187
Nonlinear Model Predictive Control Nonlinear Model Predictive Control More than an introduction. . . Mazen Alamir 1 1 Laboratoire d’Automatique de Grenoble CNRS-INPG-UJF, France. [email protected] Atelier technique M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 1 / 76

Nonlinear Model Predictive Controlchemori/Temp/Rihab/Atelier_NMPC.pdf · Nonlinear Model Predictive Control Regardless of the control strategy being used, the following keywords has

  • Upload
    others

  • View
    5

  • Download
    3

Embed Size (px)

Citation preview

  • Nonlinear Model Predictive Control

    Nonlinear Model Predictive ControlMore than an introduction. . .

    Mazen Alamir 1

    1Laboratoire d’Automatique de GrenobleCNRS-INPG-UJF, [email protected]

    Atelier technique

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 1 / 76

  • Nonlinear Model Predictive Control

    Regardless of the control strategy being used, the followingkeywords has to be addressed :

    System model(State, control, measurement, disturbance)Constraints(on state, control)performance index(Operational cost, energy consumption, tracking quality)StabilityRobustness

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 2 / 76

  • Nonlinear Model Predictive Control

    Current state

    Desired state

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 3 / 76

  • Nonlinear Model Predictive Control

    Current state

    Desired state

    State constraint

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 3 / 76

  • Nonlinear Model Predictive Control

    Current state

    Desired state

    Performance index :

    =

    Length of the steering path

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 3 / 76

  • Nonlinear Model Predictive Control

    Current state

    Desired state

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 3 / 76

  • Nonlinear Model Predictive Control

    Current state

    Desired state

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 3 / 76

  • Nonlinear Model Predictive Control

    Current state

    Desired state

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 3 / 76

  • Nonlinear Model Predictive Control

    Current state

    Desired state

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 3 / 76

  • Nonlinear Model Predictive Control

    Current state

    Desired state

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 3 / 76

  • Nonlinear Model Predictive Control

    Current state

    Desired state

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 3 / 76

  • Nonlinear Model Predictive Control

    Current state

    Desired state

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 3 / 76

  • Nonlinear Model Predictive Control

    Current state

    Desired state

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 3 / 76

  • Nonlinear Model Predictive Control

    Desired state

    Initially computed trajectory

    Closed loop trajectory

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 3 / 76

  • Nonlinear Model Predictive Control

    A simple feedback principle (informal)

    At each decision instant, evaluate the situation

    Based on the evaluation, compute the best strategyApply the beginning of the strategy until the next decisioninstantRe-evaluate the situationRecompute the best strategyApply the first part until the next decision instantKeep doing

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 4 / 76

  • Nonlinear Model Predictive Control

    A simple feedback principle (informal)

    At each decision instant, evaluate the situationBased on the evaluation, compute the best strategy

    Apply the beginning of the strategy until the next decisioninstantRe-evaluate the situationRecompute the best strategyApply the first part until the next decision instantKeep doing

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 4 / 76

  • Nonlinear Model Predictive Control

    A simple feedback principle (informal)

    At each decision instant, evaluate the situationBased on the evaluation, compute the best strategyApply the beginning of the strategy until the next decisioninstant

    Re-evaluate the situationRecompute the best strategyApply the first part until the next decision instantKeep doing

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 4 / 76

  • Nonlinear Model Predictive Control

    A simple feedback principle (informal)

    At each decision instant, evaluate the situationBased on the evaluation, compute the best strategyApply the beginning of the strategy until the next decisioninstantRe-evaluate the situation

    Recompute the best strategyApply the first part until the next decision instantKeep doing

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 4 / 76

  • Nonlinear Model Predictive Control

    A simple feedback principle (informal)

    At each decision instant, evaluate the situationBased on the evaluation, compute the best strategyApply the beginning of the strategy until the next decisioninstantRe-evaluate the situationRecompute the best strategy

    Apply the first part until the next decision instantKeep doing

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 4 / 76

  • Nonlinear Model Predictive Control

    A simple feedback principle (informal)

    At each decision instant, evaluate the situationBased on the evaluation, compute the best strategyApply the beginning of the strategy until the next decisioninstantRe-evaluate the situationRecompute the best strategyApply the first part until the next decision instant

    Keep doing

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 4 / 76

  • Nonlinear Model Predictive Control

    A simple feedback principle (informal)

    At each decision instant, evaluate the situationBased on the evaluation, compute the best strategyApply the beginning of the strategy until the next decisioninstantRe-evaluate the situationRecompute the best strategyApply the first part until the next decision instantKeep doing

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 4 / 76

  • Nonlinear Model Predictive Control

    A simple feedback principle (Formal)

    At decision instant k, measure the state x(k)

    Based on x(k), compute the best sequence of actions :u0(x(k)) :=

    (u0(k;x(k)) u0(k + 1;x(k)) . . . u0(k + i;x(k)) . . .

    )Apply the control u0(k; x(k)) on the sampling period [k, k +1]At decision instant k + 1, measure the state x(k + 1)Based on x(k + 1), compute the best sequence of actions :u0(x(k + 1)) :=

    (u0(k + 1;x(k + 1)) u0(k + 2;x(k + 1)) . . .

    )Apply the control u0(k + 1; x(k + 1)) on the sampling period[k + 1, k + 2]

    . . .

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 5 / 76

  • Nonlinear Model Predictive Control

    A simple feedback principle (Formal)

    At decision instant k, measure the state x(k)Based on x(k), compute the best sequence of actions :u0(x(k)) :=

    (u0(k;x(k)) u0(k + 1;x(k)) . . . u0(k + i;x(k)) . . .

    )

    Apply the control u0(k; x(k)) on the sampling period [k, k +1]At decision instant k + 1, measure the state x(k + 1)Based on x(k + 1), compute the best sequence of actions :u0(x(k + 1)) :=

    (u0(k + 1;x(k + 1)) u0(k + 2;x(k + 1)) . . .

    )Apply the control u0(k + 1; x(k + 1)) on the sampling period[k + 1, k + 2]

    . . .

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 5 / 76

  • Nonlinear Model Predictive Control

    A simple feedback principle (Formal)

    At decision instant k, measure the state x(k)Based on x(k), compute the best sequence of actions :u0(x(k)) :=

    (u0(k;x(k)) u0(k + 1;x(k)) . . . u0(k + i;x(k)) . . .

    )Apply the control u0(k; x(k)) on the sampling period [k, k +1]

    At decision instant k + 1, measure the state x(k + 1)Based on x(k + 1), compute the best sequence of actions :u0(x(k + 1)) :=

    (u0(k + 1;x(k + 1)) u0(k + 2;x(k + 1)) . . .

    )Apply the control u0(k + 1; x(k + 1)) on the sampling period[k + 1, k + 2]

    . . .

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 5 / 76

  • Nonlinear Model Predictive Control

    A simple feedback principle (Formal)

    At decision instant k, measure the state x(k)Based on x(k), compute the best sequence of actions :u0(x(k)) :=

    (u0(k;x(k)) u0(k + 1;x(k)) . . . u0(k + i;x(k)) . . .

    )Apply the control u0(k; x(k)) on the sampling period [k, k +1]At decision instant k + 1, measure the state x(k + 1)

    Based on x(k + 1), compute the best sequence of actions :u0(x(k + 1)) :=

    (u0(k + 1;x(k + 1)) u0(k + 2;x(k + 1)) . . .

    )Apply the control u0(k + 1; x(k + 1)) on the sampling period[k + 1, k + 2]

    . . .

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 5 / 76

  • Nonlinear Model Predictive Control

    A simple feedback principle (Formal)

    At decision instant k, measure the state x(k)Based on x(k), compute the best sequence of actions :u0(x(k)) :=

    (u0(k;x(k)) u0(k + 1;x(k)) . . . u0(k + i;x(k)) . . .

    )Apply the control u0(k; x(k)) on the sampling period [k, k +1]At decision instant k + 1, measure the state x(k + 1)Based on x(k + 1), compute the best sequence of actions :u0(x(k + 1)) :=

    (u0(k + 1;x(k + 1)) u0(k + 2;x(k + 1)) . . .

    )

    Apply the control u0(k + 1; x(k + 1)) on the sampling period[k + 1, k + 2]

    . . .

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 5 / 76

  • Nonlinear Model Predictive Control

    A simple feedback principle (Formal)

    At decision instant k, measure the state x(k)Based on x(k), compute the best sequence of actions :u0(x(k)) :=

    (u0(k;x(k)) u0(k + 1;x(k)) . . . u0(k + i;x(k)) . . .

    )Apply the control u0(k; x(k)) on the sampling period [k, k +1]At decision instant k + 1, measure the state x(k + 1)Based on x(k + 1), compute the best sequence of actions :u0(x(k + 1)) :=

    (u0(k + 1;x(k + 1)) u0(k + 2;x(k + 1)) . . .

    )Apply the control u0(k + 1; x(k + 1)) on the sampling period[k + 1, k + 2]

    . . .

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 5 / 76

  • Nonlinear Model Predictive Control

    A simple feedback principle (Formal)

    At decision instant k, measure the state x(k)Based on x(k), compute the best sequence of actions :u0(x(k)) :=

    (u0(k;x(k)) u0(k + 1;x(k)) . . . u0(k + i;x(k)) . . .

    )Apply the control u0(k; x(k)) on the sampling period [k, k +1]At decision instant k + 1, measure the state x(k + 1)Based on x(k + 1), compute the best sequence of actions :u0(x(k + 1)) :=

    (u0(k + 1;x(k + 1)) u0(k + 2;x(k + 1)) . . .

    )Apply the control u0(k + 1; x(k + 1)) on the sampling period[k + 1, k + 2]

    . . .

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 5 / 76

  • Nonlinear Model Predictive Control

    A sampled state feedback

    At decision instant k, measure the state x(k)Based on x(k), compute the best sequence of actions :u0(x(k)) :=

    (u0(k;x(k)) u0(k + 1;x(k)) . . . u0(k + i;x(k)) . . .

    )Apply the control u0(k; x(k)) on the sampling period[k, k + 1]

    At decision instant k + 1, measure the state x(k + 1)Based on x(k + 1), compute the best sequence of actions :u0(x(k + 1)) :=

    (u0(k + 1;x(k + 1)) u0(k + 2;x(k + 1)) . . .

    )Apply the control u0(k + 1; x(k + 1)) on the sampling period[k + 1, k + 2]

    . . .

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 6 / 76

  • Nonlinear Model Predictive Control

    A sampled state feedback

    At decision instant k, measure the state x(k)Based on x(k), compute the best sequence of actions :u0(x(k)) :=

    (u0(k;x(k)) u0(k + 1;x(k)) . . . u0(k + i;x(k)) . . .

    )Apply the control u0(k; x(k)) on the sampling period[k, k + 1]

    At decision instant k + 1, measure the state x(k + 1)Based on x(k + 1), compute the best sequence of actions :u0(x(k + 1)) :=

    (u0(k + 1;x(k + 1)) u0(k + 2;x(k + 1)) . . .

    )Apply the control u0(k + 1; x(k + 1)) on the sampling period[k + 1, k + 2]

    . . .

    A state feedback

    We have defined a sampled state feedback

    u(k) = u0(k; x(k))

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 6 / 76

  • Nonlinear Model Predictive Control

    A key task . . .

    At decision instant k, measure the state x(k)Based on x(k), compute the best sequence of actions :u0(x(k)) :=

    (u0(k;x(k)) u0(k + 1;x(k)) . . . u0(k + i;x(k)) . . .

    )Apply the control u0(k; x(k)) on the sampling period [k, k +1]At decision instant k + 1, measure the state x(k + 1)Based on x(k + 1), compute the best sequence ofactions :u0(x(k + 1)) :=

    (u0(k + 1;x(k + 1)) u0(k + 2;x(k + 1)) . . .

    )Apply the control u0(k + 1; x(k + 1)) on the sampling period[k + 1, k + 2]

    . . .

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 7 / 76

  • Nonlinear Model Predictive Control

    A key task . . .

    At decision instant k, measure the state x(k)Based on x(k), compute the best sequence of actions :u0(x(k)) :=

    (u0(k;x(k)) u0(k + 1;x(k)) . . . u0(k + i;x(k)) . . .

    )Apply the control u0(k; x(k)) on the sampling period [k, k +1]

    At decision instant k + 1, measure the state x(k + 1)Based on x(k + 1), compute the best sequence ofactions :u0(x(k + 1)) :=

    (u0(k + 1;x(k + 1)) u0(k + 2;x(k + 1)) . . .

    )Apply the control u0(k + 1; x(k + 1)) on the sampling period[k + 1, k + 2]

    . . .

    We need an optimization problem

    P(x(k)) : minu

    {V (x(k),u) | u ∈ U(x(k))

    }u0(x(k)) is A solution of P(x(k))

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 7 / 76

  • Nonlinear Model Predictive Control

    How to define & Solve P(x) for our example ?

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 8 / 76

  • Nonlinear Model Predictive Control

    Step 1 : Write down the system modelDesired state

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 9 / 76

  • Nonlinear Model Predictive Control

    Step 1 : Write down the system modelDesired state

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 9 / 76

  • Nonlinear Model Predictive Control

    Step 1 : Write down the system modelDesired state

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 9 / 76

  • Nonlinear Model Predictive Control

    Step 2 : Obtain the sampled-time model

    Given the continuous system

    ẋ = fc(x, u)

    Compute the implicit τ -discrete dynamics

    x+(k) = x(k + 1) = f(x(k), u(k))

    where x(k + 1) is the solution at instant τ of

    ξ̇ = fc(ξ, u(k)) ; ξ(0) = x(k)

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 10 / 76

  • Nonlinear Model Predictive Control

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 11 / 76

  • Nonlinear Model Predictive Control

    Some notations before we continue

    Consider

    x+ = f(x, u)

    u := (u(0), u(1), . . . , u(N−1))

    Notation

    xu(·, x(k)) :={

    x(k + i)}N

    i=0

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 12 / 76

  • Nonlinear Model Predictive Control

    Recall

    P(x(k)) : minu

    {V (x(k),u) | u ∈ U(x(k))

    }u0(x(k)) is A solution of P(x(k))

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 13 / 76

  • Nonlinear Model Predictive Control

    Step 3 : Write down the constraints

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 14 / 76

  • Nonlinear Model Predictive Control

    Step 3 : Write down the constraints

    Desired state The final constraint

    Obstacle avoidance

    Saturation constrainte

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 14 / 76

  • Nonlinear Model Predictive Control

    Step 3 : Write down the constraints

    Desired state Equality constraints

    Inequality constraints

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 14 / 76

  • Nonlinear Model Predictive Control

    Step 3 : Write down the constraints

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 14 / 76

  • Nonlinear Model Predictive Control

    Recall

    P(x(k)) : minu

    {V (x(k),u) | u ∈ U(x(k))

    }u0(x(k)) is A solution of P(x(k))

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 15 / 76

  • Nonlinear Model Predictive Control

    Write down the performance index

    V (x(k),u) :=N∑

    i=1

    ∥∥xu(i; x(k))− xd∥∥2

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 16 / 76

  • Nonlinear Model Predictive Control

    Write down the performance index

    V (x(k),u) :=N∑

    i=1

    ∥∥xu(i; x(k))− xd∥∥2

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 16 / 76

  • Nonlinear Model Predictive Control

    26/10/05 00:00 MATLAB Command Window 1 of 1

    FMINCON finds a constrained minimum of a function of several variables. FMINCON attempts to solve problems of the form: min F(X) subject to: A*X

  • Nonlinear Model Predictive Control

    Coming next . . .

    Existence of solutionsClosed-loop stability

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 18 / 76

  • Nonlinear Model Predictive Control

    Existence of solutions

    P(x) : minu

    {V (x,u) | u ∈ U(x)

    }

    U(x) :={u ∈ UN | ∀i xu(i; x) ∈ X and xu(N, x) ∈ Xf

    }in which U compact ; X compact ; Xf = {xd} ⊂ X closed.

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 19 / 76

  • Nonlinear Model Predictive Control

    Existence of solutions

    P(x) : minu

    {V (x,u) | u ∈ U(x)

    }

    U(x) :={u ∈ UN | ∀i xu(i; x) ∈ X and xu(N, x) ∈ Xf

    }in which U compact ; X compact ; Xf = {xd} ⊂ X closed.

    No global definition under bounded control

    one must have x ∈ XN the subset of states from which Xf is ac-cessible by N -step controls in U and trajectories in X.

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 19 / 76

  • Nonlinear Model Predictive Control

    Existence of solutions

    P(x) : minu

    {V (x,u) | u ∈ U(x)

    }

    U(x) :={u ∈ UN | ∀i xu(i; x) ∈ X and xu(N, x) ∈ Xf

    }in which U compact ; X compact ; Xf = {xd} ⊂ X closed.

    for all x ∈ XN , main arguments

    V (x, ·) is continuous and U(x) is compact.

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 19 / 76

  • Nonlinear Model Predictive Control

    Close-loop stability

    P(x) : minu

    {V (x,u) | u ∈ U(x)

    }U(x) :=

    {u ∈ UN | ∀i xu(i; x) ∈ X and xu(N, x) ∈ Xf

    }V (x,u) = F (x(N ; x)) +

    N∑i=0

    L(xu(i; x), u(i))

    xd = 0 ; Xf = {0} ; f(0, 0) = 0

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 20 / 76

  • Nonlinear Model Predictive Control

    Close-loop stability

    P(x) : minu

    {V (x,u) | u ∈ U(x)

    }U(x) :=

    {u ∈ UN | ∀i xu(i; x) ∈ X and xu(N, x) ∈ Xf

    }V (x,u) = F (x(N ; x)) +

    N∑i=0

    L(xu(i; x), u(i))

    xd = 0 ; Xf = {0} ; f(0, 0) = 0

    An optimal solution :

    u0(x) :=(u0(0; x) u0(1; x) . . . u0(N − 1; x)

    )∈ UN

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 20 / 76

  • Nonlinear Model Predictive Control

    Close-loop stability

    P(x) : minu

    {V (x,u) | u ∈ U(x)

    }U(x) :=

    {u ∈ UN | ∀i xu(i; x) ∈ X and xu(N, x) ∈ Xf

    }V (x,u) = F (x(N ; x)) +

    N∑i=0

    L(xu(i; x), u(i))

    xd = 0 ; Xf = {0} ; f(0, 0) = 0

    An optimal solution :

    u0(x) :=(u0(0; x) u0(1; x) . . . u0(N − 1; x)

    )∈ UN

    Sampled state feedback : κ0(x) := u0(0; x)

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 20 / 76

  • Nonlinear Model Predictive Control

    Study the stability of

    x+ = f(x, u0(0; x))

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 21 / 76

  • Nonlinear Model Predictive Control

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 22 / 76

  • Nonlinear Model Predictive Control

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 22 / 76

  • Nonlinear Model Predictive Control

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 22 / 76

  • Nonlinear Model Predictive Control

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 22 / 76

  • Nonlinear Model Predictive Control

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 22 / 76

  • Nonlinear Model Predictive Control

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 22 / 76

  • Nonlinear Model Predictive Control

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 22 / 76

  • Nonlinear Model Predictive Control

    Closed loop stability

    Therefore, on the closed loop trajectory :

    V 0(x(k + 1)) ≤ V 0(x(k))− L(x(k), κ0(x(k))

    )therefore,

    limk→∞

    L(x(k), κ0(x(k))

    )= 0

    Consequently, if L(·, ·) is a continuous positive definitefunction in x, one has

    limk→∞

    x(k) = 0

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 23 / 76

  • Nonlinear Model Predictive Control

    Close-loop stability

    P(x) : minu

    {V (x,u) | u ∈ U(x)

    }U(x) :=

    {u ∈ UN | ∀i xu(i; x) ∈ X and xu(N, x) ∈ Xf

    }V (x,u) = F (x(N ; x)) +

    N∑i=0

    L(xu(i; x), u(i))

    xd = 0 ; Xf = {0} ; f(0, 0) = 0

    The final equality constraint : A key role

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 24 / 76

  • Nonlinear Model Predictive Control

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 25 / 76

  • Nonlinear Model Predictive Control

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 25 / 76

  • Nonlinear Model Predictive Control

    First useful property of Xf = {0}

    For all ξ ∈ Xf , there exists an admissible control κf (ξ) such that :

    f(ξ, κf (ξ)) ∈ Xf

    (Xf is positively invariant under κf (·))

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 26 / 76

  • Nonlinear Model Predictive Control

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 27 / 76

  • Nonlinear Model Predictive Control

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 27 / 76

  • Nonlinear Model Predictive Control

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 27 / 76

  • Nonlinear Model Predictive Control

    Second useful property of Xf = {0}

    For all ξ ∈ Xf , the admissible control κf (ξ) is such that :

    F (f(ξ, κf (ξ))− F (ξ) ≤ −L(ξ, κf (ξ))

    (The terminal cost F (·) is a Lyapunov function for the closed loopdynamics under κf (·))

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 28 / 76

  • Nonlinear Model Predictive Control

    First useful property of Xf = {0}

    For all ξ ∈ Xf , there exists an admissible control κf (ξ) such that :

    f(ξ, κf (ξ)) ∈ Xf

    (Xf is positively invariant under κf (·))

    Second useful property of Xf = {0}

    For all ξ ∈ Xf , the admissible control κf (ξ) is such that :

    F (f(ξ, κf (ξ))− F (ξ) ≤ −L(ξ, κf (ξ))

    (The terminal cost F (·) is a Lyapunov function for the closed loopdynamics under κf (·))

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 29 / 76

  • Nonlinear Model Predictive Control

    Necessary conditions for well defined and stable NMPC scheme

    P(x) : minu

    {V (x,u) | u ∈ U(x)

    }; x+ = f(x, u)

    U(x) :={u ∈ UN | ∀i xu(i; x) ∈ X and xu(N, x) ∈ Xf

    }V (x,u) = F (x(N ; x)) +

    N∑i=0

    L(xu(i; x), u(i))

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 30 / 76

  • Nonlinear Model Predictive Control

    Necessary conditions for well defined and stable NMPC scheme

    P(x) : minu

    {V (x,u) | u ∈ U(x)

    }; x+ = f(x, u)

    U(x) :={u ∈ UN | ∀i xu(i; x) ∈ X and xu(N, x) ∈ Xf

    }V (x,u) = F (x(N ; x)) +

    N∑i=0

    L(xu(i; x), u(i))

    Condition 1 : ContinuityThe applications f , F , L are continuous in their arguments.

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 30 / 76

  • Nonlinear Model Predictive Control

    Necessary conditions for well defined and stable NMPC scheme

    P(x) : minu

    {V (x,u) | u ∈ U(x)

    }; x+ = f(x, u)

    U(x) :={u ∈ UN | ∀i xu(i; x) ∈ X and xu(N, x) ∈ Xf

    }V (x,u) = F (x(N ; x)) +

    N∑i=0

    L(xu(i; x), u(i))

    Condition 2 : CompactnessX U is compactX X and Xf ⊂ X are closed.

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 30 / 76

  • Nonlinear Model Predictive Control

    Necessary conditions for well defined and stable NMPC scheme

    P(x) : minu

    {V (x,u) | u ∈ U(x)

    }; x+ = f(x, u)

    U(x) :={u ∈ UN | ∀i xu(i; x) ∈ X and xu(N, x) ∈ Xf

    }V (x,u) = F (x(N ; x)) +

    N∑i=0

    L(xu(i; x), u(i))

    Condition 3 : DetectabilityThe integral cost L must be such that{

    L(x, u) → 0}

    ⇒{

    x → 0}

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 30 / 76

  • Nonlinear Model Predictive Control

    Necessary conditions for well defined and stable NMPC scheme

    P(x) : minu

    {V (x,u) | u ∈ U(x)

    }; x+ = f(x, u)

    U(x) :={u ∈ UN | ∀i xu(i; x) ∈ X and xu(N, x) ∈ Xf

    }V (x,u) = F (x(N ; x)) +

    N∑i=0

    L(xu(i; x), u(i))

    Condition 4 : Xf is positively invariant under some local κf (·)For all ξ ∈ Xf , there exists an admissible control κf (ξ) such that :

    f(ξ, κf (ξ)) ∈ Xf

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 30 / 76

  • Nonlinear Model Predictive Control

    Necessary conditions for well defined and stable NMPC scheme

    P(x) : minu

    {V (x,u) | u ∈ U(x)

    }; x+ = f(x, u)

    U(x) :={u ∈ UN | ∀i xu(i; x) ∈ X and xu(N, x) ∈ Xf

    }V (x,u) = F (x(N ; x)) +

    N∑i=0

    L(xu(i; x), u(i))

    Condition 5 : The terminal cost F (·) is a Lyapunov under κf (·)For all ξ ∈ Xf , the admissible control κf (ξ) is such that :

    F (f(ξ, κf (ξ))− F (ξ) ≤ −L(ξ, κf (ξ))

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 30 / 76

  • Nonlinear Model Predictive Control

    Necessary conditions for well defined and stable NMPC scheme

    P(x) : minu

    {V (x,u) | u ∈ U(x)

    }; x+ = f(x, u)

    U(x) :={u ∈ UN | ∀i xu(i; x) ∈ X and xu(N, x) ∈ Xf

    }V (x,u) = F (x(N ; x)) +

    N∑i=0

    L(xu(i; x), u(i))

    Condition 6 : FeasibilityThere is at least a sequence that meets the constraints (in particularx(0) ∈ XN (the subset of state steerable in N steps to Xf withbounded controls in U).

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 30 / 76

  • Nonlinear Model Predictive Control

    To summarize

    The system x+ = f(x, u)

    The cost function F (x(N)) +∑N

    i=0 L(x(i), u(i))

    1) f , L, L are continuous.2) U is compact, X and Xf ⊂ X are closed.3) {L(x, u) → 0} ⇒ {x → 0}4) Xf is positively invariant (with some κf (·).5) F (·) is a Lyapunov function under κf (·).6) x(0) ∈ XN .

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 31 / 76

  • Nonlinear Model Predictive Control

    How to choose Xf and κf(·) ?

    1 Infinite horizon N = ∞.

    2 Point-wise final constraint Xf = {0}.3 If the linearized system at 0 is stabilizable, then

    κf (x) = −Kx(A−BK)T P (A−BK)− P = −Q for some P,Q > 0Xf is a level set of xT Px, namely

    Xf ={

    x | xT Px ≤ %}

    for a sufficiently small % > 0.

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 32 / 76

  • Nonlinear Model Predictive Control

    How to choose Xf and κf(·) ?

    1 Infinite horizon N = ∞.2 Point-wise final constraint Xf = {0}.

    3 If the linearized system at 0 is stabilizable, then

    κf (x) = −Kx(A−BK)T P (A−BK)− P = −Q for some P,Q > 0Xf is a level set of xT Px, namely

    Xf ={

    x | xT Px ≤ %}

    for a sufficiently small % > 0.

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 32 / 76

  • Nonlinear Model Predictive Control

    How to choose Xf and κf(·) ?

    1 Infinite horizon N = ∞.2 Point-wise final constraint Xf = {0}.3 If the linearized system at 0 is stabilizable, then

    κf (x) = −Kx(A−BK)T P (A−BK)− P = −Q for some P,Q > 0Xf is a level set of xT Px, namely

    Xf ={

    x | xT Px ≤ %}

    for a sufficiently small % > 0.

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 32 / 76

  • Nonlinear Model Predictive Control

    How to choose Xf and κf(·) ?

    1 Infinite horizon N = ∞.2 Point-wise final constraint Xf = {0}.3 If the linearized system at 0 is stabilizable, then

    κf (x) = −Kx

    (A−BK)T P (A−BK)− P = −Q for some P,Q > 0Xf is a level set of xT Px, namely

    Xf ={

    x | xT Px ≤ %}

    for a sufficiently small % > 0.

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 32 / 76

  • Nonlinear Model Predictive Control

    How to choose Xf and κf(·) ?

    1 Infinite horizon N = ∞.2 Point-wise final constraint Xf = {0}.3 If the linearized system at 0 is stabilizable, then

    κf (x) = −Kx(A−BK)T P (A−BK)− P = −Q for some P,Q > 0

    Xf is a level set of xT Px, namely

    Xf ={

    x | xT Px ≤ %}

    for a sufficiently small % > 0.

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 32 / 76

  • Nonlinear Model Predictive Control

    How to choose Xf and κf(·) ?

    1 Infinite horizon N = ∞.2 Point-wise final constraint Xf = {0}.3 If the linearized system at 0 is stabilizable, then

    κf (x) = −Kx(A−BK)T P (A−BK)− P = −Q for some P,Q > 0Xf is a level set of xT Px, namely

    Xf ={

    x | xT Px ≤ %}

    for a sufficiently small % > 0.

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 32 / 76

  • Nonlinear Model Predictive Control

    Example

    x+1 = x1 + (1 + x22)u

    x+2 =3

    2x2 − x1eu

    X Open-loop instable.X The set of equilibrium states is given by

    Est =

    {x(α) :=

    (α2α

    ); α ∈ R

    }

    Control objective starting at x(0) = (0, 0), stabilize thesystem around x(1) = (1, 2).

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 33 / 76

  • Nonlinear Model Predictive Control

    Consider the cost function

    V (x,u) := F (x(N)) +N∑

    i=0

    L(x(i), u(i))

    where

    L(x, u) := ‖x− x(1)‖2 + ru2

    F (x) =M−N∑i=1

    x0(i; x)

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 34 / 76

  • Nonlinear Model Predictive Control

    Test 1 : N = 2, M = 2, r = 1

    5 10 15 200

    0.5

    1

    1.5

    2

    2.5

    3

    x1

    5 10 15 200

    0.5

    1

    1.5

    2

    2.5

    3

    x2

    5 10 15 20−0.5

    0

    0.5

    1

    1.5u

    5 10 15 200

    2

    4

    6

    8

    10J

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 35 / 76

  • Nonlinear Model Predictive Control

    Test 1 : N = 2, M = 2, r = 1

    −1 −0.5 0 0.5 1 1.5 2−1

    −0.5

    0

    0.5

    1

    1.5

    2

    2.5

    3

    Initial state

    desired state

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 36 / 76

  • Nonlinear Model Predictive Control

    Let us assume that one looks for solution such that u ≤ 0.1

    Assume that for that reason one takes

    r = 160

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 37 / 76

  • Nonlinear Model Predictive Control

    Test 2 : N = 2, M = 2, r = 160

    50 100 150 200 250 300−3

    −2

    −1

    0

    1

    2

    3

    x1

    50 100 150 200 250 300−6

    −4

    −2

    0

    2

    4

    x2

    50 100 150 200 250 300−0.2

    −0.15

    −0.1

    −0.05

    0

    0.05

    0.1

    0.15u

    50 100 150 200 250 3000

    20

    40

    60

    80

    100J

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 38 / 76

  • Nonlinear Model Predictive Control

    Test 2 : N = 2, M = 2, r = 160

    −3 −2 −1 0 1 2 3−6

    −4

    −2

    0

    2

    4

    6

    Initial state

    Desired state

    final state

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 39 / 76

  • Nonlinear Model Predictive Control

    Let us take M = 3 (instead of 2)

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 40 / 76

  • Nonlinear Model Predictive Control

    Test 3 : N = 2, M = 3, r = 160

    10 20 30 40 50−0.5

    0

    0.5

    1

    1.5

    2

    x1

    10 20 30 40 500

    0.5

    1

    1.5

    2

    2.5

    3

    x2

    10 20 30 40 50−0.05

    0

    0.05

    0.1

    0.15u

    10 20 30 40 500

    5

    10

    15J

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 41 / 76

  • Nonlinear Model Predictive Control

    Test 3 : N = 2, M = 3, r = 160

    −3 −2 −1 0 1 2 3−6

    −4

    −2

    0

    2

    4

    6

    Initial state

    Desired state

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 42 / 76

  • Nonlinear Model Predictive Control

    Increasing M enabled the target state to be reached.

    However, the control is again above 0.1,

    So let us increase r again by taking

    r = 500

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 43 / 76

  • Nonlinear Model Predictive Control

    Test 4 : N = 2, M = 3, r = 500

    100 200 300 400 500 600−4

    −2

    0

    2

    4

    6

    8

    x1

    100 200 300 400 500 600−5

    0

    5

    10

    x2

    100 200 300 400 500 600−0.4

    −0.3

    −0.2

    −0.1

    0

    0.1

    0.2

    0.3u

    100 200 300 400 500 6000

    50

    100

    150J

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 44 / 76

  • Nonlinear Model Predictive Control

    Test 4 : N = 2, M = 3, r = 500

    −4 −2 0 2 4 6 8−5

    0

    5

    10

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 45 / 76

  • Nonlinear Model Predictive Control

    A limit cycle appears

    and the control is beyond 0.25 ! ! !

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 46 / 76

  • Nonlinear Model Predictive Control

    Let us explicitly impose the constraint

    U = [−0.1, 0.1]

    and test it with the configuration

    r = 1 ; N = M = 3

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 47 / 76

  • Nonlinear Model Predictive Control

    Test 5 : N = 3, M = 3, r = 1, explicitconstraint |u| ≤ 0.1

    20 40 60 80 100−0.5

    0

    0.5

    1

    1.5

    2

    x1

    20 40 60 80 1000

    0.5

    1

    1.5

    2

    2.5

    3

    x2

    20 40 60 80 100

    −0.1

    −0.05

    0

    0.05

    0.1

    0.15u

    20 40 60 80 1000

    2

    4

    6

    8

    10

    12

    14J

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 48 / 76

  • Nonlinear Model Predictive Control

    Test 5 : N = 3, M = 3, r = 1, explicitconstraint |u| ≤ 0.1

    −0.5 0 0.5 1 1.5 2−1

    −0.5

    0

    0.5

    1

    1.5

    2

    2.5

    3

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 49 / 76

  • Nonlinear Model Predictive Control

    The example shows that

    Nonlinear Model Predictive Control is a "generic" solution.

    (Who remember the system’s equations ? ! !)

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 50 / 76

  • Nonlinear Model Predictive Control

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 51 / 76

  • Nonlinear Model Predictive Control

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 51 / 76

  • Nonlinear Model Predictive Control

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 51 / 76

  • Nonlinear Model Predictive Control

    Computation of the optimal sequence

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 51 / 76

  • Nonlinear Model Predictive Control

    The example shows that

    Nonlinear Model Predictive Control is a "generic" solution.

    Easy handling of constraints

    The stability is an issue

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 52 / 76

  • Nonlinear Model Predictive Control

    The example shows that

    Nonlinear Model Predictive Control is a "generic" solution.

    Easy handling of constraints

    The stability is an issue

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 52 / 76

  • Nonlinear Model Predictive Control

    The example shows that

    Nonlinear Model Predictive Control is a "generic" solution.

    Easy handling of constraints

    The stability is an issue

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 52 / 76

  • Nonlinear Model Predictive Control

    To summarize

    The system x+ = f(x, u)

    The cost function F (x(N)) +∑N

    i=0 L(x(i), u(i))

    1) f , L, L are continuous.2) U is compact, X and Xf ⊂ X are closed.3) {L(x, u) → 0} ⇒ {x → 0}4) Xf is positively invariant (with some κf (·).5) F (·) is a Lyapunov function under κf (·).6) x(0) ∈ XN .

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 53 / 76

  • Nonlinear Model Predictive Control

    This general result summarizes 90% of existing works on thestability of the NMPC schemes.

    This does not include the contractive schemes . . .

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 54 / 76

  • Nonlinear Model Predictive ControlThe basic idea : The contraction property

    A preliminary example

    Consider the nonlinear system

    ẋ1 = x2 ; ẋ2 = x1u

    and the "candidate" Lyapunovfunction

    V (x) =1

    2

    [x21 + x

    22

    ]Compute the derivative of V

    V̇ (x) = x1x2(1 + u)

    For classical Lyapunov designV is not a good choice

    (singular surface x1x2 = 0)

    But. . .

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 55 / 76

  • Nonlinear Model Predictive ControlThe basic idea : The contraction property

    A preliminary example

    Consider the nonlinear system

    ẋ1 = x2 ; ẋ2 = x1u

    and the "candidate" Lyapunovfunction

    V (x) =1

    2

    [x21 + x

    22

    ]Compute the derivative of V

    V̇ (x) = x1x2(1 + u)

    For classical Lyapunov designV is not a good choice

    (singular surface x1x2 = 0)

    But. . .

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 55 / 76

  • Nonlinear Model Predictive ControlThe basic idea : The contraction property

    A preliminary example

    Consider the nonlinear system

    ẋ1 = x2 ; ẋ2 = x1u

    and the "candidate" Lyapunovfunction

    V (x) =1

    2

    [x21 + x

    22

    ]Compute the derivative of V

    V̇ (x) = x1x2(1 + u)

    For classical Lyapunov designV is not a good choice

    (singular surface x1x2 = 0)

    But. . .

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 55 / 76

  • Nonlinear Model Predictive ControlThe basic idea : The contraction property

    0 0.5 1 1.5 2 2.5 30

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    1.4

    θ

    minu(·)=u0∈[−umax,+umax ]

    ‖xu(T, x0(θ))‖

    T=1T=2T=4

    umax = 5

    To summarize : A long term contraction propertyWhatever is the initial state x0 ∈ B(0, 1), there exists constantcontrol u ∈ [−5, +5] such that

    V(xu(2, x0)

    )‖ ≤ 0.9 V (x0) or

    [V

    (xu(4, x0)

    )‖ ≤ 0.82 V (x0)

    ]

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 56 / 76

  • Nonlinear Model Predictive ControlThe basic idea : The contraction property

    0 0.5 1 1.5 2 2.5 30

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    1.4

    θ

    minu(·)=u0∈[−umax,+umax ]

    ‖xu(T, x0(θ))‖

    T=1T=2T=4

    umax = 5

    To summarize : A long term contraction propertyWhatever is the initial state x0 ∈ B(0, 1), there exists constantcontrol u ∈ [−5, +5] such that

    V(xu(2, x0)

    )‖ ≤ 0.9 V (x0) or

    [V

    (xu(4, x0)

    )‖ ≤ 0.82 V (x0)

    ]

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 56 / 76

  • Nonlinear Model Predictive ControlThe basic idea : The contraction property

    0 0.5 1 1.5 2 2.5 30

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    1.4

    θ

    minu(·)=u0∈[−umax,+umax ]

    ‖xu(T, x0(θ))‖

    T=1T=2T=4

    umax = 5

    To summarize : A long term contraction propertyWhatever is the initial state x0 ∈ B(0, 1), there exists constantcontrol u ∈ [−5, +5] such that

    V(xu(2, x0)

    )‖ ≤ 0.9 V (x0) or

    [V

    (xu(4, x0)

    )‖ ≤ 0.82 V (x0)

    ]M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 56 / 76

  • Nonlinear Model Predictive ControlUsing the contraction property in feedback design

    An intuitive bad formulation

    A bad formulationDefine a receding horizon feedback based on the following open-loopoptimization problem

    minu(·),∆∈[0,T ]

    ∫ ∆0

    L(xu(τ, x(t))

    )dτ under V (xu(t + ∆, x(t))) ≤ γ V (x(t))

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 57 / 76

  • Nonlinear Model Predictive ControlUsing the contraction property in feedback design

    An intuitive bad formulation

    A bad formulationDefine a receding horizon feedback based on the following open-loopoptimization problem

    minu(·),∆∈[0,T ]

    ∫ ∆0

    L(xu(τ, x(t))

    )dτ under V (xu(t + ∆, x(t))) ≤ γ V (x(t))

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 57 / 76

  • Nonlinear Model Predictive ControlUsing the contraction property in feedback design

    An intuitive bad formulation

    A bad formulationDefine a receding horizon feedback based on the following open-loopoptimization problem

    minu(·),∆∈[0,T ]

    ∫ ∆0

    L(xu(τ, x(t))

    )dτ under V (xu(t + ∆, x(t))) ≤ γ V (x(t))

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 57 / 76

  • Nonlinear Model Predictive ControlUsing the contraction property in feedback design

    An intuitive bad formulation

    A bad formulationDefine a receding horizon feedback based on the following open-loopoptimization problem

    minu(·),∆∈[0,T ]

    ∫ ∆0

    L(xu(τ, x(t))

    )dτ under V (xu(t + ∆, x(t))) ≤ γ V (x(t))

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 57 / 76

  • Nonlinear Model Predictive ControlUsing the contraction property in feedback design

    An intuitive bad formulation

    A bad formulationDefine a receding horizon feedback based on the following open-loopoptimization problem

    minu(·),∆∈[0,T ]

    ∫ ∆0

    L(xu(τ, x(t))

    )dτ under V (xu(t + ∆, x(t))) ≤ γ V (x(t))

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 57 / 76

  • Nonlinear Model Predictive ControlUsing the contraction property in feedback design

    An intuitive bad formulation

    A bad formulationDefine a receding horizon feedback based on the following open-loopoptimization problem

    minu(·),∆∈[0,T ]

    ∫ ∆0

    L(xu(τ, x(t))

    )dτ under V (xu(t + ∆, x(t))) ≤ γ V (x(t))

    Updating systematically the contractive constraint

    V (xu(∆, x(t))) ≤ γ V (x(t))

    May cause instability in closed-loop

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 57 / 76

  • Nonlinear Model Predictive ControlUsing the contraction property in feedback design

    Classical contractive Receding horizon schemes

    Kothare, S. L. de Oliveira and Morari, M. IEEE-TAC Vol 45 pp 1053-1071 (2000)

    Non standard RH implementationLack of reactivityPotential feasibility problems

    In presence of disturbancesUnder truncated optimization

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 58 / 76

  • Nonlinear Model Predictive ControlUsing the contraction property in feedback design

    Classical contractive Receding horizon schemes

    Kothare, S. L. de Oliveira and Morari, M. IEEE-TAC Vol 45 pp 1053-1071 (2000)

    Either

    Use the open-loop control

    û(·, x(t))

    on [t, t + ∆̂(x(t))]

    Non standard RH implementationLack of reactivityPotential feasibility problems

    In presence of disturbancesUnder truncated optimization

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 58 / 76

  • Nonlinear Model Predictive ControlUsing the contraction property in feedback design

    Classical contractive Receding horizon schemes

    Kothare, S. L. de Oliveira and Morari, M. IEEE-TAC Vol 45 pp 1053-1071 (2000)

    Or

    Memorize x(t) and use

    V (xu(∆, x(t + kτs))) ≤ γ V (x(t))

    in a RH scheme during the timeinterval [t, t + ∆̂(x(t))]

    Non standard RH implementationLack of reactivityPotential feasibility problems

    In presence of disturbancesUnder truncated optimization

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 58 / 76

  • Nonlinear Model Predictive ControlUsing the contraction property in feedback design

    Classical contractive Receding horizon schemes

    Kothare, S. L. de Oliveira and Morari, M. IEEE-TAC Vol 45 pp 1053-1071 (2000)

    Or

    Memorize x(t) and use

    V (xu(∆, x(t + kτs))) ≤ γ V (x(t))

    in a RH scheme during the timeinterval [t, t + ∆̂(x(t))]

    Non standard RH implementationLack of reactivityPotential feasibility problems

    In presence of disturbancesUnder truncated optimization

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 58 / 76

  • Nonlinear Model Predictive ControlA new contractive scheme

    The class of systems

    Consider nonlinear systems

    ẋ = f(x, u) ; x ∈ Rn ; u ∈ Rm ; f continuous

    satisfying the following assumption

    Infinitely fast state excursions need infinite control

    For all finite horizon T > 0,

    lim‖x0‖→∞

    [min

    u∈W[0,T ]min

    t∈[0,T ]‖F (t, x0,u)‖

    ]= ∞

    for all compact subset W ⊂ Rm. [

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 59 / 76

  • Nonlinear Model Predictive ControlA new contractive scheme

    The class of systems

    Consider nonlinear systems

    ẋ = f(x, u) ; x ∈ Rn ; u ∈ Rm ; f continuous

    satisfying the following assumption

    Infinitely fast state excursions need infinite control

    For all finite horizon T > 0,

    lim‖x0‖→∞

    [min

    u∈W[0,T ]min

    t∈[0,T ]‖F (t, x0,u)‖

    ]= ∞

    for all compact subset W ⊂ Rm. [

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 59 / 76

  • Nonlinear Model Predictive ControlA new contractive scheme

    The open-loop control parametrization

    X Choose a sampling period τsX Define a τs-piece-wise

    constant control profile

    Upwc(·, p) ; p ∈ P

    X The parametrization iscalled "translatable" if for allp ∈ P, there is p+ ∈ P s.t.

    ui(p+) = ui+1(p)

    ∀i ∈ {1, . . . , N − 1}

    Notation F (·, x, p), V (·, x, p)

    p+ =

    (e−τs 00 e−2τs

    )p

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 60 / 76

  • Nonlinear Model Predictive ControlA new contractive scheme

    The open-loop control parametrization

    X Choose a sampling period τsX Define a τs-piece-wise

    constant control profile

    Upwc(·, p) ; p ∈ P

    X The parametrization iscalled "translatable" if for allp ∈ P, there is p+ ∈ P s.t.

    ui(p+) = ui+1(p)

    ∀i ∈ {1, . . . , N − 1}

    Notation F (·, x, p), V (·, x, p)

    p+ =

    (e−τs 00 e−2τs

    )p

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 60 / 76

  • Nonlinear Model Predictive ControlA new contractive scheme

    The open-loop control parametrization

    X Choose a sampling period τsX Define a τs-piece-wise

    constant control profile

    Upwc(·, p) ; p ∈ P

    X The parametrization iscalled "translatable" if for allp ∈ P, there is p+ ∈ P s.t.

    ui(p+) = ui+1(p)

    ∀i ∈ {1, . . . , N − 1}

    Notation F (·, x, p), V (·, x, p)

    p+ =

    (e−τs 00 e−2τs

    )p

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 60 / 76

  • Nonlinear Model Predictive ControlA new contractive scheme

    The contraction property

    The strong contraction property1 ∃γ ∈]0, 1[ s.t. for all x, there exists pc(x) ∈ P such that

    minq∈{1,...,N}

    V (qτs, x, pc(x)) ≤ γV (x)

    2 pc(·) is bounded over bounded sets3 ∃ a continuous function ϕ : Rn → R+ s.t. for all x :

    ‖V1→N(·, x, pc(x))‖∞ ≤ ϕ(x) · V (x)

    where

    ‖V1→q(·, x, p)‖∞ = maxi∈{1,...,q}

    V (iτs, x, p)

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 61 / 76

  • Nonlinear Model Predictive ControlA new contractive scheme

    The contraction property

    The strong contraction property1 ∃γ ∈]0, 1[ s.t. for all x, there exists pc(x) ∈ P such that

    minq∈{1,...,N}

    V (qτs, x, pc(x)) ≤ γV (x)

    2 pc(·) is bounded over bounded sets

    3 ∃ a continuous function ϕ : Rn → R+ s.t. for all x :

    ‖V1→N(·, x, pc(x))‖∞ ≤ ϕ(x) · V (x)

    where

    ‖V1→q(·, x, p)‖∞ = maxi∈{1,...,q}

    V (iτs, x, p)

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 61 / 76

  • Nonlinear Model Predictive ControlA new contractive scheme

    The contraction property

    The strong contraction property1 ∃γ ∈]0, 1[ s.t. for all x, there exists pc(x) ∈ P such that

    minq∈{1,...,N}

    V (qτs, x, pc(x)) ≤ γV (x)

    2 pc(·) is bounded over bounded sets3 ∃ a continuous function ϕ : Rn → R+ s.t. for all x :

    ‖V1→N(·, x, pc(x))‖∞ ≤ ϕ(x) · V (x)

    where

    ‖V1→q(·, x, p)‖∞ = maxi∈{1,...,q}

    V (iτs, x, p)

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 61 / 76

  • Nonlinear Model Predictive ControlA new contractive scheme

    The new contractive RH formulation

    The open-loop optimal control problem

    min(q,p)∈{1,...,N}×PX

    V (qτs, x, p) + αq

    N·min

    {ε2, ‖V1→q(·, x, p)‖∞

    }The receding-horizon state feedback

    u(kτs + τ) = u1(p̂(x(kτs))) ∀τ ∈ [0, τs[

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 62 / 76

  • Nonlinear Model Predictive ControlA new contractive scheme

    The new contractive RH formulation

    The open-loop optimal control problem

    min(q,p)∈{1,...,N}×PX

    V (qτs, x, p) + αq

    N·min

    {ε2, ‖V1→q(·, x, p)‖∞

    }The receding-horizon state feedback

    u(kτs + τ) = u1(p̂(x(kτs))) ∀τ ∈ [0, τs[

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 62 / 76

  • Nonlinear Model Predictive ControlA new contractive scheme

    The new contractive RH formulation

    The open-loop optimal control problem

    min(q,p)∈{1,...,N}×PX

    V (qτs, x, p) + αq

    N·min

    {ε2, ‖V1→q(·, x, p)‖∞

    }The receding-horizon state feedback

    u(kτs + τ) = u1(p̂(x(kτs))) ∀τ ∈ [0, τs[

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 62 / 76

  • Nonlinear Model Predictive ControlA new contractive scheme

    The new contractive RH formulation

    The open-loop optimal control problem

    min(q,p)∈{1,...,N}×PX

    V (qτs, x, p) + αq

    N·min

    {ε2, ‖V1→q(·, x, p)‖∞

    }The receding-horizon state feedback

    u(kτs + τ) = u1(p̂(x(kτs))) ∀τ ∈ [0, τs[

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 62 / 76

  • Nonlinear Model Predictive ControlA new contractive scheme

    The new contractive RH formulation

    The open-loop optimal control problem

    min(q,p)∈{1,...,N}×PX

    V (qτs, x, p) + αq

    N·min

    {ε2, ‖V1→q(·, x, p)‖∞

    }The receding-horizon state feedback

    u(kτs + τ) = u1(p̂(x(kτs))) ∀τ ∈ [0, τs[

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 62 / 76

  • Nonlinear Model Predictive ControlA new contractive scheme

    The new contractive RH formulation

    The open-loop optimal control problem

    min(q,p)∈{1,...,N}×PX

    V (qτs, x, p) + αq

    N·min

    {ε2, ‖V1→q(·, x, p)‖∞

    }

    The receding-horizon state feedback

    u(kτs + τ) = u1(p̂(x(kτs))) ∀τ ∈ [0, τs[

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 62 / 76

  • Nonlinear Model Predictive ControlA new contractive scheme

    The new contractive RH formulation

    The open-loop optimal control problem

    min(q,p)∈{1,...,N}×PX

    V (qτs, x, p) + αq

    N·min

    {ε2, ‖V1→q(·, x, p)‖∞

    }The receding-horizon state feedback

    u(kτs + τ) = u1(p̂(x(kτs))) ∀τ ∈ [0, τs[

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 62 / 76

  • Nonlinear Model Predictive ControlA new contractive scheme

    The new contractive RH formulation

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 63 / 76

  • Nonlinear Model Predictive ControlA new contractive scheme

    The new contractive RH formulation

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 63 / 76

  • Nonlinear Model Predictive ControlA new contractive scheme

    The new contractive RH formulation

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 63 / 76

  • Nonlinear Model Predictive ControlA new contractive scheme

    The new contractive RH formulation

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 63 / 76

  • Nonlinear Model Predictive ControlA new contractive scheme

    The new contractive RH formulation

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 63 / 76

  • Nonlinear Model Predictive ControlA new contractive scheme

    The new contractive RH formulation

    Basic ResultIf the following conditions hold

    1 Continuity (system/parametrization)2 Infinitely fast excursions need infinite controls3 The control parametrization is translatable on

    PX := P ∩B(0, sup

    x∈B̄(0,ρ(X))‖pc(x)‖+ ε0

    )⊆ P ⊆ Rnp

    Then, ∃ sufficiently small ε > 0 and α > 0 such that the RHfeedback is well defined and makes the origin x = 0 asymptoticallystable for the resulting CL dynamics with a region of attractionthat contains X.

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 64 / 76

  • Nonlinear Model Predictive ControlIllustrative examples

    The simple inverted pendulum : A self contained RH control

    F

    r

    θm, I

    M

    The system equations(mL2 + I mL cos θmL cos θ m + M

    ) (θ̈r̈

    )=

    (mLg sin θ − kθθ̇

    F + mLθ̇2 sin θ − kxṙ

    )A pre-compensator

    F = −Kpre(

    rṙ

    )+ u

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 65 / 76

  • Nonlinear Model Predictive ControlIllustrative examples

    The simple inverted pendulum : A self contained RH control

    F

    r

    θm, I

    M

    The system equations

    ẋ1 = x3 ; ẋ2 = x4(ẋ3ẋ4

    )= [M(x)]−1

    mLg sin(x1)− kθ · x3−Kpre1x2 −Kpre2x4 + mLx23 sin(x1)− kxx4 + u

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 65 / 76

  • Nonlinear Model Predictive ControlIllustrative examples

    The simple inverted pendulum : A self contained RH control

    F

    r

    θm, I

    M

    Control parametrization

    ui(p) = p · e−ti/tr ; ti =(i− 1)τs

    N

    where p ∈ P(x) := [pmin(x), pmax(x)] s.t

    pmin(x) = −Fmax + Kpre1x2 + Kpre2x4pmax(x) = +Fmax + Kpre1x2 + Kpre2x4

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 65 / 76

  • Nonlinear Model Predictive ControlIllustrative examples

    The simple inverted pendulum : A self contained RH control

    F

    r

    θm, I

    M

    Use the contractive RH formulation given by :

    V (x) =1

    2

    [θ̇2 + βr2 + ṙ2

    ]+ [1− cos(θ)]2

    min(q,p)∈{1,...,N}×P(x)

    V (qτs, x, p) +α

    N·min{ε, ‖V1→q(·, x, p)‖∞}

    u(kτs + τ) = u1(p̂(x(kτs))) ∀τ ∈ [0, τs[

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 65 / 76

  • Nonlinear Model Predictive ControlIllustrative examples

    The simple inverted pendulum : A self contained RH control

    The parameters of the controllerparameter value signification

    τs 0.4 s sampling periodN 8 horizon lengthtr 0.2 Constant for the control param.

    α = ε 0.01 cost function parametersKpre

    (2.5 10.0

    )Pre-compensation gain

    Fmax ∈ {1.0, 2.0} saturation level on Fβ ∈ 10 weighting coefficient on r

    Runs on a 1.3 GHz Pentium-III

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 66 / 76

  • Nonlinear Model Predictive ControlIllustrative examples

    The simple inverted pendulum : A self contained RH control

    0 10 20 30 40 50 60 70 800

    50

    100

    150

    200

    250

    300

    350

    400

    0 10 20 30 40 50 60 70 80-0.4

    -0.2

    0

    0.2

    0.4

    0.6

    0.8

    1

    0 10 20 30 40 50 60 70 80-3

    -2

    -1

    0

    1

    2

    3

    0 50 100 150 2000

    20

    40

    60

    80

    100

    θ (deg) r (m)

    F (N)

    Sampling periodsTime (s)

    Computation time (ms)

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 67 / 76

  • Nonlinear Model Predictive ControlIllustrative examples

    The double inverted pendulum : a hybrid control scheme

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 68 / 76

  • Nonlinear Model Predictive ControlIllustrative examples

    The double inverted pendulum : a hybrid control scheme

    System equations

    h1r̈ + h2θ̈1 cos θ1 + h3θ̈2 cos θ2 = h2θ̇21 sin θ1 + h3θ̇

    22 sin θ2 + F

    h2r̈ cos θ1 + h4θ̈1 + h5θ̈2 cos(θ1 − θ2) = h7 sin θ1 − h5θ̇22 sin(θ1 − θ2)h3r̈ cos θ2 + h5θ̈1 cos(θ1 − θ2) + h6θ̈2 = h5θ̇21 sin(θ1 − θ2) + h8 sin θ2

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 68 / 76

  • Nonlinear Model Predictive ControlIllustrative examples

    The double inverted pendulum : a hybrid control scheme

    Pre-compensation

    F = −Kpre ·(

    rṙ

    )+ u

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 68 / 76

  • Nonlinear Model Predictive ControlIllustrative examples

    The double inverted pendulum : a hybrid control scheme

    Control parametrization

    ui(p) = p1 · eλ1ti + p2e−λ2ti ; ti =(i− 1)τs

    N

    pmin(x) :=1

    2

    [−Fmax + Kpre

    (rṙ

    )]; pmax(x) :=

    1

    2

    [+Fmax + Kpre

    (rṙ

    )]

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 68 / 76

  • Nonlinear Model Predictive ControlIllustrative examples

    The double inverted pendulum : a hybrid control scheme

    The contractive RH controller

    V (x) =h42

    θ̇21 +h62

    θ̇22 + h5θ̇1θ̇2 cos(θ1 − θ2) + h7[1− cos(θ1)

    ]+

    + h8[1− cos(θ2)

    ]+ h1

    [r2 + ṙ2

    ]u(kτs + t) = KRH(x(kτs)) := u

    1(p̂(x(kτs))) ; t ∈ [0, τs[

    A local LQR controller

    KL(x) = −L ·

    xm1xm2x3...

    x6

    solving the discrete time Riccati equation

    ATd SAd − S − (ATd SBd)(R + BTd SBTd )(BTd SAd) + Q = 0

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 69 / 76

  • Nonlinear Model Predictive ControlIllustrative examples

    The double inverted pendulum : a hybrid control scheme

    The contractive RH controller

    V (x) =h42

    θ̇21 +h62

    θ̇22 + h5θ̇1θ̇2 cos(θ1 − θ2) + h7[1− cos(θ1)

    ]+

    + h8[1− cos(θ2)

    ]+ h1

    [r2 + ṙ2

    ]u(kτs + t) = KRH(x(kτs)) := u

    1(p̂(x(kτs))) ; t ∈ [0, τs[

    A local LQR controller

    KL(x) = −L ·

    xm1xm2x3...

    x6

    solving the discrete time Riccati equation

    ATd SAd − S − (ATd SBd)(R + BTd SBTd )(BTd SAd) + Q = 0

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 69 / 76

  • Nonlinear Model Predictive ControlIllustrative examples

    The double inverted pendulum : a hybrid control scheme

    Hybrid controller for swing-up and stabilization of the double inverted pendulum

    To summarize, the hybrid controller is given by

    u(kτs + τ) =

    {KRH(x(kτs)) if ‖x(kτs)‖2S > ηKL(x(kτs)) otherwise

    The parameters of the controllerparameter value signification

    τs 0.3 s sampling periodN 10 horizon lengthL (360, 29) (linear controller gain)

    (λ1, λ2) (100, 20) Control parametrizationη 1.0 switching threshold

    imax 20 Max number of function evaluation

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 70 / 76

  • Nonlinear Model Predictive ControlIllustrative examples

    The double inverted pendulum : a hybrid control scheme

    Hybrid controller for swing-up and stabilization of the double inverted pendulum

    To summarize, the hybrid controller is given by

    u(kτs + τ) =

    {KRH(x(kτs)) if ‖x(kτs)‖2S > ηKL(x(kτs)) otherwise

    The parameters of the controllerparameter value signification

    τs 0.3 s sampling periodN 10 horizon lengthL (360, 29) (linear controller gain)

    (λ1, λ2) (100, 20) Control parametrizationη 1.0 switching threshold

    imax 20 Max number of function evaluation

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 70 / 76

  • Nonlinear Model Predictive ControlIllustrative examples

    The double inverted pendulum : a hybrid control scheme

    0 10 20 30 40-400

    -200

    0

    200

    400

    600

    800

    0 10 20 30 40-500

    0

    500

    1000

    1500

    0 10 20 30 40-0.8

    -0.6

    -0.4

    -0.2

    0

    0.2

    0 10 20 30 40-30

    -20

    -10

    0

    10

    20

    30

    0 10 20 30 400

    1

    2

    3

    4

    5

    0 200 400 600 8000

    50

    100

    150

    200

    250

    300

    θ1(deg) θ2(deg) r(m)

    F (N) Optimal cost Ĵ(x) comp. times (ms)Time (s) Time (s) Time (s)

    Time (s) Time (s) Sampling period

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 71 / 76

  • Nonlinear Model Predictive ControlIllustrative examples

    The double inverted pendulum : a hybrid control scheme

    Double inverted pendulum

    le film

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 72 / 76

  • Nonlinear Model Predictive ControlIllustrative examples

    The double inverted pendulum : a hybrid control scheme

    The twin pendulum

    Movie

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 73 / 76

  • Nonlinear Model Predictive ControlIllustrative examples

    The double inverted pendulum : a hybrid control scheme

    The twin pendulum

    0 10 20 30 40 50 600

    1

    2

    3

    4

    5

    6

    7

    temps (s)

    θ1/(2π) et θ

    2/(2π)

    0 10 20 30 40 50 60-1

    -0.5

    0

    0.5

    1

    temps (s)

    position chariot r (m)

    0 10 20 30 40 50 600

    0.2

    0.4

    0.6

    0.8

    1

    temps (s)

    la fonction E

    0 10 20 30 40 50 60-60

    -40

    -20

    0

    20

    40

    60

    temps (s)

    accélération du chariot d2r/dt

    2 (m/s

    2)

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 73 / 76

  • Nonlinear Model Predictive ControlIllustrative examples

    The double inverted pendulum : a hybrid control scheme

    Nonlinear constrained NMPC for maximizing the production inpolymerization processes.

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 74 / 76

  • Nonlinear Model Predictive ControlIllustrative examples

    The double inverted pendulum : a hybrid control scheme

    Further readings

    N. Marchand and M. Alamir

    Numerical stabilization of a rigid spacecraft with two actuators

    Journal of dynamic systems, measurements and control.Vol 125, No 3, pp 489-491, (2003)

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 75 / 76

  • Nonlinear Model Predictive ControlIllustrative examples

    The double inverted pendulum : a hybrid control scheme

    Further readings

    M. Alamir and F. Boyer

    Fast generation of attractive trajectories for an under-actuated sa-tellite : Application to feedback control design

    Journal of optimization in Engineering. Vol 4, pp 215-230,(2003)

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 75 / 76

  • Nonlinear Model Predictive ControlIllustrative examples

    The double inverted pendulum : a hybrid control scheme

    Further readings

    M. Alamir

    Nonlinear Receding Horizon sub-optimal guidance law for minimuminterception time problem

    Control Engineering Practice. Vol 9, Issue 1, pp 107-116, (2001)

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 75 / 76

  • Nonlinear Model Predictive ControlIllustrative examples

    The double inverted pendulum : a hybrid control scheme

    Further readings

    M. Alamir and N. Marchand

    Constrained Minimum Time Oriented Feedback Control For theStabilization of Nonholonomic Systems in Chained Form

    Journal of optimization Theory and Applications. Vol 118,No 2, pp 229-244, (2003)

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 75 / 76

  • Nonlinear Model Predictive ControlIllustrative examples

    The double inverted pendulum : a hybrid control scheme

    Further readings

    A. Hably, N. Marchand and M. Alamir

    Constrained Minimum-Time Oriented Stabilization of ExtendedChained Form Systems

    CDC-ECC. Spain, (2005).

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 75 / 76

  • Nonlinear Model Predictive ControlIllustrative examples

    The double inverted pendulum : a hybrid control scheme

    Further readings

    M. alamir and H. Khennouf

    Discontinuous Receding Horizon Control Based Stabilizing Feedbackfor Nonholonomic Systems in Power Form

    CDC. New Orleans, (1995).

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 75 / 76

  • Nonlinear Model Predictive ControlIllustrative examples

    The double inverted pendulum : a hybrid control scheme

    Further readings

    A. Chemori and M. Alamir

    Limit Cycle Generation for a Class of Nonlinear Systems withjumps using a Low Dimensional Predictive Control

    International Journal of Control. Vol 78, Issue 15, pp 1206-1217, (2005)

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 75 / 76

  • Nonlinear Model Predictive ControlIllustrative examples

    The double inverted pendulum : a hybrid control scheme

    Further readings

    A. Chemori and M. Alamir

    Multi-step Limit Cycle Generation for Rabbit’s Walking Based ona Nonlinear Low dimensional Predictive Control Scheme

    International Journal of Mechatronics. To Appear (2005-6)

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 75 / 76

  • Nonlinear Model Predictive ControlIllustrative examples

    The double inverted pendulum : a hybrid control scheme

    Further readings

    M. Alamir, F. Ibrahim and J. P. Corriou

    A Flexible Nonlinear Model Predictive Control Scheme for Qua-lity/Performance Handling in Nonlinear SMB Chromatography

    Journal of Process Control. To appear (2005)

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 75 / 76

  • Nonlinear Model Predictive ControlIllustrative examples

    The double inverted pendulum : a hybrid control scheme

    Further readings

    S. A. Attia, M. Alamir and C. Canudas de Wit

    A Voltage Collapse Avoidance in Power Systems : A Receding Ho-rizon Approach

    International Journal on Intelligent automation and SoftComputing, Special Issue on “Intelligent automation in power sys-tems". To appear (2005)

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 75 / 76

  • Nonlinear Model Predictive ControlIllustrative examples

    The double inverted pendulum : a hybrid control scheme

    Further readings

    M. Alamir and G. Bornard

    On the stability of receding horizon control of nonlinear discrete-time systems

    Systems & Control Letters, Vol 23, pp 291-296, (1995).

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 75 / 76

  • Nonlinear Model Predictive ControlIllustrative examples

    The double inverted pendulum : a hybrid control scheme

    Further readings

    M. Alamir and N. marchand

    Numerical Stabilization of Nonlinear Systems- Exact Theory andApproximate Numerical Implementation

    European Journal of Control, Vol 5, pp 87-97, (1999).

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 75 / 76

  • Nonlinear Model Predictive ControlIllustrative examples

    The double inverted pendulum : a hybrid control scheme

    Further readings

    M. Alamir and G. Bornard

    Stability of truncated Infinite Constrained Receding HorizonScheme : The General Nonlinear Case

    Automatica, Vol 31, No 9, pp 1353-1356, (1995).

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 75 / 76

  • Nonlinear Model Predictive ControlIllustrative examples

    The double inverted pendulum : a hybrid control scheme

    Further readings

    M. Alamir and I. Balloul

    Robust Constrained Control Algorithm for General Batch Processes

    International Journal of Control, Vol 72, No 14, pp 1271-1287,(1999).

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 75 / 76

  • Nonlinear Model Predictive ControlIllustrative examples

    The double inverted pendulum : a hybrid control scheme

    Further readings

    M. Alamir

    A new Path Generation Based Receding Horizon Formulation forConstrained Stabilization of Nonlinear Systems

    Automatica, Vol 40, Issue 4, pp 647-652, (2004).

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 75 / 76

  • Nonlinear Model Predictive ControlIllustrative examples

    The double inverted pendulum : a hybrid control scheme

    Further readings

    M. Alamir

    A Low Dimensional Contractive NMPC Scheme for Nonlinear Sys-tems Stabilization : Theoretical Framework and Numerical Investi-gation on Relatively Fast Systems.

    Workshop on Assessment and Future Directions of NMPC,Freudenstadt, Germany (2005).

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 75 / 76

  • Nonlinear Model Predictive ControlIllustrative examples

    The double inverted pendulum : a hybrid control scheme

    Download this presentation at

    http ://www.lag.ensieg.inpg.fr/alamir/downloads.htm

    M. Alamir (–) Nonlinear Model Predictive Control 8,15 Novembre 2005 76 / 76

    The basic idea: The contraction propertyUsing the contraction property in feedback designAn intuitive bad formulationClassical contractive Receding horizon schemes

    A new contractive schemeThe class of systemsThe open-loop control parametrizationThe contraction propertyThe new contractive RH formulation

    Illustrative examplesThe simple inverted pendulum: A self contained RH controlThe double inverted pendulum: a hybrid control scheme