategy is universallyconsistent with respect to the class C, that is

limn→∞

Ln(g) = L? almost surely.

B. Patra (University Paris VI - Lokad) 23 / 56

Page 41: Nonparametric Sequential Prediction of Time Series. · Nonparametric Sequential Prediction of Time Series. Extension to quantile prediction. G. Biau – B. Patra University Paris

Result

Theorem [Biau, Bleakley, Györfi, Ottucsák, 2009]Let C be the class of all jointly stationary and ergodic processes{(Xn,Yn)}∞−∞ such that E{Y 4

0 } <∞.

Choose parameter ηn as

ηn =1√n.

Then the nearest neighbor forecasting strategy is universallyconsistent with respect to the class C, that is

limn→∞

Ln(g) = L? almost surely.

B. Patra (University Paris VI - Lokad) 23 / 56

Page 42: Nonparametric Sequential Prediction of Time Series. · Nonparametric Sequential Prediction of Time Series. Extension to quantile prediction. G. Biau – B. Patra University Paris

Outline

1 Nonparametric mean predictionContextA consistent strategyExperimental results

2 Non parametric quantile predictionContext and quantile regressionA similar consistent strategyExperimental results

3 Other contexts

4 Conclusion

B. Patra (University Paris VI - Lokad) 24 / 56

Page 43: Nonparametric Sequential Prediction of Time Series. · Nonparametric Sequential Prediction of Time Series. Extension to quantile prediction. G. Biau – B. Patra University Paris

Experimental results

Call center data setDaily call volumes entering a call center.Long series between 382 and 826 time values. 21 series.

B. Patra (University Paris VI - Lokad) 25 / 56

Page 44: Nonparametric Sequential Prediction of Time Series. · Nonparametric Sequential Prediction of Time Series. Extension to quantile prediction. G. Biau – B. Patra University Paris

Future outcome predictions results

Model Name Avg Abs Error Avg Sqr Error Mape (%)AR(7) 65.80 9738 31.6

DayOfTheWeekMean 53.95 7099 22.8HoltWinters 49.84 6025 21.5

MeanExpertMixture 52.37 6536 22.3MA 179 62448 52.0

Figure: Forecasting future outcomes

B. Patra (University Paris VI - Lokad) 26 / 56

Page 45: Nonparametric Sequential Prediction of Time Series. · Nonparametric Sequential Prediction of Time Series. Extension to quantile prediction. G. Biau – B. Patra University Paris

Outline

1 Nonparametric mean predictionContextA consistent strategyExperimental results

2 Non parametric quantile predictionContext and quantile regressionA similar consistent strategyExperimental results

3 Other contexts

4 Conclusion

B. Patra (University Paris VI - Lokad) 27 / 56

Page 46: Nonparametric Sequential Prediction of Time Series. · Nonparametric Sequential Prediction of Time Series. Extension to quantile prediction. G. Biau – B. Patra University Paris

Quantile forecasting

Quantile forecastingGiven a stochastic process Y1,Y2, . . ..

Previously, estimate the conditional mean of Yn givenY1, . . . ,Yn−1.Now: the conditional τ th quantile of Yn given Y1, . . . ,Yn−1.

B. Patra (University Paris VI - Lokad) 28 / 56

Page 47: Nonparametric Sequential Prediction of Time Series. · Nonparametric Sequential Prediction of Time Series. Extension to quantile prediction. G. Biau – B. Patra University Paris

Quantile forecasting

Quantile forecastingGiven a stochastic process Y1,Y2, . . ..

Previously, estimate the conditional mean of Yn givenY1, . . . ,Yn−1.Now: the conditional τ th quantile of Yn given Y1, . . . ,Yn−1.

B. Patra (University Paris VI - Lokad) 28 / 56

Page 48: Nonparametric Sequential Prediction of Time Series. · Nonparametric Sequential Prediction of Time Series. Extension to quantile prediction. G. Biau – B. Patra University Paris

Quantile forecasting

What for?Understand conditional distributions.τ = 0.5 robust forecasting.Build confidence interval.

Applications fieldsFinance: CVAR. Also biology, medecine, telecoms...Here: call volumes (optimize staff in a call center).

B. Patra (University Paris VI - Lokad) 29 / 56

Page 49: Nonparametric Sequential Prediction of Time Series. · Nonparametric Sequential Prediction of Time Series. Extension to quantile prediction. G. Biau – B. Patra University Paris

Quantile forecasting

What for?Understand conditional distributions.τ = 0.5 robust forecasting.Build confidence interval.

Applications fieldsFinance: CVAR. Also biology, medecine, telecoms...Here: call volumes (optimize staff in a call center).

B. Patra (University Paris VI - Lokad) 29 / 56

Page 50: Nonparametric Sequential Prediction of Time Series. · Nonparametric Sequential Prediction of Time Series. Extension to quantile prediction. G. Biau – B. Patra University Paris

Figure: Quantile forecast with τ = 0.1,0.9.

B. Patra (University Paris VI - Lokad) 30 / 56

Page 51: Nonparametric Sequential Prediction of Time Series. · Nonparametric Sequential Prediction of Time Series. Extension to quantile prediction. G. Biau – B. Patra University Paris

Quantile Regression

Conditional quantilesX multivariate random variable, Y real valued random variable,

qτ (X ) , F←Y |X (τ) = inf{t ∈ R : FY |X (t) ≥ τ}.

FY |X conditional cumulative distribution function.

Proposition [Koenker, 2005]

qτ (X ) ∈ argminq(.)∈R

EPY |X [ρτ (Y − q(X ))] .

If FY |X is (strictly) increasing then qτ (X ) is the unique minimizer.

B. Patra (University Paris VI - Lokad) 31 / 56

Page 52: Nonparametric Sequential Prediction of Time Series. · Nonparametric Sequential Prediction of Time Series. Extension to quantile prediction. G. Biau – B. Patra University Paris

Quantile Regression

Conditional quantilesX multivariate random variable, Y real valued random variable,

qτ (X ) , F←Y |X (τ) = inf{t ∈ R : FY |X (t) ≥ τ}.

FY |X conditional cumulative distribution function.

Proposition [Koenker, 2005]

qτ (X ) ∈ argminq(.)∈R

EPY |X [ρτ (Y − q(X ))] .

If FY |X is (strictly) increasing then qτ (X ) is the unique minimizer.

B. Patra (University Paris VI - Lokad) 31 / 56

Page 53: Nonparametric Sequential Prediction of Time Series. · Nonparametric Sequential Prediction of Time Series. Extension to quantile prediction. G. Biau – B. Patra University Paris

Figure: Pinball function graph.

B. Patra (University Paris VI - Lokad) 32 / 56

Page 54: Nonparametric Sequential Prediction of Time Series. · Nonparametric Sequential Prediction of Time Series. Extension to quantile prediction. G. Biau – B. Patra University Paris

Non parametric framework

FrameworkHere, we observe a string realization yn−1

1 of a stationary andergodic process {Yn}∞n=−∞ . . .

. . . and try to estimate qτ (yn−11 ) = F←

Yn|Y n−11 =yn−1

1(τ), the conditional

quantile at time n.

StrategySequence g = {gn}∞n=1 of τ th quantile forecasting functions

gn : Rn−1 −→ R.

Quantile estimation at time n is gn(yn−11 ).

B. Patra (University Paris VI - Lokad) 33 / 56

Page 55: Nonparametric Sequential Prediction of Time Series. · Nonparametric Sequential Prediction of Time Series. Extension to quantile prediction. G. Biau – B. Patra University Paris

Non parametric framework

FrameworkHere, we observe a string realization yn−1

1 of a stationary andergodic process {Yn}∞n=−∞ . . .

. . . and try to estimate qτ (yn−11 ) = F←

Yn|Y n−11 =yn−1

1(τ), the conditional

quantile at time n.

StrategySequence g = {gn}∞n=1 of τ th quantile forecasting functions

gn : Rn−1 −→ R.

Quantile estimation at time n is gn(yn−11 ).

B. Patra (University Paris VI - Lokad) 33 / 56

Page 56: Nonparametric Sequential Prediction of Time Series. · Nonparametric Sequential Prediction of Time Series. Extension to quantile prediction. G. Biau – B. Patra University Paris

Errors

Empirical measure criterion.At time n the cumulative pinball error of the strategy g is

Gn(g) =1n

n∑t=1

ρτ

(yt − gt (y t−1

1 )).

Adapted result of [Algoët, 1994]For any stationary and ergodic process {Yn}+∞n=−∞,

lim infn→∞

Gn(g) ≥ G? a.s.,

where

G? = E[minq(.)

EPY0|Y

−1−∞

[ρτ

(Y0 − q(Y−1

−∞))]]

.

B. Patra (University Paris VI - Lokad) 34 / 56

Page 57: Nonparametric Sequential Prediction of Time Series. · Nonparametric Sequential Prediction of Time Series. Extension to quantile prediction. G. Biau – B. Patra University Paris

Errors

Empirical measure criterion.At time n the cumulative pinball error of the strategy g is

Gn(g) =1n

n∑t=1

ρτ

(yt − gt (y t−1

1 )).

Adapted result of [Algoët, 1994]For any stationary and ergodic process {Yn}+∞n=−∞,

lim infn→∞

Gn(g) ≥ G? a.s.,

where

G? = E[minq(.)

EPY0|Y

−1−∞

[ρτ

(Y0 − q(Y−1

−∞))]]

.

B. Patra (University Paris VI - Lokad) 34 / 56

Page 58: Nonparametric Sequential Prediction of Time Series. · Nonparametric Sequential Prediction of Time Series. Extension to quantile prediction. G. Biau – B. Patra University Paris

Outline

1 Nonparametric mean predictionContextA consistent strategyExperimental results

2 Non parametric quantile predictionContext and quantile regressionA similar consistent strategyExperimental results

3 Other contexts

4 Conclusion

B. Patra (University Paris VI - Lokad) 35 / 56

Page 59: Nonparametric Sequential Prediction of Time Series. · Nonparametric Sequential Prediction of Time Series. Extension to quantile prediction. G. Biau – B. Patra University Paris

Nearest neighbors strategy

Elementary predictors

Define infinite array of experts h(k ,`) = {h(k ,`)n }+∞n=1. k , ` = 1,2, . . .

Each expert has a job

At time n, expert h(k ,`)n finds the ¯̀nearest neighbors of length k .

B. Patra (University Paris VI - Lokad) 36 / 56

Page 60: Nonparametric Sequential Prediction of Time Series. · Nonparametric Sequential Prediction of Time Series. Extension to quantile prediction. G. Biau – B. Patra University Paris

Nearest neighbors strategy

Elementary predictors

Define infinite array of experts h(k ,`) = {h(k ,`)n }+∞n=1. k , ` = 1,2, . . .

Each expert has a job

At time n, expert h(k ,`)n finds the ¯̀nearest neighbors of length k .

B. Patra (University Paris VI - Lokad) 36 / 56

Page 61: Nonparametric Sequential Prediction of Time Series. · Nonparametric Sequential Prediction of Time Series. Extension to quantile prediction. G. Biau – B. Patra University Paris

6,17 7,18 9,10 8,18 7,16 6,17 5,15

0,10 1,15 2,17 3,72 −1,71 6,39 5,16 0,11 −0,20 1,89 2,84 3,92 2,99 2,21 1,73 ?

1,34 −1,25 0,19 3,18 4,13 2,22 1,34 0,26 −1,90 −2,29 0,88 1,28 3,31 4,12 5,15 3,31

2,27 −3,16 0,01 1,16 5,17

0,91

2,67

2,56 1,881,78 0,57

2,89 2,12 1,78 3,14

3,13

2,18 1,18 0,99

1,89 0,90

Figure: Work of fundamental expert with k = 3 and ¯̀ = 4.

B. Patra (University Paris VI - Lokad) 37 / 56

Page 62: Nonparametric Sequential Prediction of Time Series. · Nonparametric Sequential Prediction of Time Series. Extension to quantile prediction. G. Biau – B. Patra University Paris

1,16 5,17 6,17 7,18 9,10 8,18 7,16 6,17 5,15

0,10 1,15 2,17 3,72 −1,71 6,39 5,16 0,11 −0,20 1,89 2,84 3,92 2,99 2,21 1,73 ?

?

1,34 −1,25 0,19 3,18 4,13 2,22 1,34 0,26 −1,90 −2,29 0,88 1,28 3,31 4,12 5,15 3,31

2,27 −3,16 0,01

0,90

2,56 1,88

0,91

1,78 0,57

2,67

2,99 2,21 1,73

2,89 2,12 1,78 3,14

3,13

2,18 1,18 0,99

1,89

B. Patra (University Paris VI - Lokad) 38 / 56

Page 63: Nonparametric Sequential Prediction of Time Series. · Nonparametric Sequential Prediction of Time Series. Extension to quantile prediction. G. Biau – B. Patra University Paris

1,89

2,22 1,34 0,26 −1,90 −2,29 0,88 1,28 3,31 4,12 5,15 3,31

2,27 −3,16 0,01 1,16 5,17 6,17 7,18 9,10 8,18 7,16 6,17 5,15

0,10 1,15 2,17 3,72 −1,71 6,39 5,16 0,11 −0,20 2,84 3,92 2,99 2,21 1,73 ?

1,34 −1,25 0,19 3,18 4,13

2,99 2,21 1,73

2,21 1,73

2,56 1,88 0,57

2,99

1,78

2,89 2,12 1,78 3,14

3,13

2,18 1,18 0,99

1,89 0,90 0,91

2,56 1,88

?

0,57

1,78

2,67

B. Patra (University Paris VI - Lokad) 39 / 56

Page 64: Nonparametric Sequential Prediction of Time Series. · Nonparametric Sequential Prediction of Time Series. Extension to quantile prediction. G. Biau – B. Patra University Paris

3,92

3,18 4,13 2,22 1,34 0,26 −1,90 −2,29 0,88 1,28 3,31 4,12 5,15 3,31

2,27 −3,16 0,01 1,16 5,17 6,17 7,18 9,10 8,18 7,16 6,17 5,15

0,10 1,15 2,17 3,72 −1,71 6,39 5,16 0,11 −0,20 1,89 2,84 2,99 2,21 1,73 ?

1,34 −1,25 0,19

2,67

?

1,78 1,88

2,89 2,12 1,78 3,14

3,13

2,18 1,18 0,99

1,89 0,90 0,91

2.12 2,67

2,56 0,57

2.89

1,78

1,78

2,99 2,21 1,73

2,99 2,21 1,73

2,56 1,88 0,57

B. Patra (University Paris VI - Lokad) 40 / 56

Page 65: Nonparametric Sequential Prediction of Time Series. · Nonparametric Sequential Prediction of Time Series. Extension to quantile prediction. G. Biau – B. Patra University Paris

3,18 4,13 2,22 1,34 0,26 −1,90 −2,29 0,88 1,28 3,31 4,12 5,15 3,31

2,27 −3,16 0,01 1,16 5,17 6,17 7,18 9,10 8,18 7,16 6,17 5,15

0,10 1,15 2,17 3,72 −1,71 6,39 5,16 0,11 −0,20 1,89 2,84 3,92 2,99 2,21 1,73 ?

1,34 −1,25 0,19

0,99

2,18

2,89 2,12 1,78

3,13

1,18

1,89 0,90 0,91

2.12

1,18 0,993,14

2.89

1,78

1,78

2,99 2,21 1,73

2,99 2,21 1,73

2,56 1,88 0,57

2,67

?

1,78 1,88

2,67

2,56 0,57

3,14 2,18

B. Patra (University Paris VI - Lokad) 41 / 56

Page 66: Nonparametric Sequential Prediction of Time Series. · Nonparametric Sequential Prediction of Time Series. Extension to quantile prediction. G. Biau – B. Patra University Paris

3,18 4,13 2,22 1,34 0,26 −1,90 −2,29 0,88 1,28 3,31 4,12 5,15 3,31

2,27 −3,16 0,01 1,16 5,17 6,17 7,18 9,10 8,18 7,16 6,17 5,15

0,10 1,15 2,17 3,72 −1,71 6,39 5,16 0,11 −0,20 1,89 2,84 3,92 2,99 2,21 1,73 ?

1,34 −1,25 0,19

2,12 1,78 1,18

1,89 0,90

2.12

0,90

0,91

0,91

2.89

1,78

1,78

2,99 2,21 1,73

2,99 2,21 1,73

2,56 1,88 0,57

2,67

?

1,78 1,88

2,67

2,56 0,57

3,14 2,18 0,99

2,18 1,18 0,993,14

3,13

3,13 1,89

2,89

B. Patra (University Paris VI - Lokad) 42 / 56

Page 67: Nonparametric Sequential Prediction of Time Series. · Nonparametric Sequential Prediction of Time Series. Extension to quantile prediction. G. Biau – B. Patra University Paris

3,18 4,13 2,22 1,34 0,26 −1,90 −2,29 0,88 1,28 3,31 4,12 5,15 3,31

2,27 −3,16 0,01 1,16 5,17 6,17 7,18 9,10 8,18 7,16 6,17 5,15

0,10 1,15 2,17 3,72 −1,71 6,39 5,16 0,11 −0,20 1,89 2,84 3,92 2,99 2,21 1,73 ?

1,34 −1,25 0,19

3,13 1,89 0,90

2,89 2,12 1,78 1,18

1,89 0,90

2.12

0,91

0,91

empirical quantile

2.89

1,78

1,78

2,99 2,21 1,73

2,99 2,21 1,73

2,56 1,88 0,57

2,67

?

1,78 1,88

2,67

2,56 0,57

3,14 2,18 0,99

2,18 1,18 0,993,14

3,13

? =

B. Patra (University Paris VI - Lokad) 43 / 56

Page 68: Nonparametric Sequential Prediction of Time Series. · Nonparametric Sequential Prediction of Time Series. Extension to quantile prediction. G. Biau – B. Patra University Paris

Prediction and Aggregation

Prediction of one expert

h(k ,`)n (yn−1

1 ) = Tmin{nδ,`}

argminq∈R

∑{t∈J(k,`)

n }

ρτ (yt − q)

.

[Can be easily computed by sorting the sample.]

Aggregated prediction of all experts

gn(yn−11 ) =

∞∑k ,`=1

pk ,`,nh(k ,`)n (yn−1

1 ).

B. Patra (University Paris VI - Lokad) 44 / 56

Page 69: Nonparametric Sequential Prediction of Time Series. · Nonparametric Sequential Prediction of Time Series. Extension to quantile prediction. G. Biau – B. Patra University Paris

Prediction and Aggregation

Prediction of one expert

h(k ,`)n (yn−1

1 ) = Tmin{nδ,`}

argminq∈R

∑{t∈J(k,`)

n }

ρτ (yt − q)

.

[Can be easily computed by sorting the sample.]

Aggregated prediction of all experts

gn(yn−11 ) =

∞∑k ,`=1

pk ,`,nh(k ,`)n (yn−1

1 ).

B. Patra (University Paris VI - Lokad) 44 / 56

Page 70: Nonparametric Sequential Prediction of Time Series. · Nonparametric Sequential Prediction of Time Series. Extension to quantile prediction. G. Biau – B. Patra University Paris

Aggregation continued. . .

DefinitionsFor ηn > 0, we define the weights

wk ,`,n = qk ,`e−ηn(n−1)Gn−1(h(k,`)).

We normalize these weights:

pk ,`,n =wk ,`,n∑∞

i,j=1 wi,j,n.

Global prediction

gn(yn−11 ) =

∞∑k ,`=1

pk ,`,nh(k ,`)n (yn−1

1 ).

B. Patra (University Paris VI - Lokad) 45 / 56

Page 71: Nonparametric Sequential Prediction of Time Series. · Nonparametric Sequential Prediction of Time Series. Extension to quantile prediction. G. Biau – B. Patra University Paris

Aggregation continued. . .

DefinitionsFor ηn > 0, we define the weights

wk ,`,n = qk ,`e−ηn(n−1)Gn−1(h(k,`)).

We normalize these weights:

pk ,`,n =wk ,`,n∑∞

i,j=1 wi,j,n.

Global prediction

gn(yn−11 ) =

∞∑k ,`=1

pk ,`,nh(k ,`)n (yn−1

1 ).

B. Patra (University Paris VI - Lokad) 45 / 56

Page 72: Nonparametric Sequential Prediction of Time Series. · Nonparametric Sequential Prediction of Time Series. Extension to quantile prediction. G. Biau – B. Patra University Paris

Aggregation continued. . .

DefinitionsFor ηn > 0, we define the weights

wk ,`,n = qk ,`e−ηn(n−1)Gn−1(h(k,`)).

We normalize these weights:

pk ,`,n =wk ,`,n∑∞

i,j=1 wi,j,n.

Global prediction

gn(yn−11 ) =

∞∑k ,`=1

pk ,`,nh(k ,`)n (yn−1

1 ).

B. Patra (University Paris VI - Lokad) 45 / 56

Page 73: Nonparametric Sequential Prediction of Time Series. · Nonparametric Sequential Prediction of Time Series. Extension to quantile prediction. G. Biau – B. Patra University Paris

Aggregation continued. . .

DefinitionsFor ηn > 0, we define the weights

wk ,`,n = qk ,`e−ηn(n−1)Gn−1(h(k,`)).

We normalize these weights:

pk ,`,n =wk ,`,n∑∞

i,j=1 wi,j,n.

Global prediction

gn(yn−11 ) =

∞∑k ,`=1

pk ,`,nh(k ,`)n (yn−1

1 ).

B. Patra (University Paris VI - Lokad) 45 / 56

Page 74: Nonparametric Sequential Prediction of Time Series. · Nonparametric Sequential Prediction of Time Series. Extension to quantile prediction. G. Biau – B. Patra University Paris

Theoretical Results

TheoremLet C be the class of all jointly stationary and ergodic processes{Yn}∞n=−∞ such that E{Y 2

0 } <∞ and FY0|Y−1−∞

is a.s. increasing.

Then the nearest neighbor quantile forecasting strategy isuniversally consistent with respect to the class C, that is, for allprocess Y ∈ C

limn→∞

Gn(g) = G? almost surely.

B. Patra (University Paris VI - Lokad) 46 / 56

Page 75: Nonparametric Sequential Prediction of Time Series. · Nonparametric Sequential Prediction of Time Series. Extension to quantile prediction. G. Biau – B. Patra University Paris

Theoretical Results

TheoremLet C be the class of all jointly stationary and ergodic processes{Yn}∞n=−∞ such that E{Y 2

0 } <∞ and FY0|Y−1−∞

is a.s. increasing.

Then the nearest neighbor quantile forecasting strategy isuniversally consistent with respect to the class C, that is, for allprocess Y ∈ C

limn→∞

Gn(g) = G? almost surely.

B. Patra (University Paris VI - Lokad) 46 / 56

Page 76: Nonparametric Sequential Prediction of Time Series. · Nonparametric Sequential Prediction of Time Series. Extension to quantile prediction. G. Biau – B. Patra University Paris

Mathematical demonstration

DifficultyWe can not apply ergodic theorem on fundamental experts.Ergodicity provides weak convergence of random probabilitymeasure (almost surely).

Example

Let J(k ,`)n the set of the indices of the neighbors.

We have, almost surely in term of weak convergence,

P(k ,`)n →

n→∞P(k ,`)∞ ,

where P(k ,`)n , 1

|J(k,`)n |

∑i∈J(k,`)

nδYi .

B. Patra (University Paris VI - Lokad) 47 / 56

Page 77: Nonparametric Sequential Prediction of Time Series. · Nonparametric Sequential Prediction of Time Series. Extension to quantile prediction. G. Biau – B. Patra University Paris

Mathematical demonstration

DifficultyWe can not apply ergodic theorem on fundamental experts.Ergodicity provides weak convergence of random probabilitymeasure (almost surely).

Example

Let J(k ,`)n the set of the indices of the neighbors.

We have, almost surely in term of weak convergence,

P(k ,`)n →

n→∞P(k ,`)∞ ,

where P(k ,`)n , 1

|J(k,`)n |

∑i∈J(k,`)

nδYi .

B. Patra (University Paris VI - Lokad) 47 / 56

Page 78: Nonparametric Sequential Prediction of Time Series. · Nonparametric Sequential Prediction of Time Series. Extension to quantile prediction. G. Biau – B. Patra University Paris

Mathematical demonstration

Lemma

Let {µn}∞n=1 be a uniformly integrable sequence of real probabilitymeasures, and let µ∞ be a probability measure with (strictly)increasing distribution function. Suppose that {µn}∞n=1 convergesweakly to µ∞. Then, for all τ ∈ (0,1),

qτ,n → qτ,∞ as n→∞,

where qτ,n ∈ argminq Eµn [ρτ (Y − q)] for all n ≥ 1 and{qτ,∞} = argminq Eµ∞ [ρτ (Y − q)].

B. Patra (University Paris VI - Lokad) 48 / 56

Page 79: Nonparametric Sequential Prediction of Time Series. · Nonparametric Sequential Prediction of Time Series. Extension to quantile prediction. G. Biau – B. Patra University Paris

Outline

1 Nonparametric mean predictionContextA consistent strategyExperimental results

2 Non parametric quantile predictionContext and quantile regressionA similar consistent strategyExperimental results

3 Other contexts

4 Conclusion

B. Patra (University Paris VI - Lokad) 49 / 56

Page 80: Nonparametric Sequential Prediction of Time Series. · Nonparametric Sequential Prediction of Time Series. Extension to quantile prediction. G. Biau – B. Patra University Paris

Future outcome predictions results

τ = 0.5 median base forecaster : robustness.

Model Name Avg Abs Error Avg Sqr Error Mape (%)AR(7) 65.80 9738 31.6

QAR(8)0.5 57.8 9594 24.9DayOfTheWeekMean 53.95 7099 22.8

HoltWinters 49.84 6025 21.5QuantileExpertMixture0.5 48.1 5731 21.6

MeanExpertMixture 52.37 6536 22.3MA 179 62448 52.0

Figure: Forecasting future outcomes.

B. Patra (University Paris VI - Lokad) 50 / 56

Page 81: Nonparametric Sequential Prediction of Time Series. · Nonparametric Sequential Prediction of Time Series. Extension to quantile prediction. G. Biau – B. Patra University Paris

Quantile forecasting

Model Name PinBall Loss (0.1) Ramp LossQuantileExpertMixture0.1 13.71 0.80

QAR(7)0.1 13.22 0.88

Figure: τ = 0.1

Model Name PinBall Loss (0.9) Ramp LossQuantileExpertMixture0.9 12.27 0.07

QAR(7)0.9 19.31 0.07

Figure: τ = 0.9

B. Patra (University Paris VI - Lokad) 51 / 56

Page 82: Nonparametric Sequential Prediction of Time Series. · Nonparametric Sequential Prediction of Time Series. Extension to quantile prediction. G. Biau – B. Patra University Paris

Quantile forecasting

Model Name PinBall Loss (0.1) Ramp LossQuantileExpertMixture0.1 13.71 0.80

QAR(7)0.1 13.22 0.88

Figure: τ = 0.1

Model Name PinBall Loss (0.9) Ramp LossQuantileExpertMixture0.9 12.27 0.07

QAR(7)0.9 19.31 0.07

Figure: τ = 0.9

B. Patra (University Paris VI - Lokad) 51 / 56

Page 83: Nonparametric Sequential Prediction of Time Series. · Nonparametric Sequential Prediction of Time Series. Extension to quantile prediction. G. Biau – B. Patra University Paris

Extensions

Binary predictionPredict the next outcome yn ∈ {0,1} of a sequence of binarynumbers y1, y2, . . .

We know the past sequence yn−11 = (y1, . . . , yn−1).

The whole theory carries over, with

Hn(g) =1n

n∑t=1

1[gt (Y t−1

1 )6=Yt ]

and

g∗n(Y n−11 ) =

{1 if P{Yn = 1|Y n−1

1 } ≥ 1/20 otherwise.

B. Patra (University Paris VI - Lokad) 52 / 56

Page 84: Nonparametric Sequential Prediction of Time Series. · Nonparametric Sequential Prediction of Time Series. Extension to quantile prediction. G. Biau – B. Patra University Paris

Extensions

Binary predictionPredict the next outcome yn ∈ {0,1} of a sequence of binarynumbers y1, y2, . . .

We know the past sequence yn−11 = (y1, . . . , yn−1).

The whole theory carries over, with

Hn(g) =1n

n∑t=1

1[gt (Y t−1

1 )6=Yt ]

and

g∗n(Y n−11 ) =

{1 if P{Yn = 1|Y n−1

1 } ≥ 1/20 otherwise.

B. Patra (University Paris VI - Lokad) 52 / 56

Page 85: Nonparametric Sequential Prediction of Time Series. · Nonparametric Sequential Prediction of Time Series. Extension to quantile prediction. G. Biau – B. Patra University Paris

Extensions

Binary predictionPredict the next outcome yn ∈ {0,1} of a sequence of binarynumbers y1, y2, . . .

We know the past sequence yn−11 = (y1, . . . , yn−1).

The whole theory carries over, with

Hn(g) =1n

n∑t=1

1[gt (Y t−1

1 )6=Yt ]

and

g∗n(Y n−11 ) =

{1 if P{Yn = 1|Y n−1

1 } ≥ 1/20 otherwise.

B. Patra (University Paris VI - Lokad) 52 / 56

Page 86: Nonparametric Sequential Prediction of Time Series. · Nonparametric Sequential Prediction of Time Series. Extension to quantile prediction. G. Biau – B. Patra University Paris

Portfolio selection

Mathematical modelA market with d assets.y1,y2, . . . ∈ Rd

+ represent the evolution of the market in time.The j-th component of yn represents the amount obtained afterinvesting a unit capital in the j-th asset, on the n-th training period.The investor is allowed to diversify his capital according to aportfolio vector bn = (b(1)

n , . . . ,b(d)n ).

WealthS0 is the investor initial capital and b1 = (1/d , . . . ,1/d).At the end of the first training period,

S1 = S0

d∑j=1

b(j)1 y (j)

1 = S0〈b1,y1〉.

B. Patra (University Paris VI - Lokad) 53 / 56

Page 87: Nonparametric Sequential Prediction of Time Series. · Nonparametric Sequential Prediction of Time Series. Extension to quantile prediction. G. Biau – B. Patra University Paris

Portfolio selection

Mathematical modelA market with d assets.y1,y2, . . . ∈ Rd

+ represent the evolution of the market in time.The j-th component of yn represents the amount obtained afterinvesting a unit capital in the j-th asset, on the n-th training period.The investor is allowed to diversify his capital according to aportfolio vector bn = (b(1)

n , . . . ,b(d)n ).

WealthS0 is the investor initial capital and b1 = (1/d , . . . ,1/d).At the end of the first training period,

S1 = S0

d∑j=1

b(j)1 y (j)

1 = S0〈b1,y1〉.

B. Patra (University Paris VI - Lokad) 53 / 56

Page 88: Nonparametric Sequential Prediction of Time Series. · Nonparametric Sequential Prediction of Time Series. Extension to quantile prediction. G. Biau – B. Patra University Paris

Portfolio selection

Mathematical modelA market with d assets.y1,y2, . . . ∈ Rd

+ represent the evolution of the market in time.The j-th component of yn represents the amount obtained afterinvesting a unit capital in the j-th asset, on the n-th training period.The investor is allowed to diversify his capital according to aportfolio vector bn = (b(1)

n , . . . ,b(d)n ).

WealthS0 is the investor initial capital and b1 = (1/d , . . . ,1/d).At the end of the first training period,

S1 = S0

d∑j=1

b(j)1 y (j)

1 = S0〈b1,y1〉.

B. Patra (University Paris VI - Lokad) 53 / 56

Page 89: Nonparametric Sequential Prediction of Time Series. · Nonparametric Sequential Prediction of Time Series. Extension to quantile prediction. G. Biau – B. Patra University Paris

Portfolio selection

Mathematical modelA market with d assets.y1,y2, . . . ∈ Rd

+ represent the evolution of the market in time.The j-th component of yn represents the amount obtained afterinvesting a unit capital in the j-th asset, on the n-th training period.The investor is allowed to diversify his capital according to aportfolio vector bn = (b(1)

n , . . . ,b(d)n ).

WealthS0 is the investor initial capital and b1 = (1/d , . . . ,1/d).At the end of the first training period,

S1 = S0

d∑j=1

b(j)1 y (j)

1 = S0〈b1,y1〉.

B. Patra (University Paris VI - Lokad) 53 / 56

Page 90: Nonparametric Sequential Prediction of Time Series. · Nonparametric Sequential Prediction of Time Series. Extension to quantile prediction. G. Biau – B. Patra University Paris

Portfolio selection

Mathematical modelA market with d assets.y1,y2, . . . ∈ Rd

+ represent the evolution of the market in time.The j-th component of yn represents the amount obtained afterinvesting a unit capital in the j-th asset, on the n-th training period.The investor is allowed to diversify his capital according to aportfolio vector bn = (b(1)

n , . . . ,b(d)n ).

WealthS0 is the investor initial capital and b1 = (1/d , . . . ,1/d).At the end of the first training period,

S1 = S0

d∑j=1

b(j)1 y (j)

1 = S0〈b1,y1〉.

B. Patra (University Paris VI - Lokad) 53 / 56

Page 91: Nonparametric Sequential Prediction of Time Series. · Nonparametric Sequential Prediction of Time Series. Extension to quantile prediction. G. Biau – B. Patra University Paris

Portfolio selection

Mathematical modelA market with d assets.y1,y2, . . . ∈ Rd

+ represent the evolution of the market in time.The j-th component of yn represents the amount obtained afterinvesting a unit capital in the j-th asset, on the n-th training period.The investor is allowed to diversify his capital according to aportfolio vector bn = (b(1)

n , . . . ,b(d)n ).

WealthS0 is the investor initial capital and b1 = (1/d , . . . ,1/d).At the end of the first training period,

S1 = S0

d∑j=1

b(j)1 y (j)

1 = S0〈b1,y1〉.

B. Patra (University Paris VI - Lokad) 53 / 56

Page 92: Nonparametric Sequential Prediction of Time Series. · Nonparametric Sequential Prediction of Time Series. Extension to quantile prediction. G. Biau – B. Patra University Paris

Portfolio selection

Mathematical modelA market with d assets.y1,y2, . . . ∈ Rd

+ represent the evolution of the market in time.The j-th component of yn represents the amount obtained afterinvesting a unit capital in the j-th asset, on the n-th training period.The investor is allowed to diversify his capital according to aportfolio vector bn = (b(1)

n , . . . ,b(d)n ).

WealthS0 is the investor initial capital and b1 = (1/d , . . . ,1/d).At the end of the first training period,

S1 = S0

d∑j=1

b(j)1 y (j)

1 = S0〈b1,y1〉.

B. Patra (University Paris VI - Lokad) 53 / 56

Page 93: Nonparametric Sequential Prediction of Time Series. · Nonparametric Sequential Prediction of Time Series. Extension to quantile prediction. G. Biau – B. Patra University Paris

Wealth.By induction,

Sn = Sn−1〈bn(yn−11 ),yn〉 = S0 exp

{n∑

t=1

log〈bt (yt−11 ),yt〉

}.

Goal: find the best investment strategy {bn}∞n=1 to maximize thewealth Sn.Equivalent to maximize the criterionWn(b) = 1

n∑n

t=1 log〈bt (yt−11 ),yt〉.

Strategies so far: quantization, kernel and nearest neighboron-line prediction with expert aggregation.

References: Györfi and Schäfer (2003), Györfi et al.(2006, 2008).

B. Patra (University Paris VI - Lokad) 54 / 56

Page 94: Nonparametric Sequential Prediction of Time Series. · Nonparametric Sequential Prediction of Time Series. Extension to quantile prediction. G. Biau – B. Patra University Paris

Wealth.By induction,

Sn = Sn−1〈bn(yn−11 ),yn〉 = S0 exp

{n∑

t=1

log〈bt (yt−11 ),yt〉

}.

Goal: find the best investment strategy {bn}∞n=1 to maximize thewealth Sn.Equivalent to maximize the criterionWn(b) = 1

n∑n

t=1 log〈bt (yt−11 ),yt〉.

Strategies so far: quantization, kernel and nearest neighboron-line prediction with expert aggregation.

References: Györfi and Schäfer (2003), Györfi et al.(2006, 2008).

B. Patra (University Paris VI - Lokad) 54 / 56

Page 95: Nonparametric Sequential Prediction of Time Series. · Nonparametric Sequential Prediction of Time Series. Extension to quantile prediction. G. Biau – B. Patra University Paris

Wealth.By induction,

Sn = Sn−1〈bn(yn−11 ),yn〉 = S0 exp

{n∑

t=1

log〈bt (yt−11 ),yt〉

}.

Goal: find the best investment strategy {bn}∞n=1 to maximize thewealth Sn.Equivalent to maximize the criterionWn(b) = 1

n∑n

t=1 log〈bt (yt−11 ),yt〉.

Strategies so far: quantization, kernel and nearest neighboron-line prediction with expert aggregation.

References: Györfi and Schäfer (2003), Györfi et al.(2006, 2008).

B. Patra (University Paris VI - Lokad) 54 / 56

Page 96: Nonparametric Sequential Prediction of Time Series. · Nonparametric Sequential Prediction of Time Series. Extension to quantile prediction. G. Biau – B. Patra University Paris

Wealth.By induction,

Sn = Sn−1〈bn(yn−11 ),yn〉 = S0 exp

{n∑

t=1

log〈bt (yt−11 ),yt〉

}.

Goal: find the best investment strategy {bn}∞n=1 to maximize thewealth Sn.Equivalent to maximize the criterionWn(b) = 1

n∑n

t=1 log〈bt (yt−11 ),yt〉.

Strategies so far: quantization, kernel and nearest neighboron-line prediction with expert aggregation.

References: Györfi and Schäfer (2003), Györfi et al.(2006, 2008).

B. Patra (University Paris VI - Lokad) 54 / 56

Page 97: Nonparametric Sequential Prediction of Time Series. · Nonparametric Sequential Prediction of Time Series. Extension to quantile prediction. G. Biau – B. Patra University Paris

Bibliography

Algoet, P. The strong law of large numbers for sequential decisionsunder uncertainty, IEEE Trans. Inform. Theory, 40, 609-633, 1994.

Biau, G., Bleakley, K., Györfi, L. and Ottucsák, G. Non-parametricsequential prediction of time series, J. Nonparametr. Stat., 2009, inpress.

Cesa-Bianchi, N. and Lugosi, G. Prediction, Learning, and Games,Cambridge University Press, New York, 2006.

Györfi, L., Udina, F. and Walk, H. Nonparametric nearest neighborbased empirical portfolio selection strategies, Statist. Decis., 26,145-157, 2008.

Koenker, R. Quantile Regression, Cambridge University Press,Cambridge, 2005.

B. Patra (University Paris VI - Lokad) 55 / 56

Page 98: Nonparametric Sequential Prediction of Time Series. · Nonparametric Sequential Prediction of Time Series. Extension to quantile prediction. G. Biau – B. Patra University Paris

Thank you for your attention.

B. Patra (University Paris VI - Lokad) 56 / 56